1
|
Chai F, Wang G, Shen Y, Niu Y, Huang Y, Fu T, Yang T, Jiang Y, Zhang J. KGF impedes TRIM21-enhanced stabilization of keratin 10 mediating differentiation in hypopharyngeal cancer. Cell Signal 2025; 127:111614. [PMID: 39848455 DOI: 10.1016/j.cellsig.2025.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
KGF, also known as FGF7, is a member of the fibroblast growth factor (FGF) family that binds with high affinity to the FGF receptor 2b (FGFR2b) and regulates various cellular processes, including cell proliferation and differentiation in a variety of tumors. However, its potential role in hypopharyngeal cancer (HPC) remains largely unknown. In our study, we observed increased expression of FGFR2b in HPC. KGF treatment inhibited the expression of the differentiation marker keratin 10 (K10) protein at the post-transcriptional level in FaDu cells. Furthermore, treatment with the proteasome inhibitor MG132 was found to attenuate KGF-induced K10 reduction, suggesting the involvement of the ubiquitin-proteasome system. Using mass spectrometry and immunoprecipitation analysis, we identified the E3 ubiquitin ligase TRIM21 as a K10-interacting protein. Unexpectedly, instead of causing degradation, TRIM21 enhanced K10 protein stability through K6-linked ubiquitination of K10 at lysine 163 (K163) in the context of KGF exposure. Meanwhile, KGF treatment decreased TRIM21 protein levels, which were regulated by the p38 MAPK pathway, leading to K48-linked ubiquitination-mediated degradation of TRIM21. Notably, TRIM21 knockdown significantly promoted proliferation, inhibited differentiation and migration of FaDu cells, whereas TRIM21 overexpression had opposite effects in vitro and suppressed xenograft tumor growth in vivo. Our study demonstrates that TRIM21 may act as a tumor suppressor in HPC. However, TRIM21 overexpression decreased the sensitivity of FaDu cells to 5-fluorouracil, whereas TRIM21 knockdown or KGF administration significantly increased 5-fluorouracil sensitivity. Taken together, these findings highlight the intricate balance between protein stabilization and degradation orchestrated by KGF. This ubiquitination-mediated non-degradation mechanism of TRIM21 may provide novel therapeutic strategies for HPC and other cancers.
Collapse
Affiliation(s)
- Fangyu Chai
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Guangyi Wang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Yibang Shen
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Yanfang Niu
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yichuan Huang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Tao Fu
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Yan Jiang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China.
| | - Jisheng Zhang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China.
| |
Collapse
|
2
|
Jin LL, Yin YL, Li FW, Zhou YM, Chen W, Tian Y, Feng X, Xu Y, Chen PF, Zhang JS, Xu HJ. Effects of FGFR2b-ligand signaling on pancreatic branching morphogenesis and postnatal islet function. J Mol Histol 2024; 56:45. [PMID: 39692915 DOI: 10.1007/s10735-024-10328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Pancreatic development is a complex process vital for maintaining metabolic balance, requiring intricate interactions among different cell types and signaling pathways. Fibroblast growth factor receptors 2b (FGFR2b)-ligands signaling from adjacent mesenchymal cells is crucial in initiating pancreatic development and differentiating exocrine and endocrine cells through a paracrine mechanism. However, the precise critical time window that affects pancreatic development remains unclear. To explore the roles of FGFR2b-ligands and identify the narrow window of time during which FGFR2b-ligand signaling affects pancreatic development, we used an inducible mouse model to control the expression of soluble dominant-negative FGFR2b (sFGFR2b) at various stages of pancreatic development. Our findings revealed a significant effect of FGFR2b-ligand signaling on epithelial morphology, lumen formation, and pancreatic branching during primary and secondary transition stages. Additionally, sFGFR2b expression reduced the number of Pdx1+ progenitor cells and altered the pancreatic islet structure. Furthermore, we examined the effect of mutation in FGF10, an FGFR2b ligand, on embryonic pancreatic β-cell function. FGF10 null mutant embryos exhibited reduced pancreatic size and a decrease number of islet-like structure. Although neonatal mice with haploinsufficiency for FGF10 exhibited abnormal glucose tolerance test results, indicating a potential diabetes predisposition, these abnormalities normalized with age, aligning with observations in wild type mice. Our study underscores the critical role of FGFR2b-ligand signaling in pancreatic development and postnatal islet function, offering insights into potential therapeutic targets for pancreatic disorders.
Collapse
Affiliation(s)
- Li-Li Jin
- National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Yi-Ling Yin
- National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Fei-Wei Li
- International Collaborative Center On Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Mei Zhou
- National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Wen Chen
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Ye Tian
- International Collaborative Center On Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiao Feng
- International Collaborative Center On Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Xu
- National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Peng-Fei Chen
- National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| | - Hui-Jing Xu
- National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
- International Collaborative Center On Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Villalba A, Gitton Y, Inoue M, Aiello V, Blain R, Toupin M, Mazaud-Guittot S, Rachdi L, Semb H, Chédotal A, Scharfmann R. A 3D atlas of the human developing pancreas to explore progenitor proliferation and differentiation. Diabetologia 2024; 67:1066-1078. [PMID: 38630142 PMCID: PMC11058870 DOI: 10.1007/s00125-024-06143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 04/30/2024]
Abstract
AIMS/HYPOTHESIS Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Yorick Gitton
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Megumi Inoue
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Virginie Aiello
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Raphaël Blain
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Maryne Toupin
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Latif Rachdi
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Henrik Semb
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Alain Chédotal
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France.
- MeLiS, CNRS UMR5284, Inserm U1314, University Claude Bernard Lyon 1, Lyon, France.
| | | |
Collapse
|
4
|
Aglan HA, Kotob SE, Mahmoud NS, Kishta MS, Ahmed HH. Bone marrow stem cell-derived β-cells: New issue for diabetes cell therapy. Tissue Cell 2024; 86:102280. [PMID: 38029457 DOI: 10.1016/j.tice.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
This investigation aimed to establish the promising role of insulin-producing cells (IPCs) growing from bone marrow-mesenchymal stem cells (BM-MSCs) in relieving hyperglycemia induced in rats. BM-MSCs were differentiated into IPCs using three different protocols. The efficiency of BM-MSCs differentiation into IPCs in vitro was confirmed by detecting IPCs specific gene expression (Foxa-2, PDX-1 and Ngn-3) and insulin release assay. The in vivo study design included 3 groups of male Wistar rats; negative control group, diabetic group and IPCs-transfused group (5 ×106 cells of the most functional IPCs/rat). One month after IPCs infusion, serum glucose, insulin, c-peptide and visfatin levels as well as pancreatic glucagon level were quantified. Gene expression analysis of pancreatic Foxa-2 and Sox-17, IGF-1 and FGF-10 was done. Additionally, histological investigation of pancreatic tissue sections was performed. Our data clarified that, the most functional IPCs are those generated from BM-MSCs using differentiation protocol 3 as indicated by the significant up-regulation of Foxa-2, PDX-1 and Ngn-3 gene expression levels. These findings were further emphasized by releasing of a significant amount of insulin in response to glucose load. The transplantation of the IPCs in diabetic rats elicited significant decline in serum glucose, visfatin and pancreatic glucagon levels along with significant rise in serum insulin and c-peptide levels. Moreover, it triggered significant up-regulation in the expression levels of pancreatic Foxa-2, Sox-17, IGF-1 and FGF-10 genes versus the untreated diabetic counterpart. The histopathological examination of pancreatic tissue almost assisted the biochemical and molecular genetic analyses. These results disclose that the cell therapy holds potential to develop a new cure for DM based on the capability of BM-MSCs to generate β-cell phenotype using specific protocol.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Soheir E Kotob
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Sakhneny L, Khalifa-Malka L, Landsman L. Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin Cell Dev Biol 2019; 92:89-96. [DOI: 10.1016/j.semcdb.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
7
|
Khandelwal AR, Kent B, Hillary S, Alam MM, Ma X, Gu X, DiGiovanni J, Nathan CAO. Fibroblast growth factor receptor promotes progression of cutaneous squamous cell carcinoma. Mol Carcinog 2019; 58:1715-1725. [PMID: 31254372 DOI: 10.1002/mc.23012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived invasive and metastatic tumor of the skin. It is the second-most commonly diagnosed form of skin cancer striking 200 000 Americans annually. Further, in organ transplant patients, there is a 65- to 100-fold increased incidence of cSCC compared to the general population. Excision of cSCC of the head and neck results in significant facial disfigurement. Therefore, increased understanding of the mechanisms involved in the pathogeneses of cSCC could identify means to prevent, inhibit, and reverse this process. In our previous studies, inhibition of fibroblast growth factor receptor (FGFR) significantly decreased ultraviolet B-induced epidermal hyperplasia and hyperproliferation in SKH-1 mice, suggesting an important role for FGFR signaling in skin cancer development. However, the role of FGFR signaling in the progression of cSCC is not yet elucidated. Analysis of the expression of FGFR in cSCC cells and normal epidermal keratinocytes revealed protein overexpression and increased FGFR2 activation in cSCC cells compared to normal keratinocytes. Further, tumor cell-specific overexpression of FGFR2 was detected in human cSCCs, whereas the expression of FGFR2 was low in premalignant lesions and normal skin. Pretreatment with the pan-FGFR inhibitor; AZD4547 significantly decreased cSCC cell-cycle traverse, proliferation, migration, and motility. Interestingly, AZD4547 also significantly downregulated mammalian target of rapamycin complex 1 and AKT activation in cSCC cells, suggesting an important role of these signaling pathways in FGFR-mediated effects. To further bolster the in vitro studies, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with SCC12A tumor xenografts treated with AZD4547 (15 mg/kg/bw, twice weekly oral gavage) exhibited significantly decreased tumor volume compared to the vehicle-only treatment group. The current studies provide mechanistic evidence for the role of FGFR and selectively FGFR2 in the early progression of cSCC and identifies FGFR as a putative therapeutic target in the treatment of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Burton Kent
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Savage Hillary
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Md Maksudul Alam
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xiaohua Ma
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, Louisiana
| |
Collapse
|
8
|
Huijbregts L, Petersen MBK, Berthault C, Hansson M, Aiello V, Rachdi L, Grapin-Botton A, Honore C, Scharfmann R. Bromodomain and Extra Terminal Protein Inhibitors Promote Pancreatic Endocrine Cell Fate. Diabetes 2019; 68:761-773. [PMID: 30655386 DOI: 10.2337/db18-0224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022]
Abstract
Bromodomain and extraterminal (BET) proteins are epigenetic readers that interact with acetylated lysines of histone tails. Recent studies have demonstrated their role in cancer progression because they recruit key components of the transcriptional machinery to modulate gene expression. However, their role during embryonic development of the pancreas has never been studied. Using mouse embryonic pancreatic explants and human induced pluripotent stem cells (hiPSCs), we show that BET protein inhibition with I-BET151 or JQ1 enhances the number of neurogenin3 (NEUROG3) endocrine progenitors. In mouse explants, BET protein inhibition further led to increased expression of β-cell markers but in the meantime, strongly downregulated Ins1 expression. Similarly, although acinar markers, such as Cpa1 and CelA, were upregulated, Amy expression was repressed. In hiPSCs, BET inhibitors strongly repressed C-peptide and glucagon during endocrine differentiation. Explants and hiPSCs were then pulsed with BET inhibitors to increase NEUROG3 expression and further chased without inhibitors. Endocrine development was enhanced in explants with higher expression of insulin and maturation markers, such as UCN3 and MAFA. In hiPSCs, the outcome was different because C-peptide expression remained lower than in controls, but ghrelin expression was increased. Altogether, by using two independent models of pancreatic development, we show that BET proteins regulate multiple aspects of pancreatic development.
Collapse
Affiliation(s)
- Lukas Huijbregts
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Maja Borup Kjær Petersen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Claire Berthault
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | | | - Virginie Aiello
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Latif Rachdi
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Anne Grapin-Botton
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Christian Honore
- Department of Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
9
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
11
|
Ramond C, Beydag-Tasöz BS, Azad A, van de Bunt M, Petersen MBK, Beer NL, Glaser N, Berthault C, Gloyn AL, Hansson M, McCarthy MI, Honoré C, Grapin-Botton A, Scharfmann R. Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development 2018; 145:dev.165480. [PMID: 30042179 PMCID: PMC6124547 DOI: 10.1242/dev.165480] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived in vitro from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes in vitro.
Collapse
Affiliation(s)
- Cyrille Ramond
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ajuna Azad
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Martijn van de Bunt
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Global Research Informatics, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Maja Borup Kjær Petersen
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark,Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Nicola L. Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Nicolas Glaser
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Claire Berthault
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Mattias Hansson
- Stem Cell Research, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Christian Honoré
- Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark,Authors for correspondence (; )
| | - Raphael Scharfmann
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France,Authors for correspondence (; )
| |
Collapse
|
12
|
Hosseini ZF, Nelson DA, Moskwa N, Sfakis LM, Castracane J, Larsen M. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J Cell Sci 2018; 131:jcs.208728. [PMID: 29361536 DOI: 10.1242/jcs.208728] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Epithelial progenitor cells are dependent upon a complex 3D niche to promote their proliferation and differentiation during development, which can be recapitulated in organoids. The specific requirements of the niche remain unclear for many cell types, including the proacinar cells that give rise to secretory acinar epithelial cells that produce saliva. Here, using ex vivo cultures of E16 primary mouse submandibular salivary gland epithelial cell clusters, we investigated the requirement for mesenchymal cells and other factors in producing salivary organoids in culture. Native E16 salivary mesenchyme, but not NIH3T3 cells or mesenchymal cell conditioned medium, supported robust protein expression of the progenitor marker Kit and the acinar/proacinar marker AQP5, with a requirement for FGF2 expression by the mesenchyme. Enriched salivary epithelial clusters that were grown in laminin-enriched basement membrane extract or laminin-111 together with exogenous FGF2, but not with EGF, underwent morphogenesis to form organoids that displayed robust expression of AQP5 in terminal buds. Knockdown of FGF2 in the mesenchyme or depletion of mesenchyme cells from the organoids significantly reduced AQP5 levels even in the presence of FGF2, suggesting a requirement for autocrine FGF2 signaling in the mesenchyme cells for AQP5 expression. We conclude that basement membrane proteins and mesenchyme cells function as niche factors in salivary organoids.
Collapse
Affiliation(s)
- Zeinab F Hosseini
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Lauren M Sfakis
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd, Albany, NY 12203, USA
| | - James Castracane
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd, Albany, NY 12203, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
13
|
Ndlovu R, Deng LC, Wu J, Li XK, Zhang JS. Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Front Genet 2018; 9:482. [PMID: 30425728 PMCID: PMC6219204 DOI: 10.3389/fgene.2018.00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.
Collapse
Affiliation(s)
- Rodrick Ndlovu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lian-Cheng Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Centre for Precision Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| |
Collapse
|
14
|
Gnatenko DA, Kopantzev EP, Sverdlov ED. [Fibroblast growth factors and their effects in pancreas organogenesis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:211-218. [PMID: 28781254 DOI: 10.18097/pbmc20176303211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
Collapse
Affiliation(s)
- D A Gnatenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E P Kopantzev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - E D Sverdlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| |
Collapse
|
15
|
Elghazi L, Blandino-Rosano M, Alejandro E, Cras-Méneur C, Bernal-Mizrachi E. Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Mol Metab 2017; 6:560-573. [PMID: 28580286 PMCID: PMC5444096 DOI: 10.1016/j.molmet.2017.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Poor fetal nutrition increases the risk of type 2 diabetes in the offspring at least in part by reduced embryonic β-cell growth and impaired function. However, it is not entirely clear how fetal nutrients and growth factors impact β-cells during development to alter glucose homeostasis and metabolism later in life. The current experiments aimed to test the impact of fetal nutrients and growth factors on endocrine development and how these signals acting on mTOR signaling regulate β-cell mass and glucose homeostasis. METHOD Pancreatic rudiments in culture were used to study the role of glucose, growth factors, and amino acids on β-cell development. The number and proliferation of pancreatic and endocrine progenitor were assessed in the presence or absence of rapamycin. The impact of mTOR signaling in vivo on pancreas development and glucose homeostasis was assessed in models deficient for mTOR or Raptor in Pdx1 expressing pancreatic progenitors. RESULTS We found that amino acid concentrations, and leucine in particular, enhance the number of pancreatic and endocrine progenitors and are essential for growth factor induced proliferation. Rapamycin, an mTORC1 complex inhibitor, reduced the number and proliferation of pancreatic and endocrine progenitors. Mice lacking mTOR in pancreatic progenitors exhibited hyperglycemia in neonates, hypoinsulinemia and pancreatic agenesis/hypoplasia with pancreas rudiments containing ductal structures lacking differentiated acinar and endocrine cells. In addition, loss of mTORC1 by deletion of raptor in pancreatic progenitors reduced pancreas size with reduced number of β-cells. CONCLUSION Together, these results suggest that amino acids concentrations and in particular leucine modulates growth responses of pancreatic and endocrine progenitors and that mTOR signaling is critical for these responses. Inactivation of mTOR and raptor in pancreatic progenitors suggested that alterations in some of the components of this pathway during development could be a cause of pancreatic agenesis/hypoplasia and hyperglycemia.
Collapse
Affiliation(s)
- Lynda Elghazi
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division, Ann Arbor, MI, USA
| | - Manuel Blandino-Rosano
- University of Miami Miller School of Medicine and Miami VA Health Care System, Division of Endocrinology, Diabetes and Metabolism, Miami, FL, USA
| | - Emilyn Alejandro
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division, Ann Arbor, MI, USA
- University of Minnesota, Department of Integrative Biology & Physiology, Minneapolis, MN, USA
| | - Corentin Cras-Méneur
- University of Michigan in Ann Arbor, Internal Medicine Department, MEND Division, Ann Arbor, MI, USA
| | - Ernesto Bernal-Mizrachi
- University of Miami Miller School of Medicine and Miami VA Health Care System, Division of Endocrinology, Diabetes and Metabolism, Miami, FL, USA
- Corresponding author. Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, USA. Fax: +1 (305) 243 4039.Department of Internal MedicineDivision of Endocrinology, Diabetes and MetabolismUniversity of Miami Miller School of Medicine and Miami VA Health Care SystemUSA
| |
Collapse
|
16
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
17
|
Min BH, Kim BM, Lee SH, Kang SW, Bendayan M, Park IS. Clusterin Expression in the Early Process of Pancreas Regeneration in the Pancreatectomized Rat. J Histochem Cytochem 2016; 51:1355-65. [PMID: 14500703 DOI: 10.1177/002215540305101012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have previously reported upregulation of clusterin at the time of islet cell regeneration after beta-cell injury. This led us to speculate that clusterin might be involved in the neogenic regeneration of the pancreas. Clusterin expression was examined throughout the process of pancreatic neogenesis in pancreatectomized rats. For in vitro analysis, duct cells were isolated from the rat pancreas and clusterin cDNA was transfected for its overexpression. Clusterin and its mRNA increased significantly in the early phase of regeneration, particularly at 1-3 days after pancreatectomy. Clusterin was transiently expressed in the differentiating acinar cells but faded afterwards. Interestingly, these clusterin cells were negative for PCNA (proliferating cell nuclear antigen), whereas most epithelial cells in ductules in the regenerating tissue showed extensive proliferative activity. Clusterin expression was also detected in some endocrine cells of the regenerating tissue. Transfection of clusterin cDNA into primary cultured duct cells resulted in a 2.5-fold increase in cell proliferation and induced transformation of non-differentiated duct cells into differentiated cells displaying cytokeratin immunoreactivity. Taken together, these results suggest that clusterin may play essential roles in the neogenic regeneration of pancreatic tissue by stimulating proliferation and differentiation of duct cells.
Collapse
Affiliation(s)
- Bon-Hong Min
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Loo CKC, Pereira TN, Ramsing M, Vogel I, Petersen OB, Ramm GA. Mechanism of pancreatic and liver malformations in human fetuses with short-rib polydactyly syndrome. ACTA ACUST UNITED AC 2016; 106:549-62. [PMID: 26970085 DOI: 10.1002/bdra.23495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND The short-rib polydactyly (SRP) syndromes are rare skeletal dysplasias caused by abnormalities in primary cilia, sometimes associated with visceral malformations. METHODS The pathogenesis of ductal plate malformation (DPM) varies in different syndromes and has not been investigated in SRP. We have studied liver development in five SRP fetuses and pancreatic development in one SRP fetus, with genetically confirmed mutations in cilia related genes, with and without DPMs, using the immunoperoxidase technique, and compared these to other syndromes with DPM. RESULTS Acetylated tubulin expression was abnormal in DPM in SRP, Meckel syndrome, and autosomal recessive polycystic kidney disease (ARPKD), confirming ciliary anomalies. SDF-1 was abnormally expressed in SRP and two of three cases of autosomal dominant polycystic kidney disease (ADPKD) but not ARPKD or Meckel. Increased density of quiescent hepatic stellate cells was seen in SRP, Meckel, one of three cases of ARPKD, and two of three cases of ADPKD with aberrant hepatocyte expression of keratin 19 in SRP and ADPKD. Immunophenotypic abnormalities were present even in fetal liver without fully developed DPMs. The SRP case with DPM and pancreatic malformations showed abnormalities in the pancreatic head (influenced by mesenchyme from the septum transversum, similar to liver) but not pancreatic body (influenced by mesenchyme adjacent to the notochord). CONCLUSION In SRP, there are differentiation defects of hepatocytes, cholangiocytes, and liver mesenchyme and, in rare cases, pancreatic mesenchymal anomalies. The morphological changes were subtle in early gestation but immunophenotypic abnormalities were present. Mesenchymal-epithelial interactions may contribute to the malformations. Birth Defects Research (Part A) 106:549-562, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christine K C Loo
- Department of Anatomical Pathology SEALS, Prince of Wales Hospital, Sydney, Australia (formerly: Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Australia.).,Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Discipline of Pathology School of Medicine, University of Western Sydney, Australia
| | - Tamara N Pereira
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mette Ramsing
- Department of Pathology, Aarhus University Hospital, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | - Olav B Petersen
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Denmark
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Willmann SJ, Mueller NS, Engert S, Sterr M, Burtscher I, Raducanu A, Irmler M, Beckers J, Sass S, Theis FJ, Lickert H. The global gene expression profile of the secondary transition during pancreatic development. Mech Dev 2016; 139:51-64. [DOI: 10.1016/j.mod.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022]
|
20
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
21
|
Nies VJM, Sancar G, Liu W, van Zutphen T, Struik D, Yu RT, Atkins AR, Evans RM, Jonker JW, Downes MR. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front Endocrinol (Lausanne) 2015; 6:193. [PMID: 26834701 PMCID: PMC4718082 DOI: 10.3389/fendo.2015.00193] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.
Collapse
Affiliation(s)
- Vera J. M. Nies
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Weilin Liu
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim van Zutphen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dicky Struik
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| | - Michael Robert Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| |
Collapse
|
22
|
Kumar SS, Alarfaj AA, Munusamy MA, Singh AJAR, Peng IC, Priya SP, Hamat RA, Higuchi A. Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int J Mol Sci 2014; 15:23418-47. [PMID: 25526563 PMCID: PMC4284775 DOI: 10.3390/ijms151223418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
Collapse
Affiliation(s)
- S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - A J A Ranjith Singh
- Department of Bioscience, Jacintha Peter College of Arts and Sciences, Ayakudi, Tenkasi, Tamilnadu 627852, India.
| | - I-Chia Peng
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan.
| | - Sivan Padma Priya
- Department of Basic Science and Department of Surgical Sciences, Ajman University of Science and Technology-Fujairah Campus, P.O. Box 9520, Al Fujairah, United Arab Emirates.
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
23
|
Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, Akiyoshi K, Moriyama K. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS One 2014; 9:e101693. [PMID: 25003957 PMCID: PMC4086955 DOI: 10.1371/journal.pone.0101693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/11/2014] [Indexed: 11/30/2022] Open
Abstract
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.
Collapse
Affiliation(s)
- Masako Yokota
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Jumpei Morita
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Suzuki
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Yoshihiro Sasaki
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazunari Akiyoshi
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- ERATO, Japan Science and Technology Agency, Tokyo, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Schiesser JV, Wells JM. Generation of β cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci 2014; 1311:124-37. [PMID: 24611778 DOI: 10.1111/nyas.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1998, the landmark paper describing the isolation and culture of human embryonic stem cells (ESCs) was published. Since that time, the main goal of many diabetes researchers has been to derive β cells from ESCs as a renewable cell-based therapy for the treatment of patients with diabetes. In working toward this goal, numerous protocols that attempt to recapitulate normal pancreatic development have been published that result in the formation of pancreatic cell types from human pluripotent cells. This review examines stem cell differentiation methods and places them within the context of pancreatic development. We additionally compare strategies that are currently being used to generate pancreatic cell types and contrast them with approaches that have been used to generate functional cell types in different lineages. In doing this, we aim to identify how new approaches might be used to improve yield and functionality of in vitro-derived pancreatic β cells as an eventual cell-based therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
25
|
Abstract
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Li Yen Mah
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Piper Hanley K, Hanley NA. Development of the human pancreas from foregut to endocrine commitment. Diabetes 2013; 62:3514-22. [PMID: 23630303 PMCID: PMC3781486 DOI: 10.2337/db12-1479] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knowledge of human pancreas development underpins our interpretation and exploitation of human pluripotent stem cell (PSC) differentiation toward a β-cell fate. However, almost no information exists on the early events of human pancreatic specification in the distal foregut, bud formation, and early development. Here, we have studied the expression profiles of key lineage-specific markers to understand differentiation and morphogenetic events during human pancreas development. The notochord was adjacent to the dorsal foregut endoderm during the fourth week of development before pancreatic duodenal homeobox-1 detection. In contrast to the published data from mouse embryos, during human pancreas development, we detected only a single-phase of Neurogenin 3 (NEUROG3) expression and endocrine differentiation from approximately 8 weeks, before which Nirenberg and Kim homeobox 2.2 (NKX2.2) was not observed in the pancreatic progenitor cell population. In addition to revealing a number of disparities in timing between human and mouse development, these data, directly assembled from human tissue, allow combinations of transcription factors to define sequential stages and differentiating pancreatic cell types. The data are anticipated to provide a useful reference point for stem cell researchers looking to differentiate human PSCs in vitro toward the pancreatic β-cell so as to model human development or enable drug discovery and potential cell therapy.
Collapse
Affiliation(s)
- Rachel E. Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Endocrinology Department, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
| | - Andrew A. Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Rebecca Kirkwood-Wilson
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Neil A. Roberts
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Thomas Hearn
- Centre for Human Development, Stem Cells and Regeneration, Human Genetics, University of Southampton, Southampton General Hospital, Southampton, U.K
| | - Rachel J. Salisbury
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Jennifer Blaylock
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Karen Piper Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Neil A. Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Endocrinology Department, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
- Corresponding author: Neil A. Hanley,
| |
Collapse
|
27
|
Takizawa-Shirasawa S, Yoshie S, Yue F, Mogi A, Yokoyama T, Tomotsune D, Sasaki K. FGF7 and cell density are required for final differentiation of pancreatic amylase-positive cells from human ES cells. Cell Tissue Res 2013; 354:751-9. [PMID: 23996199 DOI: 10.1007/s00441-013-1695-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.
Collapse
Affiliation(s)
- Sakiko Takizawa-Shirasawa
- Laboratory for Advanced Health Sciences, Bourbon Institutes of Health, BOURBON Corporation, 4-2-14 Matsunami, Kashiwazaki, Niigata, 945-8611, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
29
|
Baragli L, Grande C, Gesmundo I, Settanni F, Taliano M, Gallo D, Gargantini E, Ghigo E, Granata R. Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways. PLoS One 2013; 8:e64374. [PMID: 23741322 PMCID: PMC3669302 DOI: 10.1371/journal.pone.0064374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/11/2013] [Indexed: 01/17/2023] Open
Abstract
Availability of large amounts of in vitro generated β-cells may support replacement therapy in diabetes. However, methods to obtain β-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic β-cell survival and function. Obestatin prevents β-cell apoptosis, preserves β-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro β-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i) enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii) increased cell survival and reduced apoptosis during precursor selection; (iii) promoted the generation of islet-like cell clusters (ICCs) with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs), Notch receptors and neurogenin 3 (Ngn3) during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional β-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.
Collapse
Affiliation(s)
- lessandra Baragli
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Cristina Grande
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabio Settanni
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Marina Taliano
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Gallo
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Eleonora Gargantini
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
30
|
Delaspre F, Massumi M, Salido M, Soria B, Ravassard P, Savatier P, Skoudy A. Directed pancreatic acinar differentiation of mouse embryonic stem cells via embryonic signalling molecules and exocrine transcription factors. PLoS One 2013; 8:e54243. [PMID: 23349836 PMCID: PMC3547908 DOI: 10.1371/journal.pone.0054243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/10/2012] [Indexed: 11/22/2022] Open
Abstract
Pluripotent embryonic stem cells (ESC) are a promising cellular system for generating an unlimited source of tissue for the treatment of chronic diseases and valuable in vitro differentiation models for drug testing. Our aim was to direct differentiation of mouse ESC into pancreatic acinar cells, which play key roles in pancreatitis and pancreatic cancer. To that end, ESC were first differentiated as embryoid bodies and sequentially incubated with activin A, inhibitors of Sonic hedgehog (Shh) and bone morphogenetic protein (BMP) pathways, fibroblast growth factors (FGF) and retinoic acid (RA) in order to achieve a stepwise increase in the expression of mRNA transcripts encoding for endodermal and pancreatic progenitor markers. Subsequent plating in Matrigel® and concomitant modulation of FGF, glucocorticoid, and folllistatin signalling pathways involved in exocrine differentiation resulted in a significant increase of mRNAs encoding secretory enzymes and in the number of cells co-expressing their protein products. Also, pancreatic endocrine marker expression was down-regulated and accompanied by a significant reduction in the number of hormone-expressing cells with a limited presence of hepatic marker expressing-cells. These findings suggest a selective activation of the acinar differentiation program. The newly differentiated cells were able to release α-amylase and this feature was greatly improved by lentiviral-mediated expression of Rbpjl and Ptf1a, two transcription factors involved in the maximal production of digestive enzymes. This study provides a novel method to produce functional pancreatic exocrine cells from ESC.
Collapse
Affiliation(s)
- Fabien Delaspre
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| | - Mohammad Massumi
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| | - Marta Salido
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| | - Bernat Soria
- CABIMER, Sevilla, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pierre Savatier
- Stem Cells and Brain Research Institute, Bron, France
- Université de Lyon, Lyon, France
| | - Anouchka Skoudy
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
31
|
Abstract
The lack or dysfunction of insulin-producing β-cells is the cause of all forms of diabetes. In vitro generation of β-cells from pluripotent stem cells for cell-replacement therapy or triggering endogenous mechanisms of β-cell repair have great potential in the field of regenerative medicine. Both approaches rely on a thorough understanding of β-cell development and homeostasis. Here, we briefly summarize the current knowledge of β-cell differentiation during pancreas development in the mouse. Furthermore, we describe how this knowledge is translated to instruct differentiation of both mouse and human pluripotent stem cells towards the β-cell lineage. Finally, we shortly summarize the current efforts to identify stem or progenitor cells in the adult pancreatic organ and to harness the endogenous regenerative potential. Understanding development and regeneration of β-cells already led to identification of molecular targets for therapy and informed on pathomechanisms of diabetes. In the future this knowledge might [corrected] lead to β-cell repair and replacement therapies.
Collapse
Affiliation(s)
- Aurelia Raducanu
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | | |
Collapse
|
32
|
Petzold KM, Spagnoli FM. A system for ex vivo culturing of embryonic pancreas. J Vis Exp 2012:e3979. [PMID: 22951988 DOI: 10.3791/3979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The pancreas controls vital functions of our body, including the production of digestive enzymes and regulation of blood sugar levels. Although in the past decade many studies have contributed to a solid foundation for understanding pancreatic organogenesis, important gaps persist in our knowledge of early pancreas formation. A complete understanding of these early events will provide insight into the development of this organ, but also into incurable diseases that target the pancreas, such as diabetes or pancreatic cancer. Finally, this information will generate a blueprint for developing cell-replacement therapies in the context of diabetes. During embryogenesis, the pancreas originates from distinct embryonic outgrowths of the dorsal and ventral foregut endoderm at embryonic day (E) 9.5 in the mouse embryo. Both outgrowths evaginate into the surrounding mesenchyme as solid epithelial buds, which undergo proliferation, branching and differentiation to generate a fully mature organ. Recent evidences have suggested that growth and differentiation of pancreatic cell lineages, including the insulin-producing β-cells, depends on proper tissue-architecture, epithelial remodeling and cell positioning within the branching pancreatic epithelium. However, how branching morphogenesis occurs and is coordinated with proliferation and differentiation in the pancreas is largely unknown. This is in part due to the fact that current knowledge about these developmental processes has relied almost exclusively on analysis of fixed specimens, while morphogenetic events are highly dynamic. Here, we report a method for dissecting and culturing mouse embryonic pancreatic buds ex vivo on glass bottom dishes, which allow direct visualization of the developing pancreas (Figure 1). This culture system is ideally devised for confocal laser scanning microscopy and, in particular, live-cell imaging. Pancreatic explants can be prepared not only from wild-type mouse embryos, but also from genetically engineered mouse strains (e.g. transgenic or knockout), allowing real-time studies of mutant phenotypes. Moreover, this ex vivo culture system is valuable to study the effects of chemical compounds on pancreatic development, enabling to obtain quantitative data about proliferation and growth, elongation, branching, tubulogenesis and differentiation. In conclusion, the development of an ex vivo pancreatic explant culture method combined with high-resolution imaging provides a strong platform for observing morphogenetic and differentiation events as they occur within the developing mouse embryo.
Collapse
Affiliation(s)
- Kristin M Petzold
- Molecular and Cellular Basis of Embryonic Development, Max-Delbrück-Center for Molecular Medicine
| | | |
Collapse
|
33
|
Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 2012; 23:663-72. [DOI: 10.1016/j.semcdb.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
|
34
|
Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol 2012; 23:711-9. [PMID: 22743232 DOI: 10.1016/j.semcdb.2012.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Collapse
Affiliation(s)
- Megan H Cleveland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | | | | | | | | |
Collapse
|
35
|
Chen X, Rozance PJ, Hay WW, Limesand SW. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas. Exp Biol Med (Maywood) 2012; 237:524-9. [PMID: 22581814 DOI: 10.1258/ebm.2012.011375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Agricultural Research Complex, Department of Animal Sciences, University of Arizona, 4101 N Campbell Ave, Tucson, AZ 85719, USA
| | | | | | | |
Collapse
|
36
|
Micallef SJ, Li X, Schiesser JV, Hirst CE, Yu QC, Lim SM, Nostro MC, Elliott DA, Sarangi F, Harrison LC, Keller G, Elefanty AG, Stanley EG. INS(GFP/w) human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells. Diabetologia 2012; 55:694-706. [PMID: 22120512 PMCID: PMC3268987 DOI: 10.1007/s00125-011-2379-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/20/2011] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS We aimed to generate human embryonic stem cell (hESC) reporter lines that would facilitate the characterisation of insulin-producing (INS⁺) cells derived in vitro. METHODS Homologous recombination was used to insert sequences encoding green fluorescent protein (GFP) into the INS locus, to create reporter cell lines enabling the prospective isolation of viable INS⁺ cells. RESULTS Differentiation of INS(GFP/w) hESCs using published protocols demonstrated that all GFP⁺ cells co-produced insulin, confirming the fidelity of the reporter gene. INS-GFP⁺ cells often co-produced glucagon and somatostatin, confirming conclusions from previous studies that early hESC-derived insulin-producing cells were polyhormonal. INS(GFP/w) hESCs were used to develop a 96-well format spin embryoid body (EB) differentiation protocol that used the recombinant protein-based, fully defined medium, APEL. Like INS-GFP⁺ cells generated with other methods, those derived using the spin EB protocol expressed a suite of pancreatic-related transcription factor genes including ISL1, PAX6 and NKX2.2. However, in contrast with previous methods, the spin EB protocol yielded INS-GFP⁺ cells that also co-expressed the beta cell transcription factor gene, NKX6.1, and comprised a substantial proportion of monohormonal INS⁺ cells. CONCLUSIONS/INTERPRETATION INS(GFP/w) hESCs are a valuable tool for investigating the nature of early INS⁺ progenitors in beta cell ontogeny and will facilitate the development of novel protocols for generating INS⁺ cells from differentiating hESCs.
Collapse
Affiliation(s)
- S. J. Micallef
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - X. Li
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - J. V. Schiesser
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - C. E. Hirst
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - Q. C. Yu
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - S. M. Lim
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - M. C. Nostro
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON Canada
| | - D. A. Elliott
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - F. Sarangi
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON Canada
| | - L. C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - G. Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON Canada
| | - A. G. Elefanty
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| | - E. G. Stanley
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
37
|
Saito H, Takeuchi M, Chida K, Miyajima A. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One 2011; 6:e28209. [PMID: 22145030 PMCID: PMC3228734 DOI: 10.1371/journal.pone.0028209] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022] Open
Abstract
Islets of Langerhans are a pancreatic endocrine compartment consisting of insulin-producing β cells together with several other hormone-producing cells. While some insulin-producing cells or immature pancreatic cells have been generated in vitro from ES and iPS cells, islets with proper functions and a three-dimensional (3D) structure have never been successfully produced. To test whether islets can be formed in vitro, we first examined the potential of mouse fetal pancreatic cells. We found that E16.5 pancreatic cells, just before forming islets, were able to develop cell aggregates consisting of β cells surrounded by glucagon-producing α cells, a structure similar to murine adult islets. Moreover, the transplantation of these cells improved blood glucose levels in hyperglycemic mice. These results indicate that functional islets are formed in vitro from fetal pancreatic cells at a specific developmental stage. By adopting these culture conditions to the differentiation of mouse iPS cells, we developed a two-step system to generate islets, i.e. immature pancreatic cells were first produced from iPS cells, and then transferred to culture conditions that allowed the formation of islets from fetal pancreatic cells. The islets exhibited distinct 3D structural features similar to adult pancreatic islets and secreted insulin in response to glucose concentrations. Transplantation of the islets improved blood glucose levels in hyperglycemic mice. In conclusion, the two-step culture system allows the generation of functional islets with a 3D structure from iPS cells.
Collapse
Affiliation(s)
- Hiroki Saito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- * E-mail: (HS); (AM)
| | - Masaki Takeuchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
- * E-mail: (HS); (AM)
| |
Collapse
|
38
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
39
|
Reciprocal interactions of Fgf10/Fgfr2b modulate the mouse tongue epithelial differentiation. Cell Tissue Res 2011; 345:265-73. [DOI: 10.1007/s00441-011-1204-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 05/30/2011] [Indexed: 11/25/2022]
|
40
|
Pancreatic exocrine enzyme-producing cell differentiation via embryoid bodies from human embryonic stem cells. Biochem Biophys Res Commun 2011; 410:608-13. [DOI: 10.1016/j.bbrc.2011.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022]
|
41
|
Shirasawa S, Yoshie S, Yokoyama T, Tomotsune D, Yue F, Sasaki K. A Novel Stepwise Differentiation of Functional Pancreatic Exocrine Cells from Embryonic Stem Cells. Stem Cells Dev 2011; 20:1071-8. [DOI: 10.1089/scd.2010.0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Sakiko Shirasawa
- Laboratory for Advanced Health Sciences, Bourbon Institutes of Health, BOURBON Corporation, Kashiwazaki, Niigata, Japan
| | - Susumu Yoshie
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tadayuki Yokoyama
- Laboratory for Advanced Health Sciences, Bourbon Institutes of Health, BOURBON Corporation, Kashiwazaki, Niigata, Japan
| | - Daihachiro Tomotsune
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Fengming Yue
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Katsunori Sasaki
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
42
|
Cheng JYC, Raghunath M, Whitelock J, Poole-Warren L. Matrix components and scaffolds for sustained islet function. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:235-47. [PMID: 21476869 DOI: 10.1089/ten.teb.2011.0004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The clinical treatment of diabetes by islet transplantation is limited by low islet survival rates. A fundamental reason for this inefficiency is likely due to the removal of islets from their native environment. The isolation process not only disrupts interactions between blood vessels and endocrine cells, but also dramatically changes islet cell interaction with the extracellular matrix (ECM). Biomolecular cues from the ECM are important for islet survival, proliferation, and function; however, very little is known about the composition of islet ECM and the role each component plays. Without a thorough understanding of islet ECM, current endeavors to prolong islet survival via scaffold engineering lack a systematic basis. The following article reviews current knowledge of islet ECM and attempts to explain the roles they play in islet function. In addition, the effects of in vitro simulations of the native islet scaffold will be evaluated. Greater understanding in these areas will provide a preliminary platform from which a sustainable bioartificial pancreas may be developed.
Collapse
Affiliation(s)
- Jennifer Y C Cheng
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
43
|
|
44
|
Affiliation(s)
- Philip A Seymour
- Department of Pediatrics, The University of California San Diego Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
45
|
Sand FW, Hörnblad A, Johansson JK, Lorén C, Edsbagge J, Ståhlberg A, Magenheim J, Ilovich O, Mishani E, Dor Y, Ahlgren U, Semb H. Growth-limiting role of endothelial cells in endoderm development. Dev Biol 2011; 352:267-77. [PMID: 21281624 DOI: 10.1016/j.ydbio.2011.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 11/18/2022]
Abstract
Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.
Collapse
Affiliation(s)
- Fredrik Wolfhagen Sand
- Stem Cell and Pancreas Developmental Biology, Stem Cell Center, Department of Laboratory Medicine, Lund, Lund University, BMC B10 Klinikgatan 26, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Differentiation of mouse embryonic stem cells into endoderm without embryoid body formation. PLoS One 2010; 5:e14146. [PMID: 21152387 PMCID: PMC2994751 DOI: 10.1371/journal.pone.0014146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/12/2010] [Indexed: 12/31/2022] Open
Abstract
Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP) in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors.
Collapse
|
47
|
Sylvestersen KB, Herrera PL, Serup P, Rescan C. Fgf9 signalling stimulates Spred and Sprouty expression in embryonic mouse pancreas mesenchyme. Gene Expr Patterns 2010; 11:105-11. [PMID: 20934536 DOI: 10.1016/j.gep.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 11/24/2022]
Abstract
Epithelial-mesenchymal interactions are critical for normal pancreas development. Fibroblast growth factor (Fgf)-10 is expressed in the pancreatic mesenchyme and its signalling is required for normal growth and regulation of gene expression in the pancreatic epithelium. However, little is known about putative Fgf signalling to the mesenchyme. Here we have examined the embryonic pancreas expression of differentially spliced Fgf receptor isoforms and their targets; the Sprouty (Spry) and Spred family genes which are induced by Fgf signalling. Using qPCR to quantify mRNA levels in microdissected pancreatic epithelium and mesenchyme as well as in FACS isolated Pdx1-GFP(+) and -GFP(-) cell populations we demonstrate that several members of the Spred and Sprouty families are expressed in embryonic mouse pancreas and find Spred1 and -2 as well as Spry2 and -4 to be predominantly expressed in pancreatic mesenchyme. Using embryonic pancreas explant cultures we demonstrate that Spred1/2 and Spry2/4 expression is regulated by Fgf receptor signalling and is increased by treatment with Fgf9, but not by Fgf7 or Fgf10. We extend previous work showing that Fgf9 is expressed in pancreatic mesenchyme, and since Fgf9 is known to activate the mesenchyme-specific "c"-splice forms of Fgf receptors, while Fgf7 and -10 both activate the epithelium-specific "b"-splice forms of Fgf receptors, these results suggest that Fgf signalling is active in the pancreatic mesenchyme, where expression of Spred1/2 and Spry2/4 appear downstream of Fgf9 signalling.
Collapse
|
48
|
Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction 2010; 140:815-26. [PMID: 20876224 DOI: 10.1530/rep-10-0190] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
49
|
Heinis M, Simon M, Duvillié B. New insights into endocrine pancreatic development: the role of environmental factors. Horm Res Paediatr 2010; 74:77-82. [PMID: 20551619 PMCID: PMC3202916 DOI: 10.1159/000314894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/05/2010] [Indexed: 01/06/2023] Open
Abstract
The pancreas is a mixed gland that contains endocrine and exocrine components. Within the pancreatic islets, beta cells produce insulin and control the glycemia. Their deficiency leads to diabetes and several potential complications. In the last decade, numerous studies have focused on pancreas development. The objective was to characterize the cellular and molecular factors that control the differentiation of endocrine and exocrine cell types. Investigation of the role of transcription factors by using genetic approaches led to the discovery of key molecules that are expressed both in rodents and humans. Some of them are ubiquitous, and some others are specifically involved in endocrine or exocrine specification. In addition to these intrinsic factors, recent studies have focused on the role of environmental factors. In the present review, we describe the roles of nutrients and oxygen in the embryonic pancreas. Interestingly, these extrinsic parameters can interfere with beta-cell differentiation and function. Altogether, these data should help to generate beta cells in vitro and define strategies for a cell-based therapy of type 1 diabetes.
Collapse
Affiliation(s)
- M. Heinis
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France
| | - M.T. Simon
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France
| | - B. Duvillié
- *Dr. Bertrand Duvillié, U845 INSERM, Faculty Necker, 156, rue de Vaugirard, FR–75015 Paris (France), Tel. +33 1 40 61 55 71, Fax +33 1 43 06 04 43, E-Mail
| |
Collapse
|
50
|
Heinis M, Simon MT, Ilc K, Mazure NM, Pouysségur J, Scharfmann R, Duvillié B. Oxygen tension regulates pancreatic beta-cell differentiation through hypoxia-inducible factor 1alpha. Diabetes 2010; 59:662-9. [PMID: 20009089 PMCID: PMC2828660 DOI: 10.2337/db09-0891] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Recent evidence indicates that low oxygen tension (pO2) or hypoxia controls the differentiation of several cell types during development. Variations of pO2 are mediated through the hypoxia-inducible factor (HIF), a crucial mediator of the adaptative response of cells to hypoxia. The aim of this study was to investigate the role of pO2 in beta-cell differentiation. RESEARCH DESIGN AND METHODS We analyzed the capacity of beta-cell differentiation in the rat embryonic pancreas using two in vitro assays. Pancreata were cultured either in collagen or on a filter at the air/liquid interface with various pO2. An inhibitor of the prolyl hydroxylases, dimethyloxaloylglycine (DMOG), was used to stabilize HIF1alpha protein in normoxia. RESULTS When cultured in collagen, embryonic pancreatic cells were hypoxic and expressed HIF1alpha and rare beta-cells differentiated. In pancreata cultured on filter (normoxia), HIF1alpha expression decreased and numerous beta-cells developed. During pancreas development, HIF1alpha levels were elevated at early stages and decreased with time. To determine the effect of pO2 on beta-cell differentiation, pancreata were cultured in collagen at increasing concentrations of O2. Such conditions repressed HIF1alpha expression, fostered development of Ngn3-positive endocrine progenitors, and induced beta-cell differentiation by O2 in a dose-dependent manner. By contrast, forced expression of HIF1alpha in normoxia using DMOG repressed Ngn3 expression and blocked beta-cell development. Finally, hypoxia requires hairy and enhancer of split (HES)1 expression to repress beta-cell differentiation. CONCLUSIONS These data demonstrate that beta-cell differentiation is controlled by pO2 through HIF1alpha. Modifying pO2 should now be tested in protocols aiming to differentiate beta-cells from embryonic stem cells.
Collapse
Affiliation(s)
- Mylène Heinis
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Marie-Thérèse Simon
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Karine Ilc
- Institute of Developmental Biology and Cancer Research, University of Nice, Nice, France
| | - Nathalie M. Mazure
- Institute of Developmental Biology and Cancer Research, University of Nice, Nice, France
| | - Jacques Pouysségur
- Institute of Developmental Biology and Cancer Research, University of Nice, Nice, France
| | - Raphael Scharfmann
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Bertrand Duvillié
- INSERM U845, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
- Corresponding author: Bertrand Duvillié,
| |
Collapse
|