1
|
Sanchez L, Campos-Chillon F, Sargolzaei M, Peterson DG, Sprayberry KA, McArthur G, Anderson P, Golden B, Pokharel S, Abo-Ismail MK. Molecular Mechanisms Associated with the Development of the Metritis Complex in Dairy Cattle. Genes (Basel) 2024; 15:439. [PMID: 38674374 PMCID: PMC11049392 DOI: 10.3390/genes15040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The metritis complex (MC), a group of post-partum uterine diseases, is associated with increased treatment costs and reduced milk yield and fertility. The goal of this study was to identify genetic variants, genes, or genomic regions that modulate MC disease. A genome-wide association study was performed using a single-locus mixed linear model of 1967 genotypes (624,460 SNPs) and metritis complex records. Then, in-silico functional analyses were performed to detect biological mechanisms and pathways associated with the development of MC. The ATP8A2, COX16, AMN, and TRAF3 genes, located on chromosomes 12, 10, and 21, were associated with MC at p ≤ 0.0001. These genes are involved in the regulation of cholesterol metabolism in the stromal tissue of the uterus, which can be directly associated with the mode of transmission for pathogens causing the metritis complex. The modulation of cholesterol abundance alters the efficiency of virulence factors and may affect the susceptibility of the host to infection. The SIPA1L1, DEPDC5, and RNF122 genes were also significantly associated with MC at p ≤ 0.0001 and are involved in the PI3k-Akt pathway, responsible for activating the autophagic processes. Thus, the dysregulation of these genes allows for unhindered bacterial invasion, replication, and survival within the endometrium.
Collapse
Affiliation(s)
- Leanna Sanchez
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Fernando Campos-Chillon
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Mehdi Sargolzaei
- Select Sires Inc., 11740 US-42, Plain City, OH 43064, USA;
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel G. Peterson
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Kim A. Sprayberry
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Garry McArthur
- Swinging Udders Veterinary Services, 8418 Liberty Rd, Galt, CA 95632, USA;
| | - Paul Anderson
- Department of Computer Science and Software Engineering, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA;
| | | | - Siroj Pokharel
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Mohammed K. Abo-Ismail
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| |
Collapse
|
2
|
Lopes-Virella MF, Hammad SM, Baker NL, Klein RL, Hunt KJ. Circulating Lipoprotein Sphingolipids in Chronic Kidney Disease with and without Diabetes. Biomedicines 2024; 12:190. [PMID: 38255295 PMCID: PMC10813484 DOI: 10.3390/biomedicines12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormalities of sphingolipid metabolism play an important role in diabetes. We compared sphingolipid levels in plasma and in isolated lipoproteins between healthy control subjects and two groups of patients, one with chronic kidney disease without diabetes (ND-CKD), and the other with type 2 diabetes and macroalbuminuria (D-MA). Ceramides, sphingomyelins, and sphingoid bases and their phosphates in LDL were higher in ND-CKD and in D-MA patients compared to controls. However, ceramides and sphingoid bases in HDL2 and HDL3 were lower in ND-CKD and in D-MA patients than in controls. Sphingomyelins in HDL2 and HDL3 were lower in D-MA patients than in controls but were normal in ND-CKD patients. Compared to controls, lactosylceramides in LDL and VLDL were higher in ND-CKD patients but not in D-MA patients. However, lactosylceramides in HDL2 and HDL3 were lower in both ND-CKD and D-MA patients than in controls. Plasma hexosylceramides in ND-CKD patients were increased and sphingoid bases decreased in both ND-CKD and D-MA patients. However, hexosylceramides in LDL, HDL2, and HDL3 were higher in ND-CKD patients than in controls. In D-MA patients, only C16:0 hexosylceramide in LDL was higher than in controls. The data suggest that sphingolipid measurement in lipoproteins, rather than in whole plasma, is crucial to decipher the role of sphingolipids in kidney disease.
Collapse
Affiliation(s)
- Maria F. Lopes-Virella
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Richard L. Klein
- Department of Medicine, Division of Diabetes, Endocrinology and Medical Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
| | - Kelly J. Hunt
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA;
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
3
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
4
|
Dispatching plasma membrane cholesterol and Sonic Hedgehog dispatch: two sides of the same coin? Biochem Soc Trans 2021; 49:2455-2463. [PMID: 34515747 PMCID: PMC8589413 DOI: 10.1042/bst20210918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release. One such recruited release factor is the soluble glycoprotein Scube2 (Signal sequence, cubulin domain, epidermal-growth-factor-like protein 2), and maximal Scube2 function requires concomitant activity of the resistance-nodulation-division (RND) transporter Dispatched (Disp) at the plasma membrane of Hh-producing cells. Although recently published cryo-electron microscopy-derived structures suggest possible direct modes of Scube2/Disp-regulated Hh release, the mechanism of Disp-mediated Hh deployment is still not fully understood. In this review, we discuss suggested direct modes of Disp-dependent Hh deployment and relate them to the structural similarities between Disp and the related RND transporters Patched (Ptc) and Niemann-Pick type C protein 1. We then discuss open questions and perspectives that derive from these structural similarities, with particular focus on new findings that suggest shared small molecule transporter functions of Disp to deplete the plasma membrane of cholesterol and to modulate Hh release in an indirect manner.
Collapse
|
5
|
Molecular determinants of protein reabsorption in the amphibian kidneys. Acta Histochem 2021; 123:151760. [PMID: 34303296 DOI: 10.1016/j.acthis.2021.151760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
Participation of molecular determinants of endocytosis in the processes of glomerular filtration and tubular reabsorption of albumin and lysozyme in the mesonephros of grass frogs (Rana temporaria L.), lake frogs (Rana ridibunda P.), and newts (Triturus vulgaris L.) is investigated. In all studied species, the constitutive expression of endocytic receptors in proximal tubule (PT) cells is established using immunofluorescence microscopy and immunoblotting. The certain stages of lysozyme and albumin endocytosis involving megalin/LRP2, cubilin, clathrin and protein Rab11 are detailed, and the central role of ligand-induced megalin/LRP2 activity in this process is shown. Increased ligand-induced expression for clathrin and Rab11was also found. In grass frogs, the different patterns of endocytic receptors and both absorbed proteins in the initial parts of proximal tubules suggest the proximo-distal specialization of absorptive processes along these tubule segments, similar to this in more complex mammalian nephrons. This data, as well as the revealed peculiarities of ligand-receptor interactions during intracellular trafficking of proteins prove that megalin is mainly involved in the absorption of lysozyme. At the same time, albumin absorption is mediated by both receptors, or cubilin contributes the most. The detection of endocytic receptor in glomerular structural elements in frogs and newts suggests the participation of filtration barrier components in endocytosis of filterable proteins. The results represent a new contribution to the study of the fundamental mechanisms of renal protein uptake in the amphibian mesonephros as a more primitive kidney compared to mammalian metanephros.
Collapse
|
6
|
Pregnancy is accompanied by larger high density lipoprotein particles and compositionally distinct subspecies. J Lipid Res 2021; 62:100107. [PMID: 34416270 PMCID: PMC8441201 DOI: 10.1016/j.jlr.2021.100107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Pregnancy is accompanied by significant physiological changes, which can impact the health and development of the fetus and mother. Pregnancy-induced changes in plasma lipoproteins are well documented, with modest to no impact observed on the generic measure of high density lipoprotein (HDL) cholesterol. However, the impact of pregnancy on the concentration and composition of HDL subspecies has not been examined in depth. In this prospective study, we collected plasma from 24 nonpregnant and 19 pregnant women in their second trimester. Using nuclear magnetic resonance (NMR), we quantified 11 different lipoprotein subspecies from plasma by size, including three in the HDL class. We observed an increase in the number of larger HDL particles in pregnant women, which were confirmed by tracking phospholipids across lipoproteins using high-resolution gel-filtration chromatography. Using liquid chromatography-mass spectrometry (LC-MS), we identified 87 lipid-associated proteins across size-speciated fractions. We report drastic shifts in multiple protein clusters across different HDL size fractions in pregnant females compared with nonpregnant controls that have major implications on HDL function. These findings significantly elevate our understanding of how changes in lipoprotein metabolism during pregnancy could impact the health of both the fetus and the mother.
Collapse
|
7
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
8
|
A study of associations between CUBN, HNF1A, and LIPC gene polymorphisms and coronary artery disease. Sci Rep 2020; 10:16294. [PMID: 33004870 PMCID: PMC7530657 DOI: 10.1038/s41598-020-73048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to identify novel genetic markers related to coronary artery disease (CAD) using a whole-exome sequencing (WES) approach and determine any associations between the selected gene polymorphisms and CAD prevalence. CUBN, HNF1A and LIPC gene polymorphisms related to CAD susceptibility were identified using WES screening. Possible associations between the five gene polymorphisms and CAD susceptibility were examined in 452 CAD patients and 421 control subjects. Multivariate logistic regression analyses indicated that the CUBN rs2291521GA and HNF1A rs55783344CT genotypes were associated with CAD (GG vs. GA; adjusted odds ratio [AOR] = 1.530; 95% confidence interval [CI] 1.113–2.103; P = 0.002 and CC vs. CT; AOR = 1.512; 95% CI 1.119–2.045; P = 0.007, respectively). The CUBN rs2291521GA and HNF1A rs55783344CT genotype combinations exhibited a stronger association with CAD risk (AOR = 2.622; 95% CI 1.518–4.526; P = 0.001). Gene-environment combinatorial analyses indicated that the CUBN rs2291521GA, HNF1A rs55783344CT, and LIPC rs17269397AA genotype combination and several clinical factors (fasting blood sugar (FBS), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels) were associated with increased CAD risk. The CUBN rs2291521GA, HNF1A rs55783344CT, and LIPC rs17269397AA genotypes in conjunction with abnormally elevated cholesterol levels increase the risk of developing CAD. This exploratory study suggests that polymorphisms in the CUBN, HNF1A, and LIPC genes can be useful biomarkers for CAD diagnosis and treatment.
Collapse
|
9
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
10
|
Serum Vitamin B12, and Related MTRR and Cubilin Genotypes, Predict Neural Outcomes across the AD Spectrum. Br J Nutr 2020; 124:135-145. [PMID: 32180545 DOI: 10.1017/s0007114520000951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidemiological studies show mixed findings for serum vitamin B12 and both cognitive and regional volume outcomes. No studies to date have comprehensively examined, in non-supplemented individuals, serum B12 level associations with neurodegeneration, hypometabolism, and cognition across the Alzheimer's disease (AD) spectrum. Serum vitamin B12 was assayed from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). Voxel-wise analyses regressed B12 levels against regional gray matter (GM) volume and glucose metabolism (p<.05, family-wise corrected). For ADNI GM, there were 39 cognitively normal (CN), 73 mild cognitive impairment (MCI), and 31 AD participants. For AIBL GM, there were 311 CN, 59 MCI, and 31 AD participants. Covariates were age, sex, baseline diagnosis, APOE4 status, and Body Mass Index (BMI). In ADNI, higher B12 was negatively associated with GM in the right precuneus and bilateral frontal gyri. When diagnostic groups were examined separately, only participants with MCI or above an established cutoff for CSF total tau showed such associations. In AIBL, higher B12 was associated with more grey matter in the right amygdala and right superior temporal pole, which largely seemed to be driven by CN participants that constituted most of the sample. Our results suggest that B12 may show different patterns of association based on clinical status and, for ADNI, AD CSF biomarkers. Accounting for these factors may clarify the relationship between B12 with neural outcomes in late-life.
Collapse
|
11
|
Waegaert R, Dirrig-Grosch S, Parisot F, Keime C, Henriques A, Loeffler JP, René F. Longitudinal transcriptomic analysis of altered pathways in a CHMP2B intron5-based model of ALS-FTD. Neurobiol Dis 2019; 136:104710. [PMID: 31837425 DOI: 10.1016/j.nbd.2019.104710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/28/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with currently no cure. These two diseases share a clinical continuum with overlapping genetic causes. Mutations in the CHMP2B gene are found in patients with ALS, FTD and ALS-FTD. To highlight deregulated mechanisms occurring in ALS-FTD linked to the CHMP2B gene, we performed a whole transcriptomic study on lumbar spinal cord from CHMP2Bintron5 mice, a model that develops progressive motor alterations associated with dementia symptoms reminiscent of both ALS and FTD. To gain insight into the transcriptomic changes taking place during disease progression this study was performed at three stages: asymptomatic, symptomatic and end stage. We showed that before appearance of motor symptoms, the major disrupted mechanisms were linked with the immune system/inflammatory response and lipid metabolism. These processes were progressively replaced by alterations of neuronal electric activity as motor symptoms appeared, alterations that could lead to motor neuron dysfunction. To investigate overlapping alterations in gene expression between two ALS-causing genes, we then compared the transcriptome of symptomatic CHMP2Bintron5 mice with the one of symptomatic SOD1G86R mice and found the same families deregulated providing further insights into common underlying dysfunction of biological pathways, disrupted or disturbed in ALS. Altogether, this study provides a database to explore potential new candidate genes involved in the CHMP2Bintron5-based pathogenesis of ALS, and provides molecular clues to further understand the functional consequences that diseased neurons expressing CHMP2B mutant may have on their neighbor cells.
Collapse
Affiliation(s)
- Robin Waegaert
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Florian Parisot
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS, UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Alexandre Henriques
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Frédérique René
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France.
| |
Collapse
|
12
|
Structural assembly of the megadalton-sized receptor for intestinal vitamin B 12 uptake and kidney protein reabsorption. Nat Commun 2018; 9:5204. [PMID: 30523278 PMCID: PMC6283879 DOI: 10.1038/s41467-018-07468-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/01/2018] [Indexed: 11/08/2022] Open
Abstract
The endocytic receptor cubam formed by the 460-kDa protein cubilin and the 45-kDa transmembrane protein amnionless (AMN), is essential for intestinal vitamin B12 (B12) uptake and for protein (e.g. albumin) reabsorption from the kidney filtrate. Loss of function of any of the two components ultimately leads to serious B12 deficiency and urinary protein loss in humans (Imerslund-Gräsbeck’s syndrome, IGS). Here, we present the crystal structure of AMN in complex with the amino-terminal region of cubilin, revealing a sophisticated assembly of three cubilin subunits combining into a single intertwined β-helix domain that docks to a corresponding three-faced β-helix domain in AMN. This β-helix-β-helix association thereby anchors three ligand-binding cubilin subunits to the transmembrane AMN. Electron microscopy of full-length cubam reveals a 700–800 Å long tree-like structure with the potential of dimerization into an even larger complex. Furthermore, effects of known human mutations causing IGS are explained by the structural information. Cubilin and the transmembrane protein amnionless (AMN) form the endocytic receptor cubam that is essential for intestinal vitamin B12 uptake. Here the authors present the 2.3 Å crystal structure of AMN in complex with the amino-terminal region of cubilin and discuss cubam architecture and disease causing mutations.
Collapse
|
13
|
Kozyraki R, Cases O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Curr Med Chem 2018; 27:3123-3150. [PMID: 30295181 DOI: 10.2174/0929867325666181008143945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.
Collapse
Affiliation(s)
- Renata Kozyraki
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| | - Olivier Cases
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| |
Collapse
|
14
|
Lee MH, Appleton KM, El-Shewy HM, Sorci-Thomas MG, Thomas MJ, Lopes-Virella MF, Luttrell LM, Hammad SM, Klein RL. S1P in HDL promotes interaction between SR-BI and S1PR1 and activates S1PR1-mediated biological functions: calcium flux and S1PR1 internalization. J Lipid Res 2016; 58:325-338. [PMID: 27881715 DOI: 10.1194/jlr.m070706] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/10/2016] [Indexed: 01/01/2023] Open
Abstract
HDL normally transports about 50-70% of plasma sphingosine 1-phosphate (S1P), and the S1P in HDL reportedly mediates several HDL-associated biological effects and signaling pathways. The HDL receptor, SR-BI, as well as the cell surface receptors for S1P (S1PRs) may be involved partially and/or completely in these HDL-induced processes. Here we investigate the nature of the HDL-stimulated interaction between the HDL receptor, SR-BI, and S1PR1 using a protein-fragment complementation assay and confocal microscopy. In both primary rat aortic vascular smooth muscle cells and HEK293 cells, the S1P content in HDL particles increased intracellular calcium concentration, which was mediated by S1PR1. Mechanistic studies performed in HEK293 cells showed that incubation of cells with HDL led to an increase in the physical interaction between the SR-BI and S1PR1 receptors that mainly occurred on the plasma membrane. Model recombinant HDL (rHDL) particles formed in vitro with S1P incorporated into the particle initiated the internalization of S1PR1, whereas rHDL without supplemented S1P did not, suggesting that S1P transported in HDL can selectively activate S1PR1. In conclusion, these data suggest that S1P in HDL stimulates the transient interaction between SR-BI and S1PRs that can activate S1PRs and induce an elevation in intracellular calcium concentration.
Collapse
Affiliation(s)
- Mi-Hye Lee
- Division of Endocrinology, Metabolism, and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Kathryn M Appleton
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC
| | - Hesham M El-Shewy
- Division of Endocrinology, Metabolism, and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Mary G Sorci-Thomas
- Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Maria F Lopes-Virella
- Division of Endocrinology, Metabolism, and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC.,Research Service, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
| | - Louis M Luttrell
- Division of Endocrinology, Metabolism, and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC.,Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC.,Research Service, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Richard L Klein
- Division of Endocrinology, Metabolism, and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC .,Research Service, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
15
|
Kim MH, de Beer MC, Wroblewski JM, Charnigo RJ, Ji A, Webb NR, de Beer FC, van der Westhuyzen DR. Impact of individual acute phase serum amyloid A isoforms on HDL metabolism in mice. J Lipid Res 2016; 57:969-79. [PMID: 27018443 DOI: 10.1194/jlr.m062174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA's rapid clearance. These studies enhance our understanding of SAA metabolism and SAA's effects on AP-HDL composition and catabolism.
Collapse
Affiliation(s)
- Myung-Hee Kim
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536
| | - Maria C de Beer
- Physiology, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Joanne M Wroblewski
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Richard J Charnigo
- Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40506
| | - Ailing Ji
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536 Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536
| | - Frederick C de Beer
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Deneys R van der Westhuyzen
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536 Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington, KY 40536
| |
Collapse
|
16
|
Kozlitina J, Zhou H, Brown PN, Rohm RJ, Pan Y, Ayanoglu G, Du X, Rimmer E, Reilly DF, Roddy TP, Cully DF, Vogt TF, Blom D, Hoek M. Plasma Levels of Risk-Variant APOL1 Do Not Associate with Renal Disease in a Population-Based Cohort. J Am Soc Nephrol 2016; 27:3204-3219. [PMID: 27005919 DOI: 10.1681/asn.2015101121] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
Two common missense variants in APOL1 (G1 and G2) have been definitively linked to CKD in black Americans. However, not all individuals with the renal-risk genotype develop CKD, and little is known about how APOL1 variants drive disease. Given the association of APOL1 with HDL particles, which are cleared by the kidney, differences in the level or quality of mutant APOL1‑HDL particles could be causal for disease and might serve as a useful risk stratification marker. We measured plasma levels of G0 (low risk), G1, and G2 APOL1 in 3450 individuals in the Dallas Heart Study using a liquid chromatography-MS method that enabled quantitation of the different variants. Additionally, we characterized native APOL1‑HDL from donors with no or two APOL1 risk alleles by size-exclusion chromatography and analysis of immunopurified APOL1‑HDL particles. Finally, we identified genetic loci associated with plasma APOL1 levels and tested for APOL1-dependent association with renal function. Although we replicated the previous association between APOL1 variant status and renal function in nondiabetic individuals, levels of circulating APOL1 did not associate with microalbuminuria or GFR. Furthermore, the size or known components of APOL1‑HDL did not consistently differ in subjects with the renal-risk genotype. Genetic association studies implicated variants in loci harboring haptoglobin-related protein (HPR), APOL1, and ubiquitin D (UBD) in the regulation of plasma APOL1 levels, but these variants did not associate with renal function. Collectively, these data demonstrate that the risk of renal disease associated with APOL1 is probably not related to circulating levels of the mutant protein.
Collapse
Affiliation(s)
- Julia Kozlitina
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Haihong Zhou
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | - Rory J Rohm
- Merck Research Laboratories, Kenilworth, New Jersey
| | - Yi Pan
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | - Xiaoyan Du
- Merck Research Laboratories, Kenilworth, New Jersey
| | - Eric Rimmer
- Merck Research Laboratories, Kenilworth, New Jersey
| | | | | | | | | | - Daniel Blom
- Merck Research Laboratories, Kenilworth, New Jersey
| | - Maarten Hoek
- Merck Research Laboratories, Kenilworth, New Jersey
| |
Collapse
|
17
|
The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery. J Control Release 2015; 211:144-62. [PMID: 26055641 DOI: 10.1016/j.jconrel.2015.06.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Albumin is the most abundant protein in blood and acts as a molecular taxi for a plethora of small insoluble substances such as nutrients, hormones, metals and toxins. In addition, it binds a range of medical drugs. It has an unusually long serum half-life of almost 3weeks, and although the structure and function of albumin has been studied for decades, a biological explanation for the long half-life has been lacking. Now, recent research has unravelled that albumin-binding cellular receptors play key roles in the homeostatic regulation of albumin. Here, we review our current understanding of albumin homeostasis with a particular focus on the impact of the cellular receptors, namely the neonatal Fc receptor (FcRn) and the cubilin-megalin complex, and we discuss their importance on uses of albumin in drug delivery.
Collapse
|
18
|
Marshall VA, Johnson KJ, Moore NP, Rasoulpour RJ, Tornesi B, Carney EW. Comparative Response of Rat and Rabbit Conceptuses In Vitro to Inhibitors of Histiotrophic Nutrition. ACTA ACUST UNITED AC 2015; 104:1-10. [DOI: 10.1002/bdrb.21134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/18/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Valerie A. Marshall
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | - Kamin J. Johnson
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | | | - Reza J. Rasoulpour
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | - Belen Tornesi
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | - Edward W. Carney
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| |
Collapse
|
19
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Intracellular delivery of functional proteins using nanoparticles can be a game-changing approach for cancer therapy. However, cytosolic release of functional protein is still a major challenge. In addition, formation of protein corona on the surface of the nanoparticles can also alter the behavior of the nanoparticles. Here, we will review recent strategies for protein delivery into the cell. Finally we will discuss the issue of protein corona formation in light of nanoparticle-protein interactions.
Collapse
|
21
|
Kalantari S, Nafar M, Rutishauser D, Samavat S, Rezaei-Tavirani M, Yang H, Zubarev RA. Predictive urinary biomarkers for steroid-resistant and steroid-sensitive focal segmental glomerulosclerosis using high resolution mass spectrometry and multivariate statistical analysis. BMC Nephrol 2014; 15:141. [PMID: 25182141 PMCID: PMC4236676 DOI: 10.1186/1471-2369-15-141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/26/2014] [Indexed: 01/10/2023] Open
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is a glomerular scarring disease diagnosed mostly by kidney biopsy. Since there is currently no diagnostic test that can accurately predict steroid responsiveness in FSGS, prediction of the responsiveness of patients to steroid therapy with noninvasive means has become a critical issue. In the present study urinary proteomics was used as a noninvasive tool to discover potential predictive biomarkers. Methods Urinary proteome of 10 patients (n = 6 steroid-sensitive, n = 4 steroid-resistant) with biopsy proven FSGS was analyzed using nano-LC-MS/MS and supervised multivariate statistical analysis was performed. Results Twenty one proteins were identified as discriminating species among which apolipoprotein A-1 and Matrix-remodeling protein 8 had the most drastic fold changes being over- and underrepresented, respectively, in steroid sensitive compared to steroid resistant urine samples. Gene ontology enrichment analysis revealed acute inflammatory response as the dominant biological process. Conclusion The obtained results suggest a panel of predictive biomarkers for FSGS. Proteins involved in the inflammatory response are shown to be implicated in the responsiveness. As a tool for biomarker discovery, urinary proteomics is especially fruitful in the area of prediction of responsiveness to drugs. Further validation of these biomarkers is however needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
22
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
23
|
Ozturk OH, Can Y, Yonden Z, Motor S, Oktay G, Kaya H, Aslan M. Lipoprotein subfraction profile and HDL-associated enzymes in sickle cell disease patients. Lipids 2013; 48:1217-26. [PMID: 24113910 DOI: 10.1007/s11745-013-3849-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
Although hypocholesterolemia is a reported finding in sickle cell disease (SCD), low-density lipoprotein (LDL)/high-density lipoprotein (HDL) subfractions and HDL-associated enzymes have not been determined in SCD patients. Blood was collected from 38 hemoglobin (Hb)A volunteers and 45 homozygous HbSS patients who had not received blood transfusions in the last 3 months. Serum lipids were measured by automated analyzer while LDL and HDL subfraction analysis was done by continuous disc polyacrylamide gel electrophoresis. Serum levels of cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), apolipoprotein B (apoB) and apolipoprotein A-1 (apoA-I) were determined by enzyme-linked immunosorbent assay (ELISA). Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were significantly decreased, while TG levels were significantly increased in SCD patients compared to controls. A significant decrease in intermediate-density lipoprotein (IDL)-C, IDL-B, IDL-A and LDL-1 fractions were seen in SCD patients, while no significant difference was observed in small dense LDL particles. A significant decrease was seen in HDL-large, HDL-intermediate and HDL-small fractions in SCD patients versus controls. Levels of LCAT and ApoA-1 protein measured in SCD patients were significantly lower while no significant difference was observed in CETP and ApoB protein levels compared to controls. The reduction observed in LDL- and HDL-C in SCD patients was reflected as significantly decreased IDL, LDL-1 and HDL-subfractions. Decreased HDL subfractions may possibly lead to the reduced ApoA-1 and LCAT protein levels observed in SCD patients.
Collapse
Affiliation(s)
- Oktay H Ozturk
- Department of Medical Biochemistry, Mustafa Kemal University Medical Faculty, 31100, Hatay, Turkey,
| | | | | | | | | | | | | |
Collapse
|
24
|
Moreno-Garcia MA, Rosenblatt DS, Jerome-Majewska LA. Vitamin B(12) metabolism during pregnancy and in embryonic mouse models. Nutrients 2013; 5:3531-50. [PMID: 24025485 PMCID: PMC3798919 DOI: 10.3390/nu5093531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/10/2013] [Accepted: 08/23/2013] [Indexed: 11/16/2022] Open
Abstract
Vitamin B(12) (cobalamin, Cbl) is required for cellular metabolism. It is an essential coenzyme in mammals for two reactions: the conversion of homocysteine to methionine by the enzyme methionine synthase and the conversion of methylmalonyl-CoA to succinyl-CoA by the enzyme methylmalonyl-CoA mutase. Symptoms of Cbl deficiency are hematological, neurological and cognitive, including megaloblastic anaemia, tingling and numbness of the extremities, gait abnormalities, visual disturbances, memory loss and dementia. During pregnancy Cbl is essential, presumably because of its role in DNA synthesis and methionine synthesis; however, there are conflicting studies regarding an association between early pregnancy loss and Cbl deficiency. We here review the literature about the requirement for Cbl during pregnancy, and summarized what is known of the expression pattern and function of genes required for Cbl metabolism in embryonic mouse models.
Collapse
Affiliation(s)
- Maira A. Moreno-Garcia
- Department of Human Genetics, McGill University, 1205 Avenue Docteur Penfield, N5/13,Montreal, Quebec, Canada H3A 1B1; E-Mails: (M.A.M.-G.); (D.S.R.)
| | - David S. Rosenblatt
- Department of Human Genetics, McGill University, 1205 Avenue Docteur Penfield, N5/13,Montreal, Quebec, Canada H3A 1B1; E-Mails: (M.A.M.-G.); (D.S.R.)
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada H3H 1P3
| | - Loydie A. Jerome-Majewska
- Department of Human Genetics, McGill University, 1205 Avenue Docteur Penfield, N5/13,Montreal, Quebec, Canada H3A 1B1; E-Mails: (M.A.M.-G.); (D.S.R.)
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada H3H 1P3
- McGill University Health Centre, 4060 Ste. Catherine West, PT 420, Montreal, Quebec, Canada H3Z 2Z3
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-412-4400 (ext. 23279); Fax: +1-514-412-4331
| |
Collapse
|
25
|
Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2013; 96:56-66. [PMID: 24012775 DOI: 10.1016/j.biochi.2013.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/26/2023]
Abstract
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. HDL also serve as plasma reservoir for C and E apolipoproteins, as transport vehicles for a great variety of proteins, and may have more physiological functions than previously recognized. In this review we will develop several aspects of HDL metabolism with emphasis on the structure/function of apo A-I and apo A-II. An important contribution to our understanding of the respective roles of apo A-I and apo A-II comes from studies using transgenic animal models that highlighted the stabilizatory role of apo A-II on HDL through inhibition of their remodeling by lipases. Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
Collapse
|
26
|
Cases O, Perea-Gomez A, Aguiar DP, Nykjaer A, Amsellem S, Chandellier J, Umbhauer M, Cereghini S, Madsen M, Collignon J, Verroust P, Riou JF, Creuzet SE, Kozyraki R. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head. J Biol Chem 2013; 288:16655-16670. [PMID: 23592779 DOI: 10.1074/jbc.m113.451070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.
Collapse
Affiliation(s)
- Olivier Cases
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris, France
| | - Diego P Aguiar
- Institut de Neurobiologie Alfred-Fessard, CNRS UPR3294, Développement, Evolution et Plasticité du Système Nerveux, F-91198 Gif-sur-Yvette, France
| | - Anders Nykjaer
- Lundbeck Foundation Research Centre MIND, Department of Biomedicine, University of Aarhus, Olle Worms Allé 3, 8000 Aarhus, Denmark
| | - Sabine Amsellem
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Jacqueline Chandellier
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Muriel Umbhauer
- CNRS UMR7622, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, F-75252 Paris, France
| | - Silvia Cereghini
- CNRS UMR7622, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, F-75252 Paris, France
| | - Mette Madsen
- Department of Biomedicine, University of Aarhus, Olle Worms Allé 3, 8000 Aarhus, Denmark
| | - Jérôme Collignon
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris, France
| | - Pierre Verroust
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France
| | - Jean-François Riou
- CNRS UMR7622, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, 9 Quai Saint Bernard, F-75252 Paris, France
| | - Sophie E Creuzet
- Institut de Neurobiologie Alfred-Fessard, CNRS UPR3294, Développement, Evolution et Plasticité du Système Nerveux, F-91198 Gif-sur-Yvette, France
| | - Renata Kozyraki
- Institut de la Vision, INSERM U968, CNRS UMR7210, Université Pierre et Marie Curie UMRS968, 17 Rue Moreau, F-75012 Paris, France.
| |
Collapse
|
27
|
Artus J, Douvaras P, Piliszek A, Isern J, Baron MH, Hadjantonakis AK. BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Dev Biol 2011; 361:245-62. [PMID: 22051107 DOI: 10.1016/j.ydbio.2011.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/19/2011] [Accepted: 10/08/2011] [Indexed: 12/20/2022]
Abstract
The visceral endoderm (VE) is an epithelial tissue in the early postimplantation mouse embryo that encapsulates the pluripotent epiblast distally and the extraembryonic ectoderm proximally. In addition to facilitating nutrient exchange before the establishment of a circulation, the VE is critical for patterning the epiblast. Since VE is derived from the primitive endoderm (PrE) of the blastocyst, and PrE-derived eXtraembryonic ENdoderm (XEN) cells can be propagated in vitro, XEN cells should provide an important tool for identifying factors that direct VE differentiation. In this study, we demonstrated that BMP4 signaling induces the formation of a polarized epithelium in XEN cells. This morphological transition was reversible, and was associated with the acquisition of a molecular signature comparable to extraembryonic (ex) VE. Resembling exVE which will form the endoderm of the visceral yolk sac, BMP4-treated XEN cells regulated hematopoiesis by stimulating the expansion of primitive erythroid progenitors. We also observed that LIF exerted an antagonistic effect on BMP4-induced XEN cell differentiation, thereby impacting the extrinsic conditions used for the isolation and maintenance of XEN cells in an undifferentiated state. Taken together, our data suggest that XEN cells can be differentiated towards an exVE identity upon BMP4 stimulation and therefore represent a valuable tool for investigating PrE lineage differentiation.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
29
|
Gillard BK, Rosales C, Pillai BK, Lin HY, Courtney HS, Pownall HJ. Streptococcal serum opacity factor increases the rate of hepatocyte uptake of human plasma high-density lipoprotein cholesterol. Biochemistry 2010; 49:9866-73. [PMID: 20879789 PMCID: PMC2982792 DOI: 10.1021/bi101412m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.
Collapse
Affiliation(s)
- Baiba K. Gillard
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Corina Rosales
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Biju K. Pillai
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Hu Yu Lin
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Harry S. Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38104
| | - Henry J. Pownall
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
30
|
Zohn IE, Sarkar AA. The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. ACTA ACUST UNITED AC 2010; 88:593-600. [DOI: 10.1002/bdra.20705] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Yetukuri L, Söderlund S, Koivuniemi A, Seppänen-Laakso T, Niemelä PS, Hyvönen M, Taskinen MR, Vattulainen I, Jauhiainen M, Oresic M. Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol. J Lipid Res 2010; 51:2341-51. [PMID: 20431113 DOI: 10.1194/jlr.m006494] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A low level of high density lipoprotein cholesterol (HDL-C) is a powerful risk factor for cardiovascular disease. However, despite the reported key role of apolipo-proteins, specifically, apoA-I, in HDL metabolism, lipid molecular composition of HDL particles in subjects with high and low HDL-C levels is currently unknown. Here lipidomics was used to study HDL derived from well-characterized high and low HDL-C subjects. Low HDL-C subjects had elevated triacylglycerols and diminished lysophosphatidylcholines and sphingomyelins. Using information about the lipid composition of HDL particles in these two groups, we reconstituted HDL particles in silico by performing large-scale molecular dynamics simulations. In addition to confirming the measured change in particle size, we found that the changes in lipid composition also induced specific spatial distributions of lipids within the HDL particles, including a higher amount of triacylglycerols at the surface of HDL particles in low HDL-C subjects. Our findings have important implications for understanding HDL metabolism and function. For the first time we demonstrate the power of combining molecular profiling of lipoproteins with dynamic modeling of lipoprotein structure.
Collapse
|
32
|
Röhrl C, Pagler TA, Strobl W, Ellinger A, Neumüller J, Pavelka M, Stangl H, Meisslitzer-Ruppitsch C. Characterization of endocytic compartments after holo-high density lipoprotein particle uptake in HepG2 cells. Histochem Cell Biol 2010; 133:261-72. [PMID: 20039053 PMCID: PMC3182552 DOI: 10.1007/s00418-009-0672-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 12/27/2022]
Abstract
Holo-high density lipoprotein (HDL) particle uptake, besides selective lipid uptake, constitutes an alternative pathway to regulate cellular cholesterol homeostasis. In the current study, the cellular path of holo-HDL particles was investigated in human liver carcinoma cells (HepG2) using combined light and electron microscopical methods. The apolipoprotein moiety of HDL was visualized with different markers: horseradish peroxidase, colloidal gold and the fluorochrome Alexa(568), used in fluorescence microscopy and after photooxidation correlatively at the ultrastructural level. Time course experiments showed a rapid uptake of holo-HDL particles, an accumulation in endosomal compartments, with a plateau after 1-2 h of continuous uptake, and a clearance 1-2 h upon replacement by unlabeled HDL. Correlative microscopy, using HDL-Alexa(568)-driven diaminobenzidine (DAB) photooxidation, identified the fluorescent organelles as DAB-positive multivesicular bodies (MVBs) in the electron microscope; their luminal contents but not the internal vesicles were stained. Labeled MVBs increased in numbers and changed shapes along with the duration of uptake, from polymorphic organelles with multiple surface domains and differently shaped protrusions dominating at early times of uptake to compact bodies with mainly tubular appendices and densely packed vesicles after later times. Differently shaped and labeled surface domains and appendices, as revealed by three dimensional reconstructions, as well as images of homotypic fusions indicate the dynamics of the HDL-positive MVBs. Double staining visualized by confocal microscopy, along with the electron microscopic data, shows that holo-HDL particles after temporal storage in MVBs are only to a minor degree transported to lysosomes, which suggests that different mechanisms are involved in cellular HDL clearance, including resecretion.
Collapse
Affiliation(s)
- Clemens Röhrl
- Center for Physiology and Pathophysiology, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Burke KT, Colvin PL, Myatt L, Graf GA, Schroeder F, Woollett LA. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster. J Lipid Res 2009; 50:1146-55. [PMID: 19122238 PMCID: PMC2681396 DOI: 10.1194/jlr.m800538-jlr200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/11/2008] [Indexed: 01/26/2023] Open
Abstract
The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.
Collapse
MESH Headings
- Animals
- Biological Transport, Active
- Cholesterol/blood
- Cholesterol/metabolism
- Cholesterol, Dietary/administration & dosage
- Cholesterol, HDL/blood
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/blood
- Cholesterol, LDL/metabolism
- Cricetinae
- DNA-Binding Proteins/metabolism
- Female
- Fetus/metabolism
- Humans
- Infant, Newborn
- Liver X Receptors
- Male
- Maternal-Fetal Exchange/genetics
- Maternal-Fetal Exchange/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Transport Proteins
- Mesocricetus
- Orphan Nuclear Receptors
- Placenta/metabolism
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Smith-Lemli-Opitz Syndrome/blood
- Smith-Lemli-Opitz Syndrome/metabolism
- Yolk Sac/metabolism
Collapse
Affiliation(s)
- Katie T. Burke
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical School, Cincinnati, OH 45237
| | - Perry L. Colvin
- Department of Internal Medicine and Division of Gerontology, University of Maryland School of Medicine and the Baltimore Veterans Affairs Medical Center, Geriatrics Research, Education, and Clinical Center, Baltimore, MD 21201
| | - Leslie Myatt
- Department of Obstetrics/Gynecology, University of Cincinnati Medical School, Cincinnati, OH 45237
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences and Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Laura A. Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical School, Cincinnati, OH 45237
| |
Collapse
|
34
|
Abstract
Dyslipidemia is central to the process of atherosclerosis. Modification of the lipid profile by diet, exercise, or pharmacologic therapy has been demonstrated to reduce the risk from atherosclerosis in clinical studies in primary and secondary prevention. Nicotinic acid has been in clinical use for over 50 years. The administration of nicotinic acid has been demonstrated to reduce apolipoprotein B-containing lipoproteins (very low-density lipoprotein, intermediate-density lipoprotein, low-density lipoprotein and lipoprotein (a)). Nicotinic acid also exerts significant effects on high-density lipoprotein. In addition to improving dyslipidemia, nicotinic acid has been demonstrated to induce a number of nonlipid or pleiotropic effects. The recent discovery of the nicotinic acid receptor has improved knowledge relative to the mechanism of action and the adverse effect profile of nicotinic acid. Clinical trials utilizing clinical or angiographic end points demonstrated efficacy for the use of nicotinic acid in monotherapy or in combination with bile acid resins or statins.
Collapse
|
35
|
Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, Linse S, Cedervall T. Complete high-density lipoproteins in nanoparticle corona. FEBS J 2009; 276:3372-81. [PMID: 19438706 DOI: 10.1111/j.1742-4658.2009.07062.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In a biological environment, nanoparticles immediately become covered by an evolving corona of biomolecules, which gives a biological identity to the nanoparticle and determines its biological impact and fate. Previous efforts at describing the corona have concerned only its protein content. Here, for the first time, we show, using size exclusion chromatography, NMR, and pull-down experiments, that copolymer nanoparticles bind cholesterol, triglycerides and phospholipids from human plasma, and that the binding reaches saturation. The lipid and protein binding patterns correspond closely with the composition of high-density lipoprotein (HDL). By using fractionated lipoproteins, we show that HDL binds to copolymer nanoparticles with much higher specificity than other lipoproteins, probably mediated by apolipoprotein A-I. Together with the previously identified protein binding patterns in the corona, our results imply that copolymer nanoparticles bind complete HDL complexes, and may be recognized by living systems as HDL complexes, opening up these transport pathways to nanoparticles. Apolipoproteins have been identified as binding to many other nanoparticles, suggesting that lipid and lipoprotein binding is a general feature of nanoparticles under physiological conditions.
Collapse
|
36
|
Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect Immun 2008; 77:850-9. [PMID: 19029300 DOI: 10.1128/iai.00873-08] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a bacterium-induced chronic inflammation that destroys tissues that attach teeth to jaw bone. Pathologically excessive matrix metalloproteinase 8 (MMP-8) is among the key players in periodontal destruction by initiating type I collagen degradation. We studied MMP-8 in Porphyromonas gingivalis-induced periodontitis by using MMP-8-deficient (MMP8(-/-)) and wild-type (WT) mice. Alveolar bone loss, inflammatory mediator expression, serum immunoglobulin, and lipoprotein responses were investigated to clarify the role of MMP-8 in periodontitis and systemic inflammatory responses. P. gingivalis infection induced accelerated site-specific alveolar bone loss in both MMP8(-/-) and WT mice relative to uninfected mice. The most extensive bone degradation took place in the P. gingivalis-infected MMP8(-/-) group. Surprisingly, MMP-8 significantly attenuated (P < 0.05) P. gingivalis-induced site-specific alveolar bone loss. Increased alveolar bone loss in P. gingivalis-infected MMP8(-/-) and WT mice was associated with increase in gingival neutrophil elastase production. Serum lipoprotein analysis demonstrated changes in the distribution of high-density lipoprotein (HDL) and very-low-density lipoprotein (VLDL) particles; unlike the WT mice, the MMP8(-/-) mice underwent a shift toward a smaller HDL/VLDL particle sizes. P. gingivalis infection increased the HDL/VLDL particle size in the MMP8(-/-) mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total lipopolysaccharide activity and the immunoglobulin G-class antibody level in response to P. gingivalis were significantly elevated in both infected mice groups. Thus, MMP-8 appears to act in a protective manner inhibiting the development of bacterium-induced periodontal tissue destruction, possibly through the processing anti-inflammatory cytokines and chemokines. Bacterium-induced periodontitis, especially in MMP8(-/-) mice, is associated with systemic inflammatory and lipoprotein changes that are likely involved in early atherosclerosis.
Collapse
|
37
|
Jänis MT, Laaksonen R, Oresic M. Metabolomic strategies to identify tissue-specific effects of cardiovascular drugs. Expert Opin Drug Metab Toxicol 2008; 4:665-80. [PMID: 18611110 DOI: 10.1517/17425255.4.6.665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The number of patients eligible for cardiovascular therapies in general is forecast to increase substantially in the coming decades. However, the current list of potential future cardiovascular blockbuster drugs is alarmingly short. There is thus a clear need for innovative strategies to increase the efficiency of drug development pipelines by establishing new sensitive biomarkers to monitor drug efficacy and safety in the context of complexity of lipoprotein metabolism targeted by the cardiovascular drugs. METHODS Metabolomics is a discipline dedicated to the systematic study of small molecules in cells, tissues and biofluids. Since lipids (including cholesterol), as well as other metabolites, are key constituents of lipoprotein particles and are thus part of the complex lipoprotein metabolism that includes exchange of lipids and metabolites with peripheral tissues, cardiovascular drug safety and efficacy needs to be addressed in the context of systemic lipid metabolism. RESULTS/CONCLUSION Metabolomics, lipidomics in particular, is expected to make an important impact on the discovery and development of cardiovascular therapies.
Collapse
Affiliation(s)
- Minna T Jänis
- Zora Biosciences Oy, Biologinkuja 1, Espoo, FI-02150, Finland
| | | | | |
Collapse
|
38
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
39
|
Xiao C, Watanabe T, Zhang Y, Trigatti B, Szeto L, Connelly PW, Marcovina S, Vaisar T, Heinecke JW, Lewis GF. Enhanced cellular uptake of remnant high-density lipoprotein particles: a mechanism for high-density lipoprotein lowering in insulin resistance and hypertriglyceridemia. Circ Res 2008; 103:159-66. [PMID: 18556574 DOI: 10.1161/circresaha.108.178756] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A low level of high-density lipoprotein (HDL) cholesterol is characteristic of insulin resistance and hypertriglyceridemia and likely contributes to the increased risk of cardiovascular disease associated with these conditions. One pathway involves enhanced clearance of lipolytically modified HDL particles, but the underlying mechanisms remain poorly understood. Here, we examine the effect of triglyceride enrichment and hepatic lipase hydrolysis on HDL binding, internalization, and degradation in cultured liver and kidney cells. Maximal binding of remnant HDL (HDL enriched with triglycerides followed by hepatic lipase hydrolysis), but not binding affinity, was markedly higher than native and triglyceride-rich HDL in both HepG2 cells and HEK293 cells. Compared with native and triglyceride-rich HDL, remnant HDL was internalized to a greater extent in both cell types and was more readily degraded in HEK293 cells. The increased binding of remnant HDL was not mediated by the low-density lipoprotein receptor or scavenger receptor class B type I (SR-BI), because enhanced remnant HDL binding was observed in low-density lipoprotein receptor-deficient cells with or without SR-BI overexpression. Disruption of cell surface heparan sulfate proteoglycans or blockage of apolipoprotein E-mediated lipoprotein binding also did not abolish the enhanced remnant HDL binding. Our observations indicate that remodeling of triglyceride-enriched HDL by hepatic lipase may result in enhanced binding, internalization, and degradation in tissues involved in HDL catabolism, contributing to rapid clearance and overall lowering of plasma HDL cholesterol in insulin resistance and hypertriglyceridemia.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine and Physiology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Koukos G, Chroni A, Duka A, Kardassis D, Zannis V. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT. Biochem J 2007; 406:167-74. [PMID: 17506726 PMCID: PMC1948983 DOI: 10.1042/bj20070296] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.
Collapse
Affiliation(s)
- Georgios Koukos
- *Molecular Genetics, Departmental of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, U.S.A
- †Department of Basic Sciences, University of Crete Medical School, Heraklion, GR-71110, Greece
| | - Angeliki Chroni
- ‡Institute of Biology, National Center for Scientific Research ‘Demokritos’, 15310 Agia Paraskevi, Athens, Greece
| | - Adelina Duka
- *Molecular Genetics, Departmental of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Dimitris Kardassis
- ‡Institute of Biology, National Center for Scientific Research ‘Demokritos’, 15310 Agia Paraskevi, Athens, Greece
- §Institute of Molecular Biology and Biotechnology, FORTH (Foundation for Research and Technology-Hellas), Heraklion, Crete, Greece
| | - Vassilis I. Zannis
- *Molecular Genetics, Departmental of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Institute of Biology, National Center for Scientific Research ‘Demokritos’, 15310 Agia Paraskevi, Athens, Greece
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Dugué-Pujol S, Rousset X, Château D, Pastier D, Klein C, Demeurie J, Cywiner-Golenzer C, Chabert M, Verroust P, Chambaz J, Châtelet FP, Kalopissis AD. Apolipoprotein A-II is catabolized in the kidney as a function of its plasma concentration. J Lipid Res 2007; 48:2151-61. [PMID: 17652309 DOI: 10.1194/jlr.m700089-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated in vivo catabolism of apolipoprotein A-II (apo A-II), a major determinant of plasma HDL levels. Like apoA-I, murine apoA-II (mapoA-II) and human apoA-II (hapoA-II) were reabsorbed in the first segment of kidney proximal tubules of control and hapoA-II-transgenic mice, respectively. ApoA-II colocalized in brush border membranes with cubilin and megalin (the apoA-I receptor and coreceptor, respectively), with mapoA-I in intracellular vesicles of tubular epithelial cells, and was targeted to lysosomes, suggestive of degradation. By use of three transgenic lines with plasma hapoA-II concentrations ranging from normal to three times higher, we established an association between plasma concentration and renal catabolism of hapoA-II. HapoA-II was rapidly internalized in yolk sac epithelial cells expressing high levels of cubilin and megalin, colocalized with cubilin and megalin on the cell surface, and effectively competed with apoA-I for uptake, which was inhibitable by anti-cubilin antibodies. Kidney cortical cells that only express megalin internalized LDL but not apoA-II, apoA-I, or HDL, suggesting that megalin is not an apoA-II receptor. We show that apoA-II is efficiently reabsorbed in kidney proximal tubules in relation to its plasma concentration.
Collapse
Affiliation(s)
- Sonia Dugué-Pujol
- Institut National de la Santé et de la Recherche Médicale, U872, Equipe 6, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chroni A, Koukos G, Duka A, Zannis VI. The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo. Biochemistry 2007; 46:5697-708. [PMID: 17447731 PMCID: PMC2528067 DOI: 10.1021/bi602354t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biology, National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece.
| | | | | | | |
Collapse
|
43
|
Brown WV. High-density lipoprotein and transport of cholesterol and triglyceride in blood. J Clin Lipidol 2007; 1:7-19. [PMID: 21291664 DOI: 10.1016/j.jacl.2007.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 01/03/2023]
Abstract
High-density lipoproteins (HDL) contain approximately 25% of the cholesterol and <5% of the triglyceride in the plasma of human blood. However, the dynamic exchange of lipids and lipid-binding proteins is not revealed by simply considering the mass of material at any point in time. HDL are the most complex of lipoprotein species with multiple protein constituents, which facilitate cholesterol secretion from cells, cholesterol esterification in plasma, and transfer of cholesterol to other lipoproteins and to the liver for excretion. They also play a major role in triglyceride transport by providing for activation of lipoprotein lipase, exchange of triglyceride among the lipoproteins, and removal of triglyceride rich remnants of chylomicrons and very-low-density lipoproteins after lipase action. In addition, antioxidative enzymes and phospholipid transfer proteins are important components of HDL. Many of the proteins of HDL are exchangeable with other lipoproteins, including chylomicrons and very-low-density lipoproteins. The constantly changing content of lipids and apolipoproteins in HDL particles generate a series of structures that can be analyzed by using separation techniques that depend on size or charge of the particles. Interaction of these various structures can be very different with cell surfaces depending on the size or apolipoprotein content. A series of different transport proteins preferentially exchange lipids with specific structures among the HDL but interact poorly or not at all with others. The role of these differing forms of HDL and their interactions with cells and other lipoprotein species in plasma is the subject of intense study stimulated by the potential for reducing atherogenesis. The strength of this is only partially indicated by the correlation of higher total levels of the HDL particles with reduced incidence of vascular disease in various clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- William Virgil Brown
- Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center 111, 1670 Clairmont Road, Atlanta, GA 30033, USA
| |
Collapse
|
44
|
Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 2007; 116:3090-100. [PMID: 17143322 PMCID: PMC1679714 DOI: 10.1172/jci30163] [Citation(s) in RCA: 427] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HDL metabolism represents a major target for the development of therapies intended to reduce the risk of atherosclerotic cardiovascular disease. HDL metabolism is complex and involves dissociation of HDL apolipoprotein and HDL cholesterol metabolism. Advances in our understanding of the molecular regulation of HDL metabolism, macrophage cholesterol efflux, and HDL function will lead to a variety of novel therapeutics.
Collapse
Affiliation(s)
- Daniel J Rader
- Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
45
|
Lee-Rueckert M, Kovanen PT. Mast cell proteases: Physiological tools to study functional significance of high density lipoproteins in the initiation of reverse cholesterol transport. Atherosclerosis 2006; 189:8-18. [PMID: 16530202 DOI: 10.1016/j.atherosclerosis.2006.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/17/2006] [Accepted: 02/01/2006] [Indexed: 11/27/2022]
Abstract
The extracellular fluid of the intima is rich in lipid-poor species of high density lipoproteins (HDL) that promote efficient efflux of cholesterol from macrophages. Yet, during atherogenesis, cholesterol accumulates in macrophages, and foam cells are formed. We have studied proteolytic modification of HDL by mast cell proteases as a potential mechanism of reduced cholesterol efflux from foam cells. Mast cells are present in human atherosclerotic lesions and, when activated, they expel cytoplasmic granules that are filled with heparin proteoglycans and two neutral proteases, chymase and tryptase. Both proteases were found to specifically deplete in vitro the apoA-I-containing prebeta-migrating HDL (prebeta-HDL) and other lipid-poor HDL particles that contain only apoA-IV or apoE. These losses led to inhibition of the high-affinity component of cholesterol efflux from macrophage foam cells facilitated by the ATP-binding cassette transporter A1 (ABCA1). In contrast, the diffusional component of efflux promoted by alpha-HDL particles was not changed after proteolysis. Mast cell proteases are providing new insights into the role of extracellular proteolysis of HDL as an inhibiting principle of the initial steps of reverse cholesterol transport in the atherosclerotic intima, where many types of protease-secreting cells are present.
Collapse
|
46
|
Pagler TA, Golsabahi S, Doringer M, Rhode S, Schütz GJ, Pavelka M, Wadsack C, Gauster M, Lohninger A, Laggner H, Strobl W, Stangl H. A Chinese hamster ovarian cell line imports cholesterol by high density lipoprotein degradation. J Biol Chem 2006; 281:38159-71. [PMID: 17038318 DOI: 10.1074/jbc.m603334200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma high density lipoprotein (HDL) is inversely associated with the development of atherosclerosis. HDL exerts its atheroprotective role through involvement in reverse cholesterol transport in which HDL is loaded with cholesterol at the periphery and transports its lipid load back to the liver for disposal. In this pathway, HDL is not completely dismantled but only transfers its lipids to the cell. Here we present evidence that a Chinese hamster ovarian cell line (CHO7) adapted to grow in lipoprotein-deficient media degrades HDL and concomitantly internalizes HDL-derived cholesterol. Delivery of HDL cholesterol to the cell was demonstrated by a down-regulation of cholesterol biosynthesis, an increase in total cellular cholesterol content and by stimulation of cholesterol esterification after HDL treatment. This HDL degradation pathway is distinct from the low density lipoprotein (LDL) receptor pathway but also degrades LDL. 25-Hydroxycholesterol, a potent inhibitor of the LDL receptor pathway, down-regulated LDL degradation in CHO7 cells only in part and did not down-regulate HDL degradation. Dextran sulfate released HDL bound to the cell surface of CHO7 cells, and heparin treatment released protein(s) contributing to HDL degradation. The involvement of heparan sulfate proteoglycans and lipases in this HDL degradation was further tested by two inhibitors genistein and tetrahydrolipstatin. Both blocked HDL degradation significantly. Thus, we demonstrate that CHO7 cells degrade HDL and LDL to supply themselves with cholesterol via a novel degradation pathway. Interestingly, HDL degradation with similar properties was also observed in a human placental cell line.
Collapse
Affiliation(s)
- Tamara A Pagler
- Center for Physiology and Pathophysiology, Institute of Medical Chemistry, Medical University of Vienna, Währingerstrasse 10, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wolff NA, Abouhamed M, Verroust PJ, Thévenod F. Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 2006; 318:782-91. [PMID: 16690719 DOI: 10.1124/jpet.106.102574] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic cadmium (Cd2+) exposure results in renal proximal tubular cell damage. Delivery of Cd2+ to the kidney occurs mainly as complexes with metallothionein-1 (molecular mass approximately 7 kDa), freely filtered at the glomerulus. For Cd2+ to gain access to the proximal tubule cells, these complexes are thought to be internalized via receptors for small protein ligands, such as megalin and cubilin, followed by release of Cd2+ from metallothionein-1 in endosomal/lysosomal compartments. To investigate the role of megalin in renal cadmium-metallothionein-1 reabsorption, megalin expression and dependence of cadmium-metallothionein-1 internalization and cytotoxicity on megalin were studied in a renal proximal tubular cell model (WKPT-0293 Cl.2 cells). Expression of megalin was detected by reverse transcriptase-polymerase chain reaction and visualized by immunofluorescence both at the cell surface (live staining) and intracellularly (permeabilized cells). Internalization of Alexa Fluor 488-coupled metallothionein-1 was concentration-dependent, saturating at approximately 15 microM. At 14.3 microM, metallothionein-1 uptake could be significantly attenuated by 30.9 +/- 6.6% (n = 4) by 1 muM of the receptor-associated protein (RAP) used as a competitive inhibitor of cadmium-metallothionein-1 binding to megalin and cubilin. Consistently, cytotoxicity of a 24-h treatment with 7.14 muM cadmium-metallothionein-1 was significantly reduced by 41.0 +/- 7.6%, 61.6 +/- 3.4%, and 26.2 +/- 1.8% (n = 4-5 each) by the presence of 1 microM RAP, 400 microg/ml anti-megalin antibody, or 5 microM of the cubilin-specific ligand, apo-transferrin, respectively. Cubilin expression in proximal tubule cells was also confirmed at the mRNA and protein level. The data indicate that renal proximal tubular cadmium-metallothionein-1 uptake and cell death are mediated at least in part by megalin.
Collapse
Affiliation(s)
- Natascha A Wolff
- Department of Physiology and Pathophysiology, University of Witten/Herdecke, Faculty of Medicine, Stockumer Strasse 12, D-58448 Witten, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW One of the major mechanisms whereby HDL particles are felt to protect against atherosclerosis is that of reverse cholesterol transport from atherosclerotic lesion macrophages to the liver, with subsequent excretion of cholesterol in the bile. This review focuses on recent progress in our understanding of reverse cholesterol transport and the factors that determine plasma HDL cholesterol concentrations. RECENT FINDINGS The liver and intestine are the major sites of apolipoprotein A-I synthesis and nascent HDL particle secretion. The liver has recently been shown to be a major contributor to the plasma HDL-cholesterol concentration, but the precise site or mechanism whereby hepatically-synthesized HDL acquire the bulk of their lipid content remains to be determined. Contrastingly, macrophages contribute little to the plasma HDL cholesterol pool, whereas the quantitatively small macrophage-specific reverse cholesterol transport contributes disproportionately to protection against atherosclerosis. Studies have highlighted the coordinate action of cell surface lipid transporters, cholesterol esterification enzymes and lipid transfer factors in the early steps of reverse cholesterol transport and the recycling of pre-beta HDL particles to create a ready supply of cholesterol acceptor HDL particles. Most of the variation in plasma HDL-cholesterol levels in human populations is accounted for by variations in HDL clearance rather than production. SUMMARY Our understanding of the in-vivo metabolism of HDL particles and their role in reverse cholesterol transport is rapidly evolving, with long-standing concepts being constantly challenged by emerging evidence. An in-depth understanding of HDL metabolism will guide the rational design of novel pharmacological therapies that effectively protect against atherosclerosis.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Smith BT, Mussell JC, Fleming PA, Barth JL, Spyropoulos DD, Cooley MA, Drake CJ, Argraves WS. Targeted disruption of cubilin reveals essential developmental roles in the structure and function of endoderm and in somite formation. BMC DEVELOPMENTAL BIOLOGY 2006; 6:30. [PMID: 16787536 PMCID: PMC1533814 DOI: 10.1186/1471-213x-6-30] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/20/2006] [Indexed: 11/22/2022]
Abstract
Background Cubilin is a peripheral membrane protein that interacts with the integral membrane proteins megalin and amnionless to mediate ligand endocytosis by absorptive epithelia such as the extraembryonic visceral endoderm (VE). Results Here we report the effects of the genetic deletion of cubilin on mouse embryonic development. Cubilin gene deletion is homozygous embryonic lethal with death occurring between 7.5–13.5 days post coitum (dpc). Cubilin-deficient embryos display developmental retardation and do not advance morphologically beyond the gross appearance of wild-type 8–8.5 dpc embryos. While mesodermal structures such as the allantois and the heart are formed in cubilin mutants, other mesoderm-derived tissues are anomalous or absent. Yolk sac blood islands are formed in cubilin mutants but are unusually large, and the yolk sac blood vessels fail to undergo remodeling. Furthermore, somite formation does not occur in cubilin mutants. Morphological abnormalities of endoderm occur in cubilin mutants and include a stratified epithelium in place of the normally simple columnar VE epithelium and a stratified cuboidal epithelium in place of the normally simple squamous epithelium of the definitive endoderm. Cubilin-deficient VE is also functionally defective, unable to mediate uptake of maternally derived high-density lipoprotein (HDL). Conclusion In summary, cubilin is required for embryonic development and is essential for the formation of somites, definitive endoderm and VE and for the absorptive function of VE including the process of maternal-embryo transport of HDL.
Collapse
Affiliation(s)
- Brian T Smith
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jason C Mussell
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Paul A Fleming
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jeremy L Barth
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Demetri D Spyropoulos
- Pathology and Laboratory Medicine Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Marion A Cooley
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Christopher J Drake
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - W Scott Argraves
- Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
50
|
Lingenhel A, Lhotta K, Neyer U, Heid IM, Rantner B, Kronenberg MF, König P, von Eckardstein A, Schober M, Dieplinger H, Kronenberg F. Role of the kidney in the metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J Lipid Res 2006; 47:2071-9. [PMID: 16788210 DOI: 10.1194/jlr.m600178-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased plasma concentrations of apolipoprotein A-IV (apoA-IV) in chronic renal disease suggest a metabolic role of the kidney for this antiatherogenic protein. Therefore, we investigated patients with various forms of proteinuria and found increased serum concentrations of apoA-IV in 124 nephrotic patients compared with 274 controls (mean 21.9 +/- 9.6 vs. 14.4 +/- 4.0 mg/dl; P < 0.001). Decreasing creatinine clearance showed a strong association with increasing apoA-IV levels. However, serum albumin levels significantly modulated apoA-IV levels in patients with low creatinine clearance, resulting in lower levels of apoA-IV in patients with low compared with high albumin levels (21.4 +/- 8.6 vs. 29.2 +/- 8.4 mg/dl; P = 0.0007). Furthermore, we investigated urinary apoA-IV levels in an additional 66 patients with a wide variety of proteinuria and 30 controls. Especially patients with a tubular type of proteinuria had significantly higher amounts of apoA-IV in urine than those with a pure glomerular type of proteinuria and controls (median 45, 14, and 0.6 ng/mg creatinine, respectively). We confirmed these results in affected members of a family with Dent's disease, who are characterized by an inherited protein reabsorption defect of the proximal tubular system. In summary, our data demonstrate that the increase of apoA-IV caused by renal impairment is significantly modulated by low levels of serum albumin as a measure for the severity of the nephrotic syndrome. From this investigation of apoA-IV in urine as well as earlier immunohistochemical studies, we conclude that apoA-IV is filtered through the normal glomerulus and is subsequently reabsorbed mainly by proximal tubular cells.
Collapse
Affiliation(s)
- Arno Lingenhel
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|