1
|
Karkashon S, Raghupathy R, Bhatia H, Dutta A, Hess S, Higgs J, Tifft CJ, Little JA. Intermediaries of branched chain amino acid metabolism induce fetal hemoglobin, and repress SOX6 and BCL11A, in definitive erythroid cells. Blood Cells Mol Dis 2015; 55:161-7. [PMID: 26142333 DOI: 10.1016/j.bcmd.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/19/2023]
Abstract
High levels of fetal hemoglobin (HbF) can ameliorate human β-globin gene disorders. The short chain fatty acid butyrate is the paradigmatic metabolic intermediary that induces HbF. Inherited disorders of branched-chain amino acid (BCAA) metabolism have been associated with supranormal HbF levels beyond infancy, e.g., propionic acidemia (PA) and methylmalonic acidemia (MMA). We tested intermediaries of BCAA metabolism for their effects on definitive erythropoiesis. Like butyrate, the elevated BCAA intermediaries isovalerate, isobutyrate, and propionate, induce fetal globin gene expression in murine EryD in vitro, are associated with bulk histone H3 hyperacylation, and repress the transcription of key gamma globin regulatory factors, notably BCL11A and SOX6. Metabolic intermediaries that are elevated in Maple Syrup Urine Disease (MSUD) affect none of these processes. Percent HbF and gamma (γ) chain isoforms were also measured in non-anemic, therapeutically optimized subjects with MSUD (Group I, n=6) or with Isovaleric Acidemia (IVA), MMA, or PA (Group II, n=5). Mean HbF was 0.24 ± 0.15% in Group I and 0.87 ± 0.13% in Group II (p=.01); only the Gγ isoform was detected. We conclude that a family of biochemically related intermediaries of branched chain amino acid metabolism induces fetal hemoglobin during definitive erythropoiesis, with mechanisms that mirror those so far identified for butyrate.
Collapse
Affiliation(s)
- Shay Karkashon
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Radha Raghupathy
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Himanshu Bhatia
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Amrita Dutta
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Sonja Hess
- California Institute of Technology, Beckman Institute, Proteome Exploration Laboratory, 1200 E California Blvd, MC139-74, Pasadena, CA 91125, United States
| | - Jaimie Higgs
- Division of Genetics and Metabolism, Center for Hospital-based Specialties, Children's National Medical Center, 111 Michigan Ave. N.W., Washington, DC 20010-2970, United States
| | - Cynthia J Tifft
- Division of Genetics and Metabolism, Center for Hospital-based Specialties, Children's National Medical Center, 111 Michigan Ave. N.W., Washington, DC 20010-2970, United States
| | - Jane A Little
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States.
| |
Collapse
|
2
|
TAT-CC fusion protein depresses the oncogenicity of BCR-ABL in vitro and in vivo through interrupting its oligomerization. Amino Acids 2012; 44:461-72. [PMID: 22782217 DOI: 10.1007/s00726-012-1354-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR(1-72) mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.
Collapse
|
3
|
Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities. JOURNAL OF ONCOLOGY 2011; 2011:798592. [PMID: 21436996 PMCID: PMC3062978 DOI: 10.1155/2011/798592] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 11/17/2022]
Abstract
In comparing gene expression of normal and CML CD34+ quiescent (G0) cell, 292 genes were downregulated and 192 genes upregulated in the CML/G0 Cells. The differentially expressed genes were grouped according to their reported functions, and correlations were sought with biological differences previously observed between the same groups. The most relevant findings include the following. (i) CML G0 cells are in a more advanced stage of development and more poised to proliferate than normal G0 cells. (ii) When CML G0 cells are stimulated to proliferate, they differentiate and mature more rapidly than normal counterpart. (iii) Whereas normal G0 cells form only granulocyte/monocyte colonies when stimulated by cytokines, CML G0 cells form a combination of the above and erythroid clusters and colonies. (iv) Prominin-1 is the gene most downregulated in CML G0 cells, and this appears to be associated with the spontaneous formation of erythroid colonies by CML progenitors without EPO.
Collapse
|
4
|
Pardanani A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 2007; 22:23-30. [PMID: 17882282 DOI: 10.1038/sj.leu.2404948] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recent identification of somatic mutations such as JAK2V617F that deregulate Janus kinase (JAK)-signal transducer and activator of transcription signaling has spurred development of orally bioavailable small-molecule inhibitors that selectively target JAK2 kinase as an approach to pathogenesis-directed therapy of myeloproliferative disorders (MPD). In pre-clinical studies, these compounds inhibit JAK2V617F-mediated cell growth at nanomolar concentrations, and in vivo therapeutic efficacy has been demonstrated in mouse models of JAK2V617F-induced disease. In addition, ex vivo growth of progenitor cells from MPD patients harboring JAK2V617F or MPLW515L/K mutations is also potently inhibited. JAK2 inhibitors currently in clinical trials can be grouped into those designed to primarily target JAK2 kinase (JAK2-selective) and those originally developed for non-MPD indications, but that nevertheless have significant JAK2-inhibitory activity (non-JAK2 selective). This article discusses the rationale for using JAK2 inhibitors for the treatment of MPD, as well as relevant aspects of clinical trial development for these patients. For instance, which group of MPD patients is appropriate for initial Phase I studies? Should JAK2V617F-negative MPD patients be included in the initial studies? What are the likely consequences of 'off-target' JAK3 and wild-type JAK2 inhibition? How should treatment responses be monitored?
Collapse
Affiliation(s)
- A Pardanani
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Chu S, Li L, Singh H, Bhatia R. BCR-tyrosine 177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in chronic myelogenous leukemia. Cancer Res 2007; 67:7045-53. [PMID: 17638918 DOI: 10.1158/0008-5472.can-06-4312] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic myelogenous leukemia (CML) results from the transformation of a primitive hematopoietic cell by the BCR/ABL gene. BCR/ABL signaling has been studied in cell lines and murine models, but the transforming effects of BCR/ABL are highly dependent on cellular context, and mechanisms responsible for the transformation of primitive human hematopoietic cells remain poorly understood. Current targeted therapies fail to eliminate malignant CML progenitors, and improved understanding of crucial molecular mechanisms of progenitor transformation may facilitate the development of improved therapeutic approaches. We investigated the role of BCR/ABL tyrosine 177 (BCR/ABL-Y177) in CML progenitor transformation by comparing the effects of expression of Y177-mutated BCR/ABL, wild-type BCR/ABL, or green fluorescent protein alone on normal CD34(+) cells. We show that BCR/ABL-Y177 plays a critical role in CML progenitor expansion, proliferation, and survival. BCR/ABL expression results in enhanced Ras and Akt activity but reduced mitogen-activated protein kinase activity in human hematopoietic cells, which is reversed by BCR/ABL-Y177 mutation. Blocking BCR/ABL-Y177-mediated signaling enhances targeting of CML progenitors by imatinib mesylate. Our studies indicate that BCR/ABL-Y177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in CML.
Collapse
Affiliation(s)
- Su Chu
- Department of Hematopoietic Stem Cell and Leukemia Research, Division of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
6
|
Gómez-Ochoa P, Miana-Mena FJ, Muñoz MJ, Gascón M, Castillo JA, Cativiela E, Gómez F. Isolation and development of haematopoietic progenitor cells from peripheral blood of adult and newborn pigs. Acta Vet Hung 2007; 55:171-80. [PMID: 17555281 DOI: 10.1556/avet.55.2007.2.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cells (PSCs), already described in human beings, are fibroblast-like cells that exhibit a CD34 marker specific for haematopoietic stem cells. In this work we have demonstrated the presence of PSCs in the peripheral blood of pigs, a species frequently used in transplantation studies as an animal model for human diseases. Differentiation into haematopoietic colonies (granulomacrophagic colonies, erythroid colonies and mixed colonies) has been carried out with the peripheral blood of adult and newborn pigs, using solely human commercial media. Peripheral blood mononuclear cells (PBMNCs) were cultured in semisolid methylcellulose based media enriched with recombinant human cytokines, achieving granulomacrophagic-colony forming unit (GM-CFU) and mixed-colony forming unit (Mix-CFU) growth with erythroblastic lineage proliferation in the presence of erythropoietin (Epo). In all the samples CFU growth was associated with the presence of recombinant human cytokine. No evidence of proliferation in control plates without cytokines was found. From liquid medium culture, a population of macrophages and CD34+ fibroblast like cells were retrieved 21 days after sowing. These findings allow us to think about the direct application of this simple and standardised method in several work fields such as the study of pharmacological effects of many drugs over the haematopoietic line and in the study of new strategies in cellular therapy for some human diseases.
Collapse
Affiliation(s)
- P Gómez-Ochoa
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, C/ Miguel Servet, 177 CP 50013, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
Subramanian A, Hegde S, Correll PH, Paulson RF. Mutation of the Lyn tyrosine kinase delays the progression of Friend virus induced erythroleukemia without affecting susceptibility. Leuk Res 2006; 30:1141-9. [PMID: 16527351 DOI: 10.1016/j.leukres.2006.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/24/2006] [Accepted: 02/03/2006] [Indexed: 11/29/2022]
Abstract
During the initial phase of Friend virus (FV) induced erythroleukemia, the interaction between the viral envelope glycoprotein gp55, the Erythropoietin receptor (EpoR) and the naturally occurring truncated version of the Mst1r receptor tyrosine kinase, called Sf-Stk, drives the polyclonal expansion of infected progenitors in an erythropoietin independent manner. Sf-Stk provides signals that cooperate with EpoR signals to effect expansion of erythroid progenitors. The latter phase of disease is characterized by a clonal expansion of transformed leukemic cells causing an acute erythroleukemia in mice. Signaling by Sf-Stk and EpoR mediated by gp55 renders erythroid progenitors Epo independent through the activation of the EpoR downstream pathways such as PI3K, MAPK and JAK/STAT. Previous work has shown that Src family kinases also play an important role in erythropoiesis. In particular, mutation of Src and Lyn can affect erythropoiesis. In this report we analyze the role of the Lyn tyrosine kinase in the pathogenesis of Friend virus. We demonstrate that during FV infection of primary erythroblasts, Lyn is not required for expansion of viral targets. Lyn deficient bone marrow and spleen cells are able to form Epo independent FV colonies in vitro. In vivo infection of Lyn deficient animals also results in a massive splenomegaly characteristic of the virus. However, we observe differences in the pathogenesis of Friend erythroleukemia in Lyn-/- mice. Lyn-/- mice infected with the polycythemia inducing strain of FV, FVP, do not develop polycythemia suggesting that Lyn-/- infected erythroblasts have a defect in terminal differentiation. Furthermore, the expansion of transformed cells in the spleen is reduced in Lyn-/- mice. Our data show that Lyn signals are not required for susceptibility to Friend erythroleukemia, but Lyn plays a role in later events, the terminal differentiation of infected cells and the expansion of transformed cells.
Collapse
MESH Headings
- Animals
- Bone Marrow/enzymology
- Bone Marrow/virology
- Cell Differentiation/genetics
- Cell Transformation, Viral/genetics
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/virology
- Friend murine leukemia virus
- Leukemia, Erythroblastic, Acute/enzymology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/enzymology
- Leukemia, Experimental/genetics
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Knockout
- Mutation
- Phosphotransferases/genetics
- Phosphotransferases/metabolism
- Receptors, Erythropoietin/metabolism
- Retroviridae Infections/enzymology
- Retroviridae Infections/genetics
- Spleen/enzymology
- Spleen/virology
- Tumor Virus Infections/enzymology
- Tumor Virus Infections/genetics
- Viral Envelope Proteins/metabolism
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- Aparna Subramanian
- Graduate Program in Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
8
|
Suh HC, Gooya J, Renn K, Friedman AD, Johnson PF, Keller JR. C/EBPalpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 2006; 107:4308-16. [PMID: 16469877 PMCID: PMC1895788 DOI: 10.1182/blood-2005-06-2216] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 01/22/2006] [Indexed: 12/21/2022] Open
Abstract
C/EBPalpha is an essential transcription factor required for myeloid differentiation. While C/EBPalpha can act as a cell fate switch to promote granulocyte differentiation in bipotential granulocyte-macrophage progenitors (GMPs), its role in regulating cell fate decisions in more primitive progenitors is not known. We found increased numbers of erythroid progenitors and erythroid cells in C/EBPalpha(-/-) fetal liver (FL). Also, enforced expression of C/EBPalpha in hematopoietic stem cells resulted in a loss of erythroid progenitors and an increase in myeloid cells by inhibition of erythroid development and inducing myeloid differentiation. Conditional expression of C/EBPalpha in murine erythroleukemia (MEL) cells induced myeloid-specific genes, while inhibiting erythroid-specific gene expression including erythropoietin receptor (EpoR), which suggests a novel mechanism to determine hematopoietic cell fate. Thus, C/EBPalpha functions in hematopoietic cell fate decisions by the dual actions of inhibiting erythroid and inducing myeloid gene expression in multipotential progenitors.
Collapse
Affiliation(s)
- Hyung Chan Suh
- Basic Research Program, Science Applications International Corporation-Frederick, National Cancer Institute at Frederick, MD 20702-1201, USA
| | | | | | | | | | | |
Collapse
|
9
|
Walz C, Sattler M. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 2006; 57:145-64. [PMID: 16213151 DOI: 10.1016/j.critrevonc.2005.06.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 02/06/2023] Open
Abstract
Imatinib mesylate (Gleevec) was developed as the first molecularly targeted therapy that specifically inhibits the BCR-ABL tyrosine kinase activity in patients with Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML). Due to its excellent hematologic and cytogenetic responses, particularly in patients with chronic phase CML, imatinib has moved towards first-line treatment for newly diagnosed CML. Nevertheless, resistance to the drug has been frequently reported and is attributed to the fact that transformation of hematopoietic stem cells by BCR-ABL is associated with genomic instability. Point mutations within the ABL tyrosine kinase of the BCR-ABL oncoprotein are the major cause of resistance, though overexpression of the BCR-ABL protein and novel acquired cytogenetic aberrations have also been reported. A variety of strategies derived from structural studies of the ABL-imatinib complex have been developed, resulting in the design of novel ABL inhibitors, including AMN107, BMS-354825, ON012380 and others. The major goal of these efforts is to create new drugs that are more potent than imatinib and/or more effective against imatinib-resistant BCR-ABL clones. Some of these drugs have already been successfully tested in preclinical studies where they show promising results. Additional approaches are geared towards targeting the expression or stability of the BCR-ABL kinase itself or targeting signaling pathways that are chronically activated and required for transformation. In this review, we will discuss the underlying mechanisms of resistance to imatinib and novel targeted approaches to overcome imatinib resistance in CML.
Collapse
Affiliation(s)
- Christoph Walz
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Gómez-Ochoa P, Miana-Mena FJ, Muñoz MJ, Cativiela E, Gómez F. Study and culture of haematopoietic progenitor cells from peripheral blood in rats, hamsters and mice. Res Vet Sci 2005; 81:87-91. [PMID: 16289159 DOI: 10.1016/j.rvsc.2005.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 08/24/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
The aim of this work was to isolate and cultivate a subpopulation of pluripotent stem cells present in peripheral blood of different animal species, frequently used in laboratory studies (mice, rats and hamsters). Pluripotent stem cells (PSCs), already described in human beings, are fibroblast-like cells that exhibit a CD34 marker, specific for haematopoietic stem cells. Commonly used human commercial media were investigated for culturing animal PSCs. These findings suggest that this simple and standardized methodology may be applicable in several fields such as the study of the pharmacological effects of drugs on the haematopoietic line and the study of new strategies in cellular therapy for some human diseases.
Collapse
Affiliation(s)
- P Gómez-Ochoa
- H.C.V., Department of Animal Pathology, Veterinary Faculty of Zaragoza, Universidad de Zaragoza, Facultad de Veterinaria, C/Miguel Servet 177, CP 50013, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
11
|
Ghaffari S, Kitidis C, Zhao W, Marinkovic D, Fleming MD, Luo B, Marszalek J, Lodish HF. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation. Blood 2005; 107:1888-91. [PMID: 16254141 PMCID: PMC1895702 DOI: 10.1182/blood-2005-06-2304] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.
Collapse
Affiliation(s)
- Saghi Ghaffari
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 2005; 107:907-15. [PMID: 16204311 PMCID: PMC1895894 DOI: 10.1182/blood-2005-06-2516] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Erythropoietin (Epo) stimulation of its receptor's downstream signaling pathways and optimum function of GATA-1 transcription factor are both essential for normal erythroid cell development. Epo-receptor (EpoR) signaling and GATA-1 regulate proliferation, survival, differentiation, and maturation of erythroid cells. Whether any signal that is generated by EpoR targets GATA-1 or affects GATA-1 transcriptional activity is not known. Here, we demonstrate that stimulation of EpoR results in phosphorylation of GATA-1 at serine 310 (S310) in primary fetal liver erythroid progenitors and in cultured erythroid cells. We show that phosphorylation of GATA-1 is important for Epo-induced maturation of fetal liver erythroid progenitor cells. The PI3-kinase/AKT signaling pathway is identified as a mediator of Epo-induced phosphorylation of GATA-1. AKT serine threonine kinase phosphorylates GATA-1S310 in vitro and in erythroid cells and enhances GATA-1 transcriptional activity. These data demonstrate that EpoR signaling phosphorylates GATA-1 and modulates its activity via the PI3-kinase/AKT signaling pathway.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
13
|
Huang YC, Guh JH, Teng CM. Denbinobin-mediated anticancer effect in human K562 leukemia cells: role in tubulin polymerization and Bcr-Abl activity. J Biomed Sci 2005; 12:113-21. [PMID: 15864744 DOI: 10.1007/s11373-004-8171-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 09/01/2004] [Indexed: 10/25/2022] Open
Abstract
Denbinobin (5-hydroxy-3,7-dimethoxy-1,4-phenanthraquinone) has been reported to exhibit anti-tumor and anti-inflammatory activity. Nevertheless, the anti-tumor mechanism of denbinobin remains unclear. In the present study, we evaluated the anticancer activity of denbinobin in human myelogenous K562 leukemia cells. In accordance with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, we demonstrated that denbinobin inhibited cell viability in a concentration-dependent manner with an IC50 value of 1.84 microM. Cell cycle analysis illustrated that exposure of denbinobin caused a G2/M phase accumulation in a time-dependent manner. Tubulin polymerization in cells was apparently enhanced by denbinobin, implying that denbinobin might have a regulatory role in tubulin/microtubule. Furthermore, denbinobin significantly suppressed the expression of Bcr-Abl and phosphorylation of CrkL, a crucial tyrosine kinase and an adaptor protein in chronic myeloid leukemia, respectively. Denbinobin also markedly enhanced CD11b expression after a long-term treatment, suggesting that denbinobin might play a role in facilitating differentiation in K562 cells. In summary, we have demonstrated that denbinobin displays anticancer effects in K562 cells through the increase of levels of tubulin polymerization and deregulation of Bcr-Abl signaling. Our data demonstrate that denbinobin could be a potential anticancer lead compound for further development.
Collapse
Affiliation(s)
- Yu-Chun Huang
- Pharmacological Institute, No. 1, Jen-Ai Road, Sect. 1, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Chalandon Y, Jiang X, Loutet S, Eaves AC, Eaves CJ. Growth autonomy and lineage switching in BCR-ABL-transduced human cord blood cells depend on different functional domains of BCR-ABL. Leukemia 2004; 18:1006-12. [PMID: 15014528 DOI: 10.1038/sj.leu.2403335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tyrosine kinase activity of p210BCR-ABL is essential to its leukemogenic potential, but the role of other functional domains in primary human hematopoietic cells has not been previously investigated. Here we show that infection of normal human CD34+ cord blood (CB) cells with a retroviral vector encoding p210BCR-ABL rapidly activates a factor-independent phenotype and autocrine interleukin-3/granulocyte colony-stimulating factor/erythropoietin production in the transduced cells. These changes are characteristic of primitive chronic myeloid leukemic (CML) cells and are important to the leukemogenicity of BCR-ABL-transduced murine hematopoietic stem cells. When BCR-ABL-transduced human CB cells were incubated with imatinib mesylate, an inhibitor of the p210BCR-ABL kinase, or when human CB cells were transduced with a BCR-ABL cDNA lacking the SH2 domain (p210DeltaSH2), factor independence was significantly reduced. In contrast, deletion of the SH2 domain had little impact on the p210BCR-ABL kinase-dependent promotion of erythropoietic differentiation also seen immediately following the BCR-ABL transduction of primitive human CB cells, but not in naturally occurring CML. Thus, p210BCR-ABL has distinct biological effects in primary human hematopoietic cells, which variably mimic features of human CML, and activation of these changes can show different dependencies on the integrity of the SH1 and SH2 domains of p210BCR-ABL.
Collapse
Affiliation(s)
- Y Chalandon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | | | |
Collapse
|
15
|
Rouleau C, Cui K, Feldman L. A functional erythropoietin receptor is necessary for the action of thrombopoietin on erythroid cells lacking c-mpl. Exp Hematol 2004; 32:140-8. [PMID: 15102474 DOI: 10.1016/j.exphem.2003.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 10/03/2003] [Accepted: 10/13/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We hypothesized that thrombopoietin (TPO) exerts its mitogenic effects on erythroid cells, at least in part, via an interaction of TPO with the cells' erythropoietin receptor (EPO-R). METHODS We used BaF3 cells stably transfected with EPO-R to demonstrate that TPO alone is sufficient to support the long-term growth and proliferation of BaF3/EPO-R cells and to develop a TPO-dependent variant, BaF3/EPO-R(T), which is highly sensitive to and dependent on TPO for its proliferation. Northern analysis and RT-PCR were used to verify that both BaF3/EPO-R and BaF3/EPO-R(T) cells express EPO-R but lack c-mpl, the TPO receptor. To confirm that TPO responsiveness of BaF3/EPO-R(T) is due to TPO's interaction with EPO-R, EPO-R was downregulated by antisense mRNA. RESULTS Downregulation of EPO-R in BaF3/EPO-R(T) cells abolishes responsiveness to both EPO and TPO. Viability of EPO-treated transfectants decreased from 95% to 36%, while that of TPO-treated transfectants decreased from 95% to 9% by 48 hours. Nontransfected BaF3/EPO-R(T), and BaF3/EPO-R(T) transfected with vector alone, remained viable and grew in either EPO or TPO. CONCLUSION Our results suggest a functional EPO-R may be necessary and sufficient for TPO to exert its mitogenic effects on erythroid cells.
Collapse
Affiliation(s)
- Cecile Rouleau
- Laboratory for Cell and Molecular Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA
| | | | | |
Collapse
|
16
|
Ugo V, Marzac C, Teyssandier I, Larbret F, Lécluse Y, Debili N, Vainchenker W, Casadevall N. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32:179-87. [PMID: 15102479 DOI: 10.1016/j.exphem.2003.11.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/29/2003] [Accepted: 11/04/2003] [Indexed: 11/18/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative disorder arising in a multipotent hematopoietic stem cell. The pathogenesis of PV remains poorly understood; however, the biologic hallmark of this disease is the presence of erythropoietin (Epo)-independent colony formation (endogenous erythroid colony [EEC]) and cytokine hypersensitivity. We have developed a simple liquid culture from CD34+ cells to study PV erythroid differentiation. PV erythroid differentiation was characterized in this culture system by two types of abnormalities: 1) an increased proliferation of progenitors in response to cytokines, associated with strict cytokine dependency for preventing apoptosis; and 2) Epo-independent terminal erythroid differentiation in the presence of stem cell factor and interleukin-3 as evidenced by the acquisition of glycophorin A. The level of Epo-independent terminal differentiation correlates in PV patients with the number of EEC. Epo-independent terminal differentiation as well as normal Epo-induced differentiation were repressed by inhibitors of JAK2 (AG490), PI3K (LY294002), and the Src family kinases (PP2). In contrast, an inhibitor of the ERK/MAP kinase pathway (PD98059) had no effect on Epo-independent terminal differentiation. These signaling abnormalities were not mediated by a decreased expression or activity of the membrane tyrosine phosphatase CD45, which dephosphorylates JAK2 and Src family kinases. This study demonstrates that early steps of PV erythroid differentiation are strictly cytokine dependent. In contrast, late erythroid differentiation is an Epo-independent phenomenon that is mediated by signaling pathways identical to those in Epo-induced differentiation.
Collapse
Affiliation(s)
- Valérie Ugo
- INSERM U362, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J, Boxer LM. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2003; 103:1043-9. [PMID: 14525776 DOI: 10.1182/blood-2003-05-1518] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We obtained a global view of gene expression in both cell lines and pediatric acute lymphoblastic leukemia (ALL) samples that harbor one of several selected chromosomal abnormalities. When the cell lines were studied alone, we found that these chromosomal abnormalities were associated with the predominant variation in transcriptional programs across the set of cell lines studied. When cell lines and clinical samples were studied together, we found that each chromosomal abnormality (TEL/AML1, BCR/ABL, or MLL abnormalities) was associated with a characteristic gene expression signature that was shared by both cell lines and clinical samples. However, BCR/ABL was associated with a much more heterogeneous pattern of expression than were TEL/AML1 and MLL abnormalities. This observation has important implications for the study of BCR/ABL ALL. In addition, we systematically identified genes whose expression was associated with TEL/AML1, BCR/ABL, or MLL abnormalities in both clinical samples and cell lines. Although some of these genes have previously been described, many have not previously been reported to be associated with one of these chromosomal abnormalities. Notably, we found that the erythropoietin receptor (EPOR) is consistently highly expressed in TEL/AML1 ALL compared with BCR/ABL or MLL.
Collapse
Affiliation(s)
- Bernard M Fine
- Division of Hematology, 269 Campus Dr, CCSR 1155, Stanford University School of Medicine, Stanford, CA 94305-5156, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 2003; 17:1211-62. [PMID: 12835715 DOI: 10.1038/sj.leu.2402912] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chronological history of the important discoveries leading to our present understanding of the essential clinical, biological, biochemical, and molecular features of chronic myelogenous leukemia (CML) are first reviewed, focusing in particular on abnormalities that are responsible for the massive myeloid expansion. CML is an excellent target for the development of selective treatment because of its highly consistent genetic abnormality and qualitatively different fusion gene product, p210(bcr-abl). It is likely that the multiple signaling pathways dysregulated by p210(bcr-abl) are sufficient to explain all the initial manifestations of the chronic phase of the disease, although understanding of the circuitry is still very incomplete. Evidence is presented that the signaling pathways that are constitutively activated in CML stem cells and primitive progenitors cooperate with cytokines to increase the proportion of stem cells that are activated and thereby increase recruitment into the committed progenitor cell pool, and that this increased activation is probably the primary cause of the massive myeloid expansion in CML. The cooperative interactions between Bcr-Abl and cytokine-activated pathways interfere with the synergistic interactions between multiple cytokines that are normally required for the activation of stem cells, while at the same time causing numerous subtle biochemical and functional abnormalities in the later progenitors and precursor cells. The committed CML progenitors have discordant maturation and reduced proliferative capacity compared to normal committed progenitors, and like them, are destined to die after a limited number of divisions. Thus, the primary goal of any curative strategy must be to eliminate all Philadelphia positive (Ph+) primitive cells that are capable of symmetric division and thereby able to expand the Ph+ stem cell pool and recreate the disease. Several highly potent and moderately selective inhibitors of Bcr-Abl kinase have recently been discovered that are capable of killing the majority of actively proliferating early CML progenitors with minimal effects on normal progenitors. However, like their normal counterparts, most of the CML primitive stem cells are quiescent at any given time and are relatively invulnerable to the Bcr-Abl kinase inhibitors as well as other drugs. We propose that survival of dormant Ph+ stem cells may be the most important reason for the inability to cure the disease during initial treatment, while resistance to the inhibitors and other drugs becomes increasingly important later. An outline of a possible curative strategy is presented that attempts to take advantage of the subtle differences in the proliferative behavior of normal and Ph+ stem cells and the newly discovered selective inhibitors of Bcr-Abl. Leukemia (2003) 17, 1211-1262. doi:10.1038/sj.leu.2402912
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Signal Transduction
- Treatment Outcome
Collapse
Affiliation(s)
- B Clarkson
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
19
|
Schiemann BJ, Neil JR, Schiemann WP. SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol Biol Cell 2003; 14:3977-88. [PMID: 14517312 PMCID: PMC206993 DOI: 10.1091/mbc.e03-01-0001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) is a multifunctional secreted protein that regulates cell-cell and cell-matrix interactions, leading to alterations in cell adhesion, motility, and proliferation. Although SPARC is expressed in epithelial cells, its ability to regulate epithelial cell growth remains largely unknown. We show herein that SPARC strongly inhibited DNA synthesis in transforming growth factor (TGF)-beta-sensitive Mv1Lu cells, whereas moderately inhibiting that in TGF-beta-insensitive Mv1Lu cells (i.e., R1B cells). Overexpression of dominant-negative Smad3 in Mv1Lu cells, which abrogated growth arrest by TGF-beta, also attenuated growth arrest stimulated by SPARC. Moreover, the extracellular calcium-binding domain of SPARC (i.e., SPARC-EC) was sufficient to inhibit Mv1Lu cell proliferation but not that of R1B cells. Similar to TGF-beta and thrombospondin-1, treatment of Mv1Lu cells with SPARC or SPARC-EC stimulated Smad2 phosphorylation and Smad2/3 nuclear translocation: the latter response to all agonists was abrogated in R1B cells or by pretreatment of Mv1Lu cells with neutralizing TGF-beta antibodies. SPARC also stimulated Smad2 phosphorylation in MB114 endothelial cells but had no effect on bone morphogenetic protein-regulated Smad1 phosphorylation in either Mv1Lu or MB114 cells. Finally, SPARC and SPARC-EC stimulated TGF-beta-responsive reporter gene expression through a TGF-beta receptor- and Smad2/3-dependent pathway in Mv1Lu cells. Collectively, our findings identify a novel mechanism whereby SPARC inhibits epithelial cell proliferation by selectively commandeering the TGF-beta signaling system, doing so through coupling of SPARC-EC to a TGF-beta receptor- and Smad2/3-dependent pathway.
Collapse
Affiliation(s)
- Barbara J Schiemann
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | |
Collapse
|
20
|
Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R. Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci U S A 2003; 100:6523-8. [PMID: 12750477 PMCID: PMC164479 DOI: 10.1073/pnas.0731871100] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokine-provided survival signals are known to suppress apoptosis through inhibition of mitochondrial pathways that involve Bcl-2 family members. Here we show that in hematopoietic cells, cytokines also regulate death receptor-mediated pathways. We demonstrate that hematopoietic cytokines such as IL-3 and erythropoietin in normal cells, as well as BCR-ABL oncoprotein in transformed cells, inhibit transcription of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Using small interfering RNAs, we show that the inhibition of TRAIL function is sufficient to partially rescue cytokine-deprived cells from apoptosis. Finally, we demonstrate that cytokine and BCR-ABL suppression of TRAIL transcription is mediated through phosphorylation and inhibition of the forkhead FOXO3a transcription factor. BCR-ABL-induced inhibition of TRAIL transcription in hematopoietic cells may provide a novel mechanism for tumorigenicity in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Saghi Ghaffari
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
21
|
Daley GQ. Towards combination target-directed chemotherapy for chronic myeloid leukemia: role of farnesyl transferase inhibitors. Semin Hematol 2003; 40:11-4. [PMID: 12783369 DOI: 10.1053/shem.2003.50035] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic myeloid leukemia (CML) is arguably the best understood of all human malignancies. Its origins in the hematopoietic stem cell can be traced to a reciprocal translocation involving chromosomes 9 and 22, dubbed the Philadelphia chromosome, which is observed in essentially all patients. The resulting fusion gene, BCR/ABL, encodes an activated tyrosine kinase that can act alone to induce a CML-like syndrome in mouse models. These animal models have validated BCR/ABL as a target for the development of specific pharmaceutical inhibitors. The kinase inhibitor imatinib mesylate (Gleevec) is highly specific, effective, and minimally toxic, but may not effect cures as a single agent, particularly in patients with accelerated and blast-phase disease. Resistance to imatinib can confound therapy. Surprisingly, a high percentage of resistant cases manifest intact or augmented BCR/ABL signaling, suggesting that this oncoprotein, or signaling pathways emanating from it, remain viable targets. Combination chemotherapy is under active investigation, and among the most compelling strategies is dual treatment with agents that both target BCR/ABL signal transduction. BCR/ABL activates Ras, and compounds designed to antagonize Ras function called farnesyl transferase inhibitors (FTIs) have shown potent activity in vitro and in animal models of BCR/ABL-induced leukemia. Initial clinical trials in patients with refractory acute myeloid leukemia and CML in blast crisis have shown significant activity, suggesting that trials combining imatinib and FTIs are warranted.
Collapse
Affiliation(s)
- George Q Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and the Division of Pediatric Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02142, USA
| |
Collapse
|
22
|
Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF. Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J Biol Chem 2002; 277:27367-77. [PMID: 12021267 DOI: 10.1074/jbc.m200148200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibulin-5 (FBLN-5; also known as DANCE or EVEC) is an integrin-binding extracellular matrix protein that mediates endothelial cell adhesion; it is also a calcium-dependent elastin-binding protein that scaffolds cells to elastic fibers, thereby preventing elastinopathy in the skin, lung, and vasculature. Transforming growth factor-beta (TGF-beta) regulates the production of cytokines, growth factors, and extracellular matrix proteins by a variety of cell types and tissues. We show here that TGF-beta stimulates murine 3T3-L1 fibroblasts to synthesize FBLN-5 transcript and protein through a Smad3-independent pathway. Overexpression of FBLN-5 in 3T3-L1 cells increased DNA synthesis and enhanced basal and TGF-beta-stimulated activation of ERK1/ERK2 and p38 mitogen-activated protein kinase (MAPK). FBLN-5 overexpression also augmented the tumorigenicity of human HT1080 fibrosarcoma cells by increasing their DNA synthesis, migration toward fibronectin, and invasion through synthetic basement membranes. In stark contrast, FBLN-5 expression was down-regulated in the majority of metastatic human malignancies, particularly in cancers of the kidney, breast, ovary, and colon. Unlike its proliferative response in fibroblasts, FBLN-5 overexpression in mink lung Mv1Lu epithelial cells resulted in an antiproliferative response, reducing their DNA synthesis and cyclin A expression. Moreover, FBLN-5 synergizes with TGF-beta in stimulating AP-1 activity in Mv1Lu cells, an effect that was abrogated by overexpression of dominant-negative versions of either MKK1 or p38 MAPKalpha. Accordingly, both the stimulation and duration of ERK1/ERK2 and p38 MAPK by TGF-beta was enhanced in Mv1Lu cells expressing FBLN-5. Our findings identify FBLN-5 as a novel TGF-beta-inducible target gene that regulates cell growth and motility in a context-specific manner and affects protein kinase activation by TGF-beta. Our findings also indicate that aberrant FBLN-5 expression likely contributes to tumor development in humans.
Collapse
|
23
|
Chalandon Y, Jiang X, Hazlewood G, Loutet S, Conneally E, Eaves A, Eaves C. Modulation of p210(BCR-ABL) activity in transduced primary human hematopoietic cells controls lineage programming. Blood 2002; 99:3197-204. [PMID: 11964283 DOI: 10.1182/blood.v99.9.3197] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral transduction of primary hematopoietic cells with human oncogenes provides a powerful approach to investigating the molecular mechanisms controlling the normal proliferation and differentiation of these cells. Here we show that primitive human CD34(+) cord blood cells, including multipotent as well as granulopoietic- and erythroid-restricted progenitors, can be efficiently transduced with a MSCV-BCR-ABL-IRES-GFP retrovirus, resulting in the sustained expression by their progeny of very high levels of tyrosine phosphorylated p210(BCR-ABL). Interestingly, even in the presence of growth factors that supported the exclusive production of granulopoietic cells from green fluorescent protein (GFP)-transduced control cells, BCR-ABL-transduced progenitor subpopulations generated large numbers of erythropoietin-independent terminally differentiating erythroid cells and reduced numbers of granulopoietic cells. Analyses of individual clones generated by single transduced cells in both semisolid and liquid cultures showed this BCR-ABL-induced erythroid differentiation response to be elicited at a high frequency from all types of transduced CD34(+) cells independent of their apparent prior lineage commitment status. Additional experiments showed that this erythroid differentiation response was largely prevented when the cells were transduced and maintained in the presence of the BCR-ABL-specific tyrosine kinase inhibitor, STI-571. These findings indicate that overexpression of BCR-ABL in primary human hematopoietic cells can activate an erythroid differentiation program in apparently granulopoietic-restricted cells through a BCR-ABL kinase-dependent mechanism, thus providing a new molecular tool for elucidating mechanisms underlying lineage fate determination in human hematopoietic cells and infidelity in human leukemia.
Collapse
Affiliation(s)
- Yves Chalandon
- Terry Fox Laboratory, British Columbia Cancer Agency, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Shah K, Shokat KM. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. CHEMISTRY & BIOLOGY 2002; 9:35-47. [PMID: 11841937 DOI: 10.1016/s1074-5521(02)00086-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using an ATP analog that is a specific substrate for an analog-specific allele of v-Src, we identified several novel cytoskeletal substrates that control actin assembly processes. A screen for less abundant v-Src substrates revealed the scaffolding protein Dok-1 as a direct substrate of v-Src. Further studies suggest that v-Src phosphorylation sites on Dok-1 are critical for its binding to RasGAP and Csk, negative regulators of Src signaling. This results in the downregulation of growth-promoting signals of the Src family kinases and the Ras pathway. Identification of the direct substrates of v-Src leads to a model for the precise order of assembly of a retrograde signaling pathway in v-Src-transformed cells and has provided new insight into the balance between those signals that promote cell transformation mediated by v-Src catalyzed tyrosine phosphorylation and those that inhibit it.
Collapse
Affiliation(s)
- Kavita Shah
- Genomics Institute of the Novartis Research Foundation, 3115 Merryfield Row, San Diego, CA 92121, USA
| | | |
Collapse
|
25
|
Ghaffari S, Kitidis C, Fleming MD, Neubauer H, Pfeffer K, Lodish HF. Erythropoiesis in the absence of janus-kinase 2: BCR-ABL induces red cell formation in JAK2(-/-) hematopoietic progenitors. Blood 2001; 98:2948-57. [PMID: 11698276 DOI: 10.1182/blood.v98.10.2948] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor-associated protein tyrosine kinase janus-kinase 2 (JAK2) is essential for normal red cell development and for erythropoietin receptor (EpoR) signaling. JAK2(-/-) embryos are severely deficient in erythropoiesis and die at an early stage of development from fetal anemia. The binding of erythropoietin (Epo) to the EpoR triggers the activation of JAK2, the phosphorylation of the EpoR, and the initiation of the EpoR signaling cascade. In addition to Epo binding to its receptor, signaling pathways downstream of the EpoR can also be stimulated by the BCR-ABL oncoprotein. This study explored whether JAK2 is required for BCR-ABL-mediated stimulation of erythropoiesis. Here, it is shown that JAK2 is constitutively tyrosine phosphorylated in cultured and primary erythroid cells expressing BCR-ABL. However, BCR-ABL effectively supports normal erythroid proliferation, differentiation, and maturation in JAK2-deficient fetal liver cells. Using mutants of BCR-ABL, this study shows that certain signaling pathways activated by BCR-ABL segments distinct from its tyrosine kinase domain are essential for rescue of erythropoiesis in JAK2(-/-) progenitors. The consequences of these multiple signaling pathways for normal erythroid development are discussed.
Collapse
Affiliation(s)
- S Ghaffari
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
26
|
Porosnicu M, Nimmanapalli R, Nguyen D, Worthington E, Perkins C, Bhalla KN. Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Bcr-Abl-positive acute leukemia cells. Leukemia 2001; 15:772-8. [PMID: 11368438 DOI: 10.1038/sj.leu.2402104] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
By inhibiting the tyrosine kinase (TK) activity of Bcr-Abl, STI-571 induces differentiation and apoptosis of HL-60/Bcr-Abl (with ectopic expression of p185 Bcr-Abl) and K562 (containing endogenous expression of p210 Bcr-Abl) but not of the control HL-60 cells. Treatment with arsenic trioxide (As2O3) lowers Bcr-Abl protein levels and induces apoptosis of the Bcr-Abl-positive leukemic blasts (Blood 2000; 95: 1014). Here, we demonstrate that compared to treatment with STI-571 (0.25 to 1.0 microM) or As2O3 (0.5 to 2.0 microM) alone, combined treatment with As2O3 and STI-571 induced significantly more apoptosis of HL-60/Bcr-Abl and K562 but not HL-60/neo cells (P < 0.05). Combined treatment with As2O3 and STI-571 also resulted in greater reductions in the levels of Bcl-x(L), XIAP and Akt, and inhibition of Akt kinase activity. Co-treatment with As2O3 inhibited STI-571-induced hemoglobin, which was associated with the cleavage and downregulation of GATA-1 transcription factor involved in erythroid differentiation. These data demonstrate that a treatment strategy which combines an agent that lowers Bcr-Abl levels, eg As2O3, with an agent that inhibits Bcr-Abl TK activity, eg STI-571, can potently induce apoptosis and differentiation of Bcr-Abl-positive human leukemic cells.
Collapse
Affiliation(s)
- M Porosnicu
- Interdisciplinary Oncology Program, Moffitt Cancer Center, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
27
|
Peters DG, Klucher KM, Perlingeiro RC, Dessain SK, Koh EY, Daley GQ. Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene 2001; 20:2636-46. [PMID: 11420675 DOI: 10.1038/sj.onc.1204374] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2000] [Revised: 01/30/2001] [Accepted: 02/12/2001] [Indexed: 11/08/2022]
Abstract
During differentiation in vitro, Embryonic Stem (ES) cells generate both primitive erythroid and definitive myeloid lineages in a process that mimics hematopoiesis in the mammalian yolk sac. To investigate leukemic transformation of these embryonic hematopoietic progenitors, we infected differentiating cultures of ES cells with the Chronic Myeloid Leukemia-specific BCR/ABL oncoprotein. Following a period of liquid culture, we isolated two transformed subclones, EB57 and EB67, that retained characteristics of embryonic hematopoietic progenitors and induced a fatal leukemia in mice characterized by massive splenomegaly and granulocytosis. Histopathology of the spleen revealed an abundance of undifferentiated blast-like cells. Investigation of the clonal origins of the granulocytes in the peripheral blood demonstrated that the injected donor cells contributed modestly to the granulocyte population while the majority were host-derived. EB57 secretes IL-3 and unidentified cytokines that can stimulate autocrine and paracrine cell proliferation, presumably accounting for the reactive granulocytosis in diseased mice. These BCR/ABL transformed hematopoietic derivatives of ES cells recapitulate the relationship of BCR/ABL expression to IL-3 production that has been described for primitive hematopoietic progenitors from human CML patients, and illustrates the potential for autocrine and paracrine effects of BCR/ABL-infected cells in murine models.
Collapse
MESH Headings
- Animals
- Antigens, Surface/biosynthesis
- Cell Differentiation/physiology
- Cell Line, Transformed
- Cell Transformation, Viral/genetics
- Erythroid Precursor Cells/cytology
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, abl
- Granulocytes/pathology
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/physiology
- Interleukin-3/biosynthesis
- Interleukin-3/physiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- D G Peters
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, P13 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis. The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Blast Crisis/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Genes, abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/genetics
- Mice
- Mice, Knockout
- Models, Biological
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phenotype
- Philadelphia Chromosome
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/physiology
- Proto-Oncogene Proteins c-bcr
- Rats
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
29
|
Zhang X, Wong R, Hao SX, Pear WS, Ren R. The SH2 domain of bcr-Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood 2001; 97:277-87. [PMID: 11133772 DOI: 10.1182/blood.v97.1.277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcr-Abl plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). It was previously shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder (MPD) in mice resembling human CML. This in vivo experimental system allows the direct determination of the effect of specific domains of Bcr-Abl, or specific signaling pathways, on the complex in vivo pathogenesis of CML. In this report, the function of the SH2 domain of Bcr-Abl in the pathogenesis of CML is examined using this murine model. It was found that the Bcr-Abl SH2 mutants retain the ability to induce a fatal MPD but with an extended latency compared with wild type (wt) Bcr-Abl. Interestingly, in contrast to wt Bcr-Abl-induced disease, which is rapid and monophasic, the disease caused by the Bcr-Abl SH2 mutants is biphasic, consisting of an initial B-lymphocyte expansion followed by a fatal myeloid proliferation. The B-lymphoid expansion was diminished in mixing experiments with bcr-abl/DeltaSH2 and wt bcr-abl cells, suggesting that the Bcr-Abl-induced MPD suppresses B-lymphoid expansion.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Bone Marrow Transplantation
- Disease Models, Animal
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/pharmacology
- Genetic Vectors
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Interleukin-3/biosynthesis
- Leukemia, B-Cell/chemically induced
- Leukemia, B-Cell/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/chemically induced
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Mutagenesis, Site-Directed
- Myeloproliferative Disorders/chemically induced
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/metabolism
- Neoplasm Transplantation/methods
- Retroviridae
- Transduction, Genetic
- src Homology Domains/genetics
- src Homology Domains/physiology
Collapse
Affiliation(s)
- X Zhang
- Rosenstiel Basic Medical Sciences Research Center, Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
30
|
Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 2000; 407:383-6. [PMID: 11014194 DOI: 10.1038/35030112] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary role of cytokines in haemato-lymphopoiesis is thought to be the regulation of cell growth and survival. But the instructive action of cytokines in haematopoiesis has not been well addressed. Here we show that a clonogenic common lymphoid progenitor, a bone marrow-resident cell that gives rise exclusively to lymphocytes (T, B and natural killer cells), can be redirected to the myeloid lineage by stimulation through exogenously expressed interleukin (IL)-2 and GM-CSF (granulocyte/macrophage colony-stimulating factor) receptors. Analysis of mutants of the beta-chain of the IL-2 receptor revealed that the granulocyte- and monocyte-differentiation signals are triggered by different cytoplasmic domains, showing that the signalling pathway(s) responsible for these unique developmental outcomes are separable. Finally, we show that the endogenous myelomonocytic cytokine receptors for GM-CSF and macrophage colony-stimulating factor (M-CSF) are expressed at low to moderate levels on the more primitive haematopoietic stem cells, are absent on common lymphoid progenitors, and are upregulated after myeloid lineage induction by IL-2. We conclude that cytokine signalling can regulate cell-fate decisions and propose that a critical step in lymphoid commitment is downregulation of cytokine receptors that drive myeloid cell development.
Collapse
Affiliation(s)
- M Kondo
- Department of Pathology, Stanford University School of Medicine, California 94305-5324, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl–positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 2000. [DOI: 10.1182/blood.v96.6.2246] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The differentiation and apoptosis-sensitizing effects of the Bcr-Abl–specific tyrosine kinase inhibitor CGP57148B, also known as STI-571, were determined in human Bcr-Abl–positive HL-60/Bcr-Abl and K562 cells. First, the results demonstrate that the ectopic expression of the p185 Bcr-Abl fusion protein induced hemoglobin in the acute myeloid leukemia (AML) HL-60 cells. Exposure to low-dose cytosine arabinoside (Ara-C; 10 nmol/L) increased hemoglobin levels in HL-60/Bcr-Abl and in the chronic myeloid leukemia (CML) blast crisis K562 cells, which express the p210 Bcr-Abl protein. As compared with HL-60/neo, HL-60/Bcr-Abl and K562 cells were resistant to apoptosis induced by Ara-C, doxorubicin, or tumor necrosis factor-α (TNF-α), which was associated with reduced processing of caspase-8 and Bid protein and decreased cytosolic accumulation of cytochrome c (cyt c). Exposure to CGP57148B alone increased hemoglobin levels and CD11b expression and induced apoptosis of HL-60/Bcr-Abl and K562 cells. CGP57148B treatment down-regulated antiapoptotic XIAP, cIAP1, and Bcl-xL, without affecting Bcl-2, Bax, Apaf-1, Fas (CD95), Fas ligand, Abl, and Bcr-Abl levels. CGP57148B also inhibited constitutively active Akt kinase and NFκB in Bcr-Abl–positive cells. Attenuation of NFκB activity by ectopic expression of transdominant repressor of IκB sensitized HL-60/Bcr-Abl and K562 cells to TNF-α but not to apoptosis induced by Ara-C or doxorubicin. Importantly, cotreatment with CGP57148B significantly increased Ara-C– or doxorubicin-induced apoptosis of HL-60/Bcr-Abl and K562 cells. This was associated with greater cytosolic accumulation of cyt c and PARP cleavage activity of caspase-3. These in vitro data indicate that combinations of CGP57148B and antileukemic drugs such as Ara-C may have improved in vivo efficacy against Bcr-Abl–positive acute leukemia.
Collapse
|
32
|
CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl–positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 2000. [DOI: 10.1182/blood.v96.6.2246.h8002246_2246_2253] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation and apoptosis-sensitizing effects of the Bcr-Abl–specific tyrosine kinase inhibitor CGP57148B, also known as STI-571, were determined in human Bcr-Abl–positive HL-60/Bcr-Abl and K562 cells. First, the results demonstrate that the ectopic expression of the p185 Bcr-Abl fusion protein induced hemoglobin in the acute myeloid leukemia (AML) HL-60 cells. Exposure to low-dose cytosine arabinoside (Ara-C; 10 nmol/L) increased hemoglobin levels in HL-60/Bcr-Abl and in the chronic myeloid leukemia (CML) blast crisis K562 cells, which express the p210 Bcr-Abl protein. As compared with HL-60/neo, HL-60/Bcr-Abl and K562 cells were resistant to apoptosis induced by Ara-C, doxorubicin, or tumor necrosis factor-α (TNF-α), which was associated with reduced processing of caspase-8 and Bid protein and decreased cytosolic accumulation of cytochrome c (cyt c). Exposure to CGP57148B alone increased hemoglobin levels and CD11b expression and induced apoptosis of HL-60/Bcr-Abl and K562 cells. CGP57148B treatment down-regulated antiapoptotic XIAP, cIAP1, and Bcl-xL, without affecting Bcl-2, Bax, Apaf-1, Fas (CD95), Fas ligand, Abl, and Bcr-Abl levels. CGP57148B also inhibited constitutively active Akt kinase and NFκB in Bcr-Abl–positive cells. Attenuation of NFκB activity by ectopic expression of transdominant repressor of IκB sensitized HL-60/Bcr-Abl and K562 cells to TNF-α but not to apoptosis induced by Ara-C or doxorubicin. Importantly, cotreatment with CGP57148B significantly increased Ara-C– or doxorubicin-induced apoptosis of HL-60/Bcr-Abl and K562 cells. This was associated with greater cytosolic accumulation of cyt c and PARP cleavage activity of caspase-3. These in vitro data indicate that combinations of CGP57148B and antileukemic drugs such as Ara-C may have improved in vivo efficacy against Bcr-Abl–positive acute leukemia.
Collapse
|