1
|
Parveen S, Fatma M, Mir SS, Dermime S, Uddin S. JAK-STAT Signaling in Autoimmunity and Cancer. Immunotargets Ther 2025; 14:523-554. [PMID: 40376194 PMCID: PMC12080488 DOI: 10.2147/itt.s485670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
The JAK-STAT pathway is an essential cell survival signaling that regulates gene expressions related to inflammation, immunity and cancer. Cytokine receptors, signal transducer and activator of transcription (STAT) proteins, and Janus kinases (JAKs) are the critical component of this signaling cascade. When JAKs are stimulated by cytokines, STAT phosphorylation, dimerization, and nuclear translocation occur, which eventually impacts gene transcription. Dysregulation of JAK-STAT signaling is linked with various autoimmune diseases, including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. This pathway is constitutively activated in human malignancies and leads to tumor cell survival, proliferation, and immune evasion. Oncogenic mutations in the JAK and STAT genes have been found in solid tumors, leukemia, and lymphoma. Targeting the JAK-STAT pathway is a viable and promising therapeutic strategy for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Sana Parveen
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Lucknow, India
| | - Mariyam Fatma
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Lucknow, India
| | - Snober Shabnam Mir
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Lucknow, India
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, 3050, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025; 39:1011-1030. [PMID: 40140631 PMCID: PMC12055591 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
3
|
Zhang L, Xiao K, Zhang S, Zhao S, Liu Z, Wang M, Qin K, Yu Y, Li S, Ma L, Sun J. SOCS2 inhibits the tumorigenesis of GISTs and increases the sensitivity of GISTs to imatinib by suppression of KIT activation. Sci Rep 2025; 15:4779. [PMID: 39922931 PMCID: PMC11807132 DOI: 10.1038/s41598-025-89477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
The suppressors of cytokine signaling 2 (SOCS2) inhibits growth hormone receptor (GHR) signaling by negative feedback in the regulation of metabolism. In this study, we found that GHR upregulates SOCS2 expression, whereas KIT mutations, the key driver mutations of gastrointestinal stromal tumors (GISTs), inhibits SOCS2 expression in GISTs. Furthermore, SOCS2 associated and inhibited the activation of KIT mutations, but not wild-type KIT, in addition to its inhibition of GHR signaling, suggesting that KIT mutations may promote their activation by downregulation of SOCS2 expression. Accordingly, SOCS2 inhibited GIST cell survival and proliferation in vitro. In KITV558A/WT mice, knockout of SOCS2 expression increased the tumorigenesis of GISTs and decreased the life span of the mice. In addition, the presence of SOCS2 increased the inhibition of KIT signaling and GIST cell survival and proliferation by imatinib in vitro, and imatinib treatment further reduced tumor growth in KITV558A/WT mice compared with that in KITV558A/WT/SOCS2-/- mice, indicating the key role of SOCS2 in the sensitivity of GISTs to the targeted therapy. Taken together, our data revealed the key role of SOCS2 in the tumorigenesis of GISTs and the sensitivity of GISTs to the targeted therapy, providing a better basis for the improved treatment strategy.
Collapse
Affiliation(s)
- Liangying Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China
| | - Kun Xiao
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China
| | - Shaoting Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China
| | - Sien Zhao
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China
| | - Zimei Liu
- Department of Oncology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Xianxia Road 1111, Shanghai, 200336, China
| | - Ming Wang
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China
| | - Kaiyue Qin
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China
| | - Yuanyuan Yu
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shujing Li
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lijun Ma
- Department of Oncology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Xianxia Road 1111, Shanghai, 200336, China.
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Shengli Street 1160, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Bidgood GM, Keating N, Meza Guzman L, Li K, Leong E, Kueh A, Babon JJ, Hockings C, Doggett K, Nicholson SE. The Ability of SOCS1 to Cross-Regulate GM-CSF Signaling is Dose Dependent. J Interferon Cytokine Res 2025; 45:53-67. [PMID: 39787022 DOI: 10.1089/jir.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Suppressor of cytokine signaling (SOCS) 1 is a key negative regulator of interferon (IFN), interleukin (IL)12, and IL-2 family cytokine signaling through inhibition of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. To investigate the temporal induction of SOCS1 in response to cytokine in live cells and its selective regulation of signaling pathways, we generated a mouse expressing a Halo-tag-SOCS1 fusion protein (Halo-SOCS1) under control of the endogenous Socs1 promoter. Homozygous Halo-SOCS1 mice (Halo-Socs1KI/KI) were viable with minor T cell abnormalities, most likely due to enhanced Halo-SOCS1 expression in thymocytes compared with the untagged protein. IFNγ and IL-4 induced Halo-SOCS1 expression in macrophages derived from Halo-Socs1KI/KI mice, and a critical level of SOCS1 expression was required for inhibition of both IFNγ and granulocyte macrophage-colony stimulating factor (GM-CSF)-driven JAK-STAT signaling. In contrast, IFNγ priming to induce SOCS1 did not cross-regulate IL-4 signaling. This study indicates that while SOCS1 expression needs to exceed a critical threshold to inhibit IFNγ signaling, its selective regulation of cytokine signaling results from an as yet undetermined, level of regulatory control.
Collapse
Affiliation(s)
- Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Lizeth Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
6
|
Liang M, Feng D, Zhang J, Sun Y. Functional complementation of two splicing variants of Gustavus in Neocaridina denticulata sinensis during ovarian maturation. Sci Rep 2024; 14:20939. [PMID: 39251721 PMCID: PMC11383947 DOI: 10.1038/s41598-024-72080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Gustavus, a positive regulator in arthropod reproduction, features a conserved SPRY and a C-terminal SOCS box domain and belongs to the SPSB protein family. The SPSB family, encompassing SPSB1 to SPSB4, plays pivotal roles in higher animals, including immune response, apoptosis, growth, and stress responses. In Neocaridina denticulata sinensis, alternative splicing yielded two NdGustavus isoforms, NdGusX1 and NdGusX2, with distinct expression patterns-high in ovaries and muscles, respectively, and across all ovarian germ cells. These isoforms showed similar expression dynamics during embryogenesis and significant upregulation post-copper ion exposure (P < 0.05). The in situ hybridization result elucidated that NdGusX1 and NdGusX2 were expressed across the germ cell spectrum in the ovary, with NdGusX1 showing enhanced expression in oogonia and primary oocytes. In addition, RNA interference revealed functional complementation in ovaries and potential functional differentiation in muscles. Knockdown of NdGusX1 and NdGusX2 potentially disrupted endogenous vitellogenin synthesis, regulating vitellogenesis and reducing mature oocyte volume, affecting follicular cavity occupation. This study provides a theoretical framework for understanding the biological functions of the SPSB family in crustacean ovarian maturation.
Collapse
Affiliation(s)
- Meiling Liang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Engineering Research Center of Microbial Breeding and Preservation, Hebei Province, Hebei University, Baoding, 071002, China
| | - Dandan Feng
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Engineering Research Center of Microbial Breeding and Preservation, Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Rane SS, Shellard E, Adamson A, Eyre S, Warren RB. IL23R mutations associated with decreased risk of psoriasis lead to the differential expression of genes implicated in the disease. Exp Dermatol 2024; 33:e15180. [PMID: 39306854 DOI: 10.1111/exd.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Psoriasis is an incurable immune-mediated skin disease, affecting around 1%-3% of the population. Various lines of evidence implicate IL23 as being pivotal in disease. Genetic variants within the IL23 receptor (IL23R) increase the risk of developing psoriasis, and biologic therapies specifically targeting IL23 demonstrated high efficacy in treating disease. IL23 acts via the IL23R, signalling through the STAT3 pathway, mediating the cascade of events that ultimately results in the clinical presentation of psoriasis. Given the essential role of IL23R in disease, it is important to understand the impact of genetic variants on receptor function with respect to downstream gene regulation. Here we developed model systems in CD4+ (Jurkat) and CD8+ (MyLa) T cells to express either the wild type risk or mutant (R381Q) protective form of IL23R. After confirmation that the model system expressed the genes/proteins and had a differential effect on the phosphorylation of STAT3, we used RNAseq to explore differential gene regulation, in particular for genes implicated with risk to psoriasis, at a single time point for both cell types, and in a time course experiment for Jurkat CD4+ T cells. These experiments discovered differentially regulated genes in the cells expressing wild type and mutant IL23R, including HLA-B, SOCS1, RUNX3, CCR5, CXCR3, CCR9, KLF3, CD28, IRF, SOCS6, TNFAIP and ICAM5, that have been implicated in both the IL23 pathway and psoriasis. These genes have the potential to define a IL23/psoriasis pathway in disease, advancing our understanding of the biology behind the disease.
Collapse
Affiliation(s)
- Shraddha S Rane
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elan Shellard
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Steve Eyre
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard B Warren
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
9
|
Bidgood GM, Keating N, Doggett K, Nicholson SE. SOCS1 is a critical checkpoint in immune homeostasis, inflammation and tumor immunity. Front Immunol 2024; 15:1419951. [PMID: 38947335 PMCID: PMC11211259 DOI: 10.3389/fimmu.2024.1419951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Grace M. Bidgood
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Narelle Keating
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Karen Doggett
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Sandra E. Nicholson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Schiefer S, Hale BG. Proximal protein landscapes of the type I interferon signaling cascade reveal negative regulation by PJA2. Nat Commun 2024; 15:4484. [PMID: 38802340 PMCID: PMC11130243 DOI: 10.1038/s41467-024-48800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.
Collapse
Affiliation(s)
- Samira Schiefer
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Fang L, Tao Y, Che G, Yun Y, Ren M, Liu Y. WSB1, as an E3 ligase, restrains myocardial ischemia-reperfusion injury by activating β-catenin signaling via promoting GSK3β ubiquitination. Mol Med 2024; 30:31. [PMID: 38395742 PMCID: PMC10893653 DOI: 10.1186/s10020-024-00800-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Reperfusion is the most effective strategy for myocardial infarct, but induces additional injury. WD repeat and SOCS box containing protein 1 (WSB1) plays a protective role in ischemic cells. This study aims to investigate the effects of WSB1 on myocardial ischemia-reperfusion (IR) injury. METHODS The myocardial IR was induced by left anterior descending (LAD) ligation for 45 min and subsequent reperfusion. The overexpression of WSB1 was mediated by tail vein injection of AAV9 loaded with WSB1 encoding sequence two weeks before IR surgery. H9c2 myocardial cells underwent oxygen-sugar deprivation/reperfusion (OGD/R) to mimic IR, and transfected with WSB1 overexpression or silencing plasmid to alter the expression of WSB1. RESULTS WSB1 was found highly expressed in penumbra of myocardial IR rats, and the WSB1 overexpression relieved IR-induced cardio dysfunction, myocardial infarct and pathological damage, and cardiomyocyte death in penumbra. The ectopic expression of WSB1 in H9c2 myocardial cells mitigated OGD/R-caused apoptosis, and silencing of WSB1 exacerbated the apoptosis. In addition, WSB1 activated β-catenin signaling, which was deactivated under the ischemic condition. The co-immunoprecipitation results revealed that WSB1 mediated ubiquitination and degradation of glycogen synthase kinase 3 beta (GSK3β) as an E3 ligase in myocardial cells. The effects of WSB1 on myocardial cells under ischemic conditions were abolished by an inhibitor of β-catenin signaling. CONCLUSION WSB1 activated β-catenin pathway by promoting the ubiquitination of GSK3β, and restrained IR-induced myocardial injury. These findings might provide novel insights for clinical treatment of myocardial ischemic patients.
Collapse
Affiliation(s)
- Lini Fang
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Yang Tao
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Guoying Che
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yongzi Yun
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Min Ren
- Ultrasound Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 536# Changle Road, Shanghai, China.
| | - Yujie Liu
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China.
| |
Collapse
|
12
|
Liu M, Hsu E, Du Y, Lee PY. Suppressor of Cytokine Signaling 1 Haploinsufficiency: A New Driver of Autoimmunity and Immunodysregulation. Rheum Dis Clin North Am 2023; 49:757-772. [PMID: 37821194 DOI: 10.1016/j.rdc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of cytokine signaling that inhibits the activation of Janus kinases. A human disease caused by SOCS1 haploinsufficiency was first identified in 2020. To date, 18 cases of SOCS1 haploinsufficiency have been described. These patients experience enhanced activation of leukocytes and multiorgan system immunodysregulation, with immune-mediated cytopenia as the most common feature. In this review, the authors provide an overview on the biology of SOCS1 and summarize their knowledge of SOCS1 haploinsufficiency including genetics and clinical manifestations. They discuss the available treatment experience and outline an approach for the evaluation of suspected cases.
Collapse
Affiliation(s)
- Meng Liu
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Evan Hsu
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yan Du
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
14
|
Hu X, Jiao F, Deng J, Zhou Z, Chen S, Liu C, Liu Z, Guo F. Intestinal Epithelial Cell-specific Deletion of Cytokine-inducible SH2-containing Protein Alleviates Experimental Colitis in Ageing Mice. J Crohns Colitis 2023; 17:1278-1290. [PMID: 36881790 DOI: 10.1093/ecco-jcc/jjad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 03/09/2023]
Abstract
BACKGROUND AND AIMS The incidence of inflammatory bowel disease [IBD] in the elderly has increased in recent years. However, the mechanisms underlying the ageing-related IBD susceptibility remain elusive. Cytokine-inducible SH2-containing protein [CISH] is involved in regulating metabolism, the expansion of intestinal tuft cells and type-2 innate lymphoid cells, and ageing-related airway inflammation. Here, we investigated the role of CISH in ageing-related colitis susceptibility. METHODS CISH and phosphorylated signal transducer and activator of transcription-3 [p-STAT3] levels were evaluated in the colons of ageing mice and older ulcerative colitis [UC] patients. Mice with intestinal epithelial cell-specific knockout of Cish [CishΔIEC] and Cish-floxed mice were administered dextran sodium sulphate [DSS] or trinitrobenzene sulphonic acid [TNBS] to induce colitis. Colonic tissues were analysed in quantitative real-time polymerase chain reaction, immunoblotting, immunohistochemical, and histological staining experiments. Differentially expressed genes from colonic epithelia were analysed by RNA sequencing. RESULTS Ageing increased the severity of DSS-induced colitis and the expression of colonic epithelial CISH in mice. CishΔIEC prevented DSS- or TNBS-induced colitis in middle-aged mice but not in young mice. RNA-sequencing analysis revealed that CishΔIEC significantly suppressed DSS-induced oxidative stress and proinflammatory responses. During ageing in the CCD841 cell model, knockdown of CISH decreased ageing-induced oxidative stress and proinflammatory responses, whereas these effects were compromised by knocking down or inhibiting STAT3. The increase in CISH expression was higher in the colonic mucosa of older patients with UC than in that of healthy controls. CONCLUSIONS CISH might be a proinflammatory regulator in ageing; therefore, targeted therapy against CISH may provide a novel strategy for treating ageing-related IBD.
Collapse
Affiliation(s)
- Xiaoming Hu
- Zhongshan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziheng Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Zhongshan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Changqin Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Lockwood KC, Lear TB, Rajbhandari S, McKelvey AC, Dunn SR, Boudreau ÁN, Liu Y, Chen BB. KIAA0317 regulates SOCS1 stability to ameliorate colonic inflammation. FEBS J 2023; 290:3802-3811. [PMID: 36938956 PMCID: PMC10509311 DOI: 10.1111/febs.16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023]
Abstract
Dysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway. Dysregulation of SOCS1 protein has been identified as a causal element in colonic inflammatory diseases. Despite this, it remains unclear how SOCS1 protein is regulated. Here, we identify that SOCS1 protein is targeted for degradation by the ubiquitin proteasome system, mediated by the E3 ubiquitin ligase KIAA0317 during experimental colonic inflammation. We characterize the mechanism of protein-protein interaction and ubiquitin conjugation to SOCS1 and demonstrate that the modulation of SOCS1 protein level leads to stark effects on JAK/STAT inflammatory signalling. Together, these results provide insight into the regulation of colonic inflammation through a new mechanism of ubiquitin-based control of SOCS1 protein.
Collapse
Affiliation(s)
- Karina C. Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shristi Rajbhandari
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison C. McKelvey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah R. Dunn
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Áine N. Boudreau
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Bill B. Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
17
|
Doggett K, Keating N, Dehkhoda F, Bidgood GM, Meza Guzman LG, Leong E, Kueh A, Nicola NA, Kershaw NJ, Babon JJ, Alexander WS, Nicholson SE. The SOCS1 KIR and SH2 domain are both required for suppression of cytokine signaling in vivo. Cytokine 2023; 165:156167. [PMID: 36934508 DOI: 10.1016/j.cyto.2023.156167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.
Collapse
Affiliation(s)
- Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
18
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Kubo A, Murata H, Shuin T, U HS. Role of SOCS and VHL Proteins in Neuronal Differentiation and Development. Int J Mol Sci 2023; 24:ijms24043880. [PMID: 36835292 PMCID: PMC9960776 DOI: 10.3390/ijms24043880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Correspondence: ; Tel.: +81-3-5242-5800
| | - Shutaro Matsumoto
- Department of Neurosurgery, School of Medicine, Yokohama City University, Yokohama 232-0024, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare, Atami 413-0012, Japan
| | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Mariannna Medical University, Kawasaki 216-8511, Japan
| | - Taro Shuin
- Kochi Medical School Hospital, Nangoku 783-0043, Japan
| | - Hoi-Sang U
- Department of Electrical Engineering, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Shinonaga M, Kubo A, Fujii S, Ishizuka Y, Tanaka M, Ichihashi M, Murata H. SOCS7-Derived BC-Box Motif Peptide Mediated Cholinergic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24032786. [PMID: 36769102 PMCID: PMC9917589 DOI: 10.3390/ijms24032786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are a type of pluripotent somatic stem cells that differentiate into various cell types such as osteoblast, chondrocyte, and neuronal cells. ADMSCs as donor cells are used to produce regenerative medicines at hospitals and clinics. However, it has not been reported that ADMSCs were differentiated to a specific type of neuron with a peptide. Here, we report that ADMSCs differentiate to the cholinergic phenotype of neurons by the SOCS7-derived BC-box motif peptide. At operations for patients with neurological disorders, a small amount of subcutaneous fat was obtained. Two weeks later, adipose-derived mesenchymal stem cells (ADMSCs) were isolated and cultured for a further 1 to 2 weeks. Flow cytometry analysis for characterization of ADMSCs was performed with CD73, CD90, and CD105 as positive markers, and CD14, CD31, and CD56 as negative markers. The results showed that cultured cells were compatible with ADMSCs. Immunocytochemical studies showed naïve ADMSCs immunopositive for p75NTR, RET, nestin, keratin, neurofilament-M, and smooth muscle actin. ADMSCs were suggested to be pluripotent stem cells. A peptide corresponding to the amino-acid sequence of BC-box motif derived from SOCS7 protein was added to the medium at a concentration of 2 μM. Three days later, immunocytochemistry analysis, Western blot analysis, ubiquitination assay, and electrophysiological analysis with patch cramp were performed. Immunostaining revealed the expression of neurofilament H (NFH), choline acetyltransferase (ChAT), and tyrosine hydroxylase (TH). In addition, Western blot analysis showed an increase in the expression of NFH, ChAT, and TH, and the expression of ChAT was more distinct than TH. Immunoprecipitation with JAK2 showed an increase in the expression of ubiquitin. Electrophysiological analysis showed a large holding potential at the recorded cells through path electrodes. The BC-box motif peptide derived from SOCS7 promoted the cholinergic differentiation of ADMSCs. This novel method will contribute to research as well as regenerative medicine for cholinergic neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
- Correspondence: ; Tel.: +81-3-5243-5800; Fax: +81-3-5242-5826
| | - Shutaro Matsumoto
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
- Department of Neurosurgery, St. Marianna Medical University of Medicine, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
| | - Masamichi Shinonaga
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
| | | | - Satoshi Fujii
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | | | | | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Marianna Medical University of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
20
|
Chen S, Shao F, Zeng J, Guo S, Wang L, Sun H, Lei JH, Lyu X, Gao S, Chen Q, Miao K, Xu X, Deng CX. Cullin-5 deficiency orchestrates the tumor microenvironment to promote mammary tumor development through CREB1-CCL2 signaling. SCIENCE ADVANCES 2023; 9:eabq1395. [PMID: 36662868 PMCID: PMC9858512 DOI: 10.1126/sciadv.abq1395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer-associated gene 1 (Brca1) deficiency induces the onset of breast cancer formation, accompanied with extensive genetic alterations. Here, we used both the sleeping beauty transposon mutagenesis system and CRISPR-Cas9-mediated genome-wide screening in mice to identify potential genetic alterations that act synergistically with Brca1 deficiency to promote tumorignesis. Both approaches identified Cullin-5 as a tumor suppressor, whose mutation enabled Brca1-deficient cell survival and accelerated tumorigenesis by orchestrating tumor microenvironment. Cullin-5 suppresses cell growth through ubiquitylating and degrading adenosine 3',5'-monophosphate-responsive element binding protein 1 (CREB1), especially under protein damage condition. Meanwhile, Cullin-5 deficiency activated CREB1-CCL2 signaling and resulted in the accumulation of monocytes and polymorphonuclear myeloid-derived suppressor cells, reduction of T cells that benefit tumor progression in both Brca1-deficient cells and wild-type cells. Blocking CREB1 activity either through gene knockout or specific inhibitor treatment suppressed changes in the tumor microenvironment caused by Cullin-5 deficiency and blocked tumor progression.
Collapse
Affiliation(s)
- Si Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianming Zeng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sen Guo
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijian Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| |
Collapse
|
21
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
22
|
Emamgholipour S, Esmaeili F, Shabani M, Hasanpour SZ, Pilehvari M, Zabihi-Mahmoudabadi H, Motevasseli M, Shanaki M. Alterations of SOCS1 and SOCS3 transcript levels, but not promoter methylation levels in subcutaneous adipose tissues in obese women. BMC Endocr Disord 2023; 23:7. [PMID: 36609306 PMCID: PMC9817302 DOI: 10.1186/s12902-022-01247-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Animal model studies suggest that change in the members of the suppressor of the cytokine signaling (SOCS) family (mainly SOCS1 and SOCS3) is linked to the pathogenesis of obesity-related metabolic disorders. Moreover, epigenetic modification is involved in the transcriptional regulation of the SOCS gene family. Here, we aimed to evaluate the mRNA expression as well as gene promoter methylation of SOCS1 and SOCS3 in subcutaneous adipose tissue (SAT) from obese women compared to normal-weight subjects. We also intend to identify the possible association of SOCS1 and SOCS3 transcript levels with metabolic parameters in the context of obesity. METHODS This study was conducted on women with obesity (n = 24) [body mass index (BMI) ≥ 30 kg/m 2] and women with normal-weight (n = 22) (BMI < 25 kg/m 2). Transcript levels of SOCS1 and SOCS3 were evaluated by real-time PCR in SAT from all participants. After bisulfite treatment of DNA, methylation-specific PCR was used to assess the putative methylation of 10 CpG sites in the promoter of SOCS1 and 13 CpG sites in SOCS3 in SAT from women with obesity and normal weight. RESULTS It was found that unlike SOCS3, which disclosed an elevating expression pattern, the expression level of SOCS1 was lower in the women with obesity as compared with their non-obese counterparts (P-value = 0.03 for SOCS1 transcript level and P-value = 0.011 for SOCS3 transcript level). As for the analysis of promoter methylation, it was found that SOCS1 and SOCS3 methylation were not significantly different between the individuals with obesity and normal weight (P-value = 0.45 and P-value = 0.89). Correlation analysis indicated that the transcript level of SOCS1 mRNA expression had an inverse correlation with BMI, hs-CRP levels, HOMA-IR, and insulin levels. However, the SOCS3 transcript level showed a positive correlation with BMI, waist-to-height ratio, waist circumference, hip circumference, hs-CRP, HOMA-IR, insulin, fasting blood glucose, and total cholesterol. Interestingly, HOMA-IR is the predictor of the transcript level of SOCS1 (β = - 0.448, P-value = 0.003) and SOCS3 (β = 0.465, P-value = 0.002) in SAT of all participants. CONCLUSIONS Our findings point to alterations of SOCS1 and SOCS3 transcript levels, but not promoter methylation levels in subcutaneous adipose tissues from women with obesity. Moreover, mRNA expression of SOCS1 and SOCS3 in SAT was associated with known obesity indices, insulin resistance, and hs-CRP, suggesting the contribution of SOCS1 and SOCS3 in the pathogenesis of obesity-related metabolic abnormalities. However, further studies are required to establish this concept.
Collapse
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran Sciences, Tehran, Iran
| | - Seyedeh Zahra Hasanpour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Pilehvari
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zabihi-Mahmoudabadi
- Department of Surgery, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Motevasseli
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
SOCS2 regulation of growth hormone signaling requires a canonical interaction with phosphotyrosine. Biosci Rep 2022; 42:232115. [PMID: 36398696 DOI: 10.1042/bsr20221683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) 2 is the critical negative regulator of growth hormone (GH) and prolactin signaling. Mice lacking SOCS2 display gigantism with increased body weight and length, and an enhanced response to GH treatment. Here, we characterized mice carrying a germ-line R96C mutation within the SOCS2-SH2 domain, which disrupts the ability of SOCS2 to interact with tyrosine-phosphorylated targets. Socs2R96C/R96C mice displayed a similar increase in growth as previously observed in SOCS2 null (Socs2-/-) mice, with a proportional increase in body and organ weight, and bone length. Embryonic fibroblasts isolated from Socs2R96C/R96C and Socs2-/- mice also showed a comparable increase in phosphorylation of STAT5 following GH stimulation, indicating the critical role of phosphotyrosine binding in SOCS2 function.
Collapse
|
24
|
Lv J, Qin L, Zhao R, Wu D, Wu Z, Zheng D, Li S, Luo M, Wu Q, Long Y, Tang Z, Tang YL, Luo X, Yao Y, Yang LH, Li P. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2022; 28:46-58. [PMID: 36654786 PMCID: PMC9827364 DOI: 10.1016/j.omto.2022.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.
Collapse
Affiliation(s)
- Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiping Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Siyu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou 510700, China
| | - Yan-Lai Tang
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China,Corresponding author Li-Hua Yang, Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China.
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China,Corresponding author Peng Li, China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
25
|
Du Y, Xu X, Lv S, Liu H, Sun H, Wu J. SOCS7/HuR/FOXM1 signaling axis inhibited high-grade serous ovarian carcinoma progression. J Exp Clin Cancer Res 2022; 41:185. [PMID: 35624501 PMCID: PMC9137060 DOI: 10.1186/s13046-022-02395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Background High-grade serous ovarian carcinoma (HGSOC) is clinically dominant and accounts for ~ 80% deaths in all types of ovarian cancer. The delayed diagnosis, rapid development, and wide dissemination of HGSOC collectively contribute to its high mortality rate and poor prognosis in the patients. Suppressors of cytokine signaling 7 (SOCS7) can regulate cytokine signaling and participate in cell cycle arrest and regulation of cell proliferation, which might also be involved in carcinogenesis. Here, we designated to investigate the functions and mechanisms of SOCS7 in HGSOC. Methods The clinical correlation between SOCS7 and HGSOC was examined by both bioinformatics and analysis of tissue samples in patients. Gain/Loss-of-function examinations were carried out to assess the effectiveness of SOCS7 in cell viability, cell cycle, and tumor growth of HGSOC. Furthermore, the underlying mechanisms were explored by identifying the downstream proteins and their interactions via proteomics analysis and immunoprecipitation. Results The expression of SOCS7, which was decreased in HGSOC tissues, was correlated with the clinical pathologic characteristics and overall survival of HGSOC patients. SOCS7 acted as a HGSOC suppressor by inhibiting cancer cell viability and tumor growth in vivo. The anti-HGSOC mechanism involves SOCS7’s regulatory effect on HuR by mediating its ubiquitination, the regulation of FOXM1 mRNA by HuR, as well as the interplays among these three clinically relevant factors. Conclusions The SOCS7 correlates with HGSOC and suppresses its tumorigenesis through regulating HuR and FOXM1, which also suggests that SOCS7 is a prospective biomarker for the clinical management of ovarian cancer, especially HGSOC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02395-1.
Collapse
|
26
|
Choi C, Im JH, Lee J, Kwon SI, Kim WY, Park SR, Hwang DJ. OsDWD1 E3 ligase-mediated OsNPR1 degradation suppresses basal defense in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:966-981. [PMID: 36168109 DOI: 10.1111/tpj.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.
Collapse
Affiliation(s)
- Changhyun Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jinjeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Il Kwon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Sciences, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52825, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
27
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
28
|
Chen H, Wu Y, Li K, Currie I, Keating N, Dehkhoda F, Grohmann C, Babon JJ, Nicholson SE, Sleebs BE. Optimization of Phosphotyrosine Peptides that Target the SH2 Domain of SOCS1 and Block Substrate Ubiquitination. ACS Chem Biol 2022; 17:449-462. [PMID: 34989544 DOI: 10.1021/acschembio.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) has emerged as a potential therapeutic target in inflammatory and viral diseases. SOCS1 operates via its kinase inhibitory region, Src homology 2 (SH2) domain, and SOCS box to negatively regulate the Janus kinase/signal transducers and activators of transcription signaling pathway. In this study, we utilized native phosphotyrosine peptide substrates as a starting point to iteratively explore the requirement of each amino acid position to target the SH2 domain of SOCS1. We show that Met, Thr, Thr, Val, and Asp in the respective -1, +1, +2, +3, and +5 positions within the peptide substrate are favored for binding to the SOCS1-SH2 domain and identifying several phosphotyrosine peptides that have potent SOCS1 binding affinity with IC50 values ranging from 20 to 70 nM and greater than 100-fold selectivity against the closely related SOCS family proteins, CIS, SOCS2, and SOCS3. The optimized phosphotyrosine peptide was shown to stabilize SOCS1 in a thermal shift assay using cell lysates and inhibited SOCS1-mediated ubiquitination of a target substrate in a biochemical assay. Collectively, these data provide the framework to develop cell-permeable peptidomimetics that further investigate the potential of the SOCS1-SH2 domain as a therapeutic target in inflammatory and viral diseases.
Collapse
Affiliation(s)
- Hao Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Yuntong Wu
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Iain Currie
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Christoph Grohmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Jeffrey J. Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
29
|
Zhi Y, Huang S, Lina Z. Suppressor of Cytokine Signaling 6 in cancer development and therapy: deciphering its emerging and suppressive roles. Cytokine Growth Factor Rev 2022; 64:21-32. [DOI: 10.1016/j.cytogfr.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
|
30
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
31
|
Egeli DB, Hanfstein B, Lauseker M, Pfirrmann M, Saussele S, Baerlocher GM, Müller MC. SOCS-2 gene expression at diagnosis does not predict for outcome of chronic myeloid leukemia patients on imatinib treatment. Leuk Lymphoma 2021; 63:955-962. [PMID: 34872441 DOI: 10.1080/10428194.2021.2010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SOCS-2 gene expression at diagnosis has been suggested as a predictor of clinical outcome in chronic myeloid leukemia (CML). In this study SOCS-2 and GUS expression levels were determined by real-time PCR in pretherapeutic samples at diagnosis. First, three patient groups were compared after assessment at 48 months: optimal molecular responders (n = 35), patients with resistance to imatinib (n = 28), and blast crisis patients (n = 27). A significant difference in SOCS-2 gene expression at diagnosis was observed comparing blast crisis vs. resistant patients (p = 0.042) and optimal responders (p = 0.010). Second, a validation sample of consecutively randomized patients (n = 123) was investigated. No discriminative SOCS-2 gene expression cutoff could be derived to predict molecular or cytogenetic response, progression-free or overall survival. Although SOCS-2 gene was differentially expressed at the time of diagnosis in blast crisis patients when compared to other groups, a prognostic impact in consecutively randomized patients was not observed.
Collapse
Affiliation(s)
- Damla Buket Egeli
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Benjamin Hanfstein
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Michael Lauseker
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Pfirrmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Saussele
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Gabriela M Baerlocher
- Department of BioMedical Research and Department of Hematology and Central Hematology Department, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Martin C Müller
- Institute for Hematology and Oncology (IHO GmbH), Mannheim, Germany
| |
Collapse
|
32
|
Linossi EM, Li K, Veggiani G, Tan C, Dehkhoda F, Hockings C, Calleja DJ, Keating N, Feltham R, Brooks AJ, Li SS, Sidhu SS, Babon JJ, Kershaw NJ, Nicholson SE. Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nat Commun 2021; 12:7032. [PMID: 34857742 PMCID: PMC8640019 DOI: 10.1038/s41467-021-26983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)2 protein is a key negative regulator of the growth hormone (GH) and Janus kinase (JAK)-Signal Transducers and Activators of Transcription (STAT) signaling cascade. The central SOCS2-Src homology 2 (SH2) domain is characteristic of the SOCS family proteins and is an important module that facilitates recognition of targets bearing phosphorylated tyrosine (pTyr) residues. Here we identify an exosite on the SOCS2-SH2 domain which, when bound to a non-phosphorylated peptide (F3), enhances SH2 affinity for canonical phosphorylated ligands. Solution of the SOCS2/F3 crystal structure reveals F3 as an α-helix which binds on the opposite side of the SH2 domain to the phosphopeptide binding site. F3:exosite binding appears to stabilise the SOCS2-SH2 domain, resulting in slower dissociation of phosphorylated ligands and consequently, enhances binding affinity. This biophysical enhancement of SH2:pTyr binding affinity translates to increase SOCS2 inhibition of GH signaling.
Collapse
Affiliation(s)
- Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cyrus Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, Woolloongabba, QLD, 4102, Australia
| | - Shawn S Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
33
|
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
34
|
Dai L, Li Z, Liang W, Hu W, Zhou S, Yang Z, Tao Y, Hou X, Xing Z, Mao J, Shi Z, Wang X. SOCS proteins and their roles in the development of glioblastoma. Oncol Lett 2021; 23:5. [PMID: 34820004 PMCID: PMC8607235 DOI: 10.3892/ol.2021.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Wulong Liang
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Hu
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xuelei Hou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Jianchao Mao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
35
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1237] [Impact Index Per Article: 309.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
36
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
37
|
Keewan E, Matlawska-Wasowska K. The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia. Cancers (Basel) 2021; 13:4000. [PMID: 34439155 PMCID: PMC8393695 DOI: 10.3390/cancers13164000] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular signaling cascades in the target cell that bring about a wide range of cellular responses, including induction of cell proliferation, migration, differentiation, and apoptosis. The Janus kinase and transducers and activators of transcription (JAK/STAT) signaling pathways are activated upon cytokines and growth factors binding with their corresponding receptors. The SOCS family of proteins has emerged as a key regulator of cytokine signaling, and SOCS insufficiency leads to constitutive activation of JAK/STAT signaling and oncogenic transformation. Dysregulation of SOCS expression is linked to various solid tumors with invasive properties. However, the roles of SOCS in hematological malignancies, such as leukemia, are less clear. In this review, we discuss the recent advances pertaining to SOCS dysregulation in leukemia development and progression. We also highlight the roles of specific SOCS in immune cells within the tumor microenvironment and their possible involvement in anti-tumor immunity. Finally, we discuss the epigenetic, genetic, and post-transcriptional modifications of SOCS genes during tumorigenesis, with an emphasis on leukemia.
Collapse
Affiliation(s)
- Esra’a Keewan
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
38
|
Ding Y, Li G, Zhou Z, Deng T. Molecular mechanisms underlying hepatitis C virus infection-related diabetes. Metabolism 2021; 121:154802. [PMID: 34090869 DOI: 10.1016/j.metabol.2021.154802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Diabetes is a noncommunicable widespread disease that poses the risk of severe complications in patients, with certain complications being life-threatening. Hepatitis C is an infectious disease that mainly causes liver damage, which is also a profound threat to human health. Hepatitis C virus (HCV) infection has many extrahepatic manifestations, including diabetes. Multiple mechanisms facilitate the strong association between HCV and diabetes. HCV infection can affect the insulin signaling pathway in liver and pancreatic tissue and change the profiles of circulating microRNAs, which may further influence the occurrence and development of diabetes. This review describes how HCV infection causes diabetes and discusses the current research progress with respect to HCV infection-related diabetes.
Collapse
Affiliation(s)
- Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410011, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
39
|
Morichika K, Karube K, Sakihama S, Watanabe R, Kawaki M, Nishi Y, Nakachi S, Okamoto S, Takahara T, Satou A, Shimada S, Shimada K, Tsuzuki T, Fukushima T, Morishima S, Masuzaki H. The Positivity of Phosphorylated STAT3 Is a Novel Marker for Favorable Prognosis in Germinal Center B-Cell Type of Diffuse Large B-Cell Lymphoma. Am J Surg Pathol 2021; 45:832-840. [PMID: 33899787 DOI: 10.1097/pas.0000000000001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
On the basis of immunohistochemistry, diffuse large B-cell lymphoma (DLBCL) is categorized as a germinal center B-cell (GCB) or non-GCB subtype. Recent integrated genomic analyses have highlighted the importance of the JAK-STAT3 pathway in the molecular pathogenesis of DLBCL. However, its relevance to clinical outcomes remains controversial. Therefore, we evaluated the extent of the nuclear expression of phosphorylated STAT3 (pSTAT3), a surrogate marker of signal transducer and activator of transcription 3 (STAT3) activation, by immunohistochemistry. We also analyzed the potential relationship between pSTAT3 positivity (defined as ≥40% positive neoplastic cells) and clinicopathologic characteristics in 294 patients with DLBCL. pSTAT3 was detected in 122 patients (42%), with a higher rate in the non-GCB subtype than in the GCB subtype (57% vs. 28%, P<0.001). Factors potentially activating STAT3, MYD88L265P, and Epstein-Barr virus-encoded small RNA were identified in the pSTAT3-positive non-GCB subtype, whereas the pSTAT3-positive GCB subtype often showed STAT3 mutations and lacked EZH2 mutations and the rearrangements of BCL2 and MYC. Multivariate analyses revealed that the pSTAT3-positive GCB subtype showed a favorable prognosis (HR: 0.17; 95% confidence interval, 0.04-0.7; P=0.014). These findings suggest that pSTAT3 positivity may have a unique impact on the clinicopathologic characteristics of DLBCL, making it a promising novel marker for the favorable prognosis of patients with the GCB subtype.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- DNA Mutational Analysis
- Enhancer of Zeste Homolog 2 Protein/genetics
- Female
- Gene Rearrangement
- Herpesvirus 4, Human/genetics
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Japan
- Lymphoma, Large B-Cell, Diffuse/chemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Male
- Middle Aged
- Mutation
- Myeloid Differentiation Factor 88/genetics
- Phosphorylation
- Prognosis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Viral/genetics
- STAT3 Transcription Factor/analysis
- STAT3 Transcription Factor/genetics
- Suppressor of Cytokine Signaling 1 Protein/genetics
Collapse
Affiliation(s)
- Kazuho Morichika
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine)
| | - Kennosuke Karube
- Department of Pathology and Cell Biology, Graduate School of Medicine
| | - Shugo Sakihama
- Department of Pathology and Cell Biology, Graduate School of Medicine
| | | | | | - Yukiko Nishi
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine)
| | - Sawako Nakachi
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine)
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine)
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital
| | | | - Kazuyuki Shimada
- Hematology and Oncology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine)
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine)
| |
Collapse
|
40
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
41
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
42
|
Cho K, Kim S, Choi SH. Suppressor of cytokine signaling 2 is induced in Huntington's disease and involved in autophagy. Biochem Biophys Res Commun 2021; 559:21-27. [PMID: 33933990 DOI: 10.1016/j.bbrc.2021.04.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/15/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are primarily feedback inhibitors of cytokine signaling. The two conserved domains of SOCS proteins have distinct functions. Src homology 2 (SH2) domain inhibits cytokine receptor, while SOCS box acts as an E3 ubiquitin ligase. SOCS2, a cytokine signaling suppressor, has been primarily implicated in regulating inflammatory conditions in neuronal diseases. However, SOCS proteins have been suggested to play diverse roles in healthy and diseased nervous system including neurodegenerative disorders. In this study, SOCS2 was found to be upregulated in Huntington's disease and was substantially induced in extended polyglutamine (polyQ)-expressing striatal cells. The induced level was augmented under aging conditions. In extended polyQ-expressing cells, downregulated SOCS2 improved autophagic dysfunction rather than altered inflammatory conditions. Overall, we suggest that SOCS2 involves in regulating autophagy by functioning as an E3 ligase in extended polyQ conditions, and consequently regulates cell damage and cell death type.
Collapse
Affiliation(s)
- KyoungJoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea.
| | - Sejeong Kim
- College of Korean Medicine, Sangji University, Wonju, South Korea; Department of Cognitive Science, Yonsei University, Seoul, South Korea
| | - Seung Ho Choi
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
43
|
Gao Y, Liu R, He C, Basile J, Vesterlund M, Wahren-Herlenius M, Espinoza A, Hokka-Zakrisson C, Zadjali F, Yoshimura A, Karlsson M, Carow B, Rottenberg ME. SOCS3 Expression by Thymic Stromal Cells Is Required for Normal T Cell Development. Front Immunol 2021; 12:642173. [PMID: 33815395 PMCID: PMC8012910 DOI: 10.3389/fimmu.2021.642173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The suppressor of cytokine signaling 3 (SOCS3) is a major regulator of immune responses and inflammation as it negatively regulates cytokine signaling. Here, the role of SOCS3 in thymic T cell formation was studied in Socs3fl/flActin-creER mice (Δsocs3) with a tamoxifen inducible and ubiquitous Socs3 deficiency. Δsocs3 thymi showed a 90% loss of cellularity and altered cortico-medullary organization. Thymocyte differentiation and proliferation was impaired at the early double negative (CD4-CD8-) cell stage and apoptosis was increased during the double positive (CD4+CD8+) cell stage, resulting in the reduction of recent thymic emigrants in peripheral organs. Using bone marrow chimeras, transplanting thymic organoids and using mice deficient of SOCS3 in thymocytes we found that expression in thymic stromal cells rather than in thymocytes was critical for T cell development. We found that SOCS3 in thymic epithelial cells (TECs) binds to the E3 ubiquitin ligase TRIM 21 and that Trim21−/− mice showed increased thymic cellularity. Δsocs3 TECs showed alterations in the expression of genes involved in positive and negative selection and lympho-stromal interactions. SOCS3-dependent signal inhibition of the common gp130 subunit of the IL-6 receptor family was redundant for T cell formation. Together, SOCS3 expression in thymic stroma cells is critical for T cell development and for maintenance of thymus architecture.
Collapse
Affiliation(s)
- Yu Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Basile
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Vesterlund
- SciLife Lab, Department of Oncology-Patohology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Fahad Zadjali
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mikael Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Yang PW, Chang YH, Wong LF, Lin CC, Huang PM, Hsieh MS, Lee JM. The genetic effect and molecular function of the SOCS5 in the prognosis of esophageal squamous cell carcinoma. J Cancer 2021; 12:2216-2229. [PMID: 33758600 PMCID: PMC7974883 DOI: 10.7150/jca.51806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Expression of cytokines and growth factors have been shown to be highly correlated with the prognosis of esophageal squamous cell carcinoma (ESCC), a deadly disease with poor prognosis. The suppressor of cytokine signaling (SOCS) family of proteins are key factors in regulating cytokines and growth factors. Yet the role of the SOCS proteins in ESCC is hardly investigated. We currently investigated the prognostic role of SOCS5 in ESCC. We analyzed the prognostic effects of 16 single nucleotide polymorphisms (SNPs) within the SOCS genes in 632 ESCC patients. We repeatedly observed that the 3 SNPs in SOCS5, SOCS5:rs3814039, SOCS5:rs3738890, and SOCS5: rs3768720, were significantly correlated with both overall (OS) and progression-free survival (PFS) of ESCC patients (rs3814039, p=0.032 for OS and p=0.009 for PFS; rs3738890, p=0.016 for OS, and p=0.008 for PFS; rs3768720, p=0.005 for OS and p=0.002 for PFS). SOCS5: rs3768720 was also significantly associated with distant metastasis (Ptrend=0.028). The luciferase assay revealed that SOCS5:rs3814039 and SOCS5: rs3768720 might influence the prognosis by regulating SOCS5 expression. Functional analysis demonstrated SOCS5 was able to regulate epidermal growth factor receptor (EGFR) expression and migration activity of ESCC cells. Furthermore, Patients with strong SOCS5 in normal tissues exhibited significantly better PFS (P=0.049) and reduced risk of distant metastasis (P=0.004) compared to those with weak SOCS5 expression. Overall, our study demonstrates the novel function of SOCS5 in ESCC prognosis. The genetic polymorphisms and expression of SOCS5 could serve as a novel therapeutic biomarker for improving the prognosis of ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Li-Fan Wong
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Ching-Ching Lin
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Min-Shu Hsieh
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| |
Collapse
|
45
|
Daher M, Basar R, Gokdemir E, Baran N, Uprety N, Nunez Cortes AK, Mendt M, Kerbauy LN, Banerjee PP, Shanley M, Imahashi N, Li L, Lim FLWI, Fathi M, Rezvan A, Mohanty V, Shen Y, Shaim H, Lu J, Ozcan G, Ensley E, Kaplan M, Nandivada V, Bdiwi M, Acharya S, Xi Y, Wan X, Mak D, Liu E, Jiang XR, Ang S, Muniz-Feliciano L, Li Y, Wang J, Kordasti S, Petrov N, Varadarajan N, Marin D, Brunetti L, Skinner RJ, Lyu S, Silva L, Turk R, Schubert MS, Rettig GR, McNeill MS, Kurgan G, Behlke MA, Li H, Fowlkes NW, Chen K, Konopleva M, Champlin RE, Shpall EJ, Rezvani K. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 2021; 137:624-636. [PMID: 32902645 PMCID: PMC7869185 DOI: 10.1182/blood.2020007748] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.
Collapse
Affiliation(s)
- May Daher
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy and
| | | | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Lucila Nassif Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy and
- Department of Stem Cell Transplantation and Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy and
| | | | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy and
| | | | - Mohsen Fathi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | - Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yifei Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Junjun Lu
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Gonca Ozcan
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy and
| | | | - Mustafa Bdiwi
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xinhai Wan
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Duncan Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Sonny Ang
- Department of Stem Cell Transplantation and Cellular Therapy and
| | | | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shahram Kordasti
- System Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, United Kingdom
| | - Nedyalko Petrov
- System Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, United Kingdom
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy and
| | - Lorenzo Brunetti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | | | - Shangrong Lyu
- C.T. Bauer College of Business, University of Houston, Houston, TX
| | - Leiser Silva
- C.T. Bauer College of Business, University of Houston, Houston, TX
| | - Rolf Turk
- Integrated DNA Technologies, Coralville, IA
| | | | | | | | | | | | - Heng Li
- Dana-Farber/Harvard Cancer Center, Boston, MA; and
| | - Natalie W Fowlkes
- Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy and
| |
Collapse
|
46
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
47
|
Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 2020; 134:2091-2115. [PMID: 32808663 PMCID: PMC7434989 DOI: 10.1042/cs20191211] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.
Collapse
|
48
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
49
|
Panagiotakopoulou V, Ivanyuk D, De Cicco S, Haq W, Arsić A, Yu C, Messelodi D, Oldrati M, Schöndorf DC, Perez MJ, Cassatella RP, Jakobi M, Schneiderhan-Marra N, Gasser T, Nikić-Spiegel I, Deleidi M. Interferon-γ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nat Commun 2020; 11:5163. [PMID: 33057020 PMCID: PMC7560616 DOI: 10.1038/s41467-020-18755-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson's disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Vasiliki Panagiotakopoulou
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Dina Ivanyuk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Silvia De Cicco
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, University of Tübingen, Tübingen, 72076, Germany
| | - Aleksandra Arsić
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Cong Yu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Daria Messelodi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Marvin Oldrati
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - David C Schöndorf
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Maria-Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Ruggiero Pio Cassatella
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany.
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
50
|
Yoshizumi T, Kubo A, Murata H, Shinonaga M, Kanno H. BC-Box Motif in SOCS6 Induces Differentiation of Epidermal Stem Cells into GABAnergic Neurons. Int J Mol Sci 2020; 21:ijms21144947. [PMID: 32668737 PMCID: PMC7403999 DOI: 10.3390/ijms21144947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
The BC-box motif in suppressor of cytokine signaling 6 (SOCS6) promotes the neuronal differentiation of somatic stem cells, including epidermal stem cells. SOCS6 protein belongs to the group of SOCS proteins and inhibits cytokine signaling. Here we showed that epidermal stem cells were induced to differentiate into GABAnergic neurons by the intracellular delivery of a peptide composed of the amino-acid sequences encoded by the BC-box motif in SOCS6 protein. The BC-box motif (SLQYLCRFVI) in SOCS6 corresponded to the binding site of elongin BC. GABAnergic differentiation mediated by the BC-box motif in SOCS6 protein was caused by ubiquitination of JAK2 and inhibition of the JAK2-STAT3 pathway. Furthermore, GABAnergic neuron-like cells generated from epidermal stem cells were transplanted into the brain of a rodent ischemic model. Then, we demonstrated that these transplanted cells were GAD positive and that the cognitive function of the ischemic model rodents with the transplanted cells was improved. This study could contribute to not only elucidating the mechanism of GABAnergic neuronal differentiation but also to neuronal regenerative medicine utilizing GABAnergic neurons.
Collapse
Affiliation(s)
- Tetsuya Yoshizumi
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan; (T.Y.); (M.S.)
| | - Atsuhiko Kubo
- Nerve Care Clinic, Yokosuka 238-0012, Japan;
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| | - Hidetoshi Murata
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| | - Masamichi Shinonaga
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan; (T.Y.); (M.S.)
| | - Hiroshi Kanno
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan; (T.Y.); (M.S.)
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-557-81-9171; Fax: +81-557-83-6632
| |
Collapse
|