1
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
Ciulla DA, Xu Z, Pezzullo JL, Dranchak P, Wang C, Giner JL, Inglese J, Callahan BP. Paracatalytic induction: Subverting specificity in hedgehog protein autoprocessing with small molecules. Methods Enzymol 2023; 685:1-41. [PMID: 37245899 PMCID: PMC10294009 DOI: 10.1016/bs.mie.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Paracatalytic inducers are antagonists that shift the specificity of biological catalysts, resulting in non-native transformations. In this Chapter we describe methods to discover paracatalytic inducers of Hedgehog (Hh) protein autoprocessing. Native autoprocessing uses cholesterol as a substrate nucleophile to assist in cleaving an internal peptide bond within a precursor form of Hh. This unusual reaction is brought about by HhC, an enzymatic domain that resides within the C-terminal region of Hh precursor proteins. Recently, we reported paracatalytic inducers as a novel class of Hh autoprocessing antagonists. These small molecules bind HhC and tilt the substrate specificity away from cholesterol in favor of solvent water. The resulting cholesterol-independent autoproteolysis of the Hh precursor generates a non-native Hh side product with substantially reduced biological signaling activity. Protocols are provided for in vitro FRET-based and in-cell bioluminescence assays to discover and characterize paracatalytic inducers of Drosophila and human hedgehog protein autoprocessing, respectively.
Collapse
Affiliation(s)
- Daniel A Ciulla
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States.
| | - Zihan Xu
- Chemistry Department, Binghamton University, Binghamton, NY, United States
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, NY, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
3
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
4
|
Lo M, Sharir A, Paul MD, Torosyan H, Agnew C, Li A, Neben C, Marangoni P, Xu L, Raleigh DR, Jura N, Klein OD. CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids. Nat Commun 2022; 13:2407. [PMID: 35504891 PMCID: PMC9065090 DOI: 10.1038/s41467-022-30186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
The Hedgehog (HH) pathway is critical for development and adult tissue homeostasis. Aberrant HH signaling can lead to congenital malformations and diseases including cancer. Although cholesterol and several oxysterol lipids have been shown to play crucial roles in HH activation, the molecular mechanisms governing their regulation remain unresolved. Here, we identify Canopy4 (CNPY4), a Saposin-like protein, as a regulator of the HH pathway that modulates levels of membrane sterol lipids. Cnpy4-/- embryos exhibit multiple defects consistent with HH signaling perturbations, most notably changes in digit number. Knockdown of Cnpy4 hyperactivates the HH pathway in vitro and elevates membrane levels of accessible sterol lipids, such as cholesterol, an endogenous ligand involved in HH activation. Our data demonstrate that CNPY4 is a negative regulator that fine-tunes HH signal transduction, revealing a previously undescribed facet of HH pathway regulation that operates through control of membrane composition.
Collapse
Affiliation(s)
- Megan Lo
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Amnon Sharir
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Ein Kerem, Jerusalem, Israel
| | - Michael D Paul
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Hayarpi Torosyan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Cynthia Neben
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA.
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Liao KL, Chang WC, Marcus JM, Wang JN. Mathematical modeling of the eyespots in butterfly wings. J Theor Biol 2021; 531:110898. [PMID: 34508757 DOI: 10.1016/j.jtbi.2021.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Butterfly wing color patterns are a representative model system for studying biological pattern formation, due to their two-dimensional simple structural and high inter- and intra-specific variabilities. Moreover, butterfly color patterns have demonstrated roles in mate choice, thermoregulation, and predator avoidance via disruptive coloration, attack deflection, aposematism, mimicry, and masquerade. Because of the importance of color patterns to many aspects of butterfly biology and their apparent tractability for study, color patterns have been the subjects of many attempts to model their development. Early attempts focused on generalized mechanisms of pattern formation such as reaction-diffusion, diffusion gradient, lateral inhibition, and threshold responses, without reference to any specific gene products. As candidate genes with expression patterns that resembled incipient color patterns were identified, genetic regulatory networks were proposed for color pattern formation based on gene functions inferred from other insects with wings, such as Drosophila. Particularly detailed networks incorporating the gene products, Distal-less (Dll), Engrailed (En), Hedgehog (Hh), Cubitus interruptus (Ci), Transforming growth factor-β (TGF-β), and Wingless (Wg), have been proposed for butterfly border ocelli (eyespots) which helps the investigation of the formation of these patterns. Thus, in this work, we develop a mathematical model including the gene products En, Hh, Ci, TGF-β, and Wg to mimic and investigate the eyespot formation in butterflies. Our simulations show that the level of En has peaks in the inner and outer rings and the level of Ci has peaks in the inner and middle rings. The interactions among these peaks activate cells to produce white, black, and yellow pigments in the inner, middle, and outer rings, respectively, which captures the eyespot pattern of wild type Bicyclus anynana butterflies. Additionally, our simulations suggest that lack of En generates a single black spot and lack of Hh or Ci generates a single white spot, and a deficiency of TGF-β or Wg will cause the loss of the outer yellow ring. These deficient patterns are similar to those observed in the eyespots of Vanessa atalanta, Vanessa altissima, and Chlosyne nycteis. Thus, our model also provides a hypothesis to explain the mechanism of generating the deficient patterns in these species.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Manitoba R3T 2N2, Canada; Department of Biological Sciences, University of Manitoba, Manitoba R3T 2N2, Canada.
| | - Wei-Chen Chang
- Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Manitoba R3T 2N2, Canada
| | - Jenn-Nan Wang
- Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
6
|
La Sala G, Di Pietro C, Matteoni R, Bolasco G, Marazziti D, Tocchini-Valentini GP. Gpr37l1/prosaposin receptor regulates Ptch1 trafficking, Shh production, and cell proliferation in cerebellar primary astrocytes. J Neurosci Res 2020; 99:1064-1083. [PMID: 33350496 DOI: 10.1002/jnr.24775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/24/2024]
Abstract
Mammalian cerebellar astrocytes critically regulate the differentiation and maturation of neuronal Purkinje cells and granule precursors. The G protein-coupled receptor 37-like 1 (Gpr37l1) is expressed by Bergmann astrocytes and interacts with patched 1 (Ptch1) at peri-ciliary membranes. Cerebellar primary astrocyte cultures from wild-type and Gpr37l1 null mutant mouse pups were established and studied. Primary cilia were produced by cultures of both genotypes, as well as Ptch1 and smoothened (Smo) components of the sonic hedgehog (Shh) mitogenic pathway. Compared to wild-type cells, Gpr37l1-/- astrocytes displayed striking increases in proliferative activity, Ptch1 protein expression and internalization, intracellular cholesterol content, ciliary localization of Smo, as well as a marked production of active Shh. Similar effects were reproduced by treating wild-type astrocytes with a putative prosaptide ligand of Gpr37l1. These findings indicate that Gpr37l1-Ptch1 interactions specifically regulate Ptch1 internalization and trafficking, with consequent stimulation of Shh production and activation of proliferative signaling.
Collapse
Affiliation(s)
- Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| |
Collapse
|
7
|
Dual roles of the sterol recognition region in Hedgehog protein modification. Commun Biol 2020; 3:250. [PMID: 32440000 PMCID: PMC7242414 DOI: 10.1038/s42003-020-0977-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Nature provides a number of mechanisms to encode dynamic information in biomolecules. In metazoans, there exist rare chemical modifications that occur in entirely unique regimes. One such example occurs in the Hedgehog (Hh) morphogens, proteins singular across all domains of life for the nature of their covalent ligation to cholesterol. The isoform- and context-specific efficiency of this ligation profoundly impacts the activity of Hh morphogens and represents an unexplored facet of Hh ligand-dependent cancers. To elucidate the chemical mechanism of this modification, we have defined roles of the uncharacterized sterol recognition region (SRR) in Hh proteins. We use a combination of sequence conservation, directed mutagenesis, and biochemical assays to specify residues of the SRR participate in cellular and biochemical aspects of Hh cholesterolysis. Our investigations offer a functional portrait of this region, providing opportunities to identify parallel reactivity in nature and a template to design tools in chemical biology.
Collapse
|
8
|
Sánchez-Crisóstomo I, Fernández-Martínez E, Cariño-Cortés R, Betanzos-Cabrera G, Bobadilla-Lugo RA. Phytosterols and Triterpenoids for Prevention and Treatment of Metabolic-related Liver Diseases and Hepatocellular Carcinoma. Curr Pharm Biotechnol 2019; 20:197-214. [DOI: 10.2174/1389201020666190219122357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/10/2018] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
Background:
Liver ailments are among the leading causes of death; they originate from viral
infections, chronic alcoholism, and autoimmune illnesses, which may chronically be precursors of
cirrhosis; furthermore, metabolic syndrome may worsen those hepatopathies or cause Non-alcoholic
Fatty Liver Disease (NAFLD) that may advance to non-alcoholic steatohepatitis (NASH). Cirrhosis is
the late-stage liver disease and can proceed to hepatocellular carcinoma (HCC). Pharmacological
treatment options for liver diseases, cirrhosis, and HCC, are limited, expensive, and not wholly effective.
The use of medicinal herbs and functional foods is growing around the world as natural resources
of bioactive compounds that would set the basis for the development of new drugs.
Review and Conclusion:
Plant and food-derived sterols and triterpenoids (TTP) possess antioxidant,
metabolic-regulating, immunomodulatory, and anti-inflammatory activities, as well as they are recognized
as anticancer agents, suggesting their application strongly as an alternative therapy in some
chronic diseases. Thus, it is interesting to review current reports about them as hepatoprotective agents,
but also because they structurally resemble cholesterol, sexual hormones, corticosteroids and bile acids
due to the presence of the steroid nucleus, so they all can share pharmacological properties through activating
nuclear and membrane receptors. Therefore, sterols and TTP appear as a feasible option for the
prevention and treatment of chronic metabolic-related liver diseases, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Isabel Sánchez-Crisóstomo
- Center for Research on Reproductive Biology, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology, Department of Medicine, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Raquel Cariño-Cortés
- Center for Research on Reproductive Biology, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | - Gabriel Betanzos-Cabrera
- Laboratory of Medicinal Chemistry and Pharmacology, Department of Medicine, School of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Mexico
| | | |
Collapse
|
9
|
Therapeutic targeting of lipid synthesis metabolism for selective elimination of cancer stem cells. Arch Pharm Res 2018; 42:25-39. [PMID: 30536027 DOI: 10.1007/s12272-018-1098-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to have an essential role in tumor resistance and metastasis; however, no therapeutic strategy for the selective elimination of CSCs has been established. Recently, several studies have shown that the metabolic regulation for ATP synthesis and biological building block generation in CSCs are different from that in bulk cancer cells and rather similar to that in normal tissue stem cells. To take advantage of this difference for CSC elimination therapy, many studies have tested the effect of blocking these metabolism. Two specific processes for lipid biosynthesis, i.e., fatty acid unsaturation and cholesterol biosynthesis, have been shown to be very effective and selective for CSC targets. In this review, lipid metabolism specific to CSCs are summarized. In addition, how monounsaturated fatty acid and cholesterol synthesis may contribute to CSC maintenance are discussed. Specifically, the molecular mechanism required for lipid synthesis and essential for stem cell biology is highlighted. The limit and preview of the lipid metabolism targeting for CSCs are also discussed.
Collapse
|
10
|
Stewart DP, Marada S, Bodeen WJ, Truong A, Sakurada SM, Pandit T, Pruett-Miller SM, Ogden SK. Cleavage activates dispatched for Sonic Hedgehog ligand release. eLife 2018; 7:31678. [PMID: 29359685 PMCID: PMC5811216 DOI: 10.7554/elife.31678] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hedgehog ligands activate an evolutionarily conserved signaling pathway that provides instructional cues during tissue morphogenesis, and when corrupted, contributes to developmental disorders and cancer. The transmembrane protein Dispatched is an essential component of the machinery that deploys Hedgehog family ligands from producing cells, and is absolutely required for signaling to long-range targets. Despite this crucial role, regulatory mechanisms controlling Dispatched activity remain largely undefined. Herein, we reveal vertebrate Dispatched is activated by proprotein convertase-mediated cleavage at a conserved processing site in its first extracellular loop. Dispatched processing occurs at the cell surface to instruct its membrane re-localization in polarized epithelial cells. Cleavage site mutation alters Dispatched membrane trafficking and reduces ligand release, leading to compromised pathway activity in vivo. As such, convertase-mediated cleavage is required for Dispatched maturation and functional competency in Hedgehog ligand-producing cells.
Collapse
Affiliation(s)
- Daniel P Stewart
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Suresh Marada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - William J Bodeen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Integrated Program in Biomedical Sciences, University of Tennessee Health Sciences Center, Memphis, United States
| | - Ashley Truong
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - Tanushree Pandit
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
11
|
Daniele JR, Chu T, Kunes S. A novel proteolytic event controls Hedgehog intracellular sorting and distribution to receptive fields. Biol Open 2017; 6:540-550. [PMID: 28298318 PMCID: PMC5450321 DOI: 10.1242/bio.024083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The patterning activity of a morphogen depends on secretion and dispersal mechanisms that shape its distribution to the cells of a receptive field. In the case of the protein Hedgehog (Hh), these mechanisms of secretion and transmission remain unclear. In the developing Drosophila visual system, Hh is partitioned for release at opposite poles of photoreceptor neurons. Release into the retina regulates the progression of eye development; axon transport and release at axon termini trigger the development of postsynaptic neurons in the brain. Here we show that this binary targeting decision is controlled by a C-terminal proteolysis. Hh with an intact C-terminus undergoes axonal transport, whereas a C-terminal proteolysis enables Hh to remain in the retina, creating a balance between eye and brain development. Thus, we define a novel mechanism for the apical/basal targeting of this developmentally important protein and posit that similar post-translational regulation could underlie the polarity of related ligands.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Tehyen Chu
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sam Kunes
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Alonso S, Hernandez D, Chang YT, Gocke CB, McCray M, Varadhan R, Matsui WH, Jones RJ, Ghiaur G. Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance. J Clin Invest 2016; 126:4460-4468. [PMID: 27775549 PMCID: PMC5127663 DOI: 10.1172/jci88152] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023] Open
Abstract
Interactions between multiple myeloma (MM) cells and the BM microenvironment play a critical role in bortezomib (BTZ) resistance. However, the mechanisms involved in these interactions are not completely understood. We previously showed that expression of CYP26 in BM stromal cells maintains a retinoic acid-low (RA-low) microenvironment that prevents the differentiation of normal and malignant hematopoietic cells. Since a low secretory B cell phenotype is associated with BTZ resistance in MM and retinoid signaling promotes plasma cell differentiation and Ig production, we investigated whether stromal expression of the cytochrome P450 monooxygenase CYP26 modulates BTZ sensitivity in the BM niche. CYP26-mediated inactivation of RA within the BM microenvironment prevented plasma cell differentiation and promoted a B cell-like, BTZ-resistant phenotype in human MM cells that were cocultured on BM stroma. Moreover, paracrine Hedgehog secretion by MM cells upregulated stromal CYP26 and further reinforced a protective microenvironment. These results suggest that crosstalk between Hedgehog and retinoid signaling modulates BTZ sensitivity in the BM niche. Targeting these pathological interactions holds promise for eliminating minimal residual disease in MM.
Collapse
|
13
|
Xie J, Owen T, Xia K, Callahan B, Wang C. A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing. J Am Chem Soc 2016; 138:10806-9. [PMID: 27529645 PMCID: PMC5589136 DOI: 10.1021/jacs.6b06928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hedgehog (Hh) signaling is driven by the cholesterol-modified Hh ligand, generated by autoprocessing of Hh precursor protein. Two steps in Hh autoprocessing, N-S acyl shift and transesterification, must be coupled for efficient Hh cholesteroylation and downstream signal transduction. In the present study, we show that a conserved aspartate residue, D46 of the Hh autoprocessing domain, coordinates these two catalytic steps. Mutagenesis demonstrated that D46 suppresses non-native Hh precursor autoprocessing and is indispensable for transesterification with cholesterol. NMR measurements indicated that D46 has a pKa of 5.6, ∼2 units above the expected pKa of aspartate, due to a hydrogen-bond between protonated D46 and a catalytic cysteine residue. However, the deprotonated form of D46 side chain is also essential, because a D46N mutation cannot mediate cholesteroylation. On the basis of these data, we propose that the proton shuttling of D46 side chain mechanistically couples the two steps of Hh cholesteroylation.
Collapse
Affiliation(s)
- Jian Xie
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Timothy Owen
- Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Brian Callahan
- Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Chunyu Wang
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
14
|
Bordeau BM, Ciulla DA, Callahan BP. Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer. ChemMedChem 2016; 11:1983-6. [PMID: 27435344 DOI: 10.1002/cmdc.201600238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Indexed: 12/21/2022]
Abstract
Abiraterone, a potent inhibitor of the human enzyme CYP17A1 (cytochrome P450c17), provides a last line of defense against ectopic androgenesis in advanced prostate cancer. Herein we report an unprecedented off-target interaction between abiraterone and oncogenic hedgehog proteins. Our experiments indicate that abiraterone and its structural congener, galeterone, can replace cholesterol as a substrate in a specialized biosynthetic event of hedgehog proteins, known as cholesterolysis. The off-target reaction generates covalent hedgehog-drug conjugates. Cell-based reporter assays indicate that these conjugates activate hedgehog signaling when present in the low nanomolar range. Because hedgehog signaling is implicated in prostate cancer progression, and abiraterone is administered to treat advanced stages of the disease, this off-target interaction may have therapeutic significance.
Collapse
Affiliation(s)
- Brandon M Bordeau
- Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Daniel A Ciulla
- Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Brian P Callahan
- Chemistry Department, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
15
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
16
|
Owen TS, Ngoje G, Lageman TJ, Bordeau BM, Belfort M, Callahan BP. Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor. Anal Biochem 2015; 488:1-5. [PMID: 26095399 DOI: 10.1016/j.ab.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) proteins function in cell/cell signaling processes linked to human embryo development and the progression of several types of cancer. Here, we describe an optical assay of hedgehog cholesterolysis, a unique autoprocessing event critical for Hh function. The assay uses a recombinant Förster resonance energy transfer (FRET)-active Hh precursor whose cholesterolysis can be monitored continuously in multi-well plates (dynamic range=4, Z'=0.7), offering advantages in throughput over conventional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays. Application of the optical assay in a pilot small molecule screen produced a novel cholesterolysis inhibitor (apparent IC50=5×10(-6)M) that appears to inactivate hedgehog covalently by a substitution nucleophilic aromatic (SNAr) mechanism.
Collapse
Affiliation(s)
- Timothy S Owen
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - George Ngoje
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Travis J Lageman
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Brandon M Bordeau
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Marlene Belfort
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
17
|
Abstract
Cholesterylation is a post-translational attachment of sterol to proteins. This modification has been a characteristic of a single family of hedgehog proteins (Hh). Hh is a well-established morphogenic molecule important in embryonic development. It was also found to be involved in the progression of many cancer types. Herein, we describe the mechanism of biosynthesis of cholesterylated Hh, the role of this unusual modification on protein functions and novel chemical probes, which could be used to specifically target this modification, both in vitro and in vivo.
Collapse
|
18
|
Jao CY, Nedelcu D, Lopez LV, Samarakoon TN, Welti R, Salic A. Bioorthogonal probes for imaging sterols in cells. Chembiochem 2015; 16:611-7. [PMID: 25663046 DOI: 10.1002/cbic.201402715] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease.
Collapse
Affiliation(s)
- Cindy Y Jao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (USA)
| | | | | | | | | | | |
Collapse
|
19
|
Guerrero I, Kornberg TB. Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 2014; 33:52-62. [PMID: 24994598 DOI: 10.1016/j.semcdb.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The hedgehog (Hh) signaling protein has essential roles in the growth, development and regulation of many vertebrate and invertebrate organs. The processes that make Hh and prepare it for release from producing cells and that move it to target cells are both diverse and complex. This article reviews the essential features of these processes and highlights recent work that provides a novel framework to understand how these processes contribute to an integrated pathway.
Collapse
Affiliation(s)
- Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Kashyap B, Pegorsch L, Frey RA, Sun C, Shelden EA, Stenkamp DL. Eye-specific gene expression following embryonic ethanol exposure in zebrafish: roles for heat shock factor 1. Reprod Toxicol 2013; 43:111-24. [PMID: 24355176 DOI: 10.1016/j.reprotox.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 01/03/2023]
Abstract
The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 h post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure.
Collapse
Affiliation(s)
- Bhavani Kashyap
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States
| | - Laurel Pegorsch
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States
| | - Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States; Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, United States
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States; Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, United States.
| |
Collapse
|
21
|
Holloway RW, Bogachev O, Bharadwaj AG, McCluskey GD, Majdalawieh AF, Zhang L, Ro HS. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling. J Biol Chem 2012; 287:39171-81. [PMID: 22995915 DOI: 10.1074/jbc.m112.404293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.
Collapse
Affiliation(s)
- Ryan W Holloway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hedgehog (Hh) proteins are secreted signaling proteins that contain amide-linked palmitate at the N-terminus and cholesterol at the C-terminus. Palmitoylation of Hh proteins is critical for effective long- and short-range signaling. The palmitoylation reaction occurs during transit of Hh through the secretory pathway, most likely in the lumen of the ER. Attachment of palmitate to Hh proteins is independent of cholesterol modification and autoprocessing and is catalyzed by Hhat (Hedgehog acyltransferase). Hhat is a member of the membrane bound O-acyltransferase (MBOAT) family, a subgroup of multipass membrane proteins that catalyze transfer of fatty acyl groups to lipids and proteins. Several classes of secreted proteins have recently been shown to be substrates for MBOAT acyltransferases, including Hh proteins and Spitz (palmitoylated by Hhat), Wg/Wnt proteins (modified with palmitate and/or palmitoleate by Porcupine) and ghrelin (octanoylated by ghrelin O-acyltransferase). These findings highlight protein fatty acylation as a mechanism that not only influences membrane binding of intracellular proteins but also regulates the signaling range and efficacy of secreted proteins.
Collapse
|
23
|
Mejia-Pous C, Damiola F, Gandrillon O. Cholesterol synthesis-related enzyme oxidosqualene cyclase is required to maintain self-renewal in primary erythroid progenitors. Cell Prolif 2011; 44:441-52. [PMID: 21951287 DOI: 10.1111/j.1365-2184.2011.00771.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Molecular mechanisms controlling cell fate decision making in self-renewing cells are poorly understood. A previous transcriptomic study, carried out in primary avian erythroid progenitor cells (T2ECs), revealed that the gene encoding oxidosqualene cyclase (OSC/LSS), an enzyme involved in cholesterol biosynthesis, is significantly up-regulated in self-renewing cells. The aim of the present work is to understand whether this up-regulation is required for self-renewal maintenance and what are the mechanisms involved. MATERIALS AND METHODS To investigate OSC function, we studied effects of its enzymatic activity inhibition using Ro48-8071, a specific OSC inhibitor. In addition, we completed this pharmacological approach by RNAi-mediated OSC/LSS knockdown. The study of OSC inhibition was carried out on both self-renewing and differentiating cells to observe any state-dependent effect. RESULTS Our data show that OSC acts both by protecting self-renewing T2EC cells from apoptosis and by blocking their differentiation program, as OSC inhibition is sufficient to trigger spontaneous commitment of self-renewing cells towards an early differentiation state. This is self-renewal specific, as OSC inhibition has no effect on erythroid progenitors that have already differentiated. CONCLUSIONS Taken together, our results suggest that OSC/LSS expression and activity are required to maintain cell self-renewal and may be involved in the self-renewal versus differentiation/apoptosis decision making, by keeping cells in a self-renewal state.
Collapse
Affiliation(s)
- C Mejia-Pous
- Bases Moléculaires de l'Autorenouvellement et de ses Altérations" Group, Université de Lyon, Université Lyon 1, Villeurbanne, Centre de Génétique Moléculaire et Cellulaire, Lyon, France
| | | | | |
Collapse
|
24
|
Schaaf CP, Koster J, Katsonis P, Kratz L, Shchelochkov OA, Scaglia F, Kelley RI, Lichtarge O, Waterham HR, Shinawi M. Desmosterolosis-phenotypic and molecular characterization of a third case and review of the literature. Am J Med Genet A 2011; 155A:1597-604. [PMID: 21671375 DOI: 10.1002/ajmg.a.34040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/13/2011] [Indexed: 01/27/2023]
Abstract
Desmosterolosis, a rare disorder of cholesterol biosynthesis, is caused by mutations in DHCR24, the gene encoding the enzyme 24-dehydrocholesterol reductase (DHCR24). To date, desmosterolosis has been described in only two patients. Here we report on a third patient with desmosterolosis who presented after delivery with relative macrocephaly, mild arthrogryposis, and dysmorphic facial features. Brain MRI revealed hydrocephalus, thickening of the tectum and massa intermedia, mildly effaced gyral pattern, underopercularization, and a thin corpus callosum. The diagnosis of desmosterolosis was established by detection of significant elevation of plasma desmosterol levels and reduced enzyme activity of DHCR24 upon expression of the patient's DHCR24 cDNA in yeast. The patient was found to be a compound heterozygote for c.281G>A (p.R94H) and c.1438G>A (p.E480K) mutations. Structural and evolutionary analyses showed that residue R94 resides at the flavin adenine dinucleotide (FAD) binding site and is strictly conserved throughout evolution, while residue E480 is less conserved, but the charge shift substitution is accompanied by drastic changes in the local protein environment of that residue. We compare the phenotype of our patient with previously reported cases.
Collapse
Affiliation(s)
- Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma G, Yu J, Xiao Y, Chan D, Gao B, Hu J, He Y, Guo S, Zhou J, Zhang L, Gao L, Zhang W, Kang Y, Cheah KSE, Feng G, Guo X, Wang Y, Zhou CZ, He L. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels. Cell Res 2011; 21:1343-57. [PMID: 21537345 DOI: 10.1038/cr.2011.76] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation.
Collapse
Affiliation(s)
- Gang Ma
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rahier A. Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids 2011; 76:340-52. [PMID: 21147141 DOI: 10.1016/j.steroids.2010.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 02/01/2023]
Abstract
Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase (3βHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3βHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.
Collapse
Affiliation(s)
- Alain Rahier
- Institut de Biologie Moléculaire des Plantes, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
27
|
Matsumoto Y, Matsumoto K, Irie F, Fukushi JI, Stallcup WB, Yamaguchi Y. Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects. J Biol Chem 2010; 285:19227-34. [PMID: 20404326 DOI: 10.1074/jbc.m110.105338] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence indicates that heparan sulfate (HS) is an integral component of many morphogen signaling pathways. However, its mechanisms of action appear to be diverse, depending on the type of morphogen and the developmental contexts. To define the function of HS in skeletal development, we conditionally ablated Ext1, which encodes an essential glycosyltransferase for HS synthesis, in limb bud mesenchyme using the Prx1-Cre transgene. These conditional Ext1 mutant mice display severe limb skeletal defects, including shortened and malformed limb bones, oligodactyly, and fusion of joints. In developing limb buds of mutant mice, chondrogenic differentiation of mesenchymal condensations is delayed and impaired, whereas the area of differentiation is diffusely expanded. Correspondingly, the distribution of both bone morphogenic protein (BMP) signaling domains and BMP2 immunoreactivity in the mutant limb mesenchyme is broadened and diffuse. In micromass cultures, chondrogenic differentiation of mutant chondrocytes is delayed, and the responsiveness to exogenous BMPs is attenuated. Moreover, the segregation of the pSmad1/5/8-expressing chondrocytes and fibronectin-expressing perichondrium-like cells surrounding chondrocyte nodules is disrupted in mutant micromass cultures. Together, our results show that HS is essential for patterning of limb skeletal elements and that BMP signaling is one of the major targets for the regulatory role of HS in this developmental context.
Collapse
Affiliation(s)
- Yoshihiro Matsumoto
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The discovery of a Sonic Hedgehog (Shh) signaling pathway in the mature vertebrate CNS has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. Shh is proposed to participate in the establishment and maintenance of adult neurogenic niches and to regulate the proliferation of neuronal or glial precursors in several brain areas. Consistent with its role during brain development, misregulation of Shh signaling is associated with tumorigenesis while its recruitement in damaged neural tissue might be part of the regenerating process. This review focuses on the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- CNRS, Alfred Fessard Institute of Neurobiology, Laboratory of Neurobiology and Development, UPR-3294, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
29
|
Kasperczyk H, Baumann B, Debatin KM, Fulda S. Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J 2008; 23:21-33. [PMID: 18772349 DOI: 10.1096/fj.08-111096] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To explore mechanisms controlling sonic hedgehog (Shh) expression in human cancers, we investigated regulation of Shh by the transcription factor NF-kappaB. We identify putative NF-kappaB binding sites in the human Shh promoter region that specifically bind NF-kappaB complexes. Further, NF-kappaB activation by tumor necrosis factor alpha (TNF-alpha) or p65 overexpression stimulates Shh promoter activity and p65 binds to Shh promoter in vivo. NF-kappaB-mediated transcriptional activation of Shh is mapped to a minimal NF-kappaB consensus site at position +139 of Shh promoter. NF-kappaB activation results in increased Shh mRNA and protein expression in vitro and, notably, also in vivo in a genetic mouse model of inducible NF-kappaB activity. Specific NF-kappaB inhibition by inhibitory NF-kappaBalpha (Ikappa-Balpha) superrepressor or p65 knockdown inhibits NF-kappaB-induced Shh promoter activation and Shh expression. NF-kappaB-mediated Shh expression promotes proliferation and confers resistance to TRAIL-induced apoptosis. Silencing of Shh prevents NF-kappaB-stimulated proliferation, while the addition of Shh rescues the proliferation defect imposed by NF-kappaB inhibition. Notably, NF-kappaB-stimulated tumor growth is significantly impaired by Shh knockdown in an in vivo model of pancreatic cancer. By demonstrating that NF-kappaB regulates Shh expression, which contributes to NF-kappaB-mediated proliferation and apoptosis resistance in vitro and in vivo, our findings have important implications to target aberrant Shh expression in human cancers.
Collapse
|
30
|
Jenkins KT, Merkens LS, Tubb MR, Myatt L, Davidson WS, Steiner RD, Woollett LA. Enhanced placental cholesterol efflux by fetal HDL in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2008; 94:240-7. [PMID: 18346920 PMCID: PMC3037116 DOI: 10.1016/j.ymgme.2008.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
Abstract
Previous studies from this laboratory have shown that maternal-derived cholesterol can be effluxed from trophoblasts to fetal HDL and plasma. We had the opportunity to study for the first time the ability of HDL and plasma from a fetus with the Smith-Lemli-Opitz syndrome (SLOS) to efflux cholesterol from trophoblasts. It was unclear whether cholesterol could be effluxed to fetuses with SLOS since lipoprotein levels are often very low. To answer this question, cord blood was collected from the placentas of an SLOS fetus and unaffected fetuses just after delivery. Plasma cholesterol concentrations were very low in the affected fetus; cholesterol, 7-dehydrocholesterol, and 8-dehydocholesterol concentrations were 14.1, 4.5, and 5.2 mg/dl, respectively. The HDL from the fetal SLOS effluxed approximately 50% more cholesterol from a trophoblast cell line, were smaller in size, and had a lower cholesterol to phospholipid ratio as compared to HDL from unaffected fetuses or adults. Plasma from the SLOS fetus effluxed cholesterol to a similar percentage as unaffected fetal plasma or adult plasma, possibly due to fewer HDL particles as demonstrated in previous SLOS patients. These novel data demonstrate that the cholesterol-deficient SLOS fetus is able to obtain cholesterol from trophoblasts at a time when cholesterol is playing a critical role in development, and has implications for design of treatments for cholesterol deficiency syndromes as well as understanding of prenatal cholesterol transport in humans.
Collapse
Affiliation(s)
- Katie T. Jenkins
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Louise S. Merkens
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R. Tubb
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Leslie Myatt
- Departments of Obstetrics and Gynecology, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - W. Sean Davidson
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
| | - Robert D. Steiner
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Departments of Molecular and Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital and Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Laura A. Woollett
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, 2180 E. Galbraith Road, Cincinnati, OH 45237-0507, USA
- Corresponding author. Fax: +1 513 558 1312. (L.A. Woollett)
| |
Collapse
|
31
|
Recent progress in the study of Hedgehog signaling. J Genet Genomics 2008; 35:129-37. [DOI: 10.1016/s1673-8527(08)60019-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 12/30/2022]
|
32
|
Martinez-Chinchilla P, Riobo NA. Purification and bioassay of hedgehog ligands for the study of cell death and survival. Methods Enzymol 2008; 446:189-204. [PMID: 18603123 DOI: 10.1016/s0076-6879(08)01611-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) family of secreted ligands-composed of Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), and Desert Hedgehog (Dhh)-possesses many roles during embryonic development, adult homeostasis, and cancer. The specific functions of the Hh proteins are intertwined with their requirement as survival factors in Hh-responsive cells. However, studies designed to dissect the anti-apoptotic role of Hhs have been hindered by the lack of simple approaches to purify large quantities of recombinant ligands in the average laboratory setting because of the natural modifications of these proteins with palmitic acid and cholesterol. In this chapter, we provide a comprehensive protocol for the expression of Shh, Ihh, and Dhh in Escherichia coli as fusion proteins with calmodulin-binding peptide to allow easy and rapid purification. The ligands are engineered with a new N-terminus containing two isoleucine residues to provide an essential hydrophobic interphase for achieving high biologic activity. The protocol includes a detailed description of a method for determination of the specific activity of the generated proteins by use of a cell culture-based luciferase approach.
Collapse
Affiliation(s)
- Pilar Martinez-Chinchilla
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University
| | | |
Collapse
|
33
|
Jenkins D, Winyard PJD, Woolf AS. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J Anat 2007; 211:620-9. [PMID: 17850284 PMCID: PMC2375778 DOI: 10.1111/j.1469-7580.2007.00808.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies of mouse mutants have demonstrated that Sonic hedgehog (SHH) signalling has a functional role in morphogenesis and differentiation at multiple sites within the forming urinary tract, and urinary tract malformations have been reported in humans with mutations that disrupt SHH signalling. However, there is only strikingly sparse and fragmentary information about the expression of SHH and associated signalling genes in normal human urinary tract development. We used immunohistochemistry to demonstrate that SHH protein was localised in distinct urinary tract epithelia in developing normal humans, in the urothelium of the nascent bladder and in kidney medullary collecting ducts. The expression patterns of the SHH-transducing proteins Patched (PTCH) and Smoothened (SMO) were consistent with long-range paracrine signalling associated with detrusor smooth muscle differentiation in the urogenital sinus. In the developing kidney, SHH and PTCH were expressed in epithelia of the collecting system between 16-26 weeks--surprisingly, SMO was not detected. Analysis of cell proliferation and Cyclin B1 immunohistochemistry at 26 weeks, as compared with a 28 week sample in which SHH expression was down-regulated, was consistent with the idea that SHH and PTCH might influence medullary collecting duct growth by regulating the subcellular localisation of Cyclin B1 independently of SMO. Collectively, these descriptive results generate new hypotheses regarding SHH signal transduction in human urinary tract development and help to explain the varied urinary tract malformation phenotypes noted in individuals with mutations in the SHH pathway.
Collapse
Affiliation(s)
- Dagan Jenkins
- Nephro-Urology, and Clinical and Molecular Genetics Units, UCL Institute of Child Health, UK.
| | | | | |
Collapse
|
34
|
Tadjuidje E, Hollemann T. Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development. Dev Dyn 2006; 235:2095-110. [PMID: 16752377 DOI: 10.1002/dvdy.20860] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
7-dehydrocholesterol reductase (7-Dhcr) catalyses the final step in the pathway of cholesterol biosynthesis. Human patients with inborn errors of 7-Dhcr (Smith-Lemli-Opitz-Syndrome) have elevated serum levels of 7-dehydrocholesterol but low levels of cholesterol, which in phenotypical terms can result in growth retardation, craniofacial abnormalities including cleft palate, and reduced metal abilities. This study reports the isolation and molecular characterisation of 7-dehydrocholesterol reductase (Xdhcr7) from Xenopus laevis. During early embryonic development, the expression of Xdhcr7 is first of all spatially restricted to the Spemann's organizer and later to the notochord. In both tissues, Xdhcr7 is coexpressed with Sonic hedgehog (Shh), which itself is cholesterol-modified during autoproteolytic cleavage. Data from Xdhcr7 overexpression and knockdown experiments reveals that a tight control of cholesterol synthesis is particularly important for proper development of the central and peripheral nervous system.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- University of Halle-Wittenberg, Institut für Physiologische Chemie, Halle/Saale, Germany
| | | |
Collapse
|
35
|
Jiang F, Herman GE. Analysis of Nsdhl-deficient embryos reveals a role for Hedgehog signaling in early placental development. Hum Mol Genet 2006; 15:3293-305. [PMID: 17028112 DOI: 10.1093/hmg/ddl405] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The X-linked Nsdhl gene encodes a sterol dehydrogenase involved in cholesterol biosynthesis. Mutations in this gene cause the male lethal phenotypes in human CHILD syndrome and bare patches (Bpa) mice. Affected male embryos for several mutant Nsdhl alleles die in mid-gestation with a thin and poorly vascularized placental labyrinth. The timing and specific abnormalities noted suggest a defect in one or more developmental signaling pathways as a possible mechanism. Here, we examined the possible involvement of the hedgehog signaling pathway in the placental pathology of Nsdhl mutants using a transgenic mouse line (Ptch1(tm1Mps)) that contains a lacZ reporter under the control of the promoter for Ptch1, the gene that encodes the major hedgehog receptor. We demonstrate expression of Ptch1 in allantoic mesoderm of the placenta from wild-type mid-gestation embryos. The evidence suggests that the signaling is induced by Indian hedgehog that is produced by distal (ectoplacental) visceral endoderm cells that migrate into the allantoic mesoderm before embryonic day 10.0. Using a ubiquitously expressed, X-linked lacZ transgene that undergoes normal X-inactivation, we demonstrate that the placental defects in Nsdhl/+ female embryos are non-cell autonomous. Further, affected placentas from mutant Nsdhl(Bpa-8H) male embryos demonstrate markedly decreased or no Ptch1-lacZ staining and no migration of Ihh expressing cells into the developing placenta. These data strongly implicate the hedgehog signaling pathway in the pathogenesis of the placental defects in NSDHL deficiency and provide evidence for a role for the hedgehog pathway in the development of a functional mammalian placenta.
Collapse
Affiliation(s)
- Fenglei Jiang
- Center for Molecular and Human Genetics, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | | |
Collapse
|
36
|
Koide T, Hayata T, Cho KWY. Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. Development 2006; 133:2395-405. [PMID: 16687448 DOI: 10.1242/dev.02393] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholesterol regulates Hedgehog (Hh) signaling during early vertebrate development. Smith-Lemli-Opitz syndrome (SLOS) is caused by defects in 7-dehydrocholesterol reductase (DHCR7), an enzyme catalyzing the final step of cholesterol biosynthesis. Many developmental malformations attributed to SLOS occur in tissues and organs where Hh signaling is required for development, but the precise role of DHCR7 deficiency in this disease remains murky. We report that DHCR7 and Sonic Hedgehog (Shh) are co-expressed during midline development in Xenopus embryos. DHCR7 has previously been implicated to function as a positive regulator of Hh signaling that acts to regulate the cholesterol adduction of Hh ligand or to affect Hh signaling in the responding cell. We present gain- and loss-of-function analyses suggesting that DHCR7 functions as a negative regulator of Hh signaling at the level or downstream of Smoothened (Smo) and affects intracellular Hh signaling. Our analysis also raises the possibility that the human condition SLOS is caused not only by disruption of the enzymatic role of DHCR7 as a reductase in cholesterol biosynthesis, but may also involve defects in DHCR7 resulting in derepression of Shh signaling.
Collapse
Affiliation(s)
- Tetsuya Koide
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
37
|
Maity T, Fuse N, Beachy PA. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci U S A 2005; 102:17026-31. [PMID: 16282375 PMCID: PMC1282174 DOI: 10.1073/pnas.0507848102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Holoprosencephaly (HPE), a human developmental brain defect, usually is also associated with varying degrees of midline facial dysmorphism. Heterozygous mutations in the Sonic hedgehog (SHH) gene are the most common genetic lesions associated with HPE, and loss of Shh function in the mouse produces cyclopia and alobar forebrain development. The N-terminal domain (ShhNp) of Sonic hedgehog protein, generated by cholesterol-dependent autoprocessing and modification at the C terminus and by palmitate addition at the N terminus, is the active ligand in the Shh signal transduction pathway. Here, we analyze seven reported missense mutations (G31R, D88V, Q100H, N115K, W117G, W117R, and E188Q) that alter the N-terminal signaling domain of Shh protein, and show that two of these mutations (Q100H and E188Q), which are questionably linked to HPE, produce no detectable effects on function. The remaining five alterations affect normal processing, Ptc binding, and signaling to varying degrees. These effects include introduction of a recognition site for furin-like proteases by the G31R alteration, resulting in cleavage of 11 amino acid residues from the N terminus of ShhNp and consequent reduced signaling potency. Two other alterations, W117G and W117R, cause temperature-dependent misfolding and retention in the sterol-poor endoplasmic reticulum, thus disrupting cholesterol-dependent autoprocessing.
Collapse
Affiliation(s)
- Tapan Maity
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
38
|
Mastronardi FG, Moscarello MA. Molecules affecting myelin stability: a novel hypothesis regarding the pathogenesis of multiple sclerosis. J Neurosci Res 2005; 80:301-8. [PMID: 15704220 DOI: 10.1002/jnr.20420] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this Mini-Review we present a new hypothesis in support of the neurodegenerative theory as a mechanism for the pathogenesis of multiple sclerosis (MS). The pathogenesis of MS results from changes in two distinct CNS compartments. These are the "myelin" and "nonmyelin" compartments. The myelin compartment is where primary demyelination, amidst attempts at remyelination, is superseded in the CNS by ongoing disease. Recent evidence obtained via magnetic resonance imaging and spectroscopy techniques supports the view that the normal-appearing white matter (NAWM) in the MS brain is altered. Several biochemical changes in NAWM have been determined. These include the cationicity of myelin basic protein (MBP) as a result of the action of peptidyl argininedeiminase (PAD) activity converting arginyl residues to citrulline. The accompanying loss of positive charge makes myelin susceptible to vesiculation and MBP more susceptible to proteolytic activity. An increase of MBP autocatalysis in the MS brain might also contribute to the generation of immunodominant epitopes. Accompanying the destruction of myelin in the myelin compartment is the activation of astrocytes and microglia. These contribute to the inflammatory response and T-cell activation leading to autoimmunity. The complex environment that exists in the demyelinating brain also affects the "nonmyelin" compartment. The inappropriate up-regulation of molecules, including those of the Jagged-1-Notch-1 signal transduction pathway, affects oligodendrocyte precursor cell (OPC) differentiation. Other effectors of oligodendrocyte maturation include stathmin, a microtubule-destabilizing protein, which prevents healing in the demyelinating brain. The hypothesis we present suggests a therapeutic strategy that should 1) target the effectors within the myelin compartment and 2) enable resident OPC maturation in the nonmyelin compartment, allowing for effective repair of myelin loss. The net effect of this new therapeutic strategy is the modification of the disease environment and the stimulation of healing and repair.
Collapse
Affiliation(s)
- Fabrizio G Mastronardi
- Structural Biochemistry and Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
39
|
Coulombe J, Traiffort E, Loulier K, Faure H, Ruat M. Hedgehog interacting protein in the mature brain: membrane-associated and soluble forms. Mol Cell Neurosci 2004; 25:323-33. [PMID: 15019948 DOI: 10.1016/j.mcn.2003.10.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 10/14/2003] [Accepted: 10/29/2003] [Indexed: 12/21/2022] Open
Abstract
Hedgehog interacting protein (Hip) is considered as a membrane protein implicated in sequestering the hedgehog (hh) morphogens during embryonic development. Here, we demonstrate that Hip transcription also occurs in cells scattered in discrete brain areas of adult rodents and we identify the presence of membrane-associated and soluble forms of Hip in the mature brain. Moreover, we show that soluble forms of Hip, present in the conditioned medium of HEK293 cells overexpressing Hip, inhibit Sonic hedgehog (Shh)-induced differentiation of C3H10T1/2 cells, a well-characterised response associated with Shh signalling. After transfection in HEK293 cells, Hip partitions with the raft component ganglioside GM1 during density gradient centrifugation. Analysis of tagged Hip constructs reveals that the putative transmembrane domain of Hip is not cleaved suggesting that other mechanisms are implicated in the release of its soluble forms. Taken together, these data are consistent with the involvement of both membrane-associated and soluble Hip in the regulation of Shh signalling in adult neural tissues.
Collapse
Affiliation(s)
- J Coulombe
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
40
|
Yu H, Wessels A, Chen J, Phelps AL, Oatis J, Tint GS, Patel SB. Late gestational lung hypoplasia in a mouse model of the Smith-Lemli-Opitz syndrome. BMC DEVELOPMENTAL BIOLOGY 2004; 4:1. [PMID: 15005800 PMCID: PMC341451 DOI: 10.1186/1471-213x-4-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 02/02/2004] [Indexed: 11/24/2022]
Abstract
Background Normal post-squalene cholesterol biosynthesis is important for mammalian embryonic development. Neonatal mice lacking functional dehydrocholesterol Δ7-reductase (Dhcr7), a model for the human disease of Smith-Lemli-Opitz syndrome, die within 24 hours of birth. Although they have a number of biochemical and structural abnormalities, one cause of death is from apparent respiratory failure due to developmental pulmonary abnormalities. Results In this study, we characterized further the role of cholesterol deficiency in lung development of these mice. Significant growth retardation, beginning at E14.5~E16.5, was observed in Dhcr7-/- embryos. Normal lobation but smaller lungs with a significant decrease in lung-to-body weight ratio was noted in Dhcr7-/- embryos, compared to controls. Lung branching morphogenesis was comparable between Dhcr7-/- and controls at early stages, but delayed saccular development was visible in all Dhcr7-/- embryos from E17.5 onwards. Impaired pre-alveolar development of varying severity, inhibited cell proliferation, delayed differentiation of type I alveolar epithelial cells (AECs) and delayed vascular development were all evident in knockout lungs. Differentiation of type II AECs was apparently normal as judged by surfactant protein (SP) mRNAs and SP-C immunostaining. A significant amount of cholesterol was detectable in knockout lungs, implicating some maternal transfer of cholesterol. No significant differences of the spatial-temporal localization of sonic hedgehog (Shh) or its downstream targets by immunohistochemistry were detected between knockout and wild-type lungs and Shh autoprocessing occurred normally in tissues from Dhcr7-/- embryos. Conclusion Our data indicated that cholesterol deficiency caused by Dhcr7 null was associated with a distinct lung saccular hypoplasia, characterized by failure to terminally differentiate alveolar sacs, a delayed differentiation of type I AECs and an immature vascular network at late gestational stages. The molecular mechanism of impaired lung development associated with sterol deficiency by Dhcr7 loss is still unknown, but these results do not support the involvement of dysregulated Shh-Patched-Gli pathway in causing this defect.
Collapse
Affiliation(s)
- Hongwei Yu
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Andy Wessels
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Jianliang Chen
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Aimee L Phelps
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29403, USA
| | - John Oatis
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - G Stephen Tint
- Research Service, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA and Medical Service, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| |
Collapse
|
41
|
Abstract
In recent years, the impressive development of molecular genetics tools, the sequencing of the Arabidopsis thaliana genome, the availability of DNA or transposon tagged mutants, and the multiple possibilities offered by stable transformation with DNA in sense and antisense orientation have enabled the application of a strategy of gain or loss of function to study the sterol biosynthesis pathway. Here we describe the results obtained with these techniques. The results essentially confirm data obtained previously with sterol biosynthesis inhibitors (SBIs) and enable the precise dissection of biosynthetic pathways. We discuss the advantages and disadvantages of molecular genetics techniques as applied to sterol metabolism. The greater selectivity of these techniques constitutes an invaluable advantage and has led to the discovery of a role for sterols in plant development.
Collapse
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogenese et Fonctions des Isoprenoides, UPR-CNRS 2357, 28 rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
42
|
Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, Porter FD, Beachy PA. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 2003; 33:508-13. [PMID: 12652302 DOI: 10.1038/ng1134] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS), desmosterolosis and lathosterolosis are human syndromes caused by defects in the final stages of cholesterol biosynthesis. Many of the developmental malformations in these syndromes occur in tissues and structures whose embryonic patterning depends on signaling by the Hedgehog (Hh) family of secreted proteins. Here we report that response to the Hh signal is compromised in mutant cells from mouse models of SLOS and lathosterolosis and in normal cells pharmacologically depleted of sterols. We show that decreasing levels of cellular sterols correlate with diminishing responsiveness to the Hh signal. This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct. We further find that sterol depletion affects the activity of Smoothened (Smo), an essential component of the Hh signal transduction apparatus.
Collapse
Affiliation(s)
- Michael K Cooper
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Maekawa S, Iino S, Miyata S. Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:261-70. [PMID: 12648779 DOI: 10.1016/s0005-2736(03)00023-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many fundamental neurological issues such as neuronal polarity, the formation and remodeling of synapses, synaptic transmission, and the pathogenesis of the neuronal cell death are closely related to the membrane dynamics. The elucidation of functional roles of a detergent-insoluble cholesterol-rich domain (raft) could therefore provide good clues to the molecular understanding of these important phenomena, for the participation of the raft in the fundamental cell functions, such as signal transduction and selective transport of lipids and proteins, has been elucidated in nonneural cells. Interestingly, the brain is rich in raft and the brain-derived raft differs in its lipid and protein components from other tissue-derived rafts. Since many excellent reviews are written on the membrane lipid dynamics of this microdomain, signal transduction, and neuronal glycolipids, we review on the characterization of the raft proteins recovered in the detergent-insoluble low-density fraction from rat brain. Special focus is addressed on the biochemical characterization of a neuronal enriched protein, NAP-22, for the lipid organizing activity of this protein has become increasingly clear.
Collapse
Affiliation(s)
- Shohei Maekawa
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai 1-1, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
44
|
Jeong J, McMahon AP. Cholesterol modification of Hedgehog family proteins. J Clin Invest 2002; 110:591-6. [PMID: 12208857 PMCID: PMC151115 DOI: 10.1172/jci16506] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Juhee Jeong
- Department of Molecular and Cellular Biology, The Biolabs, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
45
|
|
46
|
Affiliation(s)
- Juhee Jeong
- Department of Molecular and Cellular Biology, The Biolabs, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogénèse et Fonctions des Isoprénoides, UPR-CNRS 2357, 28 rue Goethe, 67083-Strasbourg, France
| |
Collapse
|
48
|
Abstract
The ability of Hedgehog (Hh) proteins to exert their biological effects is regulated by a series of post-translational processes. These processes include an intramolecular cleavage, covalent addition of cholesterol and/or palmitate, and conversion into a multimeric freely diffusible form. The processing of Hh proteins affects their trafficking, potency, and ability to signal over many cell diameters. Accordingly, the loss of gene products required for these processes abrogates the Hh proteins' abilities to exert their effects, which can be long range, short range, or both. We review here recent evidence demonstrating that Hh proteins are directly responsible for their long-range biological effects. Additionally, we integrate both genetic and biochemical data to delineate a model illustrating how the unusual biochemistry of Hh family members may allow them to act as morphogens, signaling over both short and long distances.
Collapse
Affiliation(s)
- John A Goetz
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | | | | | | |
Collapse
|
49
|
Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, Younkin SG, Golde TE. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 2002; 9:11-23. [PMID: 11848681 DOI: 10.1006/nbdi.2001.0470] [Citation(s) in RCA: 316] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Buoyant membrane fractions containing presenilin 1 (PS1), an essential component of the gamma-secretase complex, and APP CTFbeta, a gamma-secretase substrate, can be isolated from cultured cells and brain by several different fractionation procedures that are compatible with in vitro gamma-secretase assays. Analysis of these gradients for amyloid beta protein (Abeta) and CTFgamma production indicated that gamma-secretase activity is predominantly localized in these buoyant membrane microdomains. Consistent with this localization, we find that gamma-secretase activity is cholesterol dependent. Depletion of membrane cholesterol completely inhibits gamma-secretase cleavage, which can be restored by cholesterol replacement. Thus, altering cholesterol levels may influence the development of Alzheimer's disease (AD) by influencing production and deposition of Abeta within cholesterol rich membrane microdomains.
Collapse
Affiliation(s)
- Suzanne Wahrle
- Department of Neuroscience and Pharmacology, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Traiffort E, Moya KL, Faure H, Hässig R, Ruat M. High expression and anterograde axonal transport of aminoterminal sonic hedgehog in the adult hamster brain. Eur J Neurosci 2001; 14:839-50. [PMID: 11576188 DOI: 10.1046/j.0953-816x.2001.01708.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (SHH) is considered to play an important role in tissue induction and patterning during development, particularly in determining neuronal cell fate in the ventral neural tube and in the embryonic forebrain. SHH precursor is autoproteolytically cleaved to an aminoterminal fragment (SHHN) which retains all known SHH biological activities. Here, we demonstrate the expression of a 22-kDa SHHN immunoreactive peptide in developing and adult hamster brain regions using a rabbit antiserum directed against a mouse SHHN fragment. Interestingly, SHHN was developmentally regulated with the highest expression observed in the adult brain, was resistant to Triton X-100 solubilization at 4 degrees C and partitioned with the raft component ganglioside GM1 during density gradient centrifugation. In rat brain, Shh transcripts were identified by double in situ hybridization in GABAergic neurons located in various basal forebrain nuclei including globus pallidus, ventral pallidum, medial septum-diagonal band complex, magnocellular preoptic nucleus and in cerebellar Purkinje cells as well as in motoneurons of several cranial nerve nuclei and of the spinal cord. We show that radiolabelled SHHN peptides are synthesized in the adult hamster retina and are transported axonally along the optic nerve to the superior colliculus in vivo. Our data indicate that SHHN is associated with cholesterol rich raft-like microdomains and anterogradely transported in the adult brain, and suggest that the roles of this extracellular protein are more diverse than originally thought.
Collapse
Affiliation(s)
- E Traiffort
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Junior Group ATIPE, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|