1
|
Aksoyer Sezgin SB, Durak S, Celik F, Guler V, Sarikaya A, Zeybek U. Evaluation of rs781673405, rs1244378045, rs767450259, rs750556128, rs369143448, rs143353036, and rs759369504 mutations in terms of polymorphism in diabetic obese and non-diabetic obese individuals. Endocrine 2025; 88:467-481. [PMID: 39985597 DOI: 10.1007/s12020-025-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Obesity is among the important healthcare issues in which there is an abnormal increase in body fat because energy intake is higher than energy expenditure. The Tumor Necrosis Factor (TNF)-alpha overexpression in adipose tissue plays important roles in mediating obesity and insulin resistance. "TNF-related apoptosis-inducing Ligand (TRAIL(TNSF10))", which is a member of the TNF family, is expressed as a Type-II Transmembrane Protein with an effect on the development of obesity and diabetes. METHODS The rs781673405, rs1244378045, rs767450259, rs750556128, rs369143448, rs143353036, and rs759369504 polymorphisms of TRAIL, which were determined to play protective roles against diabetes, were evaluated with the RT-qPZR Method in the present study. RESULTS It was found that the genotype distribution of TRAIL rs767450259 Polymorphism was significant and the T-Allele had protective effects against diabetic obesity. It was also found that the G-Allele of the rs369143448 Polymorphism had protective roles against diabetic obesity. It was shown that carrying the A-Allele in the rs750556128 Polymorphism might increase the risk of obesity in diabetic patients by 1.3-fold. CONCLUSIONS The present study makes a significant contribution to the literature data because it is the first to investigate these polymorphisms.
Collapse
Affiliation(s)
- Saadet Busra Aksoyer Sezgin
- Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul Yeni Yuzyil University, 34010, Istanbul, Turkey
| | - Sermin Durak
- Faculty of Medicine, Department of Medical Microbiology, Istanbul University Cerrahpasa, 34320, Istanbul, Turkey
| | - Faruk Celik
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Varol Guler
- Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul Yeni Yuzyil University, 34010, Istanbul, Turkey
| | - Aysegul Sarikaya
- Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul Yeni Yuzyil University, 34010, Istanbul, Turkey
| | - Umit Zeybek
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey.
| |
Collapse
|
2
|
Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM. RBM43 controls PGC1α translation and a PGC1α-STING signaling axis. Cell Metab 2025; 37:742-757.e8. [PMID: 39965564 PMCID: PMC11885043 DOI: 10.1016/j.cmet.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Obesity is associated with systemic inflammation that impairs mitochondrial function. This disruption curtails oxidative metabolism, limiting adipocyte lipid metabolism and thermogenesis, a metabolically beneficial program that dissipates chemical energy as heat. Here, we show that PGC1α, a key governor of mitochondrial biogenesis, is negatively regulated at the level of its mRNA translation by the RNA-binding protein RBM43. RBM43 is induced by inflammatory cytokines and suppresses mitochondrial biogenesis in a PGC1α-dependent manner. In mice, adipocyte-selective Rbm43 disruption elevates PGC1α translation and oxidative metabolism. In obesity, Rbm43 loss improves glucose tolerance, reduces adipose inflammation, and suppresses activation of the innate immune sensor cGAS-STING in adipocytes. We further identify a role for PGC1α in safeguarding against cytoplasmic accumulation of mitochondrial DNA, a cGAS ligand. The action of RBM43 defines a translational regulatory axis by which inflammatory signals dictate cellular energy metabolism and contribute to metabolic disease pathogenesis.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Symanthika Bose
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Steffen TL, Stafford JD, Samson WK, Yosten GLC. Nesfatin-1 is a regulator of inflammation with implications during obesity and metabolic syndrome. Appetite 2024; 203:107669. [PMID: 39251090 DOI: 10.1016/j.appet.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nesfatin-1, derived from the nucleobindin 2 (NUCB2) precursor, is a potent anorexigenic peptide that was discovered in 2006. Since its identification in the hypothalamus, it has been shown to have wide ranging actions within and outside of the central nervous system. One of these actions is the regulation of inflammation, which could potentially be exploited therapeutically in the context of obesity-associated inflammation in adipose tissue. Here, we review recent advances in our knowledge about the ability of nesfatin-1 to control inflammation by regulating NFκB signaling, which likely attenuates pro-inflammatory cytokine production and inhibits apoptosis.
Collapse
Affiliation(s)
- Tara L Steffen
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA.
| | - Joshua D Stafford
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Willis K Samson
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Gina L C Yosten
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| |
Collapse
|
4
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Takahashi H, Morikawa M, Ozaki E, Numasaki M, Morimoto H, Tanaka M, Inoue H, Goto T, Kawada T, Eguchi F, Uehara M, Takahashi N. A modified system using macrophage-conditioned medium revealed that the indirect effects of anti-inflammatory food-derived compounds improve inflammation-induced suppression of UCP-1 mRNA expression in 10T1/2 adipocytes. Biosci Biotechnol Biochem 2024; 88:679-688. [PMID: 38499443 DOI: 10.1093/bbb/zbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Recently, it has been suggested that brown and beige adipocytes may ameliorate obesity because these adipocytes express uncoupling protein-1 (UCP-1), which generates heat by consuming lipid. However, obesity-induced inflammation suppresses the expression of UCP-1. To improve such conditions, food components with anti-inflammatory properties are attracting attention. In this study, we developed a modified system to evaluate only the indirect effects of anti-inflammatory food-derived compounds by optimizing the conventional experimental system using conditioned medium. We validated this new system using 6-shogaol and 6-gingerol, which have been reported to show the anti-inflammatory effects and to increase the basal expression of UCP-1 mRNA. In addition, we found that the acetone extract of Sarcodon aspratus, an edible mushroom, showed anti-inflammatory effects and rescued the inflammation-induced suppression of UCP-1 mRNA expression. These findings indicate that the system with conditioned medium is valuable for evaluation of food-derived compounds with anti-inflammatory effects on the inflammation-induced thermogenic adipocyte dysfunction.
Collapse
Affiliation(s)
- Hisako Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Morikawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Emi Ozaki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Minami Numasaki
- Department of Forest Science, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fumio Eguchi
- Department of Forest Science, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
6
|
Zhang L, Wan B, Zheng J, Chen L, Xuan Y, Zhang R, Chen Z, Hu C, Zhang Y, Yan C. Polystyrene nanoplastics inhibit beige fat function and exacerbate metabolic disorder in high-fat diet-fed mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170700. [PMID: 38331288 DOI: 10.1016/j.scitotenv.2024.170700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Global health concerns about micro- and nanoplastics are increasing. The newly discovered beige adipocytes play a vital role in energy homeostasis through their high thermogenic capacity upon activation. However, the effects of micro- and nanoplastics on beige adipocytes have not yet been studied. We investigated whether the effects of oral exposure to polystyrene nanoparticles (PS-NPs) on systemic metabolic performance can be induced by disrupting beige adipocyte function, and the potential mechanism. In the present study, C57BL/6J male mice were fed a high-fat diet (HFD) with or without PS-NPs exposure for 12 weeks to investigate the differences in metabolic performance. We also isolated stromal vascular fraction from C57BL/6J male mice to differentiate and prepare primary beige adipocyte cultures. Primary beige adipocytes were treated with PS-NPs on the sixth day of differentiation. The results showed that oral intake of PS-NPs exacerbated metabolic disorders of mice under HFD, including suppressed energy expenditure, increased fat mass and liver steatosis, decreased insulin sensitivity, disrupted glucose homeostasis, and decreased cold-tolerance capability compared with the control group. Intriguingly, we observed that, after a 12-week exposure, PS-NPs accumulated in the inguinal white adipose tissue (iWAT), a fat depot rich in beige adipocytes, further suppressing thermogenic gene programs, particularly the level of uncoupling protein 1 (UCP1), a master regulator in the browning process of beige adipocytes. These effects ultimately led to decreased energy expenditure and subsequent disorders of glucolipid metabolism. Mechanistically, we revealed that PS-NPs disrupt mitochondrial function and induce oxidative damage and inflammation in beige adipocytes to inhibit their function. These negative metabolic effects of PS-NPs were ameliorated by antioxidant supplementation. Our study is the first to demonstrate that PS-NPs exposure exacerbates metabolic disorder in HFD-fed mice by disrupting beige adipocyte function.
Collapse
Affiliation(s)
- Lina Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiangfei Zheng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Abbasi K, Zarezadeh R, Valizadeh A, Mehdizadeh A, Hamishehkar H, Nouri M, Darabi M. White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues. Biochem Pharmacol 2024; 220:116012. [PMID: 38159686 DOI: 10.1016/j.bcp.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
This study highlights the therapeutic potential of activating brown adipose tissue (BAT) for managing polycystic ovary syndrome (PCOS), a prevalent endocrine disorder associated with metabolic and reproductive abnormalities. BAT plays a crucial role in regulating energy expenditure and systemic insulin sensitivity, making it an attractive target for the treatment of obesity and metabolic diseases. Recent research suggests that impaired BAT function and mass may contribute to the link between metabolic disturbances and reproductive issues in PCOS. Additionally, abnormal white adipose tissue (WAT) can exacerbate these conditions by releasing adipokines and nonesterified fatty acids. In this review, we explored the impact of WAT changes on BAT function in PCOS and discussed the potential of BAT activation as a therapeutic strategy to improve PCOS symptoms. We propose that BAT activation holds promise for managing PCOS; however, further research is needed to confirm its efficacy and to develop clinically feasible methods for BAT activation.
Collapse
Affiliation(s)
- Khadijeh Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
8
|
Liu W, Liu T, Zhao Q, Ma J, Jiang J, Shi H. Adipose Tissue-Derived Extracellular Vesicles: A Promising Biomarker and Therapeutic Strategy for Metabolic Disorders. Stem Cells Int 2023; 2023:9517826. [PMID: 38169960 PMCID: PMC10761228 DOI: 10.1155/2023/9517826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Adipose tissue plays an important role in systemic energy metabolism, and its dysfunction can lead to severe metabolic disorders. Various cells in adipose tissue communicate with each other to maintain metabolic homeostasis. Extracellular vesicles (EVs) are recognized as novel medium for remote intercellular communication by transferring various bioactive molecules from parental cells to distant target cells. Increasing evidence suggests that the endocrine functions of adipose tissue and even the metabolic homeostasis are largely affected by different cell-derived EVs, such as insulin signaling, lipolysis, and metabolically triggered inflammation regulations. Here, we provide an overview focused on the role of EVs released by different cell types of adipose tissue in metabolic diseases and their possible molecular mechanisms and highlight the potential applications of EVs as biomarkers and therapeutic targets. Moreover, the current EVs-based therapeutic strategies have also been discussed. This trial is registered with NCT05475418.
Collapse
Affiliation(s)
- Wenhui Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tianyan Liu
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Qingyu Zhao
- Department of Nephrology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Junqiu Ma
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
9
|
Xie L, Wang H, Wu D, Zhang F, Chen W, Ye Y, Hu F. CXCL13 promotes thermogenesis in mice via recruitment of M2 macrophage and inhibition of inflammation in brown adipose tissue. Front Immunol 2023; 14:1253766. [PMID: 37936696 PMCID: PMC10627189 DOI: 10.3389/fimmu.2023.1253766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brown adipose tissue (BAT) is mainly responsible for mammalian non-shivering thermogenesis and promotes energy expenditure. Meanwhile, similar to white adipose tissue (WAT), BAT also secretes a variety of adipokines to regulate metabolism through paracrine, autocrine, or endocrine ways. The chemokine C-X-C motif chemokine ligand-13 (CXCL13), a canonical B cell chemokine, functions in inflammation and tumor-related diseases. However, the role of CXCL13 in the adipose tissues is unclear. Methods The expression of CXCL13 in BAT and subcutaneous white adipose tissue (SWAT) of mice under cold stimulation were detected. Local injection of CXCL13 into BAT of normal-diet and high-fat-diet induced obese mice was used to detect thermogenesis and determine cold tolerance. The brown adipocytes were treated with CXCL13 alone or in the presence of macrophages to determine the effects of CXCL13 on thermogenic and inflammation related genes expression in vitro. Results In this study, we discovered that the expression of CXCL13 in the stromal cells of brown adipose tissue significantly elevated under cold stimulation. Overexpression of CXCL13 in the BAT via local injection could increase energy expenditure and promote thermogenesis in obese mice. Mechanically, CXCL13 could promote thermogenesis via recruiting M2 macrophages in the BAT and, in the meantime, inhibiting pro-inflammatory factor TNFα level. Discussion This study revealed the novel role of adipose chemokine CXCL13 in the regulation of BAT activity and thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Cinti S. Obese Adipocytes Have Altered Redox Homeostasis with Metabolic Consequences. Antioxidants (Basel) 2023; 12:1449. [PMID: 37507987 PMCID: PMC10376822 DOI: 10.3390/antiox12071449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
White and brown adipose tissues are organized to form a real organ, the adipose organ, in mice and humans. White adipocytes of obese animals and humans are hypertrophic. This condition is accompanied by a series of organelle alterations and stress of the endoplasmic reticulum. This stress is mainly due to reactive oxygen species activity and accumulation, lending to NLRP3 inflammasome activation. This last causes death of adipocytes by pyroptosis and the formation of large cellular debris that must be removed by macrophages. During their chronic scavenging activity, macrophages produce several secretory products that have collateral consequences, including interference with insulin receptor activity, causing insulin resistance. The latter is accompanied by an increased noradrenergic inhibitory innervation of Langerhans islets with de-differentiation of beta cells and type 2 diabetes. The whitening of brown adipocytes could explain the different critical death size of visceral adipocytes and offer an explanation for the worse clinical consequence of visceral fat accumulation. White to brown transdifferentiation has been proven in mice and humans. Considering the energy-dispersing activity of brown adipose tissue, transdifferentiation opens new therapeutic perspectives for obesity and related disorders.
Collapse
Affiliation(s)
- Saverio Cinti
- Scientific Director Centre of Obesity, Marche Polytechnic University, Via Tronto 10a, 60126 Ancona, Italy
| |
Collapse
|
11
|
Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023; 43:232519. [PMID: 36718668 PMCID: PMC10011338 DOI: 10.1042/bsr20220200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
12
|
Saito M, Okamatsu-Ogura Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J Mens Health 2023:41.e26. [PMID: 36792089 DOI: 10.5534/wjmh.220224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 01/27/2023] Open
Abstract
In mammals including humans, there are two types of adipose tissue, white and brown adipose tissues (BATs). White adipose tissue is the primary site of energy storage, while BAT is a specialized tissue for non-shivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. It is now established that BAT, through its thermogenic and energy dissipating activities, plays a role in the regulation of body temperature, whole-body energy expenditure, and body fatness. Moreover, increasing evidence has demonstrated that BAT secretes various paracrine and endocrine factors, which influence other peripheral tissues and control systemic metabolic homeostasis, suggesting BAT as a metabolic regulator, other than for thermogenesis. In fact, clinical studies have revealed an association of BAT not only with metabolic disorders such as insulin resistance, diabetes, dyslipidemia, and fatty liver, but also with cardiovascular diseases including hypertension and atherosclerosis. Thus, BAT is an intriguing tissue combating obesity and related metabolic diseases. In this review, we summarize current knowledge on human BAT, focusing its patho-physiological roles in energy homeostasis, obesity and related metabolic disorders. The effects of aging and sex on BAT are also discussed.
Collapse
Affiliation(s)
- Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM. RBM43 links adipose inflammation and energy expenditure through translational regulation of PGC1α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522985. [PMID: 36712038 PMCID: PMC9881917 DOI: 10.1101/2023.01.06.522985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adipose thermogenesis involves specialized mitochondrial function that counteracts metabolic disease through dissipation of chemical energy as heat. However, inflammation present in obese adipose tissue can impair oxidative metabolism. Here, we show that PGC1α, a key governor of mitochondrial biogenesis and thermogenesis, is negatively regulated at the level of mRNA translation by the little-known RNA-binding protein RBM43. Rbm43 is expressed selectively in white adipose depots that have low thermogenic potential, and is induced by inflammatory cytokines. RBM43 suppresses mitochondrial and thermogenic gene expression in a PGC1α-dependent manner and its loss protects cells from cytokine-induced mitochondrial impairment. In mice, adipocyte-selective Rbm43 disruption increases PGC1α translation, resulting in mitochondrial biogenesis and adipose thermogenesis. These changes are accompanied by improvements in glucose homeostasis during diet-induced obesity that are independent of body weight. The action of RBM43 suggests a translational mechanism by which inflammatory signals associated with metabolic disease dampen mitochondrial function and thermogenesis.
Collapse
|
14
|
Liu J, Zeng D, Luo J, Wang H, Xiong J, Chen X, Chen T, Sun J, Xi Q, Zhang Y. LPS-Induced Inhibition of miR-143 Expression in Brown Adipocytes Promotes Thermogenesis and Fever. Int J Mol Sci 2022; 23:13805. [PMID: 36430282 PMCID: PMC9696956 DOI: 10.3390/ijms232213805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Zinngrebe J, Fischer-Posovszky P. AcroBATics: how dying brown adipocytes trigger browning. Nat Rev Endocrinol 2022; 18:661-662. [PMID: 36064975 DOI: 10.1038/s41574-022-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Zinngrebe
- Ulm University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | |
Collapse
|
16
|
Alizadeh Pahlavani H. Possible roles of exercise and apelin against pregnancy complications. Front Endocrinol (Lausanne) 2022; 13:965167. [PMID: 36093083 PMCID: PMC9452694 DOI: 10.3389/fendo.2022.965167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of maternal obesity during pregnancy is associated with the risk of gestational diabetes, preeclampsia, and cardiomyopathy. Environmental factors such as active lifestyles and apelin may lead to beneficial changes. In rats, apelin and exercise (45 to 65% VO2max for 6 to 9 weeks) during pregnancy increase brown adipose tissue (BAT) proteins such as Cidea, Elovl3, UCP1, PRDM16, and PGC-1α in males and females fetuses, while white adipose tissue (WAT) is reduced. In humans and animals, apelin and exercise stimulate the expression of the glucose transporters (GLUT1/2/4) in the muscle and adipose tissue through the PI3K/Akt and AMPK pathways. Hence, exercise and apelin may are known as regulators of energy metabolism and be anti-obesity and anti-diabetic properties. In mice, exercise also creates a short-term hypoxic environment in the pregnant mother, activating HIF-1, VEGF, and VEGFR, and increasing angiogenesis. Exercise and apelin also increase vasodilation, angiogenesis, and suppression of inflammation through the L-arginine/eNOS/NO pathway in humans. Exercise can stimulate the ACE2-Ang-(1-7)-Mas axis in parallel with inhibiting the ACE-Ang II-AT1 pathway. Exercise and apelin seem to prevent preeclampsia through these processes. In rats, moderate-intensity exercise (60 to 70% VO2max for 8 weeks) and apelin/APJ also may prevent pathological hypertrophy in pregnancy by activating the PI3K/Akt/mTOR/p70S6K pathway, PI3k-Akt-ERK1/2-p70S6K pathway, and the anti-inflammatory cytokine IL-10. Since pre-clinical studies have been more on animal models, future research with scientific guidelines should pay more attention to human specimens. In future research, time factors such as the first, second, and third trimesters of pregnancy and the intensity and duration of exercise are important variables that should be considered to determine the optimal intensity and duration of exercise.
Collapse
|
17
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
18
|
Faal M, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR. Assessment of resveratrol on diabetes of zebrafish ( Danio rerio). J Diabetes Metab Disord 2022; 21:823-833. [PMID: 35673499 PMCID: PMC9167402 DOI: 10.1007/s40200-021-00964-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 12/23/2021] [Indexed: 01/29/2023]
Abstract
Purpose Zebrafish (Danio rerio) is an established model for studying various metabolic diseases. The aim of this study was to evaluate the effect of resveratrol as a natural polyphenol on reducing inflammation caused by hyperglycemia (diabetes) and its effect on digestive tissue as well as TNF-α, IFN-γ, and INL1β genes in zebrafish. Methods Within a 20-day period, the research was performed on 120 adult zebrafish, which were randomly classified into eight groups: two experimental treatments (induced glucose = +G) and (without glucose = -G), where each main group was as follows: CTRL = control and RSV resveratrol with doses 10, 20, and 30 μmol/L. At the end of the period, the blood glucose level was measured using glucose test strip, staining of intestinal tissue was done by hematoxylin and eosin (H&E), and expression of INF-γ, IL1-β, and TNF-α genes extracted from the intestinal was measured via internal method RT-PCR. Data analysis in this study was performed using SPSS software version 21. One-way ANOVA and mean comparison of treatments by Duncan test were used for data analysis. All statistical analyses were performed at a significant level (P < 0.5) where the mean data were presented with standard deviation. Results According to the results, the lowest blood sugar level at the end of the experiment belonged to the group (G-RSV20) where no significant difference was observed between treatments (P > 0.05). The highest expression of IL1-β gene belonged to the (G + CTRL) group (P < 0.05), while the (G + RSV20) group showed the lowest expression of the INF-γ gene and had a significant difference with other groups (P < 0.05). In (G + RSV10) treatment, the lowest expression of TNF-α gene was observed and there was no significant difference with other treatments (P > 0.05). Resveratrol would improve the absorption of nutrients in the intestinal tissue by increasing the number of goblet cells as well as the width and height of the villi. Conclusion Collectively, this study indicated that treatment with resveratrol could improve metabolic-mediated performances by reducing blood glucose, increasing food absorption in the intestine tissue, and reducing the expression of inflammatory genes in type 2 diabetic zebrafish model.
Collapse
Affiliation(s)
- Mina Faal
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Hamed Manouchehri
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Bootorabi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology Metabolism Molecular-Cellular Sciences Institute, Zebra fish core Facility (ZFIN ID: ZDB-LAB-1901172), Endocrinology and Metabolism research Institute, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Phillips D, Mathers H, Mitchell SE, Speakman JR. The effects of graded levels of calorie restriction XVIII: tissue specific changes in cell size and number in response to calorie restriction. J Gerontol A Biol Sci Med Sci 2022; 77:1994-2001. [PMID: 35639808 PMCID: PMC9536453 DOI: 10.1093/gerona/glac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/12/2022] Open
Abstract
Calorie restriction (CR) without malnutrition increases the health- and lifespan of diverse taxa. The mechanism(s) behind CR are debated but may be directly linked to body composition changes that maintain energy balance. During a deficit, energy is primarily obtained from white adipose tissue (WAT; utilized) whilst other tissues remain unchanged (protected) or grow (invested) relative to body mass. The changes in mass of 6 tissues from 48 male C57BL/6 mice following 3-months graded (10, 20, 30, or 40%) CR or fed ad libitum for 12 or 24hr a day were related to cell size (hypo/hypertrophy) and/or number (hypo/hyperplasia). Tissues studied were: retroperitoneal and subcutaneous WAT, brown adipose tissue (BAT) (utilized); lungs (protected), and stomach and caecum (invested). Methodology was based on number of nuclei/ tissue equalling the number of cells. Extracted DNA was quantified and used to estimate cell numbers (Total DNA/DNA per diploid nucleus) and size (Tissue mass/nuclei number). WAT utilization was caused solely by hypotrophy whereas BAT utilization resulted from reduced cell number and size. WAT cell size positively correlated with circulating hormones related to energy balance and BAT cell number and size positively correlated with body temperature. No changes were found in the lungs, consistent with their protected status, whereas hyperplasia appeared to be the dominant mechanism for invested alimentary-tract tissues. These findings indicate the pattern of change of cell size and number across increasing levels of short-term CR is tissue-specific.
Collapse
Affiliation(s)
- Daniel Phillips
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Hayleigh Mathers
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Shenzhen key laboratory of metabolic health, Center for Energy metabolism and reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
20
|
Rahman MS, Jun H. The Adipose Tissue Macrophages Central to Adaptive Thermoregulation. Front Immunol 2022; 13:884126. [PMID: 35493493 PMCID: PMC9039244 DOI: 10.3389/fimmu.2022.884126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
White fat stores excess energy, and thus its excessive expansion causes obesity. However, brown and beige fat, known as adaptive thermogenic fat, dissipates energy in the form of heat and offers a therapeutic potential to counteract obesity and metabolic disorders. The fat type-specific biological function is directed by its unique tissue microenvironment composed of immune cells, endothelial cells, pericytes and neuronal cells. Macrophages are major immune cells resident in adipose tissues and gained particular attention due to their accumulation in obesity as the primary source of inflammation. However, recent studies identified macrophages’ unique role and regulation in thermogenic adipose tissues to regulate energy expenditure and systemic energy homeostasis. This review presents the current understanding of macrophages in thermogenic fat niches with an emphasis on discrete macrophage subpopulations central to adaptive thermoregulation.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| | - Heejin Jun
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
21
|
Tanaka-Yachi R, Otsu R, Takahashi-Muto C, Kiyose C. Delta-Tocopherol Suppresses the Dysfunction of Thermogenesis due to Inflammatory Stimulation in Brown Adipocytes. J Oleo Sci 2022; 71:1647-1653. [PMID: 36310052 DOI: 10.5650/jos.ess22184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Brown adipose tissue (BAT) functions as a radiator for thermogenesis and helps maintain body temperature and regulate metabolism. Inflammatory signals have been reported to inhibit PGC-1α activation and UCP1-mediated thermogenesis in brown adipocytes. Inflammation is mainly caused by cell hypertrophy and macrophage invasion due to obesity, and invading macrophages secrete inflammatory cytokines, including TNF-α, IL1β, and IL6, which suppress the thermogenesis in BAT. Tocopherol is a lipid-soluble vitamin with anti-inflammatory effects is expected to contribute to the suppression of inflammation in adipose tissue. In this study, we investigated the protective effect of tocopherols, α-tocopherol (α-toc) and δ-tocopherol (δ-toc), against brown adipocyte inflammation and thermogenesis dysfunction.Inflammatory stimulation by TNF-α, a major inflammatory cytokine, significantly decreased the protein expression levels of UCP1 and PGC-1α in rat primary brown adipocytes. The pre-incubation of α-toc or δ-toc significantly suppressed the decrease in UCP1 and PGC-1α expression and lipid accumulation. Additionally, α-toc and δ-toc suppress the induction of ERK1/2 gene expression, implying that an antiinflammatory effect is involved in this protective effect. We fed mice a high-fat diet for 16 weeks and investigated the effects of α-toc and δ-toc in the diet. Intake of α-toc and δ-toc significantly suppressed weight gain and hypertrophy of brown adipocytes. Our results suggest that α-toc and δ-toc suppress the dysfunction of thermogenesis in brown adipocytes due to inflammation and contribute to the treatment of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Rieko Tanaka-Yachi
- Department of Applied Biochemistry, Kanagawa Institute of Technology
- Department of Pharmacology, National Research Institute for Child Health and Development
| | - Rena Otsu
- Department of Applied Biochemistry, Kanagawa Institute of Technology
| | - Chie Takahashi-Muto
- Department of Clinical Nutrition, Kitasato Junior College of Health and Hygienic Sciences
| | - Chikako Kiyose
- Department of Nutrition and Life Science, Kanagawa Institute of Technology
| |
Collapse
|
22
|
Yoshida N, Yamashita T, Osone T, Hosooka T, Shinohara M, Kitahama S, Sasaki K, Sasaki D, Yoneshiro T, Suzuki T, Emoto T, Saito Y, Ozawa G, Hirota Y, Kitaura Y, Shimomura Y, Okamatsu-Ogura Y, Saito M, Kondo A, Kajimura S, Inagaki T, Ogawa W, Yamada T, Hirata KI. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience 2021; 24:103342. [PMID: 34805797 PMCID: PMC8586802 DOI: 10.1016/j.isci.2021.103342] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
The gut microbiome has emerged as a key regulator of obesity; however, its role in brown adipose tissue (BAT) metabolism and association with obesity remain to be elucidated. We found that the levels of circulating branched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) were significantly correlated with the body weight in humans and mice and that BCAA catabolic defects in BAT were associated with obesity in diet-induced obesity (DIO) mice. Pharmacological systemic enhancement of BCAA catabolic activity reduced plasma BCAA and BCKA levels and protected against obesity; these effects were reduced in BATectomized mice. DIO mice gavaged with Bacteroides dorei and Bacteroides vulgatus exhibited improved BAT BCAA catabolism and attenuated body weight gain, which were not observed in BATectomized DIO mice. Our data have highlighted a possible link between the gut microbiota and BAT BCAA catabolism and suggest that Bacteroides probiotics could be used for treating obesity. Gut microbiota regulated BAT BCAA catabolism Bacteroides promoted BAT BCAA catabolism and inhibited obesity Bacteroides suppressed BAT inflammation that contributed to BAT BCAA catabolic defect
Collapse
Affiliation(s)
- Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 6500017, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 6500017, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, 1-8-1 Inohana, Chuo-ku, Tokyo 1008152, Japan
| | - Tatsunori Osone
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 1528550, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, School of Food and Nutritional Sciences/Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.,The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe 6500017, Japan
| | - Seiichi Kitahama
- Department of Metabolic and Bariatric Surgery, Center for Obesity, Diabetes and Endocrinology, Chibune General Hospital, Osaka 5550034, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 6578501, Japan.,Bio Palette Co., Ltd., Kobe 6500047, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 6578501, Japan
| | - Takeshi Yoneshiro
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 1538904, Japan
| | - Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 3718512, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 6500017, Japan
| | - Yoshihiro Saito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 6500017, Japan
| | - Genki Ozawa
- TechnoSuruga Laboratory Co., Ltd., Shizuoka 4240065, Japan
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 6500017, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 4648601, Japan
| | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 4878501, Japan
| | | | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo 0600818, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 6578501, Japan
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 3718512, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 6500017, Japan
| | - Takuji Yamada
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 1528550, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 6500017, Japan
| |
Collapse
|
23
|
Yan S, Kumari M, Xiao H, Jacobs C, Kochumon S, Jedrychowski M, Chouchani E, Ahmad R, Rosen ED. IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis. J Clin Invest 2021; 131:144888. [PMID: 33571167 DOI: 10.1172/jci144888] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.
Collapse
Affiliation(s)
- Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Manju Kumari
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Geronikolou SA, Pavlopoulou A, Cokkinos DV, Bacopoulou F, Chrousos GP. Polycystic οvary syndrome revisited: An interactions network approach. Eur J Clin Invest 2021; 51:e13578. [PMID: 33955010 DOI: 10.1111/eci.13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) has genetic, epigenetic, metabolic and reproductive aspects, while its complex pathophysiology has not been conclusively deciphered. AIM The goal of this research was to screen the gene/gene products associated with PCOS and to predict any possible interactions with the highest possible fidelity. MATERIALS AND METHODS STRING v10.5 database and a confidence level of 0.7 were used. RESULTS A highly interconnected network of 48 nodes was created, where insulin (INS) appears to be the major hub. INS upstream and downstream defects were analysed and revealed that only the kisspeptin- and glucagon-coding genes were upstream of INS. CONCLUSION A metabolic dominance was inferred and discussed herein with its implications in puberty, obesity, infertility and cardiovascular function. This study, thus, may contribute to the resolution of a scientific conflict between the USA and EU definitions of the syndrome and/or provide a new P4 medicine approach.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational & Experimental Surgery Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal & Child Health & Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Dennis V Cokkinos
- Clinical, Translational & Experimental Surgery Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal & Child Health & Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Clinical, Translational & Experimental Surgery Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal & Child Health & Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Crudele L, Piccinin E, Moschetta A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients 2021; 13:2101. [PMID: 34205356 PMCID: PMC8234141 DOI: 10.3390/nu13062101] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The prevalence of being overweight and obese has been expanded dramatically in recent years worldwide. Obesity usually occurs when the energetic introit overtakes energy expenditure from metabolic and physical activity, leading to fat accumulation mainly in the visceral depots. Excessive fat accumulation represents a risk factor for many chronic diseases, including cancer. Adiposity, chronic low-grade inflammation, and hyperinsulinemia are essential factors of obesity that also play a crucial role in tumor onset. In recent years, several strategies have been pointed toward boundary fat accumulation, thus limiting the burden of cancer attributable to obesity. While remodeling fat via adipocytes browning seems a tempting prospect, lifestyle interventions still represent the main pathway to prevent cancer and enhance the efficacy of treatments. Specifically, the Mediterranean Diet stands out as one of the best dietary approaches to curtail visceral adiposity and, therefore, cancer risk. In this Review, the close relationship between obesity and cancer has been investigated, highlighting the biological mechanisms at the basis of this link. Finally, strategies to remodel fat, including browning and lifestyle interventions, have been taken into consideration as a major perspective to limit excess body weight and tumor onset.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (L.C.); (E.P.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
26
|
Chan CC, Harley ITW, Pfluger PT, Trompette A, Stankiewicz TE, Allen JL, Moreno-Fernandez ME, Damen MSMA, Oates JR, Alarcon PC, Doll JR, Flick MJ, Flick LM, Sanchez-Gurmaches J, Mukherjee R, Karns R, Helmrath M, Inge TH, Weisberg SP, Pamp SJ, Relman DA, Seeley RJ, Tschöp MH, Karp CL, Divanovic S. A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nat Commun 2021; 12:2911. [PMID: 34006859 PMCID: PMC8131685 DOI: 10.1038/s41467-021-23084-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.
Collapse
Affiliation(s)
- Calvin C Chan
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Isaac T W Harley
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Rheumatology, Department of Internal Medicine and Department of Immunology & Microbiology, The University of Colorado Denver, Aurora, CO, USA
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Aurelien Trompette
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Lausanne, Service de Pneumologie, CHUV, CLED 02.206, Epalinges, Switzerland
| | - Traci E Stankiewicz
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jessica L Allen
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- , Charlotte, NC, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle S M A Damen
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarren R Oates
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pablo C Alarcon
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jessica R Doll
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew J Flick
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah M Flick
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- , Chapel Hill, NC, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rebekah Karns
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Helmrath
- Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas H Inge
- Department of Surgery, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Sünje J Pamp
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David A Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Randy J Seeley
- Department of Surgery, Internal Medicine and Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Christopher L Karp
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Global Health Discovery & Translational Sciences, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Senad Divanovic
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Cai J, Qiong G, Li C, Sun L, Luo Y, Yuan S, Gonzalez FJ, Xu J. Manassantin B attenuates obesity by inhibiting adipogenesis and lipogenesis in an AMPK dependent manner. FASEB J 2021; 35:e21496. [PMID: 33904622 PMCID: PMC9813681 DOI: 10.1096/fj.202002126rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023]
Abstract
Saururus chinensis (S chinensis) has been used as an herb to treat edema, jaundice, and gonorrhea. Manassantin B (MNSB), a dineolignan isolated from S chinensis, was identified as a potent adipogenesis/lipogenesis inhibitor (IC50 = 9.3 nM). To explore the underlying mechanism, both adipogenesis and lipogenesis were measured in differentiated 3T3-L1 preadipocytes, murine primary preadipocytes and adipose tissue explants upon MNSB treatment. Key regulators of adipogenesis/lipogenesis were downregulated by MNSB treatment, mainly resulting from increased phosphorylation of AMPK which was identified as a vital regulator of adipogenesis and lipogenesis. Moreover, MNSB did not increase AMPK phosphorylation in 3T3-L1 cells transfected with Prkaa1 (encoding protein kinase AMP-activated catalytic subunit alpha 1) siRNA or adipose tissue explants isolated from adipose-specific Prkaa1-disrupted mice (Prkaa1Δad ). In diet-induced obese C57BL/6N mice, MNSB displayed preventive and therapeutic effects on obesity accompanied by decreased adipocyte size. MNSB was also found to increase AMPK phosphorylation both in subcutaneous white adipose tissue and brown adipose tissue in vivo. These findings suggest that MNSB can be a new therapeutic agent for the prevention and treatment of obesity and other related metabolic disorders.
Collapse
Affiliation(s)
- Jie Cai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China,Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gu Qiong
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chanjuan Li
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
28
|
Bogdanet D, Reddin C, Murphy D, Doheny HC, Halperin JA, Dunne F, O’Shea PM. Emerging Protein Biomarkers for the Diagnosis or Prediction of Gestational Diabetes-A Scoping Review. J Clin Med 2021; 10:1533. [PMID: 33917484 PMCID: PMC8038821 DOI: 10.3390/jcm10071533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Gestational diabetes (GDM), defined as hyperglycemia with onset or initial recognition during pregnancy, has a rising prevalence paralleling the rise in type 2 diabetes (T2DM) and obesity. GDM is associated with short-term and long-term consequences for both mother and child. Therefore, it is crucial we efficiently identify all cases and initiate early treatment, reducing fetal exposure to hyperglycemia and reducing GDM-related adverse pregnancy outcomes. For this reason, GDM screening is recommended as part of routine pregnancy care. The current screening method, the oral glucose tolerance test (OGTT), is a lengthy, cumbersome and inconvenient test with poor reproducibility. Newer biomarkers that do not necessitate a fasting sample are needed for the prompt diagnosis of GDM. The aim of this scoping review is to highlight and describe emerging protein biomarkers that fulfill these requirements for the diagnosis of GDM. Materials and Methods: This scoping review was conducted according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for scoping reviews using Cochrane Central Register of Controlled Trials (CENTRAL), the Cumulative Index to Nursing & Allied Health Literature (CINAHL), PubMed, Embase and Web of Science with a double screening and extraction process. The search included all articles published in the literature to July 2020. Results: Of the 3519 original database citations identified, 385 were eligible for full-text review. Of these, 332 (86.2%) were included in the scoping review providing a total of 589 biomarkers studied in relation to GDM diagnosis. Given the high number of biomarkers identified, three post hoc criteria were introduced to reduce the items set for discussion: we chose only protein biomarkers with at least five citations in the articles identified by our search and published in the years 2017-2020. When applied, these criteria identified a total of 15 biomarkers, which went forward for review and discussion. Conclusions: This review details protein biomarkers that have been studied to find a suitable test for GDM diagnosis with the potential to replace the OGTT used in current GDM screening protocols. Ongoing research efforts will continue to identify more accurate and practical biomarkers to take GDM screening and diagnosis into the 21st century.
Collapse
Affiliation(s)
- Delia Bogdanet
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Catriona Reddin
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Dearbhla Murphy
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Helen C. Doheny
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Jose A. Halperin
- Divisions of Haematology, Brigham & Women’s Hospital, Boston, MA 02115, USA;
| | - Fidelma Dunne
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Paula M. O’Shea
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| |
Collapse
|
29
|
Potential of Nutraceutical Supplementation in the Modulation of White and Brown Fat Tissues in Obesity-Associated Disorders: Role of Inflammatory Signalling. Int J Mol Sci 2021; 22:ijms22073351. [PMID: 33805912 PMCID: PMC8037903 DOI: 10.3390/ijms22073351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
The high incidence of obesity is associated with an increasing risk of several chronic diseases such as cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Sustained obesity is characterized by a chronic and unsolved inflammation of adipose tissue, which leads to a greater expression of proinflammatory adipokines, excessive lipid storage and adipogenesis. The purpose of this review is to clarify how inflammatory mediators act during adipose tissue dysfunction in the development of insulin resistance and all obesity-associated diseases. In particular, we focused our attention on the role of inflammatory signaling in brown adipose tissue (BAT) thermogenic activity and the browning of white adipose tissue (WAT), which represent a relevant component of adipose alterations during obesity. Furthermore, we reported the most recent evidence in the literature on nutraceutical supplementation in the management of the adipose inflammatory state, and in particular on their potential effect on common inflammatory mediators and pathways, responsible for WAT and BAT dysfunction. Although further research is needed to demonstrate that targeting pro-inflammatory mediators improves adipose tissue dysfunction and activates thermogenesis in BAT and WAT browning during obesity, polyphenols supplementation could represent an innovative therapeutic strategy to prevent progression of obesity and obesity-related metabolic diseases.
Collapse
|
30
|
Pan XX, Yao KL, Yang YF, Ge Q, Zhang R, Gao PJ, Ruan CC, Wu F. Senescent T Cell Induces Brown Adipose Tissue "Whitening" Via Secreting IFN-γ. Front Cell Dev Biol 2021; 9:637424. [PMID: 33748126 PMCID: PMC7969812 DOI: 10.3389/fcell.2021.637424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aging-associated chronic inflammation is a key contributing factor to a cluster of chronic metabolic disorders, such as cardiovascular disease, obesity, and type 2 diabetes. Immune cells particularly T cells accumulate in adipose tissue with advancing age, and there exists a cross talk between T cell and preadipocyte, contributing to age-related adipose tissue remodeling. Here, we compared the difference in morphology and function of adipose tissue between young (3-month-old) and old (18-month-old) mice and showed the phenomenon of brown adipose tissue (BAT) “whitening” in old mice. Flow cytometry analysis suggested an increased proportion of T cells in BAT of old mice comparing with the young and exhibited senescent characteristics. We take advantage of coculture system to demonstrate directly that senescent T cells inhibited brown adipocyte differentiation of preadipocytes in adipose tissue. Mechanistically, both in vitro and in vivo studies suggested that senescent T cells produced and released a higher level of IFN-γ, which plays a critical role in inhibition of preadipocyte-to-brown adipocyte differentiation. Taken together, the data indicate that senescent T cell-derived IFN-γ is a key regulator in brown adipocyte differentiation.
Collapse
Affiliation(s)
- Xiao-Xi Pan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Li Yao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Feng Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Qian Ge
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Zhang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Boulet N, Luijten IHN, Cannon B, Nedergaard J. Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition. Am J Physiol Endocrinol Metab 2021; 320:E359-E378. [PMID: 33284094 PMCID: PMC8260372 DOI: 10.1152/ajpendo.00352.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cold- and diet-induced recruitment of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT) are dynamic processes, and the recruited state attained is a state of dynamic equilibrium, demanding continuous stimulation to be maintained. An involvement of macrophages, classical proinflammatory (M1) or alternatively activated anti-inflammatory (M2), is presently discussed as being an integral part of these processes. If these macrophages play a mediatory role in the recruitment process, such an involvement would have to be maintained in the recruited state. We have, therefore, investigated whether the recruited state of these tissues is associated with macrophage accretion or attrition. We found no correlation (positive or negative) between total UCP1 mRNA levels (as a measure of recruitment) and proinflammatory macrophages in any adipose depot. We found that in young chow-fed mice, cold-induced recruitment correlated with accretion of anti-inflammatory macrophages; however, such a correlation was not seen when cold-induced recruitment was studied in diet-induced obese mice. Furthermore, the anti-inflammatory macrophage accretion was mediated via β1/β2-adrenergic receptors; yet, in their absence, and thus in the absence of macrophage accretion, recruitment proceeded normally. We thus conclude that the classical recruited state in BAT and inguinal (brite/beige) WAT is not paralleled by macrophage accretion or attrition. Our results make mediatory roles for macrophages in the recruitment process less likely.NEW & NOTEWORTHY A regulatory or mediatory role-positive or negative-for macrophages in the recruitment of brown adipose tissue is presently discussed. As the recruited state in the tissue is a dynamic process, maintenance of the recruited state would need persistent alterations in macrophage complement. Contrary to this expectation, we demonstrate here an absence of alterations in macrophage complement in thermogenically recruited brown-or brite/beige-adipose tissues. Macrophage regulation of thermogenic capacity is thus less likely.
Collapse
MESH Headings
- Adipose Tissue, Beige/cytology
- Adipose Tissue, Beige/physiology
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/physiology
- Animals
- Diet/adverse effects
- Gene Expression Regulation
- Macrophages/cytology
- Macrophages/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/physiology
- Thermogenesis
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Nathalie Boulet
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ineke H N Luijten
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Aerobic exercise and lipolysis: A review of the β-adrenergic signaling pathways in adipose tissue. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Hammoud SH, AlZaim I, Al-Dhaheri Y, Eid AH, El-Yazbi AF. Perirenal Adipose Tissue Inflammation: Novel Insights Linking Metabolic Dysfunction to Renal Diseases. Front Endocrinol (Lausanne) 2021; 12:707126. [PMID: 34408726 PMCID: PMC8366229 DOI: 10.3389/fendo.2021.707126] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it contributes to energy homeostasis and provides insulation for internal organs. Adipocytes were previously thought to be a passive store of excess calories, however this view evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation. Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals capable of triggering an inflammatory response. These inflammatory manifestations of obese AT have been linked to insulin resistance, metabolic syndrome, and type 2 diabetes, and proposed to evoke obesity-induced comorbidities including cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic disorders, characterized by AT inflammation and accumulation around organs may eventually induce organ dysfunction through a direct local mechanism. Interestingly, perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and metabolism. In this regard, PRAT emerged as an independent risk factor for chronic kidney disease (CKD) and is even correlated with CVD. Here, we review the available evidence on the impact of PRAT alteration in different metabolic states on the renal and cardiovascular function. We present a broad overview of novel insights linking cardiovascular derangements and CKD with a focus on metabolic disorders affecting PRAT. We also argue that the confluence among these pathways may open several perspectives for future pharmacological therapies against CKD and CVD possibly by modulating PRAT immunometabolism.
Collapse
Affiliation(s)
- Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Departmment of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yusra Al-Dhaheri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
- *Correspondence: Ahmed F. El-Yazbi,
| |
Collapse
|
34
|
Qian S, Tang Y, Tang QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 2021; 296:100678. [PMID: 33872596 PMCID: PMC8131923 DOI: 10.1016/j.jbc.2021.100678] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Kim DY, Choi MJ, Ko TK, Lee NH, Kim OH, Cheon HG. Angiotensin AT 1 receptor antagonism by losartan stimulates adipocyte browning via induction of apelin. J Biol Chem 2020; 295:14878-14892. [PMID: 32839272 DOI: 10.1074/jbc.ra120.013834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Adipocyte browning appears to be a potential therapeutic strategy to combat obesity and related metabolic disorders. Recent studies have shown that apelin, an adipokine, stimulates adipocyte browning and has negative cross-talk with angiotensin II receptor type 1 (AT1 receptor) signaling. Here, we report that losartan, a selective AT1 receptor antagonist, induces browning, as evidenced by an increase in browning marker expression, mitochondrial biogenesis, and oxygen consumption in murine adipocytes. In parallel, losartan up-regulated apelin expression, concomitant with increased phosphorylation of protein kinase B and AMP-activated protein kinase. However, the siRNA-mediated knockdown of apelin expression attenuated losartan-induced browning. Angiotensin II cotreatment also inhibited losartan-induced browning, suggesting that AT1 receptor antagonism-induced activation of apelin signaling may be responsible for adipocyte browning induced by losartan. The in vivo browning effects of losartan were confirmed using both C57BL/6J and ob/ob mice. Furthermore, in vivo apelin knockdown by adeno-associated virus carrying-apelin shRNA significantly inhibited losartan-induced adipocyte browning. In summary, these data suggested that AT1 receptor antagonism by losartan promotes the browning of white adipocytes via the induction of apelin expression. Therefore, apelin modulation may be an effective strategy for the treatment of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Tae Kyung Ko
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Na Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
36
|
Escalona-Garrido C, Vázquez P, Mera P, Zagmutt S, García-Casarrubios E, Montero-Pedrazuela A, Rey-Stolle F, Guadaño-Ferraz A, Rupérez FJ, Serra D, Herrero L, Obregon MJ, Valverde ÁM. Moderate SIRT1 overexpression protects against brown adipose tissue inflammation. Mol Metab 2020; 42:101097. [PMID: 33049408 PMCID: PMC7600394 DOI: 10.1016/j.molmet.2020.101097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.
Collapse
Affiliation(s)
- Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ester García-Casarrubios
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universitiy, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Maria Jesus Obregon
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 28029 Madrid, Spain.
| |
Collapse
|
37
|
Metabolic and Molecular Mechanisms of Macrophage Polarisation and Adipose Tissue Insulin Resistance. Int J Mol Sci 2020; 21:ijms21165731. [PMID: 32785109 PMCID: PMC7460862 DOI: 10.3390/ijms21165731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation plays a key role in the development and progression of type-2 diabetes (T2D), a disease characterised by peripheral insulin resistance and systemic glucolipotoxicity. Visceral adipose tissue (AT) is the main source of inflammation early in the disease course. Macrophages are innate immune cells that populate all peripheral tissues, including AT. Dysregulated AT macrophage (ATM) responses to microenvironmental changes are at the root of aberrant inflammation and development of insulin resistance, locally and systemically. The inflammatory activation of macrophages is regulated at multiple levels: cell surface receptor stimulation, intracellular signalling, transcriptional and metabolic levels. This review will cover the main mechanisms involved in AT inflammation and insulin resistance in T2D. First, we will describe the physiological and pathological changes in AT that lead to inflammation and insulin resistance. We will next focus on the transcriptional and metabolic mechanisms described that lead to the activation of ATMs. We will discuss more novel metabolic mechanisms that influence macrophage polarisation in other disease or tissue contexts that may be relevant to future work in insulin resistance and T2D.
Collapse
|
38
|
Qian S, Pan J, Su Y, Tang Y, Wang Y, Zou Y, Zhao Y, Ma H, Zhang Y, Liu Y, Guo L, Tang QQ. BMPR2 promotes fatty acid oxidation and protects white adipocytes from cell death in mice. Commun Biol 2020; 3:200. [PMID: 32350411 PMCID: PMC7190840 DOI: 10.1038/s42003-020-0928-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipocyte cell death is pathologically involved in both obesity and lipodystrophy. Inflammation and pro-inflammatory cytokines are generally regarded as inducers for adipocyte apoptosis, but whether some innate defects affect their susceptibility to cell death has not been extensively studied. Here, we found bone morphogenetic protein receptor type 2 (BMPR2) knockout adipocytes were prone to cell death, which involved both apoptosis and pyroptosis. BMPR2 deficiency in adipocytes inhibited phosphorylation of perilipin, a lipid-droplet-coating protein, and impaired lipolysis when stimulated by tumor necrosis factor (TNFα), which lead to failure of fatty acid oxidation and oxidative phosphorylation. In addition, impaired lipolysis was associated with mitochondria-mediated apoptosis and pyroptosis as well as elevated inflammation. These results suggest that BMPR2 is important for maintaining the functional integrity of adipocytes and their ability to survive when interacting with inflammatory factors, which may explain why adipocytes among individuals show discrepancy for death responses in inflammatory settings.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiabao Pan
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yan Su
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200032, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yina Wang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ying Zou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yaxin Zhao
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Hong Ma
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Youyou Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Liu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Liang Guo
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
39
|
Sun L, Yan J, Goh HJ, Govindharajulu P, Verma S, Michael N, Sadananthan SA, Henry CJ, Velan SS, Leow MKS. Fibroblast Growth Factor-21, Leptin, and Adiponectin Responses to Acute Cold-Induced Brown Adipose Tissue Activation. J Clin Endocrinol Metab 2020; 105:5698244. [PMID: 31912874 PMCID: PMC7015460 DOI: 10.1210/clinem/dgaa005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Adipocyte-derived hormones play a role in insulin sensitivity and energy homeostasis. However, the relationship between circulating fibroblast growth factor 21 (FGF21), adipocytokines and cold-induced supraclavicular brown adipose tissue (sBAT) activation is underexplored. OBJECTIVE Our study aimed to investigate the relationships between cold-induced sBAT activity and plasma FGF21 and adipocytokines levels in healthy adults. DESIGN Nineteen healthy participants underwent energy expenditure (EE) and supraclavicular infrared thermography (IRT) within a whole-body calorimeter at baseline and at 2 hours post-cold exposure. 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging scans were performed post-cold exposure. PET sBAT mean standardized uptake value (SUV mean), MR supraclavicular fat fraction (sFF), anterior supraclavicular maximum temperature (Tscv max) and EE change (%) after cold exposure were used to quantify sBAT activity. MAIN OUTCOME MEASURES Plasma FGF21, leptin, adiponectin, and tumor necrosis factor alpha (TNFα) at baseline and 2 hours post-cold exposure. Body composition at baseline by dual-energy x-ray absorptiometry (DXA). RESULTS Plasma FGF21 and adiponectin levels were significantly reduced after cold exposure in BAT-positive subjects but not in BAT-negative subjects. Leptin concentration was significantly reduced in both BAT-positive and BAT-negative participants after cold exposure. Adiponectin concentration at baseline was positively strongly associated with sBAT PET SUV mean (coefficient, 3269; P = 0.01) and IRT Tscv max (coefficient, 6801; P = 0.03), and inversely correlated with MR sFF (coefficient, -404; P = 0.02) after cold exposure in BAT-positive subjects but not in BAT-negative subjects. CONCLUSION Higher adiponectin concentrations at baseline indicate a greater cold-induced sBAT activity, which may be a novel predictor for sBAT activity in healthy BAT-positive adults. HIGHLIGHTS A higher adiponectin concentration at baseline was associated with higher cold-induced supraclavicular BAT PET SUV mean and IRT Tscv max, and lower MR supraclavicular FF. Adiponectin levels maybe a novel predictor for cold-induced sBAT activity.
Collapse
Affiliation(s)
- Lijuan Sun
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR) and National University Health System (NUHS), Singapore
| | - Jianhua Yan
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Precision Medicine Collaborative Innovation Centre, Shanxi Medical University, Taiyuan, China
| | - Hui Jen Goh
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR) and National University Health System (NUHS), Singapore
| | - Priya Govindharajulu
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR) and National University Health System (NUHS), Singapore
| | - Sanjay Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR) and National University Health System (NUHS), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
- Singapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
- Departments of Physiology & Medicine, National University of Singapore (NUS), Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR) and National University Health System (NUHS), Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
- Correspondence and Reprint Requests: Melvin Khee-Shing Leow, MD, PhD, FACP, FACE (USA), FRCP (Edin), FRCPath, Centre for Translational Medicine, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore, Singapore 117599.
| |
Collapse
|
40
|
Badenes M, Amin A, González-García I, Félix I, Burbridge E, Cavadas M, Ortega FJ, de Carvalho É, Faísca P, Carobbio S, Seixas E, Pedroso D, Neves-Costa A, Moita LF, Fernández-Real JM, Vidal-Puig A, Domingos A, López M, Adrain C. Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Mol Metab 2019; 31:67-84. [PMID: 31918923 PMCID: PMC6909339 DOI: 10.1016/j.molmet.2019.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. Methods We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. Results Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. Conclusion Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease. Deletion of iRhom2 protects mice from metabolic syndrome. In obesity, iRhom2 deletion increases energy expenditure, thermogenesis and white adipose tissue beiging. iRhom2 deletion enhances thermogenesis in naïve brown adipocytes.
Collapse
Affiliation(s)
| | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Inês Félix
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland; Turku Bioscience Centre, University of Turku, Åbo Akademi University, FI-20520 Turku, Finland
| | | | | | | | | | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | | | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - António Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Ana Domingos
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Obesity Lab, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.
| |
Collapse
|
41
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
42
|
Sparks R, Lui A, Bader D, Patel R, Murr M, Guida W, Fratti R, Patel NA. A specific small-molecule inhibitor of protein kinase CδI activity improves metabolic dysfunction in human adipocytes from obese individuals. J Biol Chem 2019; 294:14896-14910. [PMID: 31413114 DOI: 10.1074/jbc.ra119.008777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The metabolic consequences and sequelae of obesity promote life-threatening morbidities. PKCδI is an important elicitor of inflammation and apoptosis in adipocytes. Here we report increased PKCδI activation via release of its catalytic domain concurrent with increased expression of proinflammatory cytokines in adipocytes from obese individuals. Using a screening strategy of dual recognition of PKCδI isozymes and a caspase-3 binding site on the PKCδI hinge domain with Schrödinger software and molecular dynamics simulations, we identified NP627, an organic small-molecule inhibitor of PKCδI. Characterization of NP627 by surface plasmon resonance (SPR) revealed that PKCδI and NP627 interact with each other with high affinity and specificity, SPR kinetics revealed that NP627 disrupts caspase-3 binding to PKCδI, and in vitro kinase assays demonstrated that NP627 specifically inhibits PKCδI activity. The SPR results also indicated that NP627 affects macromolecular interactions between protein surfaces. Of note, release of the PKCδI catalytic fragment was sufficient to induce apoptosis and inflammation in adipocytes. NP627 treatment of adipocytes from obese individuals significantly inhibited PKCδI catalytic fragment release, decreased inflammation and apoptosis, and significantly improved mitochondrial metabolism. These results indicate that PKCδI is a robust candidate for targeted interventions to manage obesity-associated chronic inflammatory diseases. We propose that NP627 may also be used in other biological systems to better understand the impact of caspase-3-mediated activation of kinase activity.
Collapse
Affiliation(s)
- Robert Sparks
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Deena Bader
- James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Rekha Patel
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Michel Murr
- Surgery Department, University of Central Florida, Orlando, Florida 32816.,Bariatric and Metabolic Institute, AdventHealth, Tampa, Florida 33612
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, Florida 33612
| | - Rutilio Fratti
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 .,James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
43
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
44
|
Shankar K, Kumar D, Gupta S, Varshney S, Rajan S, Srivastava A, Gupta A, Gupta AP, Vishwakarma AL, Gayen JR, Gaikwad AN. Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice. Eur J Pharmacol 2019; 854:354-364. [PMID: 30822393 DOI: 10.1016/j.ejphar.2019.02.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Obesity results in the chronic activation of innate immune system and subsequently sets in diabetes. Aim of the study was to investigate the immunometabolic role of brown adipose tissue (BAT) in the obesity. We performed both BAT transplantation as well as extirpation experiments in the mouse model of high-fat diet (HFD)-induced obesity. We carried out immune cell profiling in the stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). BAT transplantation reversed HFD-induced increase in body weight gain and insulin resistance without altering diet intake. Importantly, BAT transplantation attenuated the obesity-associated adipose tissue inflammation in terms of decreased pro-inflammatory M1-macrophages, cytotoxic CD8a T-cells and restored anti-inflammatory regulatory T-cells (Tregs) in the eWAT. BAT transplantation also improved endogenous BAT activity by elevating protein expression of browning markers (UCP-1, PRDM16 and PGC1α) in it. In addition, BAT transplantation promoted the eWAT expression of various genes involved in fatty acid oxidation (such as Elvol3 and Tfam,). In contrast, extirpation of the interscapular BAT exacerbated HFD-induced obesity, insulin resistance and adipose tissue inflammation (by increasing M1 macrophages, CD8a T-cell and decreasing Tregs in eWAT). Taken together, our results suggested an important role of BAT in combating obesity-associated metabolic complications. These results open a novel therapeutic option to target obesity and related metabolic disorders like type 2 diabetes.
Collapse
Affiliation(s)
- Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anand Prakash Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
45
|
Rodrigues AC, Leal TF, Costa AJLD, Silva FDJ, Soares LL, Brum PC, Hermsdorff HHM, Peluzio MDCG, Prímola-Gomes TN, Natali AJ. Effects of aerobic exercise on the inflammatory cytokine profile and expression of lipolytic and thermogenic genes in β 1-AR -/- mice adipose tissue. Life Sci 2019; 221:224-232. [PMID: 30771314 DOI: 10.1016/j.lfs.2019.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
AIM Investigate the effects of moderate continuous aerobic exercise (MCAE) on the inflammatory cytokine profile and expression of lipolytic and thermogenic genes in β1-AR-/- mice adipose tissue. MAIN METHODS Four- to five-month-old male wild type (WT) and β1-AR-/- mice were divided into groups: WT control (WTc) and trained (WTt); and β1-AR-/- control (β1-AR-/-c) and trained (β1-AR-/-t). Animals from trained groups were submitted to a MCAE regimen (60 min/day; 60% of maximal speed, 5 days/week) on a treadmill, for 8 weeks. After euthanasia, white epididymal (eWAT) and inguinal (iWAT) and brown (BAT) adipose tissues were dissected and used to determine: adiposity index; adipocyte histomorphometry; cytokine concentration; and gene expression. The content of fat, protein and water of the empty carcass was determined. KEY FINDINGS MCAE reduced body weight, fat mass as well as iWAT and BAT adipocyte area in β1-AR-/- animals. Aerobic exercise also diminished the concentrations of pro-inflammatory (IL-12p70, TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines in adipose tissue (iWAT, eWAT or BAT) of β1-AR-/- mice. However, MCAE had no effect on the expression lipolytic and thermogenic genes in β1-AR-/- mice adipose tissue. SIGNIFICANCE Alongside reductions in body weight, fat mass and adipocyte area eight weeks of MCAE improves the profile of inflammatory cytokines in β1-AR-/- mice adipose tissue, despite no change in Lipolytic and thermogenic gene expression.
Collapse
Affiliation(s)
- Aurora Corrêa Rodrigues
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Tiago Ferreira Leal
- Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Leôncio Lopes Soares
- Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Antônio José Natali
- Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
46
|
TNF- α Downregulation Modifies Insulin Receptor Substrate 1 (IRS-1) in Metabolic Signaling of Diabetic Insulin-Resistant Hepatocytes. Mediators Inflamm 2019; 2019:3560819. [PMID: 30863203 PMCID: PMC6378771 DOI: 10.1155/2019/3560819] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/15/2018] [Indexed: 11/30/2022] Open
Abstract
One of the major mechanisms of hyperglycemia in type 2 diabetes is insulin resistance (IR) which can induce free fatty acids like palmitate. In hepatic cell, as an insulin target tissue, insulin resistance can be stimulated by inflammatory cytokine TNF-α. The interaction of intracellular TNF-α signal with the insulin signaling pathway is not well identified. Hence, we aimed to investigate the effect of TNF-α elimination on the diabetic model of palmitate-induced insulin-resistant hepatocytes (HepG2). The changes of phosphorylation rate in IRS-1 protein are determined to know the effect of TNF-α on this key protein of the insulin signaling pathway. HepG2 cells were treated with 0.5 Mm palmitate, and TNF-α gene knockdown was performed by shRNA-mediated technique. Western blot analysis was used to evaluate the phosphorylated activity of the insulin signaling pathway. Palmitate-induced IR could increase TNF-α protein expression 1.2-, 2.78-, and 2.25-fold compared to the control cells at times of 8 h, 16 h, and 24 h, respectively. TNF-α expression in downregulated cells transfected with shRNA-TNF-α is approximately 47.0% of normal cells and 49.0% in the case of scrambled cells. IRS-1 phosphorylation in TNF-α-downregulated and stimulated cells with 100 nM insulin, after treatment and in the absence of palmitate, was 45% and 29% higher than the normal cells. These data support the evidence that TNF-α downregulation strategy contributes to the improvement of IRS-1 phosphorylation after insulin stimulation and insulin response in HepG2 liver cells.
Collapse
|
47
|
Chondronikola M, Sidossis LS. Brown and beige fat: From molecules to physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:91-103. [DOI: 10.1016/j.bbalip.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
48
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
49
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
50
|
Kou Y, Liu Q, Liu W, Sun H, Liang M, Kong F, Zhang B, Wei Y, Liu Z, Wang Y. LIGHT/TNFSF14 signaling attenuates beige fat biogenesis. FASEB J 2018; 33:1595-1604. [DOI: 10.1096/fj.201800792r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
| | - Qingya Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Hongxiang Sun
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Ming Liang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|