1
|
Chaves YO, Gama WM, Reis MFD, Baptista BJA, Almeida TVR, Balieiro AADS, Costa AGD, Ibiapina HNDS, Carvalho ATD, Xavier TDS, Melo MMD, Pinheiro RDS, Souza JMD, Salimo ZM, Filho OAM, Lacerda MVGD, Benzaken AS, Ferreira LCDL, Nogueira PA. Association between cytokine and increased risk of death in ART- naïve and ART-non-adherence patients hospitalized with advanced HIV disease. BMC Infect Dis 2025; 25:197. [PMID: 39924485 PMCID: PMC11808995 DOI: 10.1186/s12879-024-10260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/22/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Despite progress in healthcare for people living with HIV/AIDS (PLWHA), many still present with advanced HIV, thus increasing their risk of death. Late initiation of treatment and poor adherence to antiretroviral therapy (ART) are key contributing factors. This study aimed to evaluate cytokines as mortality predictors among hospitalized PLWHA. It assessed the risk of death between ART-naïve and ART-non-adherent PLWHA with advanced HIV and quantified immunological markers in post-mortem samples to determine the influence of irregular ART use. METHODS A longitudinal observational study was conducted at the Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD) in Manaus, Brazil, with 111 participants recruited between 2018 and 2019. Clinical and laboratory data were obtained from electronic medical records. Plasma samples were analyzed for 27 cytokines/chemokines using the Luminex® multiplex assay within 72 h of admission and 6 h after post-mortem. RESULTS ART-naïve PLWHA had a higher risk of death. Most of the 27 immunological markers analyzed in the post-mortem were elevated in those who died compared to those who were discharged. Increased levels of IFNγ, CCL2, and CCL3 were associated with death. Elevated immunological markers in ART-naïve PLWHA correlated with CD4 cell counts. Notably, IL-17 increased in ART-naïve PLWHA, while IL-2 increased in ART-non-adherent PLWHA, indicating a dichotomy. T helper-2 responses were marked by IL-9 in ART-naïve and IL-5 in ART-non-adherent PLWHA. CONCLUSIONS ART-naïve PLWHA hospitalized with advanced HIV have a higher risk of death. Some immunological markers are possible predictors of death upon hospital admission due to HIV/AIDS, and their levels were found to be increased in post-mortem blood samples. Our findings suggest a polarized response among ART-naïve and ART-non-adherent PLWHA.
Collapse
Affiliation(s)
- Yury Oliveira Chaves
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Amazonas, Manaus, Amazonas, 69020-160, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD)- Fiocruz Amazônia, Manaus, Amazonas, 69057-070, Brazil
- Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Fundação Oswaldo Cruz-Instituto Leônidas e Maria Deane, Manaus, Amazonas, 69057-070, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, PPGH-UEA/HEMOAM, Manaus, Amazonas, 69050-001, Brazil
| | - Wellington Mota Gama
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, 69080-900, Brazil
| | - Monique Freire Dos Reis
- Departamento de Patologia e Medicina Legal, Universidade Federal do Amazonas, Manaus, Amazonas, 69020-160, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
| | - Bárbara José Antunes Baptista
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Amazonas, Manaus, Amazonas, 69020-160, Brazil
| | - Taynná Vernalha Rocha Almeida
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Amazonas, Manaus, Amazonas, 69020-160, Brazil
| | - Antônio Alcirley da Silva Balieiro
- Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Fundação Oswaldo Cruz-Instituto Leônidas e Maria Deane, Manaus, Amazonas, 69057-070, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, PPGH-UEA/HEMOAM, Manaus, Amazonas, 69050-001, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, 69080-900, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
| | | | - Andrea Teixeira de Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo - Fiocruz Minais Gerais, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Thaissy Dos Santos Xavier
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD)- Fiocruz Amazônia, Manaus, Amazonas, 69057-070, Brazil
- Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Fundação Oswaldo Cruz-Instituto Leônidas e Maria Deane, Manaus, Amazonas, 69057-070, Brazil
| | - Marly Marques de Melo
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69057-070, Brazil
| | - Rebeca de Souza Pinheiro
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD)- Fiocruz Amazônia, Manaus, Amazonas, 69057-070, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
| | - Jhennyffer Mendes de Souza
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo - Fiocruz Minais Gerais, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Zeca Manuel Salimo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
| | - Olindo Assis Martins Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo - Fiocruz Minais Gerais, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Marcus Vinícius Guimarães de Lacerda
- Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Fundação Oswaldo Cruz-Instituto Leônidas e Maria Deane, Manaus, Amazonas, 69057-070, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69057-070, Brazil
| | - Adele Schwartz Benzaken
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
- AIDS Healthcare Foundation (AHF), Los Angeles, CA, 90028, USA
| | - Luiz Carlos de Lima Ferreira
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Amazonas, Manaus, Amazonas, 69020-160, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, 69040-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69057-070, Brazil
| | - Paulo Afonso Nogueira
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD)- Fiocruz Amazônia, Manaus, Amazonas, 69057-070, Brazil.
- Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Fundação Oswaldo Cruz-Instituto Leônidas e Maria Deane, Manaus, Amazonas, 69057-070, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| |
Collapse
|
2
|
Kaffashi K, Dréau D, Nesmelova IV. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Int J Mol Sci 2023; 24:11639. [PMID: 37511398 PMCID: PMC10380872 DOI: 10.3390/ijms241411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a family of signaling proteins that play a crucial role in cell-cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines spatially and temporally co-localize, and it can significantly affect cellular responses. Recently, obligate heterodimers have emerged as tools to investigate the activities and molecular mechanisms of chemokine heterodimers, providing valuable insights into their functional roles. This review focuses on the latest progress in understanding the roles of chemokine heterodimers and their contribution to the functioning of the chemokine network.
Collapse
Affiliation(s)
- Kimia Kaffashi
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
3
|
El Khamlichi C, Cobret L, Arrang JM, Morisset-Lopez S. BRET Analysis of GPCR Dimers in Neurons and Non-Neuronal Cells: Evidence for Inactive, Agonist, and Constitutive Conformations. Int J Mol Sci 2021; 22:ijms221910638. [PMID: 34638980 PMCID: PMC8508734 DOI: 10.3390/ijms221910638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are dimeric proteins, but the functional consequences of the process are still debated. Active GPCR conformations are promoted either by agonists or constitutive activity. Inverse agonists decrease constitutive activity by promoting inactive conformations. The histamine H3 receptor (H3R) is the target of choice for the study of GPCRs because it displays high constitutive activity. Here, we study the dimerization of recombinant and brain H3R and explore the effects of H3R ligands of different intrinsic efficacy on dimerization. Co-immunoprecipitations and Western blots showed that H3R dimers co-exist with monomers in transfected HEK 293 cells and in rodent brains. Bioluminescence energy transfer (BRET) analysis confirmed the existence of spontaneous H3R dimers, not only in living HEK 293 cells but also in transfected cortical neurons. In both cells, agonists and constitutive activity of the H3R decreased BRET signals, whereas inverse agonists and GTPγS, which promote inactive conformations, increased BRET signals. These findings show the existence of spontaneous H3R dimers not only in heterologous systems but also in native tissues, which are able to adopt a number of allosteric conformations, from more inactive to more active states.
Collapse
Affiliation(s)
- Chayma El Khamlichi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (C.E.K.); (L.C.)
| | - Laetitia Cobret
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (C.E.K.); (L.C.)
| | - Jean-Michel Arrang
- Centre de Psychiatrie et Neurosciences, 2 ter Rue d’Alésia, 75014 Paris, France;
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266 INSERM, Université Paris Descartes, 102 Rue de la Santé, 75014 Paris, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (C.E.K.); (L.C.)
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266 INSERM, Université Paris Descartes, 102 Rue de la Santé, 75014 Paris, France
- Correspondence: ; Tel.: +33-238257858
| |
Collapse
|
4
|
Li J, Ding Y, Liu H, He H, Yu D, Wang X, Wang X, Yu X, Ge B, Huang F. Oligomerization-Enhanced Receptor-Ligand Binding Revealed by Dual-Color Simultaneous Tracking on Living Cell Membranes. J Phys Chem Lett 2021; 12:8164-8169. [PMID: 34410720 DOI: 10.1021/acs.jpclett.1c01844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GPCR oligomerization plays a critical role in cellular signaling, yet the stoichiometry of the interactions between oligomers and binding ligands in living cells remains a longstanding challenge. Here, by developing a dual-color simultaneous tracking system based on a total internal reflection fluorescence microscope (TIRFM), the CCR5-CCL5 interactions are visualized and quantitatively assessed in real time. Results show that each oligomeric state of CCR5 could bind with CCL5 but with different binding affinities; CCR5 dimers have a 3.5-fold higher binding affinity than the monomers. The dimerization may cause an asymmetric conformational change which makes the first binding pocket have a 3.5-fold higher binding affinity and the second have only a half compared with the monomeric CCR5. This study is the first example to directly scrutinize the CCR5-CCL5 interactions at the single-molecule level on living cell membranes and will offer great potential for the interaction stoichiometry study of diverse surface proteins.
Collapse
Affiliation(s)
- Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yanzhi Ding
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hengheng Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoxi Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
5
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Khojasteh NF, Fekri M, Shabani SH, Milani A, Baesi K, Bolhassani A. Evaluation of HIV-1 Regulatory and Structural Proteins as Antigen Candidate in Mice and Humans. Curr HIV Res 2021; 19:225-237. [PMID: 33243125 DOI: 10.2174/1570162x18999201125212131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diagnosis of HIV infection is important among different groups. Moreover, combination antiretroviral therapy is used to treat HIV-1, but it cannot eradicate the infection. Thus, the development of therapeutic vaccines, along with antiretroviral therapy, is recommended. This study evaluates the values of four HIV proteins as antigen candidates in therapeutic vaccine design as well as a possible diagnostic marker for HIV infection in humans. METHODS In this study, the HIV-1 Tat and Rev regulatory proteins and structural Gp120 and p24 proteins were generated in E. coli expression system. Their immunogenicity was evaluated in BALB/ c mice using homologous and heterologous prime/boost strategies. Moreover, the detection of anti- HIV IgG antibodies against these recombinant proteins was assessed in untreated (Naïve/ HIV-infected), treated, and drug-resistant patients compared to the healthy (control) group as a possible diagnostic marker for HIV infection. RESULTS In humans, our results showed that among HIV-1 proteins, anti-Gp120 antibody was not detected in treated individuals compared to the healthy (control) group. The levels of anti-Gp120 antibody were significantly different between the treated group and Naïve as well as drug-resistant subjects. Moreover, the level of anti-p24 antibody was significantly lower in the treated group than the Naive group. In mice, the results of immunization indicated that the Rev antigen could significantly induce IgG2a, IgG2b, and IFN-γ secretion aimed at Th1 response as well as Granzyme B generation as CTL activity in comparison with other antigens. Furthermore, the heterologous DNA prime/ protein boost regimen was more potent than the homologous regimen for stimulation of cellular immunity. CONCLUSION Briefly, the levels of both anti-Gp120 and anti-p24 antibodies can be considered for the diagnosis of the HIV-infected individuals in different groups compared to the healthy group. Moreover, among four recombinant proteins, Rev elicited Th1 cellular immunity and CTL activity in mice as an antigen candidate in therapeutic vaccine development.
Collapse
Affiliation(s)
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Mohan M, Bhattacharya D. Host-directed Therapy: A New Arsenal to Come. Comb Chem High Throughput Screen 2021; 24:59-70. [PMID: 32723230 DOI: 10.2174/1386207323999200728115857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today's scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host's cell machinery for their survival. They alter the gene expression of several host's pathways and endorse to shut down the cell's innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host's factors. They also mimic the host molecules and secrete them to prevent the host's proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host's factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host's factors, which favors the pathogen survival inside the cell.
Collapse
Affiliation(s)
- Mradul Mohan
- National Institute of Malaria Research, New Delhi, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed University, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Salavessa L, Sauvonnet N. Stoichiometry of Receptors at the Plasma Membrane During Their Endocytosis Using Total Internal Reflection Fluorescent (TIRF) Microscopy Live Imaging and Single-Molecule Tracking. Methods Mol Biol 2021; 2233:3-17. [PMID: 33222124 DOI: 10.1007/978-1-0716-1044-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Determination of protein stoichiometry in living cells is key to understanding basic biological processes. This is particularly important for receptor-mediated endocytosis, a highly regulated mechanism that requires the sequential assembly of numerous factors. Here, we describe a quantitative approach to analyze receptor clustering dynamics at the plasma membrane. Our workflow combines TIRF live imaging of a CRISPR-Cas9-edited cell line expressing a GFP-tagged receptor in a physiological relevant environment, a calibration technique for single-molecule analysis of GFP, and detection and tracking with an open-source software. This method allows to determine the number of receptor molecules at the plasma membrane in real time.
Collapse
Affiliation(s)
- Laura Salavessa
- Group intracellular trafficking and tissue homeostasis. Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.,U1202, INSERM, Paris, France.,Université Paris Sud, Paris-Saclay University, Orsay, France
| | - Nathalie Sauvonnet
- Group intracellular trafficking and tissue homeostasis. Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France. .,U1202, INSERM, Paris, France.
| |
Collapse
|
9
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
10
|
D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020; 528:347-358. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
The chemokines receptor family are membrane-expressed class A-specific seven-transmembrane receptors linked to G proteins. Through interaction with the corresponding ligands, the chemokines, they induce a wide variety of cellular responses including cell polarization, movement, immune and inflammatory responses, as well as the prevention of HIV-1 infection. Like a Russian matryoshka doll, the chemokine receptor system is more complex than initially envisaged. This review focuses on the mechanisms that contribute to this dazzling complexity and how they modulate the signaling events triggered by chemokines. The chemokines and their receptors exist as monomers, dimers and oligomers, their expression pattern is highly regulated, and the ligands can bind distinct receptors with similar affinities. The use of novel imaging-based technologies, particularly real-time imaging modalities, has shed new light on the very dynamic conformations that chemokine receptors adopt depending on the cellular context, and that affect chemokine-mediated responses. This complex scenario presents both challenging and exciting opportunities for drug discovery.
Collapse
Affiliation(s)
- Gianluca D'Agostino
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Eva M García-Cuesta
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Rosa P Gomariz
- Dept. Cell Biology, Complutense University of Madrid, Research Institute Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Mario Mellado
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
11
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
12
|
Zhang F, Yuan Y, Xiang M, Guo Y, Li M, Liu Y, Pu X. Molecular Mechanism Regarding Allosteric Modulation of Ligand Binding and the Impact of Mutations on Dimerization for CCR5 Homodimer. J Chem Inf Model 2019; 59:1965-1976. [DOI: 10.1021/acs.jcim.8b00850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, People’s Republic of China
| | - Minghui Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yijing Liu
- College of Computer Science, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
13
|
Colin P, Zhou Z, Staropoli I, Garcia-Perez J, Gasser R, Armani-Tourret M, Benureau Y, Gonzalez N, Jin J, Connell BJ, Raymond S, Delobel P, Izopet J, Lortat-Jacob H, Alcami J, Arenzana-Seisdedos F, Brelot A, Lagane B. CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathog 2018; 14:e1007432. [PMID: 30521629 PMCID: PMC6283471 DOI: 10.1371/journal.ppat.1007432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023] Open
Abstract
CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.
Collapse
Affiliation(s)
- Philippe Colin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, Paris, France
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | | | - Romain Gasser
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Marie Armani-Tourret
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Jin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bridgette J. Connell
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Stéphanie Raymond
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Pierre Delobel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Hugues Lortat-Jacob
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Anne Brelot
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bernard Lagane
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
14
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
15
|
Gahbauer S, Pluhackova K, Böckmann RA. Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol. PLoS Comput Biol 2018; 14:e1006062. [PMID: 29529028 PMCID: PMC5864085 DOI: 10.1371/journal.pcbi.1006062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/22/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects chemokine receptor activity. However, structural information about homo- and heterodimers formed by chemokine receptors and their interplay with cholesterol is limited. Here, we report homo- and heterodimer configurations of the chemokine receptors CXCR4, CCR5, and CCR2 at atomistic detail, as obtained from thousands of molecular dynamics simulations. The observed homodimerization patterns were similar for the closely related CC chemokine receptors, yet they differed significantly between the CC receptors and CXCR4. Despite their high sequence identity, cholesterol modulated the CC homodimer interfaces in a subtype-specific manner. Chemokine receptor heterodimers display distinct dimerization patterns for CXCR4/CCR5 and CXCR4/CCR2. Furthermore, associations between CXCR4 and CCR5 reveal an increased cholesterol-sensitivity as compared to CXCR4/CCR2 heterodimerization patterns. This work provides a first comprehensive structural overview over the complex interaction network between chemokine receptors and indicates how heterodimerization and the interaction with the membrane environment diversifies the function of closely related GPCRs.
Collapse
MESH Headings
- Animals
- Chemokines/metabolism
- Cholesterol/metabolism
- Computer Simulation
- Dimerization
- Humans
- Molecular Dynamics Simulation
- Receptors, CCR2/chemistry
- Receptors, CCR2/metabolism
- Receptors, CCR2/ultrastructure
- Receptors, CCR5/chemistry
- Receptors, CCR5/metabolism
- Receptors, CCR5/ultrastructure
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/ultrastructure
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/genetics
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Stefan Gahbauer
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Kobayashi D, Endo M, Ochi H, Hojo H, Miyasaka M, Hayasaka H. Regulation of CCR7-dependent cell migration through CCR7 homodimer formation. Sci Rep 2017; 7:8536. [PMID: 28819198 PMCID: PMC5561199 DOI: 10.1038/s41598-017-09113-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The chemokine receptor CCR7 contributes to various physiological and pathological processes including T cell maturation, T cell migration from the blood into secondary lymphoid tissues, and tumor cell metastasis to lymph nodes. Although a previous study suggested that the efficacy of CCR7 ligand-dependent T cell migration correlates with CCR7 homo- and heterodimer formation, the exact extent of contribution of the CCR7 dimerization remains unclear. Here, by inducing or disrupting CCR7 dimers, we demonstrated a direct contribution of CCR7 homodimerization to CCR7-dependent cell migration and signaling. Induction of stable CCR7 homodimerization resulted in enhanced CCR7-dependent cell migration and CCL19 binding, whereas induction of CXCR4/CCR7 heterodimerization did not. In contrast, dissociation of CCR7 homodimerization by a novel CCR7-derived synthetic peptide attenuated CCR7-dependent cell migration, ligand-dependent CCR7 internalization, ligand-induced actin rearrangement, and Akt and Erk signaling in CCR7-expressing cells. Our study indicates that CCR7 homodimerization critically regulates CCR7 ligand-dependent cell migration and intracellular signaling in multiple cell types.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masataka Endo
- Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Hirotaka Ochi
- Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Miyasaka
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,MediCity Research Laboratory, University of Turku, FIN-20520, Turku, Finland.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Haruko Hayasaka
- Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
17
|
Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication. Sci Rep 2016; 6:27148. [PMID: 27250526 PMCID: PMC4890011 DOI: 10.1038/srep27148] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Nitazoxanide (Alinia®, NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection.
Collapse
|
18
|
Wimmers F, Aarntzen EHJG, Duiveman-deBoer T, Figdor CG, Jacobs JFM, Tel J, de Vries IJM. Long-lasting multifunctional CD8 + T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination. Oncoimmunology 2015; 5:e1067745. [PMID: 26942087 PMCID: PMC4760336 DOI: 10.1080/2162402x.2015.1067745] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T cells are considered crucial for antitumor immunity and their induction is the aim of various immunotherapeutic strategies. High frequencies of tumor-specific CD8+ T cells alone, however, are no guarantee for long-term tumor control. Here, we analyzed the functionality of tumor-specific CD8+ T cells in melanoma patients upon dendritic cell vaccination by measuring multiple T cell effector functions considered crucial for anticancer immunity, including the expression of pro-inflammatory cytokines, chemokines and cytotoxic markers (IFNγ, TNFα, IL-2, CCL4, CD107a). We identified small numbers of multifunctional (polyfunctional) tumor-specific CD8+ T cells in several patients and dendritic cell therapy was able to improve the functionality of these pre-existing tumor-specific CD8+ T cells. Generated multifunctional CD8+ T cell responses could persist for up to ten years and within the same patient functionality could vary greatly for the different vaccination antigens. Importantly, after one cycle of DC vaccination highly functional CD8+ T cells were only detected in patients displaying prolonged overall survival. Our results shed light on the dynamics of multifunctional tumor-specific CD8+ T cells during metastatic melanoma and reveal a new feature of dendritic cell vaccination in vivo.
Collapse
Affiliation(s)
- Florian Wimmers
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - Erik H J G Aarntzen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherands; Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherands
| | - Tjitske Duiveman-deBoer
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - Carl G Figdor
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - Joannes F M Jacobs
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Jurjen Tel
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands
| | - I Jolanda M de Vries
- Radboud University Medical Center, Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherands
| |
Collapse
|
19
|
Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. ACTA ACUST UNITED AC 2015; 22:379-90. [PMID: 25754473 DOI: 10.1016/j.chembiol.2015.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/29/2014] [Accepted: 01/25/2015] [Indexed: 11/21/2022]
Abstract
The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.
Collapse
|
20
|
Stephens B, Handel TM. Chemokine receptor oligomerization and allostery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 115:375-420. [PMID: 23415099 DOI: 10.1016/b978-0-12-394587-7.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oligomerization of chemokine receptors has been reported to influence many aspects of receptor function through allosteric communication between receptor protomers. Allosteric interactions within chemokine receptor hetero-oligomers have been shown to cause negative cooperativity in the binding of chemokines and to inhibit receptor activation in the case of some receptor pairs. Other receptor pairs can cause enhanced signaling and even activate entirely new, hetero-oligomer-specific signaling complexes and responses downstream of receptor activation. Many mechanisms contribute to these effects including direct allosteric coupling between the receptors, G protein-mediated allostery, G protein stealing, ligand sequestration, and recruitment of new intracellular proteins by exposing unique binding interfaces on the oligomerized receptors. These effects present both challenges as well as exciting opportunities for drug discovery. One of the most difficult challenges will involve determining if and when hetero-oligomers versus homomeric receptors are involved in specific disease states.
Collapse
Affiliation(s)
- Bryan Stephens
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
21
|
Nakano Y, Monde K, Terasawa H, Yuan Y, Yusa K, Harada S, Maeda Y. Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1. Virology 2014; 452-453:117-24. [DOI: 10.1016/j.virol.2013.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
|
22
|
Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay. J Int AIDS Soc 2013; 16:18723. [PMID: 24050252 PMCID: PMC3778210 DOI: 10.7448/ias.16.1.18723] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/10/2013] [Accepted: 08/19/2013] [Indexed: 12/01/2022] Open
Abstract
Introduction A dual split reporter protein system (DSP), recombining Renilla luciferase (RL) and green fluorescent protein (GFP) split into two different constructs (DSP1–7 and DSP8–11), was adapted to create a novel rapid phenotypic tropism assay (PTA) for HIV-1 infection (DSP-Pheno). Methods DSP1–7 was stably expressed in the glioma-derived NP-2 cell lines, which expressed CD4/CXCR4 (N4X4) or CD4/CCR5 (N4R5), respectively. An expression vector with DSP8–11 (pRE11) was constructed. The HIV-1 envelope genes were subcloned in pRE11 (pRE11-env) and transfected into 293FT cells. Transfected 293FT cells were incubated with the indicator cell lines independently. In developing the assay, we selected the DSP1–7-positive clones that showed the highest GFP activity after complementation with DSP8–11. These cell lines, designated N4R5-DSP1–7, N4X4-DSP1–7 were used for subsequent assays. Results The env gene from the reference strains (BaL for R5 virus, NL4-3 for X4 virus, SF2 for dual tropic virus) subcloned in pRE11 and tested, was concordant with the expected co-receptor usage. Assay results were available in two ways (RL or GFP). The assay sensitivity by RL activity was comparable with those of the published phenotypic assays using pseudovirus. The shortest turnaround time was 5 days after obtaining the patient's plasma. All clinical samples gave positive RL signals on R5 indicator cells in the fusion assay. Median RLU value of the low CD4 group was significantly higher on X4 indicator cells and suggested the presence of more dual or X4 tropic viruses in this group of patients. Comparison of representative samples with Geno2Pheno [co-receptor] assay was concordant. Conclusions A new cell-fusion-based, high-throughput PTA for HIV-1, which would be suitable for in-house studies, was developed. Equipped with two-way reporter system, RL and GFP, DSP-Pheno is a sensitive test with short turnaround time. Although maintenance of cell lines and laboratory equipment is necessary, it provides a safe assay system without infectious viruses. With further validation against other conventional analyses, DSP-Pheno may prove to be a useful laboratory tool. The assay may be useful especially for the research on non-B subtype HIV-1 whose co-receptor usage has not been studied much.
Collapse
|
23
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
24
|
Choi WT, Kumar S, Madani N, Han X, Tian S, Dong CZ, Liu D, Duggineni S, Yuan J, Sodroski JG, Huang Z, An J. A novel synthetic bivalent ligand to probe chemokine receptor CXCR4 dimerization and inhibit HIV-1 entry. Biochemistry 2012; 51:7078-86. [PMID: 22897429 DOI: 10.1021/bi2016712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine receptor CXCR4 is one of two principal coreceptors for the entry of HIV-1 into target cells. CXCR4 is known to form homodimers. We previously demonstrated that the amino terminus of viral macrophage protein II (vMIP-II) is the major determinant for CXCR4 recognition, and that V1 peptide derived from the N-terminus of vMIP-II (1-21 residues) showed significant CXCR4 binding. Interestingly, an all-d-amino acid analogue of V1 peptide, DV1 peptide, displayed an even higher binding affinity and strong antiviral activity in inhibiting the replication of CXCR4-dependent HIV-1 strains. In this study, we synthetically linked two DV1 peptides with the formation of a disulfide bond between the two cysteine residues present in the peptide sequence to generate a dimeric molecule potentially capable of interacting with two CXCR4 receptors. DV1 dimer exhibited enhanced binding affinity and antiviral activity compared with those of DV1 monomer. Ligand binding site mapping experiments showed that DV1 dimer overlaps with HIV-1 gp120 on CXCR4 binding sites, including several transmembrane (TM) residues located close to the extracellular side and the N-terminus of CXCR4. This finding was supported by the molecular modeling of CXCR4 dimer-DV1 dimer interaction based on the crystal structure of CXCR4, which showed that DV1 dimer is capable of interacting with the CXCR4 dimeric structure by allowing the N-terminus of each DV1 monomer to reach into the binding pocket of CXCR4 monomer. The development of this bivalent ligand provides a tool for further probing the functions of CXCR4 dimerization and studying CXCR4 heterodimerization with other receptors.
Collapse
Affiliation(s)
- Won-Tak Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R. Pharmacological modulation of chemokine receptor function. Br J Pharmacol 2012; 165:1617-1643. [PMID: 21699506 DOI: 10.1111/j.1476-5381.2011.01551.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Canals
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - D Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - L Roumen
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Wijtmans
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - C de Graaf
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - H F Vischer
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - R Leurs
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood 2012; 119:4908-18. [PMID: 22496149 DOI: 10.1182/blood-2011-08-372516] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes four 7-transmembrane-spanning (7TM) proteins, US28, US27, UL33, and UL78, which present important sequence homology with human chemokine receptors. Whereas US28 binds a large range of chemokines and disturbs host cell signaling at different levels, the others are orphans with largely unknown functions. Assembly of 2 different 7TM proteins into hetero-oligomeric complexes may profoundly change their respective functional properties. We show that HCMV-encoded UL33 and UL78 form heteromers with CCR5 and CXCR4 chemokine receptors in transfected human embryonic kidney 293T cells and monocytic THP-1 cells. Expression of UL33 and UL78 had pleiotropic, predominantly negative, effects on CCR5 and CXCR4 cell surface expression, ligand-induced internalization, signal transduction, and migration without modifying the chemokine binding properties of CCR5 and CXCR4. Importantly, the coreceptor activity of CCR5 and CXCR4 for HIV was largely impaired in the presence of UL33 and UL78 without affecting expression of the primary HIV entry receptor CD4 and its interaction with CCR5 and CXCR4. Collectively, we identified the first molecular function for the HCMV-encoded orphan UL33 and UL78 7TM proteins, namely the regulation of cellular chemokine receptors through receptor heteromerization.
Collapse
|
27
|
Costantino CM, Gupta A, Yewdall AW, Dale BM, Devi LA, Chen BK. Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells. PLoS One 2012; 7:e33961. [PMID: 22448282 PMCID: PMC3309010 DOI: 10.1371/journal.pone.0033961] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/20/2012] [Indexed: 12/20/2022] Open
Abstract
Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1)R and CB(2)R) and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2)R, but not CB(1)R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2)R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2)R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2)R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2)R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2)R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.
Collapse
Affiliation(s)
- Cristina Maria Costantino
- Department of Infectious Diseases, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Alice W. Yewdall
- Department of Infectious Diseases, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Benjamin M. Dale
- Department of Infectious Diseases, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lakshmi A. Devi
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Benjamin K. Chen
- Department of Infectious Diseases, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
28
|
Adachi T, Tanaka R, Kodama A, Saito M, Takahashi Y, Ansari AA, Tanaka Y. Identification of an unique CXCR4 epitope whose ligation inhibits infection by both CXCR4 and CCR5 tropic human immunodeficiency type-I viruses. Retrovirology 2011; 8:84. [PMID: 22018245 PMCID: PMC3239297 DOI: 10.1186/1742-4690-8-84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/22/2011] [Indexed: 11/24/2022] Open
Abstract
Background Small chemical compounds which target chemokine receptors have been developed against human immunodeficiency virus type 1 (HIV-1) and are under investigation for use as anti-HIV-1 microbicides. In addition, monoclonal antibodies (mAbs) against chemokine receptors have also been shown to have anti-HIV-1 activities. The objective of the present study was to screen a panel of three anti-CXCR4 specific monoclonal antibodies (mAbs) for their ability to block the HIV-1 infection using in vitro activated primary peripheral blood mononuclear cells (PBMCs). Results PBMCs from normal donors were pre-activated with anti-CD3 and anti-CD28 mAbs for 1 day, and aliquots were infected with a low dose of CCR5-tropic (R5), CXCR4 tropic (X4) or dual tropic (X4R5) HIV-1 isolates and cultured in the presence of a panel of anti-CXCR4 mAbs. The panel included clones A145 mAb against the N-terminus, A120 mAb against a conformational epitope consisting of extracellular loops (ECL)1 and ECL2, and A80 mAb against ECL3 of CXCR4. Among these mAbs, the A120 mAb showed the most potent inhibition of infection, by not only X4 but surprisingly also R5 and X4R5 HIV-1. The inhibition of R5 HIV-1 was postulated to result from the novel ability of the A120 mAb to induce the levels of the CCR5-binding β-chemokines MIP-1α, MIP-1β and/or RANTES, and the down modulation of CCR5 expression on activated CD4+ T cells. Neutralizing anti-MIP-1α mAb significantly reversed the inhibitory effect of the A120 mAb on R5 HIV-1 infection. Conclusions The data described herein have identified a unique epitope of CXCR4 whose ligation not only directly inhibits X4 HIV-1, but also indirectly inhibits R5 HIV-1 infection by inducing higher levels of natural CCR5 ligands.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Immunology, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Sungkaworn T, Lenbury Y, Chatsudthipong V. Oxidative stress increases angiotensin receptor type I responsiveness by increasing receptor degree of aggregation using image correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2496-500. [DOI: 10.1016/j.bbamem.2011.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/11/2023]
|
30
|
Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M. Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 2011; 82:610-9. [PMID: 21684267 PMCID: PMC3156895 DOI: 10.1016/j.bcp.2011.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/02/2011] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that infects up to 80% of the human population and causes severe complications in immunocompromised patients. HCMV expresses four seven transmembrane (7TM) spanning/G protein-coupled receptors (GPCRs) – US28, US27, UL33 and UL78 – that show close homology to human chemokine receptors. While US28 was shown to bind several chemokines and to constitutively activate multiple signaling cascades, the function(s) of US27, UL33 and UL78 in the viral life cycle have not yet been identified. Here we investigated the possible interaction/heteromerization of US27, UL33 and UL78 with US28 and the functional consequences thereof. We provide evidence that these receptors not only co-localize, but also heteromerize with US28 in vitro. While the constitutive activation of the US28-mediated Gαq/phospholipase C pathway was not affected by receptor heteromerization, UL33 and UL78 were able to silence US28-mediated activation of the transcription factor NF-κB. Summarized, we provide evidence that these orphan viral receptors have an important regulatory capacity on the function of US28 and as a consequence, may ultimately impact on the viral life cycle of HCMV.
Collapse
Affiliation(s)
- Pia Tschische
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
31
|
Kramp BK, Sarabi A, Koenen RR, Weber C. Heterophilic chemokine receptor interactions in chemokine signaling and biology. Exp Cell Res 2010; 317:655-63. [PMID: 21146524 DOI: 10.1016/j.yexcr.2010.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 12/22/2022]
Abstract
It is generally accepted that G-protein coupled receptors (GPCR), like chemokine receptors, form dimers or higher order oligomers. Such homo- and heterophilic interactions have been identified not only among and between chemokine receptors of CC- or CXC-subfamilies, but also between chemokine receptors and other classes of GPCR, like the opioid receptors. Oligomerization affects different aspects of receptor physiology, like ligand affinity, signal transduction and the mode of internalization, in turn influencing physiologic processes such as cell activation and migration. As particular chemokine receptor pairs exert specific modulating effects on their individual functions, they might play particular roles in various disease types, such as cancer. Hence, chemokine receptor heteromers might represent attractive therapeutic targets. This review highlights the state-of-the-art knowledge on the technical and functional aspects of chemokine receptor multimerization in chemokine signaling and biology.
Collapse
Affiliation(s)
- Birgit K Kramp
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Medical Faculty, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | | | | | | |
Collapse
|
32
|
Lukasiewicz S, Polit A, Kędracka-Krok S, Wędzony K, Maćkowiak M, Dziedzicka-Wasylewska M. Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1347-58. [PMID: 20831885 DOI: 10.1016/j.bbamcr.2010.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 08/11/2010] [Accepted: 08/25/2010] [Indexed: 12/29/2022]
Abstract
In the present study, detailed information is presented on the hetero-dimerization of the serotonin 5-HT(2A) receptor and the dopamine D(2) receptor. Biophysical approaches (fluorescence spectroscopy as well as fluorescence lifetime microscopy) were used to determine the degree of fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent protein labeled receptor variants co-expressed in human embryonic kidney 293 cells (HEK293). Recorded data demonstrate the existence of energy transfer between the wild-type forms of 5-HT(2A)R and D(2)R, pointing toward the formation of hetero-5-HT(2A)R/D(2)R dimers and homo-5-HT(2A)R/5-HT(2A)R dimers. Moreover, the present study investigates the role of specific motifs (one containing adjacent arginine residues (217RRRRKR222) in the third intracellular loop (ic3) of D(2)R, and the other consisting of acidic glutamate residues (454EE455) in the C-tail of (5-HT(2A)R) in the formation of noncovalent complexes between these receptors. Our results suggest that these regions of 5-HT(2A)R and D(2)R may be involved in the interaction between these two proteins. On the other hand, the above-mentioned motifs do not play an important role in the homo-dimerization of these receptors. Furthermore, we estimated the influence of specific receptor ligands on the dimerization processes. Agonists (DOI and quinpirole) and antagonists (ketanserin and butaclamol) cause different effects on FRET efficiency depending on whether homo- or hetero-complexes are present. These data may have therapeutic implications, since (using the immunofluorescence double labeling protocols) the co-localization of these two receptors was demonstrated in the medial prefrontal cortex and pars reticulate of the substantia nigra of the rat brain.
Collapse
Affiliation(s)
- Sylwia Lukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Singh A, Page T, Moore PL, Allgaier RL, Hiramen K, Coovadia HM, Walker BD, Morris L, Ndung’u T. Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates. Virology 2009; 393:56-67. [PMID: 19695656 PMCID: PMC3492694 DOI: 10.1016/j.virol.2009.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 05/19/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
Abstract
It is widely documented that a complete switch from the predominant CCR5 (R5) to CXCR4 (X4) phenotype is less common for HIV-1 subtype C (HIV-1C) compared to other major subtypes. We investigated whether dualtropic HIV-1C isolates represented dualtropic, mixed R5 and X4 clones or both. Thirty of 35 functional HIV-1 env clones generated by bulk PCR amplification from peripheral blood mononuclear cells (PBMCs) infected with seven dualtropic HIV-1C isolates utilized CXCR4 exclusively. Five of 35 clones displayed dualtropism. Endpoint dilution of one isolate did not yield a substantial proportion of R5-monotropic env clones. Sequence-based predictive algorithms showed that env sequences from PBMCs, CXCR4 or CCR5-expressing cell lines were indistinguishable and all possessed X4/dualtropic characteristics. We describe HIV-1C CXCR4-tropic env sequence features. Our results suggest a dramatic loss of CCR5 monotropism as dualtropism emerges in HIV-1C which has important implications for the use of coreceptor antagonists in therapeutic strategies for this subtype.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- Cluster Analysis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- HIV-1/classification
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- Receptors, CCR5/analysis
- Receptors, CXCR5/analysis
- Receptors, HIV/analysis
- Receptors, HIV/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology
- Virus Internalization
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ashika Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Taryn Page
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Rachel L. Allgaier
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Keshni Hiramen
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Hoosen M. Coovadia
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Department of Paediatrics and Child Heath, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Charlestown, MA, USA
| |
Collapse
|
34
|
|
35
|
Abstract
Chemokines belong to a family of structurally related chemoattractant proteins that bind to specific seven-transmembrane receptors linked to G proteins. They are implicated in a variety of biologic responses ranging from cell polarization, movement, immune and inflammatory responses, as well as prevention of HIV-1 infection and cancer metastasis. Recent evidence indicates that chemokine receptors can adopt several conformations at the cell membrane. Chemokine receptor homo- and heterodimers preexist on the cell surface, even in the absence of ligands. Chemokine binding stabilizes specific receptor conformations and activates distinct signaling cascades. Analysis of the conformations adopted by the receptors at the membrane and their dynamics is crucial for a complete understanding of the function of these inflammatory mediators. We focus here on conventional biochemical and genetic methods, as well as on new imaging techniques such as those based on resonance energy transfer, discussing their advantages, disadvantages, and possible complementarity in the analysis of chemokine receptor dimerization.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To summarize emerging clinical and preclinical data pertaining to the use of CCR5 monoclonal antibodies (mAbs) as therapies for HIV-1 infection. The epitope specificity of CCR5 mAbs is discussed in relation to its critical impact on antiviral activity and CCR5 antagonism. We compare and contrast mAbs and small-molecule CCR5 antagonists in terms of their binding and antiviral properties. Two CCR5 mAbs have entered clinical testing and have successfully completed proof-of-concept studies in HIV-infected individuals, providing initial information on the potential therapeutic utility of these agents. RECENT FINDINGS New studies support the view that the most potent antiviral CCR5 mAbs recognize the second extracellular loop of CCR5 either exclusively or in combination with the amino terminus. Studies have revealed fundamental differences in how mAbs and small molecules bind CCR5 and inhibit HIV-1. CCR5 mAbs and small-molecule CCR5 antagonists have demonstrated consistent antiviral synergy and limited or no viral cross-resistance in independent studies. Single intravenous infusions of CCR5 mAbs significantly reduced HIV-1 RNA levels in infected individuals for 2-3 weeks without appreciable toxicity. SUMMARY CCR5 mAbs have demonstrated broad and potent antiviral activity in vitro. Clinical studies have established CCR5 mAbs as potent antiretroviral agents with prolonged activity following a single dose. CCR5 mAbs represent both a distinct class of CCR5 inhibitor and a novel approach to HIV-1 therapy.
Collapse
|
37
|
Guan R, Feng X, Wu X, Zhang M, Zhang X, Hébert TE, Segaloff DL. Bioluminescence resonance energy transfer studies reveal constitutive dimerization of the human lutropin receptor and a lack of correlation between receptor activation and the propensity for dimerization. J Biol Chem 2009; 284:7483-94. [PMID: 19147490 DOI: 10.1074/jbc.m809150200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904-5914). In this study, bioluminescence resonance energy transfer (BRET(2)) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET(2) to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET(2) analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET(2) signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR.
Collapse
Affiliation(s)
- Rongbin Guan
- Department of Molecular Biophysics and Physiology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Rodríguez-Frade JM, Muñoz LM, Holgado BL, Mellado M. Chemokine receptor dimerization and chemotaxis. Methods Mol Biol 2009; 571:179-198. [PMID: 19763967 DOI: 10.1007/978-1-60761-198-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A broad array of biological responses ranging from cell polarization, movement, immune and inflammatory responses, as well as prevention of HIV-1 infection, are triggered by the chemokines, a family of structurally related chemoattractant proteins that bind to specific seven-transmembrane receptors linked to G proteins. Although it was initially believed that chemokine receptors act as monomeric entities, it has now been shown that they function as oligomers. Chemokine receptor homo- and heterodimers are found on the cell membrane; binding to their ligands stabilizes specific receptor conformations and activates distinct signaling cascades. Thorough analysis of the conformations adopted by the receptors at the membrane is therefore a prerequisite for understanding the function of these inflammatory mediators. For study of the chemokine receptor conformations at the cell surface, we focus here on conventional biochemical and genetic methods, as well as on new imaging techniques such as those based on resonance energy transfer; we also evaluate in vitro and in vivo methods to determine certain chemokine receptor functions.
Collapse
|
39
|
Chakera A, Seeber RM, John AE, Eidne KA, Greaves DR. The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol Pharmacol 2008; 73:1362-70. [PMID: 18230715 DOI: 10.1124/mol.107.040915] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The Duffy antigen/receptor for chemokines (DARC) is an unusual chemokine receptor that binds a large number of inflammatory chemokines of both the CC and CXC families with nanomolar affinity, yet it lacks the ability to signal upon ligand binding. Using bioluminescent resonant energy transfer, we have demonstrated for the first time that DARC exists as a constitutive homo-oligomer in living cells and furthermore that DARC hetero-oligomerizes with the CC chemokine receptor CCR5. DARC-CCR5 interaction impairs chemotaxis and calcium flux through CCR5, whereas internalization of CCR5 in response to ligand binding remains unchanged. These results suggest a novel mechanism by which DARC could modulate inflammatory responses to chemokines in vivo.
Collapse
Affiliation(s)
- Aron Chakera
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd., Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
40
|
Two amino acid substitutions within the first external loop of CCR5 induce human immunodeficiency virus-blocking antibodies in mice and chickens. J Virol 2008; 82:4125-34. [PMID: 18256149 DOI: 10.1128/jvi.02232-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antibodies to the first loop (ECL1) of CCR5 have been identified in human immunodeficiency virus (HIV)-exposed uninfected individuals (ESN) and in HIV-positive nonprogressing subjects. Thus, these antibodies may confer resistance against HIV infection. To define which amino acids are involved in antibody binding to CCR5, we performed a peptide-scanning assay and studied the immunogenicity of peptides in animal models. A panel of synthetic peptides spanning the CCR5-ECL1 region and displaying glycine or alanine substitutions was assayed for antibody binding with a pool of natural anti-CCR5 antibodies. We used mice and chickens to study the immunogenicity of mutagenized peptide. Structural characterization by nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations were performed to better understand the structural and conformational features of the mutagenized peptide. Amino acid substitutions in positions Ala95 and Ala96 (A(95)-A(96)) increased antibody-peptide binding compared to that of the wild-type peptide (Asp(95)-Phe(96)). The Ala95-96 peptide was shown to induce, in mice and chickens, antibodies displaying biological activity at very low concentrations. Strikingly, chicken antibodies to the Ala95-96 peptide specifically recognize human CCR5 molecules, downregulate receptors from lymphocytes, inhibit CCR5-dependent chemotaxis, and prevent infection by several R5 viruses, displaying 50% inhibitory concentrations of less than 3 ng/ml. NMR spectroscopy and molecular dynamics simulations proved the high flexibility of isolated epitopes and suggested that A(95)-A(96) substitutions determine a slightly higher tendency to generate helical conformations combined with a lower steric hindrance of the side chains in the peptides. These findings may be relevant to the induction of strong and efficient HIV-blocking antibodies.
Collapse
|
41
|
Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Mol Biotechnol 2008; 39:239-64. [DOI: 10.1007/s12033-008-9031-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 01/14/2023]
|
42
|
Nasser MW, Raghuwanshi SK, Malloy KM, Gangavarapu P, Shim JY, Rajarathnam K, Richardson RM. CXCR1 and CXCR2 Activation and Regulation. J Biol Chem 2007; 282:6906-15. [PMID: 17204468 DOI: 10.1074/jbc.m610289200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation. To determine the structural determinant(s) that modulate receptor internalization, various chimeric and point mutant receptors were generated by progressively exchanging specific domains or amino acids between CXCR1 and CXCR2. The receptors were stably expressed in rat basophilic leukemia 2H3 cells and characterized for receptor binding, intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, phosphorylation, internalization, and MAPK activation. The data herein indicate that the second extracellular loop (2ECL) of the receptors is critical for the distinct rate of internalization. Replacing the 2ECL of CXCR2 with that of CXCR1 (B(2ECL)A) or Asp(199) with its CXCR1 valine counterpart (B(D199V)A) delayed CXCR2 internalization similarly to CXCR1. Replacing Asp(199) with Asn (B(D199N)) restored CXCR2 rapid internalization. Structure modeling of the 2ECL of the receptors also suggested that Asp(199) plays a critical role in stabilizing and modulating CXCR2 rapid internalization relative to CXCR1. B(D199N) internalized rapidly but migrated as a single phosphorylated form like CXCR1 ( approximately 75 kDa), whereas B(2ECL)A and B(D199V)A showed slow and fast migrating forms like CXCR2 ( approximately 45 and approximately 65 kDa, respectively) but internalized like CXCR1. These data further undermine the role of receptor oligomerization in CXCL8 receptor internalization. Like CXCR1, B(D199V)A also induced sustained ERK activation and cross-desensitized Ca(2+) mobilization to CCR5 relative to B(D199N) and CXCR2. Altogether, the data suggest that the 2ECL of the CXCL8 receptors is important in modulating their distinct rate of down-regulation and thereby signal length and post-internalization activities.
Collapse
Affiliation(s)
- Mohd W Nasser
- Julius L. Chambers Biomedical/Biotechnology Research Institute and the Department of Biology, North Carolina Central University, Durham, North Carolina 27707, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang J, He L, Combs CA, Roderiquez G, Norcross MA. Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 2006; 5:2474-83. [PMID: 17041091 DOI: 10.1158/1535-7163.mct-05-0261] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokine receptor CXCR4 (CD184) may play a role in cancer metastasis and is known to form homodimers. However, it is not clear how transmembrane regions (TM) of CXCR4 and receptor homotypic interactions affect the function of CXCR4 in living cells. Using confocal microscopy and flow cytometric analysis, we showed that high levels of CXCR4 are present in the cytoplasm, accompanied by lower expression on the cell surface in CXCR4 transfectants, tumor cells, and normal peripheral blood lymphocytes. CXCR4 homodimers were detected in tumor cells, both on the cell surface membrane and in the cytoplasm using fluorescence resonance energy transfer and photobleaching fluorescence resonance energy transfer to measure energy transfer between CXCR4-CFP and CXCR4-YFP constructs. Disruption of lipid rafts by depletion of cholesterol with methyl-beta-cyclodextrin reduced the interaction between CXCR4 molecules and inhibited malignant cell migration to CXCL12/SDF-1alpha. A synthetic peptide of TM4 of CXCR4 reduced energy transfer between molecules of CXCR4, inhibited CXCL12-induced actin polymerization, and blocked chemotaxis of malignant cells. TM4 also inhibited migration of normal monocytes toward CXCL12. Reduction of CXCR4 energy transfer by the TM4 peptide and methyl-beta-cyclodextrin indicates that interactions between CXCR4s may play important roles in cell migration and suggests that cell surface and intracellular receptor dimers are appropriate targets for control of tumor cell spread. Targeting chemokine receptor oligomerization and signal transduction for the treatment of cancer, HIV-1 infections, and other CXCR4 mediated inflammatory conditions warrants further investigation.
Collapse
Affiliation(s)
- Jinhai Wang
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
44
|
Modi WS, Lautenberger J, An P, Scott K, Goedert JJ, Kirk GD, Buchbinder S, Phair J, Donfield S, O'Brien SJ, Winkler C. Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. Am J Hum Genet 2006; 79:120-8. [PMID: 16773571 PMCID: PMC1474130 DOI: 10.1086/505331] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/24/2006] [Indexed: 12/20/2022] Open
Abstract
CCL3 (MIP-1 alpha), CCL4 (MIP-1 beta), and CCL18 (DC-CK1/PARC/AMAC-1) are potent chemoattractants produced by macrophages, natural killer cells, fibroblasts, mast cells, CD4(+) T cells, and CD8(+) T cells. CCL3 and CCL4 are natural ligands for the primary human immunodeficiency virus type 1 (HIV-1) coreceptor CCR5 and are also known to activate and enhance the cytotoxicity of natural killer cells. Genomic DNAs from >3,000 participants enrolled in five United States-based natural-history cohorts with acquired immunodeficiency syndrome (AIDS) were genotyped for 21 single-nucleotide polymorphisms (SNPs) in a 47-kb interval on chromosome 17q12 containing the genes CCL3, CCL4, and CCL18. All 21 SNPs were polymorphic in African Americans (AAs), whereas 7 of the 21 had minor-allele frequencies <0.01 in European Americans (EAs). Substantial linkage disequilibrium was observed in a 37-kb interval containing 17 SNPs where many pairwise D' values exceeded 0.70 in both racial groups, but particularly in EAs. Four and three haplotype blocks were observed in AAs and EAs, respectively. Blocks were strongly correlated with each other, and common haplotype diversity within blocks was limited. Two significant associations are reported that replicate an earlier study. First, among AA members of the AIDS Link to the Intravenous Experience cohort of injection drug users, frequencies of three correlated SNPs covering 2,231 bp in CCL3 were significantly elevated among highly exposed, persistently HIV-1-uninfected individuals compared with HIV-1-infected seroconvertors (P = .02-.03). Second, seven highly correlated SNPs spanning 36 kb and containing all three genes were significantly associated with more-rapid disease progression among EAs enrolled in the Multicenter AIDS Cohort Study cohort (P = .01-.02). These results reiterate the importance of chemokine gene variation in HIV-1/AIDS pathogenesis and emphasize that localized linkage disequilibrium makes the identification of causal mutations difficult.
Collapse
Affiliation(s)
- William S Modi
- SAIC-Frederick, Inc., Basic Research Program, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kraetke O, Wiesner B, Eichhorst J, Furkert J, Bienert M, Beyermann M. Dimerization of corticotropin-releasing factor receptor type 1 is not coupled to ligand binding. J Recept Signal Transduct Res 2006; 25:251-76. [PMID: 16393915 DOI: 10.1080/10799890500468838] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As described previously, receptor dimerization of G protein-coupled receptors may influence signaling, trafficking, and regulation in vivo. Up to now, most studies aiming at the possible role of receptor dimerization in receptor activation and signal transduction are focused on class A GPCRs. In the present work, the dimerization behavior of the corticotropin-releasing factor receptor type 1 (CRF1R), which belongs to class B of GPCRs and plays an important role in coordination of the immune response, stress, and learning behavior, was investigated by using fluorescence resonance energy transfer (FRET). For this purpose, we generated fusion proteins of CRF1R tagged at their C-terminus to a cyan or yellow fluorescent protein, which can be used as a FRET pair. Binding studies verified that the receptor constructs were able to bind their natural ligands in a manner comparable with the wild-type receptor, whereas cAMP accumulation proved the functionality of the constructs. In microscopic studies, a dimerization of the CRF1R was observed, but the addition of either CRF-related agonists or antagonists did not show any dose-related increase of the observed FRET signal, indicating that the dimer-monomer ratio is not changed on addition of ligand.
Collapse
Affiliation(s)
- Oliver Kraetke
- Department of Peptide Chemistry, Institute of Molecular Pharmacology (FMP), Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Yang X, Kurteva S, Ren X, Lee S, Sodroski J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J Virol 2005; 79:12132-47. [PMID: 16160141 PMCID: PMC1211524 DOI: 10.1128/jvi.79.19.12132-12147.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.
Collapse
Affiliation(s)
- Xinzhen Yang
- Dana-Farber Cancer Institute, Department of Cancer Immunology and AIDS, 44 Binney Street, JFB 824, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
47
|
Bergmeier LA, Babaahmady K, Wang Y, Lehner T. Mucosal alloimmunization elicits T-cell proliferation, CC chemokines, CCR5 antibodies and inhibition of simian immunodeficiency virus infectivity. J Gen Virol 2005; 86:2231-2238. [PMID: 16033970 DOI: 10.1099/vir.0.80802-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis was tested that mucosal stimulation with unmatched mononuclear cells would induce systemic alloimmune responses. Rectal or vaginal mucosal administration of 10(4)-10(7) unmatched mononuclear cells induced significant dose-dependent T-cell proliferation stimulated by the allogeneic cells in rhesus macaques. This was associated with a significant upregulation of CD8(+) T-cell-derived suppressor factor, as well as the CC chemokines CCL3, CCL4 and CCL5. In addition, there was a dose-dependent increase in antibodies to CCR5. These responses were associated with decreased in vitro simian immunodeficiency virus (SIV) infectivity of CD4(+) T cells. A further investigation of SIV infectivity of CD4(+) T cells separated from multiparous macaques also showed significant inhibition compared with male macaques. It is suggested that vaginal or rectal exposure to allogeneic stimulation by a partner's HLA antigens in seminal fluid, as occurs during sexual intercourse, or immunization by semi-allogeneic fetuses in multiparous females may elicit protection against SIV or human immunodeficiency virus infection.
Collapse
Affiliation(s)
- Lesley A Bergmeier
- Mucosal Immunology Unit, Guy's, King's and St Thomas' Hospital Medical and Dental Schools, King's College London, London SE1 9RT, UK
| | - Kaboutar Babaahmady
- Mucosal Immunology Unit, Guy's, King's and St Thomas' Hospital Medical and Dental Schools, King's College London, London SE1 9RT, UK
| | - Yufei Wang
- Mucosal Immunology Unit, Guy's, King's and St Thomas' Hospital Medical and Dental Schools, King's College London, London SE1 9RT, UK
| | - Thomas Lehner
- Mucosal Immunology Unit, Guy's, King's and St Thomas' Hospital Medical and Dental Schools, King's College London, London SE1 9RT, UK
| |
Collapse
|
48
|
Hüttenrauch F, Pollok-Kopp B, Oppermann M. G protein-coupled receptor kinases promote phosphorylation and beta-arrestin-mediated internalization of CCR5 homo- and hetero-oligomers. J Biol Chem 2005; 280:37503-15. [PMID: 16144840 DOI: 10.1074/jbc.m500535200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression levels of the chemokine receptor, CC chemokine receptor 5 (CCR5), at the cell surface determine cell susceptibility to HIV entry and infection. Cellular activation by CCR5 itself, but also by unrelated receptors leads to cross-phosphorylation and cross-internalization of CCR5. This study addresses the underlying molecular mechanisms of homologous and heterologous CCR5 regulation. As shown by bioluminescence resonance energy transfer experiments, CCR5 formed constitutive homo- as well as heterooligomeric complexes together with C5aR but not with the unrelated AT(1a)R in living cells. Stimulation with CCL5 of RBL cells, which co-expressed CCR5 together with an N-terminally truncated CCR5-DeltaNT mutant, resulted in both protein kinase C (PKC)- and G protein-coupled receptor (GPCR) kinase (GRK)-mediated cross-phosphorylation of the mutant unligated receptor, as determined by phosphosite-specific monoclonal antibody. Similarly, both PKC and GRK cross-phosphorylated CCR5 in a heterologous manner after C5a stimulation of RBL-CCR5/C5aR cells, whereas AT(1a)R stimulation resulted only in classical PKC-mediated CCR5 phosphorylation. Co-expression of CCR5-DeltaNT together with a phosphorylation-deficient CCR5 mutant that neither binds beta-arrestin nor undergoes internalization partially restored the CCL5-induced association of beta-arrestin with the homo-oligomeric receptor complex and augmented cellular uptake of (125)I-CCL5. Co-expression of C5aR, but not of AT(1a)R, promoted CCR5 co-internalization upon agonist stimulation by a mechanism independent of CCR5 phosphorylation. Co-internalization of phosphorylated CCR5 was also observed in C5a-stimulated macrophages. Finally, co-expression of a constitutively internalized C5aR-US28(CT) mutant led to intracellular accumulation of CCR5 in the absence of ligand stimulation. These results show that GRKs and beta-arrestin are involved in heterologous receptor regulation by cross-phosphorylating and co-internalizing unligated receptors within homo- or hetero-oligomeric protein complexes.
Collapse
Affiliation(s)
- Friederike Hüttenrauch
- Department of Cellular and Molecular Immunology, Georg-August-University, Göttingen, Germany
| | | | | |
Collapse
|
49
|
Wilson S, Wilkinson G, Milligan G. The CXCR1 and CXCR2 Receptors Form Constitutive Homo- and Heterodimers Selectively and with Equal Apparent Affinities. J Biol Chem 2005; 280:28663-74. [PMID: 15946947 DOI: 10.1074/jbc.m413475200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both homo- and heterodimeric interactions between the CXCR1 and CXCR2 chemokine receptors were observed following co-expression of forms of these receptors in HEK293 cells using assays, including co-immunoprecipitation, single cell imaging of fluorescence resonance energy transfer, cell surface time-resolved fluorescence resonance energy transfer, and bioluminescence resonance energy transfer. These interactions were constitutive and unaffected by the presence of the agonist interleukin 8 and selective as no significant interactions were noted between either the CXCR1 or CXCR2 receptor and the alpha(1A)-adrenoreceptor. Saturation bioluminescence resonance energy transfer indicated that heteromeric interactions between CXCR1 and CXCR2 were of similar affinity as the corresponding homomeric interactions. A novel endoplasmic reticulum trapping strategy demonstrated that these interactions were initiated during protein synthesis and maturation and prior to cell surface delivery. These studies indicated that CXCR1-CXCR2 heterodimers are as likely to form in cells co-expressing these two chemokine receptors as the corresponding homodimers and stand in contrast to previous studies indicating an inability of the CXCR1 receptor to homodimerize or to interact with the CXCR2 receptor (Trettel, F., Di Bartolomeo, S., Lauro, C., Catalano, M., Ciotti, M. T., and Limatola, C. (2003) J. Biol. Chem. 278, 40980-40988).
Collapse
Affiliation(s)
- Shirley Wilson
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
50
|
Sloane AJ, Raso V, Dimitrov DS, Xiao X, Deo S, Muljadi N, Restuccia D, Turville S, Kearney C, Broder CC, Zoellner H, Cunningham AL, Bendall L, Lynch GW. Marked structural and functional heterogeneity in CXCR4: separation of HIV-1 and SDF-1alpha responses. Immunol Cell Biol 2005; 83:129-43. [PMID: 15748209 DOI: 10.1111/j.1440-1711.2004.01304.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CXCR4, the chemotactic cell receptor for SDF-1alpha, is essential for immune trafficking and HIV infection. CXCR4 is remarkably heterogeneous and the purpose of this study was to better identify the isoforms expressed by cells and compare their structure and function. We found that cells express either a predominant isoform or multiple isoforms. These were best resolved on SDS-PAGE using sucrose-gradient-fractionated, triton-insoluble, membrane extracts. We hypothesized that glycosyl modification may underpin some of this heterogeneity and that cell isoform(s) differences may underscore CXCR4's multiple cell functions. A comparison of wild-type (WT) and dual N-linked glycosylation site, N11A/N176A, mutant CXCR4 expressed in 3T3 and HEK-293 cells served to implicate variabilities in glycosylation and oligomerization in almost half of the isoforms. Immunoprecipitation of CXCR4 revealed monomer and dimer non-glycosylated forms of 34 kDa and 68 kDa from the N11A/N176A mutant, compared with glycosylated 40 kDa and 47 kDa and 73 kDa and 80 kDa forms from WT. The functional specificity of isoform action was also implicated because, despite CEMT4 cells expressing high levels of CXCR4 and 11 different isoforms, a single 83 kDa form was found to bind gp120 for HIV-1 IIIB infection. Furthermore, comparative studies found that in contrast to SDF-1alpha-responsive Nalm-6 cells that expressed similar levels of a single isoform, CEMT4 cells did not show a Ca(++) flux or a chemotactic response to SDF-1alpha. Thus, CXCR4 can differ both structurally and functionally between cells, with HIV-1 infection and chemotaxis apparently mediated by different isoforms. This separation of structure and function has implications for understanding HIV-1 entry and SDF-1alpha responses and may indicate therapeutic possibilities.
Collapse
Affiliation(s)
- Andrew J Sloane
- HIV-Protein Interactions Laboratory, Centre for Virus Research, Westmead, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|