1
|
Javid P, Akbarzadeh A, Alavi SM, Farrokhi N, Jahromi MS, Behzadi S, Bakhtiarizadeh M, Pabasteh S, Ranjbar MS. Transcription of genes involved in bleaching of a coral reef species Acropora downingi (Wallace, 1999) in response to high temperature. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107102. [PMID: 40163966 DOI: 10.1016/j.marenvres.2025.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Anthropogenic-induced global warming poses a significant threat to coral reef ecosystems worldwide. However, certain species within the Persian Gulf exhibit remarkable resilience to elevated temperatures compared to their counterparts in other reef systems. To understand the thermal tolerance in Persian Gulf corals and their molecular responses to extreme warm temperatures, Acropora downingi specimens collected from Larak Island were subjected to a heat shock of 34 ± 1 °C. We evaluated coral coloration, bleaching, and mRNA expression of biomarkers related to heat shock proteins (HSPs) such as Hsp70 and Hsp90, oxidative stress markers like Catalase and manganese superoxide dismutase (Cat and Mn-Sod), anti-apoptotic factors exemplified by B-cell lymphoma 2 (Bcl-2), and calcification-related genes including galaxin (Gal) after 24 h and 48 h of thermal shock exposure. Exposure of A. downingi to a 48-h heat shock at 34 °C resulted in noticeable fading of coral coloration compared to the control group. Despite this, the corals demonstrated resilience and did not undergo complete bleaching. Our findings also revealed significant increase of Hsp70, Hsp90, Cat, Mn-Sod, Bcl-2, and Gal mRNA expression after 24 h of thermal stress. However, after 48 h, transcripts for Hsp90, Cat, and Gal were observed to be decreased. These results suggest the pivotal roles played by genes involved in HSP signaling pathways, oxidative stress responses, anti-apoptosis processes, and calcification processes in the Persian Gulf coral's adaptation to thermal stress and its resistance to bleaching.
Collapse
Affiliation(s)
- Pegah Javid
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar 'Abbas, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar 'Abbas, Iran.
| | - Seyed Mehdi Alavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran
| | - Maryam Soyuf Jahromi
- Department of Atmosphere and Oceanography, Faculty of Marine Science and Technology, University of Hormozgan, Bandar 'Abbas, Iran
| | - Siamak Behzadi
- Department of Marine Biology, Persian Gulf and Oman Sea Ecological Research Institute (PGOSERI), Bandar 'Abbas, Iran
| | | | - Sajjad Pabasteh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar 'Abbas, Iran
| | - Mohammad Sharif Ranjbar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar 'Abbas, Iran; Persian Gulf Biotechnology Park, Qeshm Island, Hormozgan, Iran.
| |
Collapse
|
2
|
Hong ZH, Zhu L, Gao LL, Zhu Z, Su T, Krall L, Wu XN, Bock R, Wu GZ. Chloroplast precursor protein preClpD overaccumulation triggers multilevel reprogramming of gene expression and a heat shock-like response. Nat Commun 2025; 16:3777. [PMID: 40263324 PMCID: PMC12015282 DOI: 10.1038/s41467-025-59043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Thousands of nucleus-encoded chloroplast proteins are synthesized as precursors on cytosolic ribosomes and posttranslationally imported into chloroplasts. Cytosolic accumulation of unfolded chloroplast precursor proteins (e.g., under stress conditions) is hazardous to the cell. The global cellular responses and regulatory pathways involved in triggering appropriate responses are largely unknown. Here, by inducible and constitutive overexpression of ClpD-GFP to result in precursor protein overaccumulation, we present a comprehensive picture of multilevel reprogramming of gene expression in response to chloroplast precursor overaccumulation stress (cPOS), reveal a critical role of translational activation in the expression of cytosolic chaperones (heat-shock proteins, HSPs), and demonstrate that chloroplast-derived reactive oxygen species act as retrograde signal for the transcriptional activation of small HSPs. Furthermore, we reveal an important role of the chaperone ClpB1/HOT1 in maintaining cellular proteostasis upon cPOS. Together, our observations uncover a cytosolic heat shock-like response to cPOS and provide insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leonard Krall
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Xu-Na Wu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Hurtado M, Suarez-Álvarez S, Castander-Olarieta A, Montalbán IA, Goicoechea PG, López de Heredia U, Marino D, Moncaleán P. Physiological and molecular response to drought in somatic plants from Pinus radiata embryonal masses induced at high temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109886. [PMID: 40262399 DOI: 10.1016/j.plaphy.2025.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Drought and heat are among the major abiotic stresses in forest trees and are directly related with the consequences of climatic change. Many responses to abiotic stresses in plants have been associated with plant memory but mechanisms underlying this phenomenon remain unclear. Somatic embryogenesis, which is considered one of the most important methods for large-scale vegetative propagation of plants, is also used for stress induction and study the mechanisms involved in adaptation to abiotic stress. Specifically, heat stress during initiation stage of somatic embryogenesis has shown to have an impact in differential expression of stress related genes in pines. Modifications caused by a previous stress could eventually influence the stress tolerance of somatic plants years later. In this study we analysed the response to drought in 2-year-old radiata pine somatic plants, derived from embryonal masses initiated at 60 °C, at physiological, transcriptomic and amino acid accumulation level. Our results showed a more pronounce response to drought in plants coming from 60 °C treatment, which presented lower values in several physiological parameters as well as higher proline and tyrosine levels. Additionally, the transcriptomic response to drought was stronger in heat primed plants compared to control plants, suggesting a memory acquired two years before.
Collapse
Affiliation(s)
- Mikel Hurtado
- Department Forestry Sciences, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Campus Agroalimentario de Arkaute, Ctra N-104 km 355, Arkaute, Álava, 01192, Spain; Department of Plant Biology and Ecology, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | - Sonia Suarez-Álvarez
- Department Plant Production. NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Campus Agroalimentario de Arkaute, Ctra N-104 km 355, Arkaute, Álava, 01192, Spain
| | - Ander Castander-Olarieta
- Department Forestry Sciences, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Campus Agroalimentario de Arkaute, Ctra N-104 km 355, Arkaute, Álava, 01192, Spain
| | - Itziar A Montalbán
- Department Forestry Sciences, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Campus Agroalimentario de Arkaute, Ctra N-104 km 355, Arkaute, Álava, 01192, Spain
| | - Pablo G Goicoechea
- Department Forestry Sciences, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Campus Agroalimentario de Arkaute, Ctra N-104 km 355, Arkaute, Álava, 01192, Spain
| | - Unai López de Heredia
- GI en Desarrollo de Especies y Comunidades Leñosas (WooSP), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | - Paloma Moncaleán
- Department Forestry Sciences, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Campus Agroalimentario de Arkaute, Ctra N-104 km 355, Arkaute, Álava, 01192, Spain.
| |
Collapse
|
4
|
Kahrizi Z, Michailidis C, Raabe K, Kumar V, Honys D, Hafidh S. The translation initiation factor eIF3M2 upregulates HEAT SHOCK PROTEIN 70 to maintain pollen tube membrane integrity during heat shock. PLANT PHYSIOLOGY 2024; 197:kiae643. [PMID: 39854649 DOI: 10.1093/plphys/kiae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds. Surprisingly, under HS at 37 °C, eif3m1 pollen germination outperformed wild-type Col-0, showing enhanced PT integrity. We established that the improved thermotolerance of the eif3m1 PT was due to increased expression of its putative paralog eIF3M2, which in turn upregulated Heat Shock protein 70 (HSP70) mRNA and protein levels. Indeed, eIF3M2 overexpression upregulated HSP70 expression, whereas eif3m2 knockdown showed reduced HSP70.1 promoter activity and increased in PT burst under HS conditions. Moreover, we show that eIF3M2 coimmunoprecipitates with HSP70 in PTs and directly interacts with cytoplasmic HSP70.1/2/4 and eIF4G in Nicotiana benthamiana pavement cells. Collectively, our data revealed that plants employ the eIF3M2-HSP70 module as a regulator of thermotolerance to maintain PT membrane integrity and improve fertilization and seed set adaptation under high temperatures.
Collapse
Affiliation(s)
- Zahra Kahrizi
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Karel Raabe
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| |
Collapse
|
5
|
Ibrahim S, Mira MM, Hill RD, Stasolla C. The Brassica napus phytoglobin 1 (BnPgb1) mitigates the decrease in plant fertility resulting from high temperature stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154302. [PMID: 38945072 DOI: 10.1016/j.jplph.2024.154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
High temperature stress during flowering adversely affects plant fertility, decreasing plant productivity. Daily cycles of heat stress (HS), imposed on Brassica napus L. plants by slowly ramping the temperature from 23 °C to 35 °C before lowering back to pre-stress conditions, inhibited flower and silique formation, with fewer seeds per silique during the stress period, as well as decreased pollen viability. Heat stress also elevated the transcripts and protein levels of class 1 phytoglobin BnPgb1, with the protein accumulating preferentially within the anther walls. Over-expression of BnPgb1 was sufficient to attenuate the reduction in plant fertility at high temperatures while its down-regulation exacerbated the effects of HS. Relative to WT anthers, the rise in ROS and ROS-induced damage caused by HS was limited when BnPgb1 was over-expressed, and this was linked to changes in antioxidant responses. High temperatures reduced the level of ascorbic acid (AsA) in anthers by favoring its oxidation via ascorbate oxidase (AOA) and limiting its regeneration through suppression of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Anthers of heat-stressed plants over-expressing BnPgb1 retained a higher AsA content with concomitant increased activities of DHAR, MDHAR, ascorbate peroxidase (APX) and superoxide dismutase (SOD). These changes suggest that BnPgb1 potentiates antioxidant responses during HS which mitigate the depression of fertility.
Collapse
Affiliation(s)
- Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada.
| |
Collapse
|
6
|
Fan J, Zhang H, Shi Y, Li Y, He Y, Wang Q, Liu S, Yao Y, Zhou X, Liao J, Huang Y, Wang Z. Systematic identification and characterization of microRNAs with target genes involved in high night temperature stress at the filling stage of rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14305. [PMID: 38659134 DOI: 10.1111/ppl.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.
Collapse
Affiliation(s)
- Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yan Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuewu Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuxiang He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Youmin Yao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Xiaoya Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| |
Collapse
|
7
|
Wu Q, Liu H, Xiong H, Hou Y, Peng Y, Zhao L, Wu J. Thermomechanically stable supramolecular elastomers inspired by heat shock proteins. MATERIALS HORIZONS 2024; 11:1014-1022. [PMID: 38054273 DOI: 10.1039/d3mh01737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Supramolecular polymers are usually thermomechanically unstable, as their mechanical strength decreases drastically upon heating, which is a fatal shortcoming for their application. Herein, inspired by heat shock proteins (HSPs) which enable living organisms to tolerate lethal high temperatures, we design an HSP-like response to impart a supramolecular elastomer with high thermomechanical stability. The HSP-like response relies on the reversible hydrolysis of boronic acid and the tunable association strength of boron dative bonds. As the temperature increases, the boronic acid dehydrates and transforms into boroxane. The boroxane, acting as a heat shock chemical, prevents the disintegration of the supramolecular network through formation of multiple and stronger dative bonds with imidazole-containing polymers, thereby enabling the material to retain its mechanical strength at high temperatures. Such chemical transformation and network change induced by the HSP-like response are fully reversible during the heating and cooling processes. Moreover, due to the dynamic nature of the supramolecular network, the elastomer possesses recycling and self-healing abilities.
Collapse
Affiliation(s)
- Qi Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hui Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yujia Hou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Chae HB, Bae SB, Paeng SK, Wi SD, Thi Phan KA, Lee SY. S-nitrosylation switches the Arabidopsis redox sensor protein, QSOX1, from an oxidoreductase to a molecular chaperone under heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108219. [PMID: 38048703 DOI: 10.1016/j.plaphy.2023.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
The Arabidopsis quiescin sulfhydryl oxidase 1 (QSOX1) thiol-based redox sensor has been identified as a negative regulator of plant immunity. Here, we have found that small molecular weight proteins of QSOX1 were converted to high molecular weight (HMW) complexes upon exposure to heat stress and that this was accompanied by a switch in QSOX1 function from a thiol-reductase to a molecular chaperone. Plant treatment with S-nitrosoglutathione (GSNO), which causes nitrosylation of cysteine residues (S-nitrosylation), but not with H2O2, induced HMW QSOX1 complexes. Thus, functional switching of QSOX1 is induced by GSNO treatment. Accordingly, simultaneous treatment of plants with heat shock and GSNO led to a significant increase in QSOX1 chaperone activity by increasing its oligomerization. Consequently, transgenic Arabidopsis overexpressing QSOX1 (QSOX1OE) showed strong resistance to heat shock, whereas qsox1 knockout plants exhibited high sensitivity to heat stress. Plant treatment with GSNO under heat stress conditions increased their resistance to heat shock. We conclude that S-nitrosylation allows the thiol-based redox sensor, QSOX1, to respond to various external stresses in multiple ways.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Sciences (BK21), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Su Bin Bae
- Division of Applied Life Sciences (BK21), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seong Dong Wi
- Division of Applied Life Sciences (BK21), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Sciences (BK21), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
9
|
Li X, Lu J, Zhu X, Dong Y, Liu Y, Chu S, Xiong E, Zheng X, Jiao Y. AtMYBS1 negatively regulates heat tolerance by directly repressing the expression of MAX1 required for strigolactone biosynthesis in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100675. [PMID: 37608548 PMCID: PMC10721535 DOI: 10.1016/j.xplc.2023.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Heat stress caused by global warming requires the development of thermotolerant crops to sustain yield. It is necessary to understand the molecular mechanisms that underlie heat tolerance in plants. Strigolactones (SLs) are a class of carotenoid-derived phytohormones that regulate plant development and responses to abiotic or biotic stresses. Although SL biosynthesis and signaling processes are well established, genes that directly regulate SL biosynthesis have rarely been reported. Here, we report that the MYB-like transcription factor AtMYBS1/AtMYBL, whose gene expression is repressed by heat stress, functions as a negative regulator of heat tolerance by directly inhibiting SL biosynthesis in Arabidopsis. Overexpression of AtMYBS1 led to heat hypersensitivity, whereas atmybs1 mutants displayed increased heat tolerance. Expression of MAX1, a critical enzyme in SL biosynthesis, was induced by heat stress and downregulated in AtMYBS1-overexpression (OE) plants but upregulated in atmybs1 mutants. Overexpression of MAX1 in the AtMYBS1-OE background reversed the heat hypersensitivity of AtMYBS1-OE plants. Loss of MAX1 function in the atmyb1 background reversed the heat-tolerant phenotypes of atmyb1 mutants. Yeast one-hybrid assays, chromatin immunoprecipitation‒qPCR, and transgenic analyses demonstrated that AtMYBS1 directly represses MAX1 expression through the MYB binding site in the MAX1 promoter in vivo. The atmybs1d14 double mutant, like d14 mutants, exhibited hypersensitivity to heat stress, indicating the necessary role of SL signaling in AtMYBS1-regulated heat tolerance. Our findings provide new insights into the regulatory network of SL biosynthesis, facilitating the breeding of heat-tolerant crops to improve crop production in a warming world.
Collapse
Affiliation(s)
- Xiang Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Jianhua Lu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xuling Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanqi Dong
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Yanli Liu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xu Zheng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
10
|
Lee JH, Burdick LH, Piatkowski B, Carrell AA, Doktycz MJ, Pelletier DA, Weston DJ. A rapid assay for assessing bacterial effects on Arabidopsis thermotolerance. PLANT METHODS 2023; 19:63. [PMID: 37386471 DOI: 10.1186/s13007-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND The role of beneficial microbes in mitigating plant abiotic stress has received considerable attention. However, the lack of a reproducible and relatively high-throughput screen for microbial contributions to plant thermotolerance has greatly limited progress in this area, this slows the discovery of novel beneficial isolates and the processes by which they operate. RESULTS We designed a rapid phenotyping method to assess the effects of bacteria on plant host thermotolerance. After testing multiple growth conditions, a hydroponic system was selected and used to optimize an Arabidopsis heat shock regime and phenotypic evaluation. Arabidopsis seedlings germinated on a PTFE mesh disc were floated onto a 6-well plate containing liquid MS media, then subjected to heat shock at 45 °C for various duration. To characterize phenotype, plants were harvested after four days of recovery to measure chlorophyll content. The method was extended to include bacterial isolates and to quantify bacterial contributions to host plant thermotolerance. As an exemplar, the method was used to screen 25 strains of the plant growth promoting Variovorax spp. for enhanced plant thermotolerance. A follow-up study demonstrated the reproducibility of this assay and led to the discovery of a novel beneficial interaction. CONCLUSIONS This method enables rapid screening of individual bacterial strains for beneficial effects on host plant thermotolerance. The throughput and reproducibility of the system is ideal for testing many genetic variants of Arabidopsis and bacterial strains.
Collapse
Affiliation(s)
- Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA
| | - Leah H Burdick
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA.
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd Bldg. 1507, Rm. 214, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
11
|
Kappel C, Friedrich T, Oberkofler V, Jiang L, Crawford T, Lenhard M, Bäurle I. Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis. Genome Biol 2023; 24:129. [PMID: 37254211 DOI: 10.1186/s13059-023-02970-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. RESULTS HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. CONCLUSIONS Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior.
Collapse
Affiliation(s)
- Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Thomas Friedrich
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Vicky Oberkofler
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
12
|
Tsai WA, Sung PH, Kuo YW, Chen MC, Jeng ST, Lin JS. Involvement of microRNA164 in responses to heat stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111598. [PMID: 36657663 DOI: 10.1016/j.plantsci.2023.111598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
MicroRNAs (miRNAs) are considered to be integral parts of plant stress regulatory networks. Under long-term heat stress, miR164 is induced. Conversely, its targets are repressed. Transgenic overexpressors (164OE) and mutants of MIR164 (mir164) were used to study miR164's functions during heat responses. Target gene expression decreased in 164OE transgenic plants and increased in mir164a-4 and mir164b mutants. Under heat stress, the mir164 mutants presented heat-sensitive phenotypes, while 164OE transgenic plants showed better thermotolerance than wild-type (WT) plants. Overexpression of miR164 decreased heat-inhibition of hypocotyl lengths. Under heat stress, miR164 target genes modulated the expression of chlorophyll b reductase and chlorophyll catabolic genes, reducing the chlorophyll a/b ratio. More H2O2 accumulated in the mir164 mutants under heat stress, which may have caused oxidative damage. In addition, expression of HSPs was altered in the experimental plants compared to that of the WT. Overall, miR164 influenced target gene expression, altering development, chlorophyll a/b ratio, H2O2-caused damage, and HSPs expression under long-term heat stress. These phenomena, in turn, likely influence the thermotolerance of plants.
Collapse
Affiliation(s)
- Wei-An Tsai
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - Po-Han Sung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming 365000, Fujian, China.
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
13
|
Kumar R, Tripathi G, Goyal I, Sharma J, Tiwari R, Shimphrui R, Sarkar NK, Grover A. Insights into genomic variations in rice Hsp100 genes across diverse rice accessions. PLANTA 2023; 257:91. [PMID: 36995438 DOI: 10.1007/s00425-023-04123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The Hsp101 gene is present across all sequenced rice genomes. However, as against Japonica rice, Hsp101 protein of most indica and aus rice contain insertion of glutamic acid at 907th position. The understanding of the heat stress response of rice plants is important for worldwide food security. We examined the presence/absence variations (PAVs) of heat shock proteins (Hsps)/heat shock transcription factor (Hsf) genes in cultivated rice accessions. While 53 Hsps/Hsfs genes showed variable extent of PAVs, 194 genes were the core genes present in all the rice accessions. ClpB1/Hsp101 gene, which is critically important for thermotolerance in plants, showed 100% distribution across the rice types. Within the ClpB1 gene sequence, 40 variation sites consisting of nucleotide polymorphisms (SNPs) and short insertion/deletions (InDels) were discerned. An InDel in ClpB1 leading to an in-frame insertion of 3 nucleotides (TCC) thereby an additional amino acid (glutamic acid) at 907th amino acid position was noted in most of the indica and aus as against japonica rice types. Three rice types namely Moroberekan (japonica), IR64 (indica) and N22 (aus) were further analyzed to address the question of ClpB1 genomic variations and its protein levels with the heat tolerance phenotype. The growth profiling analysis in the post heat stress (HS) period showed that N22 seedlings were most tolerant, IR64 moderately tolerant and Moroberekan highly sensitive. Importantly, the ClpB1 protein sequences of these three rice types showed distinct differences in terms of SNPs. As the ClpB1 protein levels accumulated post HS were generally higher in Moroberekan than N22 seedlings in our study, it is proposed that some additional gene loci in conjunction with ClpB1 regulate the overall rice heat stress response.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gayatri Tripathi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Jaydeep Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ruchi Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rinchuila Shimphrui
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
14
|
Tak Y, Lal SS, Gopan S, Balakrishnan M, Satheesh G, Biswal AK, Verma AK, Cole SJ, Brown RE, Hayward RE, Hines JK, Sahi C. Identification of subfunctionalized aggregate-remodeling J-domain proteins in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1705-1722. [PMID: 36576197 PMCID: PMC10010614 DOI: 10.1093/jxb/erac514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
J-domain proteins (JDPs) are critical components of the cellular protein quality control machinery, playing crucial roles in preventing the formation and, solubilization of cytotoxic protein aggregates. Bacteria, yeast, and plants additionally have large, multimeric heat shock protein 100 (Hsp100)-class disaggregases that resolubilize protein aggregates. JDPs interact with aggregated proteins and specify the aggregate-remodeling activities of Hsp70s and Hsp100s. However, the aggregate-remodeling properties of plant JDPs are not well understood. Here we identify eight orthologs of Sis1 (an evolutionarily conserved Class II JDP of budding yeast) in Arabidopsis thaliana with distinct aggregate-remodeling functionalities. Six of these JDPs associate with heat-induced protein aggregates in vivo and co-localize with Hsp101 at heat-induced protein aggregate centers. Consistent with a role in solubilizing cytotoxic protein aggregates, an atDjB3 mutant had defects in both solubilizing heat-induced aggregates and acquired thermotolerance as compared with wild-type seedlings. Next, we used yeast prions as protein aggregate models to show that the six JDPs have distinct aggregate-remodeling properties. Results presented in this study, as well as findings from phylogenetic analysis, demonstrate that plants harbor multiple, evolutionarily conserved JDPs with capacity to process a variety of protein aggregate conformers induced by heat and other stressors.
Collapse
Affiliation(s)
- Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Silviya S Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Shilpa Gopan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Madhumitha Balakrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Gouri Satheesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Anup K Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Sierra J Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | | | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
15
|
Torres E, García-Fernández A, Iñigo D, Lara-Romero C, Morente-López J, Prieto-Benítez S, Rubio Teso ML, Iriondo JM. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1258. [PMID: 36986946 PMCID: PMC10053585 DOI: 10.3390/plants12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.
Collapse
Affiliation(s)
- Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfredo García-Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Diana Iñigo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Grupo de Investigación de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 Tenerife, Spain
| | - Samuel Prieto-Benítez
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, 28040 Madrid, Spain
| | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José M. Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
16
|
Kim M, Swenson J, McLoughlin F, Vierling E. Mutation of the polyadenylation complex subunit CstF77 reveals that mRNA 3' end formation and HSP101 levels are critical for a robust heat stress response. THE PLANT CELL 2023; 35:924-941. [PMID: 36472129 PMCID: PMC9940869 DOI: 10.1093/plcell/koac351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Heat shock protein 101 (HSP101) in plants, and bacterial and yeast orthologs, is essential for thermotolerance. To investigate thermotolerance mechanisms involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a missense HSP101 allele (hot1-4). hot1-4 plants are sensitive to acclimation heat treatments that are otherwise permissive for HSP101 null mutants, indicating that the hot1-4 protein is toxic. We report one suppressor (shot2, suppressor of hot1-4 2) has a missense mutation of a conserved residue in CLEAVAGE STIMULATION FACTOR77 (CstF77), a subunit of the polyadenylation complex critical for mRNA 3' end maturation. We performed ribosomal RNA depletion RNA-Seq and captured transcriptional readthrough with a custom bioinformatics pipeline. Acclimation heat treatment caused transcriptional readthrough in hot1-4 shot2, with more readthrough in heat-induced genes, reducing the levels of toxic hot1-4 protein and suppressing hot1-4 heat sensitivity. Although shot2 mutants develop like the wild type in the absence of stress and survive mild heat stress, reduction of heat-induced genes and decreased HSP accumulation makes shot2 in HSP101 null and wild-type backgrounds sensitive to severe heat stress. Our study reveals the critical function of CstF77 for 3' end formation of mRNA and the dominant role of HSP101 in dictating the outcome of severe heat stress.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - John Swenson
- Program for Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Fionn McLoughlin
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
17
|
Callens C, Fernandez-Goméz J, Tucker MR, Zhang D, Wilson ZA. Heat stress responses vary during floret development in European spring barley cultivars. FRONTIERS IN PLANT SCIENCE 2023; 13:918730. [PMID: 36816480 PMCID: PMC9936242 DOI: 10.3389/fpls.2022.918730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The Poaceae, or grasses, include many agriculturally important cereal crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Barley is a widely grown cereal crop used for stock feed, malting and brewing. Abiotic stresses, particularly global warming, are the major causes of crop yield losses by affecting fertility and seed set. However, effects of heat stress on reproductive structures and fertility in barley have not been extensively investigated. In this study we examined three commercial European spring barley varieties under high temperature conditions to investigate the effects on floret development. Using a combination of fertility assays, X-ray micro computed tomography, 3-dimensional modelling, cytology and immunolabelling, we observed that male reproductive organs are severely impacted by increased temperature, while the female reproductive organs are less susceptible. Importantly, the timing of stress relative to reproductive development had a significant impact on fertility in a cultivar-dependent manner, this was most significant at pollen mitosis stage with fertility ranged from 31.6-56.0% depending on cultivar. This work provides insight into how heat stress, when applied during male pollen mother cell meiosis and pollen mitosis, affects barley fertility and seed set, and also describes complementary invasive and non-invasive techniques to investigate floret development. This information will be used to identify and study barley cultivars that are less susceptible to heat stress at specific stages of floral development.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Matthew R. Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
18
|
Kumar R, Ghatak A, Goyal I, Sarkar NK, Weckwerth W, Grover A, Chaturvedi P. Heat-induced proteomic changes in anthers of contrasting rice genotypes under variable stress regimes. FRONTIERS IN PLANT SCIENCE 2023; 13:1083971. [PMID: 36756226 PMCID: PMC9901367 DOI: 10.3389/fpls.2022.1083971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Heat stress drastically affects anther tissues resulting in poor plant fertility, necessitating an urgent need to determine the key proteome regulation associated with mature anther in response to heat stress. We identified several genotype - specific protein alterations in rice anthers of Moroberekan (Japonica, heat sensitive), IR64 (Indica, moderately heat tolerant), and Nagina22 (Aus, heat tolerant) in the short-term (ST_HS; one cycle of 42°C, 4 hours before anthesis) and long-term (LT_HS; 6 cycles of 38°C, 6 hours before anthesis) heat stress. The proteins upregulated in long-term heat stress in Nagina22 were enriched in biological processes related to unfolded protein binding and carboxylic acid metabolism, including amino acid metabolism. In short-term heat stress, Nagina22 anthers were enriched in proteins associated with vitamin E biosynthesis and GTPase activator activity. In contrast, downregulated proteins were related to ribosomal proteins. The expression of different Hsp20 and DnaJ was genotype specific. Overall, the heat response in Nagina22 was associated with its capacity for adequate metabolic control and cellular homeostasis, which may be critical for its higher reproductive thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis and lays a foundation for breeding thermotolerant varieties via molecular breeding.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Neelam K. Sarkar
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Charng YY, Mitra S, Yu SJ. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. THE PLANT CELL 2023; 35:187-200. [PMID: 36271858 PMCID: PMC9806581 DOI: 10.1093/plcell/koac313] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023]
Abstract
Plants acquire enhanced tolerance to intermittent abiotic stress by employing information obtained during prior exposure to an environmental disturbance, a process known as acclimation or defense priming. The capacity for stress memory is a critical feature in this process. The number of reports related to plant stress memory (PSM) has recently increased, but few studies have focused on the mechanisms that maintain PSM. Identifying the components involved in maintaining PSM is difficult due in part to the lack of clear criteria to recognize these components. In this review, based on what has been learned from genetic studies on heat acclimation memory, we propose criteria for identifying components of the regulatory networks that maintain PSM. We provide examples of the regulatory circuits formed by effectors and regulators of PSM. We also highlight strategies for assessing PSMs, update the progress in understanding the mechanisms of PSM maintenance, and provide perspectives for the further development of this exciting research field.
Collapse
Affiliation(s)
| | - Suma Mitra
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Molecular and Biological Agricultural Sciences Program, TIGP, Academia Sinica, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Shih-Jiun Yu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Karunadasa S, Kurepa J, Smalle JA. Gain-of-function of the cytokinin response activator ARR1 increases heat shock tolerance in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2022; 17:2073108. [PMID: 35535663 PMCID: PMC9103500 DOI: 10.1080/15592324.2022.2073108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/27/2023]
Abstract
In addition to its well-established role in plant development, the hormone cytokinin regulates plant responses to biotic and abiotic stresses. It was previously shown that cytokinin signaling acts negatively upon drought and osmotic stress tolerance and that gain-of-function of the cytokinin response regulator ARR1 causes osmotic stress hypersensitivity. Here we show that increased ARR1 action increases tolerance to heat shock and that this is correlated with increased accumulation of the heat shock proteins Hsp17.6 and Hsp70. These results show that the heat shock tolerance of plants can be elevated by increasing the expression of a cytokinin response activator.
Collapse
Affiliation(s)
- Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Jasmina Kurepa
- Department of Plant and Soil Sciences, College of Agriculture Food and Environment, University of Kentucky, Lexington, Kentucky 40546, USA and Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Jan A Smalle
- Department of Plant and Soil Sciences, College of Agriculture Food and Environment, University of Kentucky, Lexington, Kentucky 40546, USA and Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
22
|
Li Y, Huang Y, Sun H, Wang T, Ru W, Pan L, Zhao X, Dong Z, Huang W, Jin W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. THE PLANT CELL 2022; 34:3702-3717. [PMID: 35758611 PMCID: PMC9516056 DOI: 10.1093/plcell/koac184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/17/2022] [Indexed: 05/12/2023]
Abstract
High temperatures interfere with meiotic recombination and the subsequent progression of meiosis in plants, but few genes involved in meiotic thermotolerance have been characterized. Here, we characterize a maize (Zea mays) classic dominant male-sterile mutant Ms42, which has defects in pairing and synapsis of homologous chromosomes and DNA double-strand break (DSB) repair. Ms42 encodes a member of the heat shock protein family, HSP101, which accumulates in pollen mother cells. Analysis of the dominant Ms42 mutant and hsp101 null mutants reveals that HSP101 functions in RADIATION SENSITIVE 51 loading, DSB repair, and subsequent meiosis. Consistent with these functions, overexpression of Hsp101 in anthers results in robust microspores with enhanced heat tolerance. These results demonstrate that HSP101 mediates thermotolerance during microsporogenesis, shedding light on the genetic basis underlying the adaptation of male meiocytes to high temperatures.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Huayue Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianyi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Ru
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- Author for correspondence: (W.H.), (W.J.)
| | - Weiwei Jin
- Author for correspondence: (W.H.), (W.J.)
| |
Collapse
|
23
|
Ma J, Wang J, Wang Q, Shang L, Zhao Y, Zhang G, Ma Q, Hong S, Gu C. Physiological and transcriptional responses to heat stress and functional analyses of PsHSPs in tree peony ( Paeonia suffruticosa). FRONTIERS IN PLANT SCIENCE 2022; 13:926900. [PMID: 36035676 PMCID: PMC9403832 DOI: 10.3389/fpls.2022.926900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a traditional Chinese flower that is not resistant to high temperatures, and the frequent sunburn during summer limits its normal growth. The lack of understanding of the molecular mechanisms in tree peony has greatly restricted the improvement of novel heat-tolerant varieties. Therefore, we treated tree peony cultivar "Yuhong" (P. suffruticosa "Yuhong") at normal (25°C) and high temperatures (40°C) and sequenced the transcriptomes, to investigate the molecular responsive mechanisms to heat stress. By comparing the transcriptomes, a total of 7,673 differentially expressed genes (DEGs) were detected comprising 4,220 upregulated and 3,453 downregulated genes. Functional annotation showed that the DEGs were mainly related to the metabolic process, cells and binding, carbon metabolism, and endoplasmic reticulum protein processing. qRT-PCR revealed that three sHSP genes (PsHSP17.8, PsHSP21, and PsHSP27.4) were upregulated in the response of tree peony to heat stress. Tissue quantification of the transgenic lines (Arabidopsis thaliana) showed that all three genes were most highly expressed in the leaves. The survival rates of transgenic lines (PsHSP17.8, PsHSP21, and PsHSP27.4) restored to normal growth after high-temperature treatment were 43, 36, and 31%, respectively. In addition, the activity of superoxide dismutase, accumulation of free proline, and chlorophyll level was higher than those of the wild-type lines, while the malondialdehyde content and conductivity were lower, and the membrane lipid peroxidation reaction of the wild-type plant was more intense. Our research found several processes and pathways related to heat resistance in tree peony including metabolic process, single-organism process, phenylpropane biosynthesis pathway, and endoplasmic reticulum protein synthesis pathway. PsHSP17.8, PsHSP21, and PsHSP27.4 improved heat tolerance by increasing SOD activity and proline content. These findings can provide genetic resources for understanding the heat-resistance response of tree peony and benefit future germplasm innovation.
Collapse
Affiliation(s)
- Jin Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Qun Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Linxue Shang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guozhe Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingqing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Sidan Hong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Cuihua Gu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
24
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
25
|
Zhang HY, Hou ZH, Zhang Y, Li ZY, Chen J, Zhou YB, Chen M, Fu JD, Ma YZ, Zhang H, Xu ZS. A soybean EF-Tu family protein GmEF8, an interactor of GmCBL1, enhances drought and heat tolerance in transgenic Arabidopsis and soybean. Int J Biol Macromol 2022; 205:462-472. [PMID: 35122805 DOI: 10.1016/j.ijbiomac.2022.01.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
A soybean elongation factor Tu family (EF-Tu) protein, GmEF8, was determined to interact with GmCBL1, and GmEF8 expression was found to be induced by various abiotic stresses such as drought and heat. An ortholog of GmEF8 was identified in Arabidopsis, a T-DNA knockout line for which exhibited hypersensitivity to drought and heat stresses. Complementation with GmEF8 rescued the sensitivity of the Arabidopsis mutant to drought and heat stresses, and GmEF8 overexpression conferred drought and heat tolerance to transgenic Arabidopsis plants. In soybean, plants with GmEF8-overexpressing hairy roots (OE-GmEF8) exhibited enhanced drought and heat tolerance and had higher proline levels compared to plants with RNAi GmEF8-knockdown hairy roots (MR-GmEF8) and control hairy roots (EV). A number of drought-responsive genes, such as GmRD22 and GmP5CS, were induced in the OE-GmEF8 line compared to MR-GmEF8 and EV under normal growth conditions. These results suggest that GmEF8 has a positive role in regulating drought and heat stresses in Arabidopsis and soybean. This study reveals a potential role of the soybean GmEF8 gene in response to abiotic stresses, providing a foundation for further investigation into the complexities of stress signal transduction pathways.
Collapse
Affiliation(s)
- Hui-Yuan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ze-Hao Hou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China.
| | - Zhi-Yong Li
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
26
|
Trösch R, Ries F, Westrich LD, Gao Y, Herkt C, Hoppstädter J, Heck-Roth J, Mustas M, Scheuring D, Choquet Y, Räschle M, Zoschke R, Willmund F. Fast and global reorganization of the chloroplast protein biogenesis network during heat acclimation. THE PLANT CELL 2022; 34:1075-1099. [PMID: 34958373 PMCID: PMC8894945 DOI: 10.1093/plcell/koab317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/20/2021] [Indexed: 06/02/2023]
Abstract
Photosynthesis is a central determinant of plant biomass production, but its homeostasis is increasingly challenged by heat. Little is known about the sensitive regulatory principles involved in heat acclimation that underly the biogenesis and repair of chloroplast-encoded core subunits of photosynthetic complexes. Employing time-resolved ribosome and transcript profiling together with selective ribosome proteomics, we systematically deciphered these processes in chloroplasts of Chlamydomonas reinhardtii. We revealed protein biosynthesis and altered translation elongation as central processes for heat acclimation and showed that these principles are conserved between the alga and the flowering plant Nicotiana tabacum. Short-term heat exposure resulted in specific translational repression of chlorophyll a-containing core antenna proteins of photosystems I and II. Furthermore, translocation of ribosome nascent chain complexes to thylakoid membranes was affected, as reflected by the increased accumulation of stromal cpSRP54-bound ribosomes. The successful recovery of synthesizing these proteins under prolonged acclimation of nonlethal heat conditions was associated with specific changes of the co-translational protein interaction network, including increased ribosome association of chlorophyll biogenesis enzymes and acclimation factors responsible for complex assembly. We hypothesize that co-translational cofactor binding and targeting might be bottlenecks under heat but become optimized upon heat acclimation to sustain correct co-translational protein complex assembly.
Collapse
Affiliation(s)
- Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Julia Hoppstädter
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Johannes Heck-Roth
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Matthieu Mustas
- Biologie du Chloroplaste et Perception de la Lumieère Chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC, Paris 7141, France
| | - David Scheuring
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Yves Choquet
- Biologie du Chloroplaste et Perception de la Lumieère Chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC, Paris 7141, France
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern 67663, Germany
| |
Collapse
|
27
|
Anwar M, Saleem MA, Dan M, Malik W, Ul-Allah S, Ahmad MQ, Qayyum A, Amjid MW, Zia ZU, Afzal H, Asif M, Ur Rahman MA, Hu Z. Morphological, physiological and molecular assessment of cotton for drought tolerance under field conditions. Saudi J Biol Sci 2022; 29:444-452. [PMID: 35002440 PMCID: PMC8717151 DOI: 10.1016/j.sjbs.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022] Open
Abstract
Climate change could be an existential threat to many crops. Drought and heat stress are becoming harder for cultivated crops. Cotton in Pakistan is grown under natural high temperature and low moisture, could be used as a source of heat and drought tolerance. Therefore, the study was conducted to morphological, physiological and molecular characterization of cotton genotypes under field conditions. A total of 25 cotton genotypes were selected from the gene pool of Pakistan based on tolerance to heat and drought stress. In field trail, the stress related traits like boll retention percentage, plant height, number of nodes and inter-nodal distance were recorded. In physiological assessment, traits such as photosynthesis rate, stomatal conductance, transpiration rate, leaf temperature, relative water content and excised leaf water loss were observed. At molecular level, a set of 19 important transcription factors, controlling drought/heat stress tolerance (HSPCB, GHSP26, HSFA2, HSP101, HSP3, DREB1A, DREB2A, TPS, GhNAC2, GbMYB5, GhWRKY41, GhMKK3, GhMPK17, GhMKK1, GhMPK2, APX1, HSC70, ANNAT8, and GhPP2A1) were analyzed from all genotypes. Data analyses depicted that boll retention percentage, photosynthesis, stomatal conductance, relative water content under the stress conditions were associated with the presence of important drought & heat TF/genes which depicts high genetic potential of Pakistani cotton varieties against abiotic stress. The variety MNH-886 appeared in medium plant height, high boll retention percentage, high relative water content, photosynthesis rate, stomatal conductance, transpiration rate and with maximum number transcription factors under study. The variety may be used as source material for heat and drought tolerant cotton breeding. The results of this study may be useful for the cotton breeders to develop genotype adoptable to environmental stresses under climate change scenario.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Asif Saleem
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Ma Dan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Waqas Malik
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-campus, Layyah, Pakistan
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Waqas Amjid
- State Key Lab. of Crop Genetics & Germplasm, Nanjing Agriculture University, China
| | | | - Hammad Afzal
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Asif
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Aneeq Ur Rahman
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
28
|
Xin Z, Wang M, Cuevas HE, Chen J, Harrison M, Pugh NA, Morris G. Sorghum genetic, genomic, and breeding resources. PLANTA 2021; 254:114. [PMID: 34739592 PMCID: PMC8571242 DOI: 10.1007/s00425-021-03742-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA.
| | - Mingli Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - Hugo E Cuevas
- Tropical Agriculture Research Station, USDA-ARS, Mayagüez, 00680, Puerto Rico
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Melanie Harrison
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - N Ace Pugh
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Geoffrey Morris
- Crop Quantitative Genomics, Soil and Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 80523, USA
| |
Collapse
|
29
|
Liu T, Arsenault J, Vierling E, Kim M. Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential for growth and heat stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:713-726. [PMID: 33974298 DOI: 10.1111/tpj.15317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 05/11/2023]
Abstract
As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.
Collapse
Affiliation(s)
- Tianxiang Liu
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jesse Arsenault
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Minsoo Kim
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
30
|
Liu H, Zhang Y, Lu S, Chen H, Wu J, Zhu X, Zou B, Hua J. HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:646-660. [PMID: 33893646 DOI: 10.1111/nph.17413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
How plants maintain growth under nonfreezing low temperatures (chilling) is not well understood. Here we use hypocotyl elongation under dark to investigate the molecular mechanisms for chilling growth in Arabidopsis thaliana. The function of HsfA1d (Heat shock transcription factor A1d) in chilling growth is investigated by physiological and molecular characterization of its mutants. Subcellular localization of HsfA1d under chilling is analyzed. Potential target genes of HsfA1d were identified by transcriptome analysis, chromatin immunoprecipitation, transcriptional activation assay and mutant characterization. HsfA1d is a positive regulator of hypocotyl elongation under chilling. It promotes expression of a large number of ribosome biogenesis genes to a moderate but significant extent under chilling. HsfA1d could bind to the promoter regions of two ribosome protein genes tested and promote their expression. The loss-of-function of one ribosome gene also reduced hypocotyl elongation under chilling. In addition, HsfA1d did not have increased nuclear accumulation under chilling and its basal nuclear accumulation is promoted by a salicylic acid receptor under chilling. This study thus unveils a new HsfA1d-mediated pathway that promotes the expression of cytosolic and plastid cytosolic and plastid ribosomal protein genes which may maintain overall protein translation for plant growth in chilling.
Collapse
Affiliation(s)
- Huimin Liu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Lu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Chen
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Zhu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hua
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
31
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
32
|
Browne RG, Li SF, Iacuone S, Dolferus R, Parish RW. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress. PLANTA 2021; 254:4. [PMID: 34131818 DOI: 10.1007/s00425-021-03656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
Transcriptomic analyses identified anther-expressed genes in wheat likely to contribute to heat tolerance and hence provide useful genetic markers. The genes included those involved in hormone biosynthesis, signal transduction, the heat shock response and anther development. Pollen development is particularly sensitive to high temperature heat stress. In wheat, heat-tolerant and heat-sensitive cultivars have been identified, although the underlying genetic causes for these differences are largely unknown. The effects of heat stress on the developing anthers of two heat-tolerant and two heat-sensitive wheat cultivars were examined in this study. Heat stress (35 °C) was found to disrupt pollen development in the two heat-sensitive wheat cultivars but had no visible effect on pollen or anther development in the two heat-tolerant cultivars. The sensitive anthers exhibited a range of developmental abnormalities including an increase in unfilled and clumped pollen grains, abnormal pollen walls and a decrease in pollen viability. This subsequently led to a greater reduction in grain yield in the sensitive cultivars following heat stress. Transcriptomic analyses of heat-stressed developing wheat anthers of the four cultivars identified a number of key genes which may contribute to heat stress tolerance during pollen development. Orthologs of some of these genes in Arabidopsis and rice are involved in regulation of the heat stress response and the synthesis of auxin, ethylene and gibberellin. These genes constitute candidate molecular markers for the breeding of heat-tolerant wheat lines.
Collapse
Affiliation(s)
- Richard G Browne
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Song F Li
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Sylvana Iacuone
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- Melbourne Polytechnic, Epping, VIC, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Roger W Parish
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
33
|
Wang TY, Wu JR, Duong NKT, Lu CA, Yeh CH, Wu SJ. HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153430. [PMID: 33991823 DOI: 10.1016/j.jplph.2021.153430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
AtJ3 (J3)-a member of the Arabidopsis cytosolic HSP40 family-harbors a C-terminal CaaX motif for farnesylation, which is exclusively catalyzed by protein farnesyltransferase (PFT). Previously, prolonged incubation at 37 °C for 4 d was found to be lethal to the heat-intolerant 5 (hit5) mutant lacking PFT and transgenic j3 plants expressing a CaaX-abolishing J3C417S construct, indicating that farnesylated J3 is essential for heat tolerance in plants. Given the role of HSP40s as cochaperones of HSP70s, the thermal sensitivity of five individual cytosolic HSP70 (HSP70-1 to HSP70-5) knockout mutants was tested in this study. Only hsp70-4 was sensitive to the prolonged heat treatment like hit5 and j3. The bimolecular fluorescence complementation (BiFC) assay revealed that HSP70-4 interacted with J3 and J3C417Sin vivo at normal (23 °C) and high (37 °C) temperatures. At 23 °C, both HSP70-4-J3 and HSP70-4-J3C417S BiFC signals were uniformly distributed across the cell. However, following treatment at 37 °C, HSP70-4-J3, but not HSP70-4-J3C417S, BiFC signals were detected as discernable foci. These heat-induced HSP70-4-J3 BiFC foci were localized in heat stress granules (HSGs). In addition, hsp70-4 and J3C417S accumulated more insoluble proteins than the wild type. Thus, farnesylated J3 dictates the chaperone function of HSP70-4 in HSGs. Collectively, this study identified the first HSP70/HSP40-type chaperone machinery playing a crucial role in protecting plants against prolonged heat stress, and demonstrated the significance of protein farnesylation in its protective function.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Jia-Rong Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Ngoc Kieu Thi Duong
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Ching-Hui Yeh
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City 32001, Taiwan.
| |
Collapse
|
34
|
Isono K, Tsukimoto R, Iuchi S, Shinozawa A, Yotsui I, Sakata Y, Taji T. An ER-Golgi Tethering Factor SLOH4/MIP3 Is Involved in Long-Term Heat Tolerance of Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:272-279. [PMID: 33367686 DOI: 10.1093/pcp/pcaa157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screen for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L-heat stress but not to S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2 and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1-1 mutants was similar to that of the wild type (WT). Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the WT. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1) - accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins - were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not by bZIP28, resulting in the initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in the MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER-Golgi vesicle tethering.
Collapse
Affiliation(s)
- Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Ryo Tsukimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, Ibaraki, 305-0074 Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center (NGRC), Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| |
Collapse
|
35
|
Cui F, Taier G, Li M, Dai X, Hang N, Zhang X, Wang X, Wang K. The genome of the warm-season turfgrass African bermudagrass (Cynodon transvaalensis). HORTICULTURE RESEARCH 2021; 8:93. [PMID: 33931599 PMCID: PMC8087826 DOI: 10.1038/s41438-021-00519-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 05/03/2023]
Abstract
Cynodon species can be used for multiple purposes and have high economic and ecological significance. However, the genetic basis of the favorable agronomic traits of Cynodon species is poorly understood, partially due to the limited availability of genomic resources. In this study, we report a chromosome-scale genome assembly of a diploid Cynodon species, C. transvaalensis, obtained by combining Illumina and Nanopore sequencing, BioNano, and Hi-C. The assembly contains 282 scaffolds (~423.42 Mb, N50 = 5.37 Mb), which cover ~93.2% of the estimated genome of C. transvaalensis (~454.4 Mb). Furthermore, 90.48% of the scaffolds (~383.08 Mb) were anchored to nine pseudomolecules, of which the largest was 60.78 Mb in length. Evolutionary analysis along with transcriptome comparison provided a preliminary genomic basis for the adaptation of this species to tropical and/or subtropical climates, typically with dry summers. The genomic resources generated in this study will not only facilitate evolutionary studies of the Chloridoideae subfamily, in particular, the Cynodonteae tribe, but also facilitate functional genomic research and genetic breeding in Cynodon species for new leading turfgrass cultivars in the future.
Collapse
Affiliation(s)
- Fengchao Cui
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Geli Taier
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Manli Li
- Department of Breeding and Seed Science, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Dai
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nan Hang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100913, China.
| | - Kehua Wang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Yue L, Li G, Dai Y, Sun X, Li F, Zhang S, Zhang H, Sun R, Zhang S. Gene co-expression network analysis of the heat-responsive core transcriptome identifies hub genes in Brassica rapa. PLANTA 2021; 253:111. [PMID: 33905008 DOI: 10.1007/s00425-021-03630-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Gene co-expression network analysis of the heat-responsive core transcriptome in two contrasting Brassica rapa accessions reveals the main metabolic pathways, key modules and hub genes, are involved in long-term heat stress. Brassica rapa is a widely cultivated and economically important vegetable in Asia. High temperature is a common stress that severely impacts leaf head formation in B. rapa, resulting in reduced quality and production. The purpose of this study was thus to identify candidate heat tolerance genes by comparative transcriptome analysis of two contrasting B. rapa accessions in response to long-term heat stress. Two B. rapa accessions, '268' and '334', which showed significant differences in heat tolerance, were used for RNA sequencing analysis. We identified a total of 11,055 and 8921 differentially expressed genes (DEGs) in '268' and '334', respectively. Functional enrichment analyses of all of the identified DEGs, together with the genes identified from weighted gene co-expression network analyses (WGCNA), revealed that the autophagy pathway, glutathione metabolism, and ribosome biogenesis in eukaryotes were significantly up-regulated, whereas photosynthesis was down-regulated, in the heat resistance of B. rapa '268'. Furthermore, when B. rapa '334' was subjected to long-term high-temperature stress, heat stress caused significant changes in the expression of certain functional genes linked to protein processing in the endoplasmic reticulum and plant hormone signal transduction pathways. Autophagy-related genes might have been induced by persistent heat stress and remained high during recovery. Several hub genes like HSP17.6, HSP17.6B, HSP70-8, CLPB1, PAP1, PYR1, ADC2, and GSTF11 were discussed in this study, which may be potential candidates for further analyses of the response to long-term heat stress. These results should help elucidate the molecular mechanisms of heat stress adaptation in B. rapa.
Collapse
Affiliation(s)
- Lixin Yue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Yun Dai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
37
|
Priming by High Temperature Stress Induces MicroRNA Regulated Heat Shock Modules Indicating Their Involvement in Thermopriming Response in Rice. Life (Basel) 2021; 11:life11040291. [PMID: 33805566 PMCID: PMC8067039 DOI: 10.3390/life11040291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/09/2023] Open
Abstract
Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.
Collapse
|
38
|
Panzade KP, Kale SS, Chavan NR, Hatzade B. Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress Chaperones 2021; 26:341-353. [PMID: 33184780 PMCID: PMC7925773 DOI: 10.1007/s12192-020-01179-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
The Ziziphus species are naturally tolerant to a range of abiotic stresses. Therefore, it is expected that they are an enriched source of genes conferring stress tolerance. Heat shock proteins (Hsps) play a significant role in plants in imparting tolerance against abiotic stress conditions. To get an insight into potential Hsp function in Ziziphus, we performed a genome-wide analysis and expression study of Hsp70 and Hsp100 gene families in Ziziphus jujuba. We identified 21 and 6 genes of the ZjHsp70 and ZjHsp100 families, respectively. Physiochemical properties, chromosomal location, gene structure, motifs, and protein domain organization were analysed for structural and functional characterization. We identified the contribution of tandem and segmental gene duplications in expansions of ZjHsp70s and ZjHsp100s in Z. jujuba. Promoter analysis suggested that ZjHsp70s and ZjHsp100s perform diverse functions related to abiotic stress. Furthermore, expression analyses revealed that most of the Z. jujuba Hsp genes are differentially expressed in response to heat, drought, and salinity stress. Our analyses suggested ZjHsp70-3, ZjHsp70-5, ZjHsp70-6, ZjHsp70-16, ZjHsp70-17, ZjHsp70-20, ZjHsp100-1, ZjHsp100-2, and ZjHsp100-3 are potential candidates for further functional analysis and with regard to breeding new more resilient strains. The present analysis laid the foundation for understanding the molecular mechanism of Hsps70 and Hsp100 gene families regulating abiotic stress tolerance in Z. jujuba.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Division of Molecular Biology and Biotechnology, Indian Agriculture Research Institute, New Delhi, 110012 India
| | - Sonam S. Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431007 India
| | - Narendra R. Chavan
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431007 India
| | - Bhupal Hatzade
- Department of Plant Biotechnology, Ajeet Seeds Pvt. Ltd., Aurangabad, 431133 India
| |
Collapse
|
39
|
Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.). Mol Biol Rep 2021; 48:1069-1079. [PMID: 33609263 DOI: 10.1007/s11033-021-06217-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.
Collapse
|
40
|
Deng M, Wang Y, Kuzma M, Chalifoux M, Tremblay L, Yang S, Ying J, Sample A, Wang HM, Griffiths R, Uchacz T, Tang X, Tian G, Joslin K, Dennis D, McCourt P, Huang Y, Wan J. Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1535-1550. [PMID: 33048399 DOI: 10.1111/tpj.15019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain-of-function genetic screen with approximately 18 000 Arabidopsis thaliana activation-tagged lines, a mutant that maintained productive seed set post-severe heat stress during flowering. Genome walking indicated this phenotype was caused by the insertion of 35S enhancers adjacent to a nuclear localized transcription factor AtMYB68. Subsequent overexpression analysis confirmed that AtMYB68 was responsible for the reproductive heat tolerance of the mutant. Furthermore, these transgenic Arabidopsis plants exhibited enhanced abscisic acid sensitivity at and post-germination, reduced transpirational water loss during a drought treatment, and enhanced seed yield under combined heat and drought stress during flowering. Ectopic expression of AtMYB68 in Brassica napus driven either by 35S or by heat-inducible promoter recapitulated the enhanced reproductive heat stress and drought tolerance phenotypes observed in the transgenic Arabidopsis. The improvement to heat stress is likely due to enhanced pollen viability observed in the transgenic plants. More importantly, the transgenic canola showed significant yield advantages over the non-transgenic controls in multiple locations, multiple season field trials under various drought and heat stress conditions. Together these results suggest that AtMYB68 regulate plant stress tolerance at the most important yield determining stage of plant development, and is an effective target for crop yield protection under current global climate volatility.
Collapse
Affiliation(s)
- Mingde Deng
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Yang Wang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Monika Kuzma
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Maryse Chalifoux
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Linda Tremblay
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Shujun Yang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Jifeng Ying
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Angela Sample
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Hung-Mei Wang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Rebecca Griffiths
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Tina Uchacz
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Xurong Tang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Gang Tian
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Katelyn Joslin
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - David Dennis
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Peter McCourt
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Yafan Huang
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| | - Jiangxin Wan
- Performance Plants Inc., 1287 Gardiners Road, Kingston, Ontario, K7P 3J6, Canada
| |
Collapse
|
41
|
Parcerisa IL, Rosano GL, Ceccarelli EA. Biochemical characterization of ClpB3, a chloroplastic disaggregase from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 104:451-465. [PMID: 32803477 DOI: 10.1007/s11103-020-01050-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize aggregated substrates using ATP and without the aid of partners. Disaggregases from the Hsp100/Clp family are a type of molecular chaperones involved in disassembling protein aggregates. Plant cells are uniquely endowed with ClpB proteins in the cytosol, mitochondria and chloroplasts. Chloroplastic ClpB proteins have been implicated in key processes like the unfolded protein response; however, they have not been studied in detail. In this study, we explored the biochemical properties of a chloroplastic ClpB disaggregase, in particular, ClpB3 from A. thaliana. ClpB3 was produced recombinantly in Escherichia coli and affinity-purified to near homogeneity. ClpB3 forms a hexameric complex in the presence of MgATP and displays intrinsic ATPase activity. We demonstrate that ClpB3 has ATPase activity in a wide range of pH and temperature values and is particularly resistant to heat. ClpB3 specifically targets unstructured polypeptides and mediates the reactivation of heat-denatured model substrates without the aid of the Hsp70 system. Overall, this work represents the first in-depth biochemical description of a ClpB protein from plants and strongly supports its role as the putative disaggregase chaperone in chloroplasts.
Collapse
Affiliation(s)
- Ivana L Parcerisa
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
42
|
Qin F, Lin L, Jia Y, Li W, Yu B. Quantitative Profiling of Arabidopsis Polar Glycerolipids under Two Types of Heat Stress. PLANTS 2020; 9:plants9060693. [PMID: 32485906 PMCID: PMC7356150 DOI: 10.3390/plants9060693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
At the cellular level, the remodelling of membrane lipids and production of heat shock proteins are the two main strategies whereby plants survive heat stress. Although many studies related to glycerolipids and HSPs under heat stress have been reported separately, detailed alterations of glycerolipids and the role of HSPs in the alterations of glycerolipids still need to be revealed. In this study, we profiled the glycerolipids of wild-type Arabidopsis and its HSP101-deficient mutant hot-1 under two types of heat stress. Our results demonstrated that the alterations of glycerolipids were very similar in wild-type Arabidopsis and hot-1 during heat stress. Although heat acclimation led to a slight decrease of glycerolipids, the decrease of glycerolipids in plants without heat acclimation is more severe under heat shock. The contents of 36:x monogalactosyl diacylglycerol (MGDG) were slightly increased, whereas that of 34:6 MGDG and 34:4 phosphatidylglycerol (PG) were severely decreased during moderate heat stress. Our findings suggested that heat acclimation could reduce the degradation of glycerolipids under heat shock. Synthesis of glycerolipids through the prokaryotic pathway was severely suppressed, whereas that through the eukaryotic pathway was slightly enhanced during moderate heat stress. In addition, HSP101 has a minor effect on the alterations of glycerolipids under heat stress.
Collapse
Affiliation(s)
- Feng Qin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Lin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
| | - Yanxia Jia
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
| | - Weiqi Li
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
- Correspondence: (W.L.); (B.Y.); Tel.: +86-871-6522-3018 (W.L.)
| | - Buzhu Yu
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
- Correspondence: (W.L.); (B.Y.); Tel.: +86-871-6522-3018 (W.L.)
| |
Collapse
|
43
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
44
|
Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. THE NEW PHYTOLOGIST 2020; 225:1297-1310. [PMID: 31556121 DOI: 10.1111/nph.16221] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.
Collapse
Affiliation(s)
- Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Philipp Gebhardt
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Arnaud Bovy
- Plant Breeding, Wageningen University, Wageningen, 6708PB, the Netherlands
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), D-60438, Frankfurt am Main, Germany
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Gao G, Tester MA, Julkowska MM. The Use of High-Throughput Phenotyping for Assessment of Heat Stress-Induced Changes in Arabidopsis. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:3723916. [PMID: 33313552 PMCID: PMC7706305 DOI: 10.34133/2020/3723916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/30/2020] [Indexed: 05/20/2023]
Abstract
The worldwide rise in heatwave frequency poses a threat to plant survival and productivity. Determining the new marker phenotypes that show reproducible response to heat stress and contribute to heat stress tolerance is becoming a priority. In this study, we describe a protocol focusing on the daily changes in plant morphology and photosynthetic performance after exposure to heat stress using an automated noninvasive phenotyping system. Heat stress exposure resulted in an acute reduction of the quantum yield of photosystem II and increased leaf angle. In longer term, the exposure to heat also affected plant growth and morphology. By tracking the recovery period of the WT and mutants impaired in thermotolerance (hsp101), we observed that the difference in maximum quantum yield, quenching, rosette size, and morphology. By examining the correlation across the traits throughout time, we observed that early changes in photochemical quenching corresponded with the rosette size at later stages, which suggests the contribution of quenching to overall heat tolerance. We also determined that 6 h of heat stress provides the most informative insight in plant's responses to heat, as it shows a clear separation between treated and nontreated plants as well as the WT and hsp101. Our work streamlines future discoveries by providing an experimental protocol, data analysis pipeline, and new phenotypes that could be used as targets in thermotolerance screenings.
Collapse
Affiliation(s)
- Ge Gao
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mark A. Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magdalena M. Julkowska
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Wu JR, Wang TY, Weng CP, Duong NKT, Wu SJ. AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. PLANTA 2019; 250:1449-1460. [PMID: 31309322 DOI: 10.1007/s00425-019-03239-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Despite AtJ3 and AtJ2 sharing a high protein-sequence identity and both being substrates of protein farnesyltransferase (PFT), AtJ3 but not AtJ2 mediates in Arabidopsis the heat-dependent phenotypes derived from farnesylation modification. Arabidopsis HEAT-INTOERANT 5 (HIT5)/ENHANCED RESPONSE TO ABA 1 (ERA1) encodes the β-subunit of the protein farnesyltransferase (PFT), and the hit5/era1 mutant is better able to tolerate heat-shock stress than the wild type. Given that Arabidopsis AtJ2 (J2) and AtJ3 (J3) are heat-shock protein 40 (HSP40) homologs, sharing 90% protein-sequence identity, and each contains a CaaX box for farnesylation; atj2 (j2) and atj3 (j3) mutants were subjected to heat-shock treatment. Results showed that j3 but not j2 manifested the heat-shock tolerant phenotype. In addition, transgenic j3 plants that expressed a CaaX- abolishing J3C417S construct maintained the same capacity to tolerate heat shock as j3. The basal transcript levels of HEAT-SHOCK PROTEIN 101 (HSP101) in hit5/era1 and j3 were higher than those in the wild type. Although the capacities of j3/hsp101 and hit5/hsp101 double mutants to tolerate heat-shock stress declined compared to those of j3 and hit5/era1, they were still greater than that of the wild type. These results show that a lack of farnesylated J3 contributes to the heat-dependent phenotypes of hit5/era1, in part by the modulation of HSP101 activity, and also indicates that (a) mediator(s) other than J3 is (are) involved in the PFT-regulated heat-stress response. In addition, because HSP40s are known to function in dimer formation, bimolecular fluorescence complementation experiments were performed, and results show that J3 could dimerize regardless of farnesylation. In sum, in this study, a specific PFT substrate was identified, and its roles in the farnesylation-regulated heat-stress responses were clarified, which could be of use in future agricultural applications.
Collapse
Affiliation(s)
- Jia-Rong Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Tzu-Yun Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Chi-Pei Weng
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Ngoc Kieu Thi Duong
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
47
|
Wu YS, Yang CY. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. BOTANICAL STUDIES 2019; 60:23. [PMID: 31549254 PMCID: PMC6757084 DOI: 10.1186/s40529-019-0272-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/08/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Agriculture is highly dependent on climate. Increases in temperature caused by global warming pose challenges for crop production. Heat stress induces oxidative damage to cell membranes and then causes cell death. Plants have developed various responses to elevated temperatures, including hormone signaling pathways and heat shock factors that elevate their thermotolerance. In response to heat stress, the gaseous hormone ethylene is produced through regulation of the expression of signaling-related genes to modulate resource allocation dynamics. For comprehensive understanding of the role of ethylene, this study used an ethylene precursor to analyze the ethylene signaling pathway involved in adjustment of the homeostasis of the antioxidant system and to evaluate heat shock factor expression in rice seedlings under heat stress. RESULTS Levels of cell membrane oxidation and ion leakage were reduced in rice seedlings under heat treatment combined with ethylene precursor treatment, conferring enhanced thermotolerance. Reduction of the fresh weight and chlorophyll a/b ratio in rice seedlings was lower in rice seedlings under heat stress with ethylene precursor treatment than in those under heat stress only. Moreover, reduction of antioxidant response caused by heat stress was ameliorated by treatment with ethylene precursors such as catalase and total peroxidase. Quantitative reverse transcriptase-polymerase chain reaction showed higher expression levels of heat shock factors such as HSFA1a and HSFA2a, c, d, e, and f and ethylene-signaling-related genes such as ethylene insensitive 2, ethylene insensitive-like 1, and ethylene insensitive-like 2 in rice seedlings under heat stress with ethylene precursor treatment than in rice seedlings under heat stress only. CONCLUSION Ethylene-mediated signaling was involved in the reduction of oxidative damage, maintenance of chlorophyll content, and enhancement of thermotolerance in rice seedlings under heat stress. Furthermore, this study revealed heat shock factors and ethylene-signaling-related genes involved in complex network regulation that confers thermotolerance to rice seedlings.
Collapse
Affiliation(s)
- Yu-Sian Wu
- Department of Agronomy, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
48
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
49
|
McLoughlin F, Kim M, Marshall RS, Vierstra RD, Vierling E. HSP101 Interacts with the Proteasome and Promotes the Clearance of Ubiquitylated Protein Aggregates. PLANT PHYSIOLOGY 2019; 180:1829-1847. [PMID: 31113833 PMCID: PMC6670096 DOI: 10.1104/pp.19.00263] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Stressful environments often lead to protein unfolding and the formation of cytotoxic aggregates that can compromise cell survival. The molecular chaperone heat shock protein (HSP) 101 is a protein disaggregase that co-operates with the small HSP (sHSP) and HSP70 chaperones to facilitate removal of such aggregates and is essential for surviving severe heat stress. To better define how HSP101 protects plants, we investigated the localization and targets of this chaperone in Arabidopsis (Arabidopsis thaliana). By following HSP101 tagged with GFP, we discovered that its intracellular distribution is highly dynamic and includes a robust, reversible sequestration into cytoplasmic foci that vary in number and size among cell types and are potentially enriched in aggregated proteins. Affinity isolation of HSP101 recovered multiple proteasome subunits, suggesting a functional interaction. Consistent with this, the GFP-tagged 26S proteasome regulatory particle non-ATPase (RPN) 1a transiently colocalized with HSP101 in cytoplasmic foci during recovery. In addition, analysis of aggregated (insoluble) proteins showed they are extensively ubiquitylated during heat stress, especially in plants deficient in HSP101 or class I sHSPs, implying that protein disaggregation is important for optimal proteasomal degradation. Many potential HSP101 clients, identified by mass spectrometry of insoluble proteins, overlapped with known stress granule constituents and sHSP-interacting proteins, confirming a role for HSP101 in stress granule function. Connections between HSP101, stress granules, proteasomes, and ubiquitylation imply that dynamic coordination between protein disaggregation and proteolysis is required to survive proteotoxic stress caused by protein aggregation at high temperatures.
Collapse
Affiliation(s)
- Fionn McLoughlin
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01009
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01009
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01009
| |
Collapse
|
50
|
Transformation of eIF5B1 gene into Chrysanthemum to gain calluses of high temperature tolerance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|