1
|
Yoosuf BT, Gaidhane AM, Vadia N, Menon SV, Chennakesavulu K, Panigrahi R, Bushi G, Rani A, Sah S, Shabil M, Goh KW, Jena D. Epidemiology, transmission dynamics, treatment strategies, and future perspectives on Oropouche virus. Diagn Microbiol Infect Dis 2025; 113:116882. [PMID: 40367910 DOI: 10.1016/j.diagmicrobio.2025.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Oropouche virus (OROV), a mosquito-borne pathogen primarily found in the Amazon basin, has attracted increasing attention due to its expanding geographical spread and recurrent outbreaks. First identified in 1955, OROV causes Oropouche fever, a febrile illness with clinical features that often overlap with those of other arboviral infections, posing significant diagnostic challenges. Arboviruses such as dengue, chikungunya, zika, and yellow fever also circulate in the same regions of South and Central America, further complicating the clinical differentiation of OROV from these infections. The primary vector for OROV in urban areas is Culicoides paraensis midges, but the virus also maintains a sylvatic transmission cycle involving Aedes serratus and Coquillettidia venezuelensis mosquitoes, along with wild vertebrate reservoirs such as sloths, non-human primates, and birds. Moreover, in 2024, over 10,000 OROV cases were reported including in previously unaffected regions with Brazil recording 5,407 cases since 2015, while recent fatalities linked to severe coagulopathy, liver failure, and adverse pregnancy outcomes remain under investigation. Currently, no specific antiviral treatments are available for OROV, and the diagnostic tools are limited, highlighting the urgent need for improved management strategies. Given the increasing number of OROV cases, there is a clear need to strengthen surveillance efforts and accelerate the development of vaccines and therapeutic interventions. This review delves into the multi-faceted approach to control OROV, incorporating surveillance, antiviral therapy, and vaccine development to mitigate the impact of this emerging pathogen. Furthermore, it provides a comprehensive overview of the epidemiology and future potential antiviral candidates and challenges in current therapeutic approaches.
Collapse
Affiliation(s)
- Beema T Yoosuf
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia.
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health. Datta Meghe Institute of Higher Education, Wardha, India.
| | - Nasir Vadia
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Kattela Chennakesavulu
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Ganesh Bushi
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| | - Anju Rani
- Department of Microbiology, Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India; Graphic Era Hill University, Clement Town, Dehradun, India.
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, 411018, Maharashtra, India; Department of Public Health Dentistry, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, 411018, Maharashtra, India; Department of Medicine, Korea Universtiy, Seoul, South Korea.
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India; Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001, Hillah, Babil, Iraq.
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia; Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
| | - Diptismita Jena
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India; Division of Research and Innovation, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Porwal S, Malviya R, Sridhar SB, Shareef J, Wadhwa T. Mysterious Oropouche virus: Transmission, symptoms, and control. INFECTIOUS MEDICINE 2025; 4:100177. [PMID: 40290155 PMCID: PMC12023788 DOI: 10.1016/j.imj.2025.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 04/30/2025]
Abstract
The Oropouche virus (OROV) is a new zoonotic arbovirus that mostly affects Brazil and nearby countries. Since its discovery in 1955, it has caused more than 500,000 infections, with symptoms ranging from fever and headache to serious neuroinvasive disorders such as meningitis and encephalitis. The virus spreads through urban and sylvatic cycles via vectors such as Culicoides midges and Culex mosquitos, with humans and some vertebrates serving as amplifying hosts. The manuscript aims to analyze the transmission dynamics, clinical manifestations, diagnostic approaches, and potential preventive strategies for OROV. OROV is becoming an increasing health concern due to its global expansion and potential for serious consequences. Its growing threat, especially in light of the possibility of congenital abnormalities, is highlighted by the first recorded deaths in 2024 and the verification of vertical transmission. Clinical symptoms overlap greatly with other arboviruses, limiting early diagnosis; nonetheless, molecular approaches such as RT-PCR are crucial for identification. The current therapy is restricted to symptom control, highlighting the critical need for effective vaccinations. Live attenuated vaccination candidates and innovative techniques based on reverse genetics systems are both promising discoveries. However, the genetic variety of OROV strains poses obstacles to obtaining broad protection. To combat OROV, improved surveillance, strong public health initiatives, and quick vaccine development are needed. Public education and sustainable vector control are also essential for controlling outbreaks and lessening the virus effects.
Collapse
Affiliation(s)
- Sejal Porwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201308, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201308, Uttar Pradesh, India
- Galgotias Multi-Disciplinary Research & Development Cell (G-MRDC), Galgotias University, Greater Noida 201308, Uttar Pradesh, India
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
3
|
Srivastava S, Sah R, Babu MR, Sharma D, Sharma D, Kumar S, Sridhar SB, Wadhwa T, Shareef J, Rao GK, Feehan J, Apostolopoulos V, Sah S, Mehta R, Mehta V, Mohanty A, Zambrano L, Bonilla-Aldana DK, Luna C, Chaves TDSS, Quispe P, Angerami RN, Rodriguez-Morales AJ. The emergence of oropouche fever: A potential new threat? New Microbes New Infect 2025; 65:101596. [PMID: 40491501 PMCID: PMC12148424 DOI: 10.1016/j.nmni.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Oropouche fever, caused by the Oropouche virus (OROV), has become a significant public health concern. Recent outbreaks highlight its increasing global spread, driven by environmental, social, and ecological factors. The disease presents clinical similarities to other arboviral infections, making accurate diagnosis essential for effective management and prevention. This article examines the epidemiological patterns of Oropouche fever, including its geographic distribution and outbreak drivers. It explores the clinical manifestations of the disease, focusing on common symptoms, complications such as fatal cases and fetal abnormalities, and the necessity of differential diagnosis. The pathophysiology of OROV infection is analyzed, detailing viral entry mechanisms, immune responses, and the role of vectors in transmission. Additionally, we assess diagnostic challenges, comparing serological and molecular methods while identifying their limitations. Therapeutic strategies are also reviewed, including symptomatic treatments and potential antiviral candidates. Findings indicate that OROV infections mimic other arboviral diseases, complicating clinical diagnosis. Current diagnostic tools have limitations in accuracy and accessibility, particularly in resource-limited settings. Symptomatic treatment remains the primary approach, as no specific antiviral therapies or vaccines exist. The study identifies gaps in diagnostic development, vaccine research, and public health surveillance. Oropouche fever threatens global health, necessitating improved surveillance, diagnostic tools, and targeted research efforts. Enhancing epidemiological studies and developing effective vaccines will mitigate its impact. Strengthening public health strategies can help control the spread of OROV and reduce its burden on affected populations.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Ranjit Sah
- SR Sanjeevani Hospital, Kalyanpur-10, Siraha, Nepal
| | - Molakpogu Ravindra Babu
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Deepika Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Dheeraj Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - G.S.N. Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia
| | - Sanjit Sah
- Department of Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune 411018, Maharashtra, India
- Department of Medicine, Korea University, Seoul, 02481, South Korea
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Chandol, Kathmandu 44600, Nepal
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121004, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Aroop Mohanty
- Department of Microbiology, AIIMS Gorakhpur, Uttar Pradesh, India
| | - Lysien Zambrano
- Department of Morphological Sciences, School of Medical, Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | | | - Pasesa Quispe
- Dr. Radamés Nardini Clinical Hospital – ABC Santo André, São Paulo, SP, Brazil
| | - Rodrigo Nogueira Angerami
- Núcleo de Vigilância Epidemiológica, Seção de Epidemiologia Hospitalar, Hospital de Clínicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira 660003, Risaralda, Colombia
- Comité de Medicina Tropical, Zoonosis y Medicina del Viajero, Asociación Colombiana de Infectología (ACIN), Bogotá, DC, Colombia
| |
Collapse
|
4
|
Tscherne A, Guardado-Calvo P, Clark JJ, Krause R, Krammer F. Puumala orthohantavirus: prevalence, biology, disease, animal models and recent advances in therapeutics development and structural biology. Front Immunol 2025; 16:1575112. [PMID: 40406115 PMCID: PMC12095308 DOI: 10.3389/fimmu.2025.1575112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 05/26/2025] Open
Abstract
Puumala orthohantavirus (PUUV) is an emerging zoonotic virus that was first discovered in the Puumala region of Finland in the early 1980s and is the primary etiological agent of nephropathia epidemica (NE), a milder form of a life-threatening disease known as hemorrhagic fever with renal syndrome (HFRS). PUUV and other members of the Old World hantaviruses (OWHVs) predominantly circulate in rodents or insectivores across Eurasia, accounting for several thousand of reported HFRS cases every year (with many more unreported/misdiagnosed cases suspected). The rodent reservoir of PUUV is the common bank vole (Myodes (M.) glareolus), and transmission of the virus to humans occurs via inhalation of contagious aerosols and through contact with contaminated droppings or urine. Although PUUV is the subject of extensive research, due to its potential to cause severe disease outcomes in humans and its considerable economic and social impact, neither licensed vaccines nor specific antiviral treatments are available against PUUV. However, many important advancements have been made in terms of PUUV research over the last years. This included the elucidation of its glycoproteins, the discovery of broadly neutralizing hantavirus antibodies as therapeutic candidates and expanded research on the mRNA vaccine technology which will likely enable the development of strong PUUV vaccine candidates in the near future. Currently, there is still a lack of suitable animal models for the preclinical evaluation of experimental vaccines and antivirals, which hampers vaccine and antiviral development. Current attempts to decrease hantavirus-associated human infections rely primarily on prevention and countermeasures for rodent control, including reduced contact to droppings, saliva and urine, and disinfection of areas that are contaminated with rodent excreta. Here, we review these recent advances and other aspects including PUUV prevalence, virus biology, diagnosis and clinical features, and current animal models for vaccine and treatment development.
Collapse
Affiliation(s)
- Alina Tscherne
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Pablo Guardado-Calvo
- G5 Unit Structural Biology of Infectious Diseases, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jordan J. Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Florian Krammer
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Feng S, Feng X, Zhu W, Lu K, Niu G, Lin W, Sun H. La Crosse Virus: A Comprehensive Review of Its Emerging Public Health Importance. Viral Immunol 2025; 38:137-147. [PMID: 40274395 DOI: 10.1089/vim.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
La Crosse virus (LACV), a constituent of the California serogroup (CSG) within the genus Orthobunyavirus in the Peribunyaviridae family, is the causative agent of LACV encephalitis. This form of encephalitis stands as one of the most significant and burgeoning mosquito-borne diseases in the United States, ranking as the second most prevalent mosquito-borne illness following West Nile virus encephalitis. Predominantly identified in the Midwestern, Mid-Atlantic, and Southeastern regions of the United States, LACV primarily afflicts humans through the bites of Aedes triseriatus mosquitoes. Its genome, divided into three segments, encodes proteins that not only facilitate efficient replication within hosts but also hinder host immune responses. Infections by LACV can lead to a spectrum of neurological outcomes, ranging from mild aseptic meningitis to severe encephalitis with the potential for long-lasting neurological deficits. Despite the availability of diagnostic tools, several challenges persist. Currently, the management of LACV infection remains supportive, underscoring the importance of preventative measures in substantially mitigating the infection's incidence and severity. Moreover, global warming elevates the risk of LACV spreading to new territories. This review delves into recent advancements concerning the transmission and pathogenesis of LACV, drawing upon current knowledge regarding its genetic framework, transmission modes, geographical spread, phylogenetic relationships, clinical presentations and neuropathogenic effects, diagnostic approaches, treatment modalities, and prevention strategies.
Collapse
Affiliation(s)
- Shuo Feng
- Shandong Second Medical University, Weifang, China
| | - Xiuwei Feng
- Shandong Second Medical University, Weifang, China
| | - Wenbing Zhu
- Shandong Second Medical University, Weifang, China
| | - Ke Lu
- Shandong Second Medical University, Weifang, China
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, China
| | - Weiping Lin
- Shandong Second Medical University, Weifang, China
| | - Hengyi Sun
- Shandong Second Medical University, Weifang, China
| |
Collapse
|
6
|
Zhu W, Shao L, Feng S, Lu K, Yu X, Niu G. Tahyna virus: an emerging threat to public health. Arch Virol 2025; 170:52. [PMID: 39928175 DOI: 10.1007/s00705-024-06217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/18/2024] [Indexed: 02/11/2025]
Abstract
Tahyna virus (TAHV), a member of the California serogroup of the genus Orthobunyavirus, is an arbovirus that is capable of causing a range of symptoms from mild febrile illnesses to severe neuroinvasive disease. It was first isolated in Europe and has a holarctic distribution, spanning Central Europe, Asia, and Africa. Central Europe has reported the highest reported human seropositivity rate, reaching 30%. Phylogenetic analysis has revealed a close relationship between TAHV and Lumbo virus (LUMV), with 94% amino acid sequence identity in their N proteins. TAHV is mainly transmitted by Aedes mosquitoes, and its vertebrate hosts include hares, rabbits, hedgehogs, and rodents. Flooding during the summer months due to climate change may be a catalyst for the spread of the virus. Despite the enormous potential threat of TAHV and its potential to cause meningitis, there is a notable dearth of information regarding its actual prevalence, the number of symptomatic cases, and its clinical manifestations in humans and animals. To date, no deaths have been attributed to TAHV, which might contribute to an underestimation of its public health significance. Given the anticipated future changes in climatic conditions, TAHV could pose a health threat in Europe and elsewhere. In this review, we summarize recent advancements in TAHV research, highlighting the need for enhanced research and resource allocation for its prevention and control.
Collapse
MESH Headings
- Animals
- Humans
- Public Health
- Phylogeny
- Communicable Diseases, Emerging/virology
- Communicable Diseases, Emerging/epidemiology
- Communicable Diseases, Emerging/transmission
- Europe/epidemiology
- Encephalitis Virus, California/genetics
- Encephalitis Virus, California/classification
- Encephalitis Virus, California/pathogenicity
- Encephalitis Virus, California/isolation & purification
- Aedes/virology
- Encephalitis, California/epidemiology
- Encephalitis, California/virology
- Encephalitis, California/transmission
- Mosquito Vectors/virology
Collapse
Affiliation(s)
- Wenbing Zhu
- Shandong Second Medical University, Weifang, 261053, China
| | - Lijun Shao
- Shandong Second Medical University, Weifang, 261053, China
| | - Shuo Feng
- Shandong Second Medical University, Weifang, 261053, China
| | - Ke Lu
- Shandong Second Medical University, Weifang, 261053, China
| | - Xiaoli Yu
- Shandong Second Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
7
|
Schwartz DA. Novel Reassortants of Oropouche Virus (OROV) Are Causing Maternal-Fetal Infection During Pregnancy, Stillbirth, Congenital Microcephaly and Malformation Syndromes. Genes (Basel) 2025; 16:87. [PMID: 39858634 PMCID: PMC11765011 DOI: 10.3390/genes16010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Oropouche virus (OROV) is an orthobunyavirus endemic in the Brazilian Amazon that has caused numerous outbreaks of febrile disease since its discovery in 1955. During 2024, Oropouche fever spread from the endemic regions of Brazil into non-endemic areas and other Latin American and Caribbean countries, resulting in 13,014 confirmed infections. Similarly to other orthobunyaviruses, OROV can undergo genetic reassortment events with itself as well as other viruses. This occurred during this current outbreak, resulting in novel strains with increased pathogenicity and levels of transmission. For the first time, pregnant women with Oropouche fever have sustained poor perinatal outcomes, including miscarriage, fetal demise, stillbirths and malformation syndromes including microcephaly. In July 2024, PAHO issued an Epidemiological Alert warning of the association of OROV with vertical transmission. OROV has now been identified in the fetal blood, cerebrospinal fluid, placenta and umbilical cords, and fetal somatic organs including the liver, kidneys, brain, spleen, heart, and lungs using nucleic acid and antigen testing. Perinatal autopsy pathology has confirmed central nervous system infection from OROV in infants with congenital infection including microcephaly, ventriculomegaly, agenesis of corpus callosum, and neuronal necrosis. The latest data from Brazil show 3 confirmed cases of OROV vertical transmission; 2 cases of fetal death; 1 case of congenital malformation; and ongoing investigations into the role of OROV in 15 cases of fetal death, 3 cases of congenital malformations and 5 spontaneous miscarriages. This Commentary discusses the mechanisms and significance of development of novel reassortant strains of OROV during the current outbreak and their recent recognition as causing vertical infection and adverse perinatal outcomes among pregnant women with Oropouche fever.
Collapse
Affiliation(s)
- David A Schwartz
- Perinatal Pathology Consulting, 490 Dogwood Valley Drive, Atlanta, GA 30342, USA
| |
Collapse
|
8
|
Na EJ, Jeong CG, Chae SB, Oem JK. Investigating the reassortment potential and pathogenicity of the S segment in Akabane virus using a reverse genetics system. BMC Vet Res 2025; 21:20. [PMID: 39815297 PMCID: PMC11734451 DOI: 10.1186/s12917-024-04459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Akabane virus (AKAV) is an arthropod-borne virus that causes congenital malformations and neuropathology in cattle and sheep. In South Korea, AKAVs are classified into two main genogroups: K0505 and AKAV-7 strains. The K0505 strain infects pregnant cattle, leading to fetal abnormalities, while the AKAV-7 strain induces encephalomyelitis in post-natal cattle. The pathogenicities of K0505 and AKAV-7 strains differ significantly; however, the specific gene in the AKAV-7 strain that drives its pathogenicity remains unidentified. In this study, changes in viral replication and pathogenicity were investigated, particularly when the S segment of AKAV-7 was mutated using a T7 RNA polymerase-based reverse genetics (RG) system. RESULTS The rAKAV-7ΔNSs virus, with a deletion in the NSs protein of the wild-type AKAV-7 virus (wtAKAV-7), and the rAKAV-7(S-K0505) virus, where the S segment of wtAKAV-7 was reassorted with that from the wild type K0505 strain (wtK0505), were successfully rescued. The rAKAV-7ΔNSs virus demonstrated impaired replication in Vero cells and exhibited reduced mortality and RNA viral load in the organs of suckling mice compared to the wtAKAV-7. The rAKAV-7(S-K0505) virus displayed similar growth kinetics in Vero cells and showed no significant reduction in mortality rate in suckling mice compared to wtAKAV-7. CONCLUSIONS These observations suggest that the S segment, especially the NS protein, is associated with the pathogenicity of AKAV-7. Also, the results imply that the L and M segments might explain the differences in pathogenicity between the AKAV-7 and K0505 strains. Moreover, our findings indicate the potential for reassortment between distinct genogroups of AKAVs.
Collapse
Affiliation(s)
- Eun-Jee Na
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Chang-Gi Jeong
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Su-Beom Chae
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jae-Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
9
|
Zöller DDJA, Säurich J, Metzger J, Jung K, Lepenies B, Becker SC. Innate Immune Response Against Batai Virus, Bunyamwera Virus, and Their Reassortants. Viruses 2024; 16:1833. [PMID: 39772143 PMCID: PMC11680289 DOI: 10.3390/v16121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Orthobunyaviruses (OBVs) represent a diverse group of RNA viruses, encompassing a progressively increasing number of arboviruses that cause disease in both humans and livestock. Yet, studies investigating these viruses remain scarce despite the critical importance of such knowledge for assessing their zoonotic potential. In this study, we conducted an evaluation of the early immune response against the understudied Batai virus (BATV), as well as the influence of reassortment with the Bunyamwera virus (BUNV) on this response. Using RNA sequencing of infected murine bone marrow-derived dendritic cells, complemented by qPCR assays, we assessed the innate immune response at the transcriptome level. Additionally, we extended the qPCR analysis by including human THP-1-derived dendritic cells and ovine SFT-R cells to identify differences across species. Our results provide the first evidence that BATV elicits a strong innate immune response compared to BUNV, which largely evades early detection. Reassortants exhibited intermediate phenotypes, although unique changes in the early immune response were found as well. These findings provide a starting point for a better understanding of the immune response to BATV. Furthermore, they raise the question of whether reassortment induces changes in the innate immune response that might contribute to the differences in pathogenicity between reassortant OBVs and their parental generations.
Collapse
Affiliation(s)
- David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Josefin Säurich
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Julia Metzger
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Klaus Jung
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| |
Collapse
|
10
|
Li M. Innate immune response against vector-borne bunyavirus infection and viral countermeasures. Front Cell Infect Microbiol 2024; 14:1365221. [PMID: 38711929 PMCID: PMC11070517 DOI: 10.3389/fcimb.2024.1365221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Pérez-Yanes S, Lorenzo-Sánchez I, Cabrera-Rodríguez R, García-Luis J, Trujillo-González R, Estévez-Herrera J, Valenzuela-Fernández A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic p62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024; 13:598. [PMID: 38607037 PMCID: PMC11011779 DOI: 10.3390/cells13070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Department of Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, 38296 La Laguna, Spain;
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| |
Collapse
|
12
|
Zhang Y, Liu X, Wu Z, Feng S, Lu K, Zhu W, Sun H, Niu G. Oropouche virus: A neglected global arboviral threat. Virus Res 2024; 341:199318. [PMID: 38224842 PMCID: PMC10827532 DOI: 10.1016/j.virusres.2024.199318] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The Oropouche virus is an important arthropod-borne virus in the Peribunyaviridae family that can cause febrile illnesses, and it is widely distributed in tropical regions such as Central and South America. Since the virus was first identified, a large number of related cases are reported every year. No deaths have been reported to date, however, the virus can cause systemic infections, including the nervous and blood systems, leading to serious complications. The transmission of Oropouche virus occurs through both urban and sylvatic cycles, with the anthropophilic biting midge Culicoides paraensis serving as the primary vector in urban areas. Direct human-to-human transmission of Oropouche virus has not been observed. Oropouche virus consists of three segments, and the proteins encoded by the different segments enables the virus to replicate efficiently in the host and to resist the host's immune response. Phylogenetic analyses showed that Oropouche virus sequences are geographically distinct and have closer homologies with Iquitos virus and Perdoes virus, which belong to the family Peribunyaviridae. Despite the enormous threat it poses to public health, there are currently no licensed vaccines or specific antiviral treatments for the disease it causes. Recent studies have utilised imJatobal virusmunoinformatics approaches to develop epitope-based peptide vaccines, which have laid the groundwork for the clinical use of vaccines. The present review focuses on the structure, epidemiology, immunity and phylogeny of Oropouche virus, as well as the progress of vaccine development, thereby attracting wider attention and research, particularly with regard to potential vaccine programs.
Collapse
Affiliation(s)
- Yuli Zhang
- Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Liu
- Shandong Second Medical University, Weifang, 261053, China
| | - Zhen Wu
- Shandong Second Medical University, Weifang, 261053, China
| | - Shuo Feng
- Shandong Second Medical University, Weifang, 261053, China
| | - Ke Lu
- Shandong Second Medical University, Weifang, 261053, China
| | - Wenbing Zhu
- Shandong Second Medical University, Weifang, 261053, China
| | - Hengyi Sun
- Shandong Second Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
13
|
Okajima M, Takenaka-Uema A, Fujii Y, Izumi F, Kojima I, Ozawa M, Naitou K, Suda Y, Nishiyama S, Murakami S, Horimoto T, Ito N, Shirafuji H, Yanase T, Masatani T. Differential role of NSs genes in the neurovirulence of two genogroups of Akabane virus causing postnatal encephalomyelitis. Arch Virol 2023; 169:7. [PMID: 38082138 DOI: 10.1007/s00705-023-05929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023]
Abstract
Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.
Collapse
Affiliation(s)
- Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Makoto Ozawa
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuto Suda
- Kagoshima Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hiroaki Shirafuji
- Kagoshima Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Tohru Yanase
- Kagoshima Research Station, National Institute of Animal Health, NARO, Kagoshima, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan.
| |
Collapse
|
14
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
15
|
Groseth A, Gardner D, Meade-White K, Amler S, Ebihara H. Immunocompetent hamsters as a model for orthobunyavirus-induced neuroinvasion and neuropathology. PLoS Negl Trop Dis 2023; 17:e0011355. [PMID: 37235549 DOI: 10.1371/journal.pntd.0011355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Bunyavirus infections, including those caused by Bunyamwera serogroup orthobunyaviruses, represent a significant and yet likely still vastly underappreciated cause of mild to moderate human febrile infections. In severe cases, these infections can also cause neurological disease, particularly meningitis and encephalitis, and infection can even be fatal. However, with a few exceptions, information regarding the mechanisms underlying the neuroinvasion and neuropathogenesis of such infections is limited. This is due in part to a lack of animal models to facilitate such studies. METHODOLOGY/PRINCIPAL FINDINGS In an effort to develop an immunocompetent model of infection with Bunyamwera serogroup orthobunyaviruses, we infected 4-6-week-old female hamsters via either the intraperitoneal or subcutaneous route with 106 pfu/animal of Bunyamwera virus (BUNV), Batai virus or Ngari virus. Only BUNV infection resulted in clinical disease, which was characterized by weight loss, lethargy and neurological signs (i.e. tremor of the head or limbs, loss of righting reflex, "waltzing"). While symptoms were of similar severity for both routes, they occurred more frequently following subcutaneous inoculation. Consistent with these clinical signs, both antigen staining and histopathological abnormalities were found extensively throughout the brain. CONCLUSIONS/SIGNIFICANCE The reported hamster model of BUNV infection provides a new tool for studying orthobunyavirus infection, and particularly neuroinvasion and the development of neuropathology. This model is particularly significant because it makes use of immunologically competent animals and relies on a subcutaneous inoculation route that more closely mimics the natural infection route for arboviruses, thereby providing a more authentic cellular and immunological context at the initial site of infection.
Collapse
Affiliation(s)
- Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Laboratory for Arenavirus Biology, Institute of Molecular Biology and Cell Biology, Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Don Gardner
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Susanne Amler
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
16
|
Ayers VB, Huang YJS, Kohl A, Dunlop JI, Hettenbach SM, Park SL, Higgs S, Vanlandingham DL. Comparison of Immunogenicity Between a Candidate Live Attenuated Vaccine and an Inactivated Vaccine for Cache Valley Virus. Viral Immunol 2023; 36:41-47. [PMID: 36622942 PMCID: PMC9885547 DOI: 10.1089/vim.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cache Valley virus (CVV) is a mosquito-borne bunyavirus that is enzootic throughout the new world. Although CVV is known as an important agricultural pathogen, primarily associated with embryonic lethality and abortions in ruminants, it has recently been recognized for its expansion as a zoonotic pathogen. With the increased emergence of bunyaviruses with human and veterinary importance, there have been significant efforts dedicated to the development of bunyavirus vaccines. In this study, the immunogenicity of a candidate live-attenuated vaccine (LAV) for CVV, which contains the deletion of the nonstructural small (NSs) and nonstructural medium (NSm) genes (2delCVV), was evaluated and compared with an autogenous candidate vaccine created through the inactivation of CVV using binary ethylenimine (BEI) with an aluminum hydroxide adjuvant (BEI-CVV) in sheep. Both 2delCVV and BEI-CVV produced a neutralizing antibody response that exceeds the correlate of protection, that is, plaque reduction neutralization test titer >10. However, on day 63 postinitial immunization, 2delCVV was more immunogenic than BEI-CVV. These results warrant further development of 2delCVV as a candidate LAV and demonstrate that the double deletion of the NSs and NSm genes can be applied to the development of vaccines and as a common attenuation strategy for orthobunyaviruses.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Susan M. Hettenbach
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA.,Address correspondence to: Dr. Dana L. Vanlandingham, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
17
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Immunogenicity of a Candidate Live Attenuated Vaccine for Rift Valley Fever Virus with a Two-Segmented Genome. Viral Immunol 2023; 36:33-40. [PMID: 36399689 PMCID: PMC9885543 DOI: 10.1089/vim.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus that affects both ruminants and humans. RVFV causes severe and recurrent outbreaks in Africa and the Arabian Peninsula with a significant risk for emergence into new locations. Although there are a variety of RVFV veterinary vaccines for use in endemic areas, there is currently no licensed vaccine for human use; therefore, there is a need to develop and assess new vaccines. Herein, we report a live-attenuated recombinant vaccine candidate for RVFV, based on the previously described genomic reconfiguration of the conditionally licensed MP12 vaccine. There are two general strategies used to develop live-attenuated RVFV vaccines, one being serial passage of wild-type RVFV strains to select attenuated mutants such as Smithburn, Clone 13, and MP12 vaccine strains. The second strategy has utilized reverse genetics to attenuate RVFV strains by introducing deletions or insertions within the viral genome. The novel candidate vaccine characterized in this report contains a two-segmented genome that lacks the medium viral segment (M) and two virulence genes (nonstructural small and nonstructural medium). The vaccine candidate, named r2segMP12, was evaluated for the production of neutralizing antibodies to RVFV in outbred CD-1 mice. The immune response induced by the r2segMP12 vaccine candidate was directly compared to the immune response induced by the rMP12 parental strain vaccine. Our study demonstrated that a single immunization with the r2segMP12 vaccine candidate at 105 plaque-forming units elicited a higher neutralizing antibody response than the rMP12 vaccine at the same vaccination titer without the need for a booster.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA.,Address correspondence to: Dr. Dana L. Vanlandingham, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
18
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Replication Kinetics of a Candidate Live-Attenuated Vaccine for Cache Valley Virus in Aedes albopictus. Vector Borne Zoonotic Dis 2022; 22:553-558. [PMID: 36354965 PMCID: PMC9700352 DOI: 10.1089/vbz.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family: Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting immunity with one single immunization. Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown to reduce transmission by mosquitoes. Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633 strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the 2delCVV mutant was reduced by more than a 100-fold. Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk of reversion to virulence and transmission.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
19
|
Boshra H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022; 14:2139. [PMID: 36298693 PMCID: PMC9610998 DOI: 10.3390/v14102139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bunyaviruses represent the largest group of RNA viruses and are the causative agent of a variety of febrile and hemorrhagic illnesses. Originally characterized as a single serotype in Africa, the number of described bunyaviruses now exceeds over 500, with its presence detected around the world. These predominantly tri-segmented, single-stranded RNA viruses are transmitted primarily through arthropod and rodent vectors and can infect a wide variety of animals and plants. Although encoding for a small number of proteins, these viruses can inflict potentially fatal disease outcomes and have even developed strategies to suppress the innate antiviral immune mechanisms of the infected host. This short review will attempt to provide an overall description of the order Bunyavirales, describing the mechanisms behind their infection, replication, and their evasion of the host immune response. Furthermore, the historical context of these viruses will be presented, starting from their original discovery almost 80 years ago to the most recent research pertaining to viral replication and host immune response.
Collapse
Affiliation(s)
- Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 Rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
20
|
Ren N, Wang F, Zhao L, Wang S, Zhang G, Li J, Zhang B, Wang J, Bergeron E, Yuan Z, Xia H. Efficient rescue of a newly classified Ebinur lake orthobunyavirus with GFP reporter and its application in rapid antiviral screening. Antiviral Res 2022; 207:105421. [PMID: 36150523 DOI: 10.1016/j.antiviral.2022.105421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Orthobunyaviruses have been reported to cause severe diseases in humans or animals, posing a potential threat to human health and socio-economy. Ebinur lake virus (EBIV) is a newly classified orthobunyavirus, which can induce the histopathogenic change and even the high mortality of infected BALB/c mice. Therefore, it is needed to further study the viral replication and pathogenesis, and develop the therapies to cope with its potential infection to human or animals. Here, through the reverse genetics system, the recombinant EBIV of wild type (rEBIV/WT) and NP-conjugated-eGFP (rEBIV/eGFP/S) were rescued for the application of the high-content screening (HCS) of antiviral drug. The eGFP fluorescence signal of the rEBIV/eGFP/S was stable in the process of successive passage in BHK-21 cells (over 10 passages) and this recombinant virus could replicate in various cell lines. Compared to the wild type EBIV, the rEBIV/eGFP/S caused the smaller plaques (diameter around 1 mm on 3 dpi) and lower peak titers (105 PFU/mL), suggesting attenuation due to the eGFP insertion. Through the high-content screening (HCS) system, two antiviral compounds, ribavirin and favipiravir, which previously reported to have effect to some bunyavirus were tested firstly. Ribavirin showed an inhibitory effect on the rEBIV/eGFP/S (EC50 = 14.38 μM) as our expect, while favipiravir with no inhibitory effect even using high doses. Furthermore, Tyrphostin A9 (EC50 = 0.72 μM for rEBIV/eGFP/S, EC50 = 0.05 μM for EBIV-WT) and UNC0638 (EC50 = 1.26 μM for rEBIV/eGFP/S, EC50 = 1.10 μM for rEBIV/eGFP/S) were identified with strong antiviral effect against EBIV in vitro from 150 antiviral compounds. In addition, the time-of-addition assay indicated that Tyrphostin A9 worked in the stage of viral post-infection, and the UNC0638 in all pre-, co-, and post-infection stages. This robust reverse genetics system will facilitate the investigation into the studying of viral replication and assembly mechanisms, and the development of drug and vaccine for EBIV in the future.
Collapse
Affiliation(s)
- Nanjie Ren
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lu Zhao
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Zhejiang, China
| | - Shunlong Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guilin Zhang
- Xinjiang Heribase Biotechnology CO., LTD., Urumqi, China
| | - Jiaqi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Eric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. NPJ Vaccines 2022; 7:38. [PMID: 35301331 PMCID: PMC8931169 DOI: 10.1038/s41541-022-00456-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Oropouche virus (OROV) is an arthropod-borne orthobunyavirus found in South America and causes Oropouche fever, a febrile infection similar to dengue. It is the second most prevalent arthropod-borne viral disease in South America after dengue. Over 500,000 cases have been diagnosed since the virus was first discovered in 1955; however, this is likely a significant underestimate given the limited availability of diagnostics. No fatalities have been reported to date, however, up to 60% of cases have a recurrent phase of disease within one month of recovery from the primary disease course. The main arthropod vector is the biting midge Culicoides paraensis, which has a geographic range as far north as the United States and demonstrates the potential for OROV to geographically expand. The transmission cycle is incompletely understood and vertebrate hosts include both non-human primates and birds further supporting the potential ability of the virus to spread. A number of candidate antivirals have been evaluated against OROV in vitro but none showed antiviral activity. Surprisingly, there is only one report in the literature on candidate vaccines. We suggest that OROV is an undervalued pathogen much like chikungunya, Schmallenberg, and Zika viruses were before they emerged. Overall, OROV is an important emerging disease that has been under-investigated and has the potential to cause large epidemics in the future. Further research, in particular candidate vaccines, is needed for this important pathogen.
Collapse
|
22
|
Ren F, Shen S, Wang Q, Wei G, Huang C, Wang H, Ning YJ, Zhang DY, Deng F. Recent Advances in Bunyavirus Reverse Genetics Research: Systems Development, Applications, and Future Perspectives. Front Microbiol 2021; 12:771934. [PMID: 34950119 PMCID: PMC8689132 DOI: 10.3389/fmicb.2021.771934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bunyaviruses are members of the Bunyavirales order, which is the largest group of RNA viruses, comprising 12 families, including a large group of emerging and re-emerging viruses. These viruses can infect a wide variety of species worldwide, such as arthropods, protozoans, plants, animals, and humans, and pose substantial threats to the public. In view of the fact that a better understanding of the life cycle of a highly pathogenic virus is often a precondition for developing vaccines and antivirals, it is urgent to develop powerful tools to unravel the molecular basis of the pathogenesis. However, biosafety level −3 or even −4 containment laboratory is considered as a necessary condition for working with a number of bunyaviruses, which has hampered various studies. Reverse genetics systems, including minigenome (MG), infectious virus-like particle (iVLP), and infectious full-length clone (IFLC) systems, are capable of recapitulating some or all steps of the viral replication cycle; among these, the MG and iVLP systems have been very convenient and effective tools, allowing researchers to manipulate the genome segments of pathogenic viruses at lower biocontainment to investigate the viral genome transcription, replication, virus entry, and budding. The IFLC system is generally developed based on the MG or iVLP systems, which have facilitated the generation of recombinant infectious viruses. The MG, iVLP, and IFLC systems have been successfully developed for some important bunyaviruses and have been widely employed as powerful tools to investigate the viral replication cycle, virus–host interactions, virus pathogenesis, and virus evolutionary process. The majority of bunyaviruses is generally enveloped negative-strand RNA viruses with two to six genome segments, of which the viruses with bipartite and tripartite genome segments have mostly been characterized. This review aimed to summarize current knowledge on reverse genetic studies of representative bunyaviruses causing severe diseases in humans and animals, which will contribute to the better understanding of the bunyavirus replication cycle and provide some hints for developing designed antivirals.
Collapse
Affiliation(s)
- Fuli Ren
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiongya Wang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Gang Wei
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Chaolin Huang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ding-Yu Zhang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Rodriguez C, Gricourt G, Ndebi M, Demontant V, Poiteau L, Burrel S, Boutolleau D, Woerther PL, Calvez V, Stroer S, Pawlotsky JM. Fatal Encephalitis Caused by Cristoli Virus, an Emerging Orthobunyavirus, France. Emerg Infect Dis 2021; 26:1287-1290. [PMID: 32441621 PMCID: PMC7258463 DOI: 10.3201/eid2606.191431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report the discovery of a new orthobunyavirus, Cristoli virus, by means of shotgun metagenomics. The virus was identified in an immunodepressed patient with fatal encephalitis. Full-length genome sequencing revealed high-level expression of a virulence factor, possibly explaining the severity of the infection. The patient’s recent history suggests circulation in France.
Collapse
|
24
|
García-Serradilla M, Risco C. Light and electron microscopy imaging unveils new aspects of the antiviral capacity of silver nanoparticles in bunyavirus-infected cells. Virus Res 2021; 302:198444. [PMID: 33961898 DOI: 10.1016/j.virusres.2021.198444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Drug repurposing is an important source of new antivirals because many compounds used to treat a variety of pathologies also hamper viral infections. Habitually, silver nanoparticles (AgNPs) have been used to treat bacterial and fungal infections and their antiviral properties have been also reported. In this work, we have studied the antiviral capacity of AgNPs in cells infected with Bunyamwera virus (BUNV), the prototype of the Bunyavirales order. This group of viruses contains important pathogens for humans, animals and plants. Incubation of BUNV-infected Vero cells with non-toxic concentrations of AgNPs, reduced the production of extracellular infectious viruses in up to three orders of magnitude. With a combination of imaging techniques, we have visualized the intracellular distribution of AgNPs in mock- and BUNV-infected cells and studied their effects on intracellular organelles. In mock-infected cells and at short times post-incubation, AgNPs were detected inside nuclei and mitochondria by transmission electron microscopy (TEM). At long times post-treatment, they accumulated inside lysosome-like organelles. Cell compartments did not exhibit any appreciable ultrastructural alterations after incubation with AgNPs. In BUNV-infected cells, AgNPs attached to extracellular virions, that showed a disrupted morphology. Inside cells, they were detected inside the nucleus, in mitochondria and around characteristic Golgi-associated, single-membrane spherules. These membranous structures are the replication organelles (ROs) of bunyaviruses and contain active viral replication complexes (VRCs). Compared to normal spherules that are round, compact and have an electron-dense core, spherules in AgNPs-treated cells were deformed and their core was electron-lucent. Interestingly, in BUNV-infected cells treated with the typical antiviral ribavirin (RBV), spherules with VRCs exhibit also an anomalous morphology and an electron-lucent core. Both AgNPs and RBV might interfere with BUNV-induced dismantling of cell nucleoli and with the intercellular propagation of large groups of virions, a mechanism of BUNV transmission observed for the first time in cultured cells. Our results point to silver nanoparticles as good candidates for antiviral therapy, either alone or in combination with other antiviral drugs, such as RBV-related compounds.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
25
|
Preparation of a polyclonal antibody against the non-structural protein, NSs of SFTSV. Protein Expr Purif 2021; 184:105892. [PMID: 33895264 DOI: 10.1016/j.pep.2021.105892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is newly discovered virus which is the member of the order Bunyavirales, family phenuiviridae, phlebovirus genus. Its genome is composed of 3 segments of negative-sense RNA L, M and S. NSs is a non structure protein encoded by S segment which is important for viral replication and virulence. NSs protein of SFTSV is only involved in the regulation of host innate immune responses and suppression of IFN-promoter activities. So, the exact functions of this protein need to be studied deeply. To understand the exact role of NSs from SFTSV in viral replication and host immune response, a qualified antibody against this protein is required. In this study, NSs gene of SFTSV, was cloned into a bacterial expression vector (pGEX-6P-1) and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) cells. The SFTSV NSs fusion protein was purified using Glutathione Sepharose 4B and utilized as an antigen to immunize rabbits and obtain an anti-SFTSV NSs polyclonal antibody. Proper expression of the fusion protein and polyclonal antibody specificity were confirmed by western blotting and immunofluorescence analyses. The polyclonal antibody recognized NSs from SFTSV specifically. This is the first report that NSs can form viroplasm-like structures not only in infected cells but also in transfected cells with NSs plasmids. This polyclonal antibody will be useful for future studies of NSs functions.
Collapse
|
26
|
Zhang X, Sun K, Liang Y, Wang S, Wu K, Li Z. Development of Rice Stripe Tenuivirus Minireplicon Reverse Genetics Systems Suitable for Analyses of Viral Replication and Intercellular Movement. Front Microbiol 2021; 12:655256. [PMID: 33833749 PMCID: PMC8021733 DOI: 10.3389/fmicb.2021.655256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Rice stripe virus (RSV), a tenuivirus with four negative-sense/ambisense genome segments, is one of the most devastating viral pathogens affecting rice production in many Asian countries. Despite extensive research, our understanding of RSV infection cycles and pathogenesis has been severely impaired by the lack of reverse genetics tools. In this study, we have engineered RSV minireplicon (MR)/minigenome cassettes with reporter genes substituted for the viral open reading frames in the negative-sense RNA1 or the ambisense RNA2-4 segments. After delivery to Nicotiana benthamiana leaves via agroinfiltration, MR reporter gene expression was detected only when the codon-optimized large viral RNA polymerase protein (L) was coexpressed with the nucleocapsid (N) protein. MR activity was also critically dependent on the coexpressed viral suppressors of RNA silencing, but ectopic expression of the RSV-encoded NS3 silencing suppressor drastically decreased reporter gene expression. We also developed intercellular movement-competent MR systems with the movement protein expressed either in cis from an RNA4-based MR or in trans from a binary plasmid. Finally, we generated multicomponent replicon systems by expressing the N and L proteins directly from complementary-sense RNA1 and RNA3 derivatives, which enhanced reporter gene expression, permitted autonomous replication and intercellular movement, and reduced the number of plasmids required for delivery. In summary, this work enables reverse genetics analyses of RSV replication, transcription, and cell-to-cell movement and provides a platform for engineering more complex recombinant systems.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kaili Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Lee JK, Shin OS. Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response. J Microbiol Biotechnol 2021; 31:226-232. [PMID: 33397830 PMCID: PMC9705905 DOI: 10.4014/jmb.2008.08048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFN-mediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Republic of Korea,Corresponding author Phone: +82-2-2626-3280 E-mail:
| |
Collapse
|
28
|
A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021; 13:v13020314. [PMID: 33670641 PMCID: PMC7922539 DOI: 10.3390/v13020314] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Bunyavirales order was established by the International Committee on Taxonomy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcriptional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral pathogenesis, and developing strategies for interventions and treatments.
Collapse
|
29
|
Gori Savellini G, Bini L, Gagliardi A, Anichini G, Gandolfo C, Prathyumnan S, Cusi MG. Ubiquitin and Not Only Unfolded Domains Drives Toscana Virus Non-Structural NSs Protein Degradation. Viruses 2020; 12:E1153. [PMID: 33053780 PMCID: PMC7601456 DOI: 10.3390/v12101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023] Open
Abstract
The non-structural protein NSs of the Phenuiviridae family members appears to have a role in the host immunity escape. The stability of Toscana virus (TOSV) NSs protein was tested by a cycloheximide (CHX) chase approach on cells transfected with NSs deleted versions fused to a reporter gene. The presence of intrinsically disordered regions (IDRs) both at the C- and N-terminus appeared to affect the protein stability. Indeed, the NSsΔC and NSsΔN proteins were more stable than the wild-type NSs counterpart. Since TOSV NSs exerts its inhibitory function by triggering RIG-I for proteasomal degradation, the interaction of the ubiquitin system and TOSV NSs was further examined. Chase experiments with CHX and the proteasome inhibitor MG-132 demonstrated the involvement of the ubiquitin-proteasome system in controlling NSs protein amount expressed in the cells. The analysis of TOSV NSs by mass spectrometry allowed the direct identification of K104, K109, K154, K180, K244, K294, and K298 residues targeted for ubiquitination. Analysis of NSs K-mutants confirmed the presence and the important role of lysine residues located in the central and the C-terminal parts of the protein in controlling the NSs cellular level. Therefore, we directly demonstrated a new cellular pathway involved in controlling TOSV NSs fate and activity, and this opens the way to new investigations among more pathogenic viruses of the Phenuiviridae family.
Collapse
Affiliation(s)
- Gianni Gori Savellini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.A.); (C.G.); (S.P.); (M.G.C.)
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Assunta Gagliardi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Laboratory of Synthetic and Structural Vaccinology, 38122 Trento, Italy;
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.A.); (C.G.); (S.P.); (M.G.C.)
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.A.); (C.G.); (S.P.); (M.G.C.)
- S. Maria delle Scotte Hospital, V.le Bracci, 1, 53100 Siena, Italy
| | - Shibily Prathyumnan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.A.); (C.G.); (S.P.); (M.G.C.)
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.A.); (C.G.); (S.P.); (M.G.C.)
- S. Maria delle Scotte Hospital, V.le Bracci, 1, 53100 Siena, Italy
| |
Collapse
|
30
|
The Andes Orthohantavirus NSs Protein Antagonizes the Type I Interferon Response by Inhibiting MAVS Signaling. J Virol 2020; 94:JVI.00454-20. [PMID: 32321811 DOI: 10.1128/jvi.00454-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
The small messenger RNA (SmRNA) of the Andes orthohantavirus (ANDV), a rodent-borne member of the Hantaviridae family of viruses of the Bunyavirales order, encodes a multifunctional nucleocapsid (N) protein and for a nonstructural (NSs) protein of unknown function. We have previously shown the expression of the ANDV-NSs, but only in infected cell cultures. In this study, we extend our early findings by confirming the expression of the ANDV-NSs protein in the lungs of experimentally infected golden Syrian hamsters. Next, we show, using a virus-free system, that the ANDV-NSs protein antagonizes the type I interferon (IFN) induction pathway by suppressing signals downstream of the melanoma differentiation-associated protein 5 (MDA5) and the retinoic acid-inducible gene 1 (RIG-I) and upstream of TBK1. Consistent with this observation, the ANDV-NSs protein antagonized mitochondrial antiviral-signaling protein (MAVS)-induced IFN-β, NF-κB, IFN-regulatory factor 3 (IRF3), and IFN-sensitive response element (ISRE) promoter activity. Results demonstrate that ANDV-NSs binds to MAVS in cells without disrupting the MAVS-TBK-1 interaction. However, in the presence of the ANDV-NSs ubiquitination of MAVS is reduced. In summary, this study provides evidence showing that the ANDV-NSs protein acts as an antagonist of the cellular innate immune system by suppressing MAVS downstream signaling by a yet not fully understand mechanism. Our findings reveal new insights into the molecular regulation of the hosts' innate immune response by the Andes orthohantavirus.IMPORTANCE Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is distinguished from other hantaviruses by its unique ability to spread from person to person. In a previous report, we identified a novel ANDV protein, ANDV-NSs. Until now, ANDV-NSs had no known function. In this new study, we established that ANDV-NSs acts as an antagonist of cellular innate immunity, the first line of defense against invading pathogens, hindering the cellular antiviral response during infection. This study provides novel insights into the mechanisms used by ANDV to establish its infection.
Collapse
|
31
|
Bryden SR, Pingen M, Lefteri DA, Miltenburg J, Delang L, Jacobs S, Abdelnabi R, Neyts J, Pondeville E, Major J, Müller M, Khalid H, Tuplin A, Varjak M, Merits A, Edgar J, Graham GJ, Shams K, McKimmie CS. Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Sci Transl Med 2020; 12:eaax2421. [PMID: 31969486 DOI: 10.1126/scitranslmed.aax2421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Arthropod-borne viruses (arboviruses) are important human pathogens for which there are no specific antiviral medicines. The abundance of genetically distinct arbovirus species, coupled with the unpredictable nature of their outbreaks, has made the development of virus-specific treatments challenging. Instead, we have defined and targeted a key aspect of the host innate immune response to virus at the arthropod bite that is common to all arbovirus infections, potentially circumventing the need for virus-specific therapies. Using mouse models and human skin explants, we identify innate immune responses by dermal macrophages in the skin as a key determinant of disease severity. Post-exposure treatment of the inoculation site by a topical TLR7 agonist suppressed both the local and subsequent systemic course of infection with a variety of arboviruses from the Alphavirus, Flavivirus, and Orthobunyavirus genera. Clinical outcome was improved in mice after infection with a model alphavirus. In the absence of treatment, antiviral interferon expression to virus in the skin was restricted to dermal dendritic cells. In contrast, stimulating the more populous skin-resident macrophages with a TLR7 agonist elicited protective responses in key cellular targets of virus that otherwise proficiently replicated virus. By defining and targeting a key aspect of the innate immune response to virus at the mosquito bite site, we have identified a putative new strategy for limiting disease after infection with a variety of genetically distinct arboviruses.
Collapse
Affiliation(s)
- Steven R Bryden
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marieke Pingen
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Daniella A Lefteri
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Janne Miltenburg
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Emilie Pondeville
- MRC‑University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Jack Major
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Henna Khalid
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Margus Varjak
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julia Edgar
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Gerard J Graham
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Kave Shams
- Inflammatory Skin Disease Group, Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Clive S McKimmie
- Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
32
|
Gori Savellini G, Anichini G, Gandolfo C, Prathyumnan S, Cusi MG. Toscana virus non-structural protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation. PLoS Pathog 2019; 15:e1008186. [PMID: 31815967 PMCID: PMC6901176 DOI: 10.1371/journal.ppat.1008186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
It is known that the non-structural protein (NSs) of Toscana virus (TOSV), an emergent sandfly-borne virus causing meningitis or more severe central nervous system injuries in humans, exerts its function triggering RIG-I for degradation in a proteasome-dependent manner, thus breaking off the IFN-β production. The non-structural protein of different members of Bunyavirales has recently appeared as a fundamental protagonist in immunity evasion through ubiquitination-mediated protein degradation targets. We showed that TOSV NSs has an E3 ubiquitin ligase activity, mapping at the carboxy-terminal domain and also involving the amino-terminal of the protein. Indeed, neither the amino- (NSsΔN) nor the carboxy- (NSsΔC) terminal-deleted mutants of TOSV NSs were able to cause ubiquitin-mediated proteasome degradation of RIG-I. Moreover, the addition of the C-terminus of TOSV NSs to the homologous protein of the Sandfly Fever Naples Virus, belonging to the same genus and unable to inhibit IFN-β activity, conferred new properties to this protein, favoring RIG-I ubiquitination and its degradation. NSs lost its antagonistic activity to IFN when one of the terminal residues was missing. Therefore, we showed that NSs could behave as an atypical RING between RING (RBR) E3 ubiquitin ligases. This is the first report which identified the E3 ubiquitin ligase activity in a viral protein among negative strand RNA viruses.
Collapse
Affiliation(s)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Zhang L, Fu Y, Wang H, Guan Y, Zhu W, Guo M, Zheng N, Wu Z. Severe Fever With Thrombocytopenia Syndrome Virus-Induced Macrophage Differentiation Is Regulated by miR-146. Front Immunol 2019; 10:1095. [PMID: 31156641 PMCID: PMC6529556 DOI: 10.3389/fimmu.2019.01095] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever with a high mortality rate in humans, which is caused by SFTS virus (SFTSV), a novel phlebovirus in the Bunyaviridae family, is tick borne and endemic in Eastern Asia. Previous study found that SFTSV can infect and replicate in macrophages in vivo and in vitro. However, the role of macrophages in virus replication and the potential pathogenic mechanisms of SFTSV in macrophage remain unclear. In this study, we provided evidence that the SFTSV infection drove macrophage differentiation skewed to M2 phenotype, facilitated virus shedding, and resulted in viral spread. We showed evidence that miR-146a and b were significantly upregulated in macrophages during the SFTSV infection, driving the differentiation of macrophages into M2 cells by targeting STAT1. Further analysis revealed that the elevated miR-146b but not miR-146a was responsible for IL-10 stimulation. We also found that SFTSV increased endogenous miR-146b-induced differentiation of macrophages into M2 cells mediated by viral non-structural protein (NSs). The M2 skewed differentiation of macrophages may have important implication to the pathogenesis of SFTS.
Collapse
Affiliation(s)
- Li Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yuxuan Fu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Huanru Wang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yajie Guan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Mengdi Guo
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Zhao L, Hu Z, Li S, Zhou X, Li J, Su X, Zhang L, Zhang Z, Dong J. Diterpenoid compounds from Wedelia trilobata induce resistance to Tomato spotted wilt virus via the JA signal pathway in tobacco plants. Sci Rep 2019; 9:2763. [PMID: 30808959 PMCID: PMC6391457 DOI: 10.1038/s41598-019-39247-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/08/2019] [Indexed: 01/24/2023] Open
Abstract
Tomato spotted wilt virus (TSWV) causes major losses of many crops worldwide. Several strategies have been attempted to control disease caused by TSWV. However, many challenges for the effective control of this disease remain. A promising approach is the use of abiotic or biotic inducers to enhance plant resistance to pathogens. We screened a diterpenoid compound from Wedelia trilobata, 3α-Angeloyloxy-9β-hydroxy-ent-kaur-16-en-19-oic acid (AHK), which had higher curative and protective effects against TSWV than the ningnanmycin control. The rapid initiation of the expression of all the TSWV genes was delayed by more than 1d in the curative assay, and the expression of the NSs, NSm and RdRp genes was inhibited. In addition, the replication of all TSWV genes in systemic leaves was inhibited in the protective assay, with an inhibition rate of more than 90%. The concentrations of jasmonic acid (JA) and jasmonic acid isoleucine (JA-ILE) in the AHK-treated and systemic leaves of the treated plants were significantly higher than those observed in the control. The results suggested that AHK can induce systemic resistance in treated plants. The transcription of the NtCOI1 gene, a key gene in the JA pathway, was significantly higher in both the inoculated and systemic leaves of the AHK-treated plants compared to the control. The AHK-induced resistance to TSWV in Nicotiana benthamiana could be eliminated by VIGS-mediated silencing of the NtCOI1 gene. These results indicated that AHK can activate the JA pathway and induce systemic resistance to TSWV infection.
Collapse
Affiliation(s)
- Lihua Zhao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
| | - Zhonghui Hu
- Kunming Institute of Botany, Chinese Academy of Science, 650201, Kunming, China
| | - Shunlin Li
- Kunming Institute of Botany, Chinese Academy of Science, 650201, Kunming, China
| | - Xueping Zhou
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jing Li
- Life Science College, Southwest Forestry University, 650224, Kunming, China
| | - Xiaoxia Su
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
| | - Lizhen Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China.
| | - Jiahong Dong
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, 650204, Kunming, China.
| |
Collapse
|
35
|
Lima JA, Nunes Neto JP, Castro KS, Travassos da Rosa APDA, Tesh R, Nunes MRT, Popov VL, Vasilakis N, Guzman H, Widen S, Silva SPD, Medeiros DBDA, Cardoso JF, Martins LC, Azevedo RDSDS, Vasconcelos PFDC, Chiang JO. Characterization of Triniti virus supports its reclassification in the family Peribunyaviridae. J Gen Virol 2018; 100:137-144. [PMID: 30547856 PMCID: PMC7011695 DOI: 10.1099/jgv.0.001196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triniti virus (TNTV) has been isolated in Trinidad and Tobago and in Brazil. To date little is known about this virus, which is classified as an ungrouped virus within the family Togaviridae. Here, three isolates of TNTV were characterized both genetically and antigenically. The genome was shown to contain three RNA segments: small (S), medium (M) and large (L). Genome organization, protein sizes and protein motifs were similar to those of viruses in the genus Orthobunyavirus, family Peribunyaviridae. Antigenic reactivity revealed the three TNTV isolates to be closely related, but no serologic cross-reaction with other orthobunyaviruses. Morphological observation by transmission electron microscopy indicated that virus size and symmetry were compatible with those of viruses in the family Peribunyaviridae. Our serological, morphological and molecular results support the taxonomic reclassification of TNTV as a member of the genus Orthobunyavirus, family Peribunyaviridae.
Collapse
Affiliation(s)
- Juliana Abreu Lima
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Joaquim Pinto Nunes Neto
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Karoline Silva Castro
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | | | - Robert Tesh
- 2Department of Pathology, Institute of Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Márcio Roberto Teixeira Nunes
- 3Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Vsevolod Leonidovich Popov
- 2Department of Pathology, Institute of Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- 2Department of Pathology, Institute of Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Hilda Guzman
- 2Department of Pathology, Institute of Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Steven Widen
- 4Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandro Patroca da Silva
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Jedson Ferreira Cardoso
- 3Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Lívia Carício Martins
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Raimunda do Socorro da Silva Azevedo
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| | - Jannifer Oliveira Chiang
- 1Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, BR 316, Km 07, S/N - 67030-000 - Levilândia - Ananindeua, Pará, Brazil
| |
Collapse
|
36
|
Dunlop JI, Szemiel AM, Navarro A, Wilkie GS, Tong L, Modha S, Mair D, Sreenu VB, Da Silva Filipe A, Li P, Huang YJS, Brennan B, Hughes J, Vanlandingham DL, Higgs S, Elliott RM, Kohl A. Development of reverse genetics systems and investigation of host response antagonism and reassortment potential for Cache Valley and Kairi viruses, two emerging orthobunyaviruses of the Americas. PLoS Negl Trop Dis 2018; 12:e0006884. [PMID: 30372452 PMCID: PMC6245839 DOI: 10.1371/journal.pntd.0006884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022] Open
Abstract
Orthobunyaviruses such as Cache Valley virus (CVV) and Kairi virus (KRIV) are important animal pathogens. Periodic outbreaks of CVV have resulted in the significant loss of lambs on North American farms, whilst KRIV has mainly been detected in South and Central America with little overlap in geographical range. Vaccines or treatments for these viruses are unavailable. One approach to develop novel vaccine candidates is based on the use of reverse genetics to produce attenuated viruses that elicit immune responses but cannot revert to full virulence. The full genomes of both viruses were sequenced to obtain up to date genome sequence information. Following sequencing, minigenome systems and reverse genetics systems for both CVV and KRIV were developed. Both CVV and KRIV showed a wide in vitro cell host range, with BHK-21 cells a suitable host cell line for virus propagation and titration. To develop attenuated viruses, the open reading frames of the NSs proteins were disrupted. The recombinant viruses with no NSs protein expression induced the production of type I interferon (IFN), indicating that for both viruses NSs functions as an IFN antagonist and that such attenuated viruses could form the basis for attenuated viral vaccines. To assess the potential for reassortment between CVV and KRIV, which could be relevant during vaccination campaigns in areas of overlap, we attempted to produce M segment reassortants by reverse genetics. We were unable to obtain such viruses, suggesting that it is an unlikely event.
Collapse
Affiliation(s)
- James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Agnieszka M. Szemiel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Aitor Navarro
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ping Li
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Richard M. Elliott
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
37
|
Heartland Virus Epidemiology, Vector Association, and Disease Potential. Viruses 2018; 10:v10090498. [PMID: 30223439 PMCID: PMC6164824 DOI: 10.3390/v10090498] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
First identified in two Missouri farmers exhibiting low white-blood-cell and platelet counts in 2009, Heartland virus (HRTV) is genetically closely related to severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne phlebovirus producing similar symptoms in China, Korea, and Japan. Field isolations of HRTV from several life stages of unfed, host-seeking Amblyomma americanum, the lone star tick, implicated it as a putative vector capable of transstadial transmission. Laboratory vector competence assessments confirmed transstadial transmission of HRTV, demonstrated vertical infection, and showed co-feeding infection between A. americanum. A vertical infection rate of 33% from adult females to larvae in the laboratory was observed, while only one of 386 pools of molted nymphs (1930) reared from co-feeding larvae was positive for HRTV (maximum-likelihood estimate of infection rate = 0.52/1000). Over 35 human HRTV cases, all within the distribution range of A. americanum, have been documented. Serological testing of wildlife in areas near the index human cases, as well as in widely separated regions of the eastern United States where A. americanum occur, indicated many potential hosts such as raccoons and white-tailed deer. Attempts, however, to experimentally infect mice, rabbits, hamsters, chickens, raccoons, goats, and deer failed to produce detectable viremia. Immune-compromised mice and hamsters are the only susceptible models. Vertical infection augmented by co-feeding transmission could play a role in maintaining the virus in nature. A more complete assessment of the natural transmission cycle of HRTV coupled with serosurveys and enhanced HRTV disease surveillance are needed to better understand transmission dynamics and human health risks.
Collapse
|
38
|
Interferon-Stimulated Gene (ISG)-Expression Screening Reveals the Specific Antibunyaviral Activity of ISG20. J Virol 2018; 92:JVI.02140-17. [PMID: 29695422 PMCID: PMC6002717 DOI: 10.1128/jvi.02140-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/14/2018] [Indexed: 11/20/2022] Open
Abstract
Bunyaviruses pose a significant threat to human health, prosperity, and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon-stimulated genes (ISGs), whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and the Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae, and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to the case against other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional RNase activity. Through use of an infectious virus-like particle (VLP) assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taking all the data together, we report that ISG20 is a broad and potent antibunyaviral factor but that some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance may influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance. IMPORTANCE There are hundreds of bunyaviruses, many of which cause life-threatening acute diseases in humans and livestock. The interferon (IFN) system is a key component of innate immunity, and type I IFNs limit bunyaviral propagation both in vitro and in vivo. Type I IFN signaling results in the upregulation of hundreds of IFN-stimulated genes (ISGs), whose concerted action generates an “antiviral state.” Although IFNs are critical in limiting bunyaviral replication and pathogenesis, much is still unknown about which ISGs inhibit bunyaviruses. Using ISG-expression screening, we examined the ability of ∼500 unique ISGs to inhibit Bunyamwera orthobunyavirus (BUNV), the prototypical bunyavirus. Using this approach, we identified ISG20, an interferon-stimulated exonuclease, as a potent inhibitor of BUNV. Interestingly, ISG20 possesses highly selective antibunyaviral activity, with multiple bunyaviruses being potently inhibited while some largely escape inhibition. We speculate that the ability of some bunyaviruses to escape ISG20 may influence their pathogenesis.
Collapse
|
39
|
Samuel GH, Adelman ZN, Myles KM. Antiviral Immunity and Virus-Mediated Antagonism in Disease Vector Mosquitoes. Trends Microbiol 2018; 26:447-461. [PMID: 29395729 PMCID: PMC5910197 DOI: 10.1016/j.tim.2017.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
More than 100 pathogens, spanning multiple virus families, broadly termed 'arthropod-borne viruses (arboviruses)' have been associated with human and/or animal diseases. These viruses persist in nature through transmission cycles that involve alternating replication in susceptible vertebrate and invertebrate hosts. Collectively, these viruses are among the greatest burdens to global health, due to their widespread prevalence, and the severe morbidity and mortality they cause in human and animal hosts. Specific examples of mosquito-borne pathogens include Zika virus (ZIKV), West Nile virus (WNV), dengue virus serotypes 1-4 (DENV 1-4), Japanese encephalitis virus (JEV), yellow fever virus (YFV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). Interactions between arboviruses and the immune pathways of vertebrate hosts have been extensively reviewed. In this review we focus on the antiviral immune pathways present in mosquitoes. We also discuss mechanisms by which mosquito-borne viruses may antagonize antiviral pathways in disease vectors. Finally, we elaborate on the possibility that mosquito-borne viruses may be engaged in an evolutionary arms race with their invertebrate vector hosts, and the possible implications of this for understanding the transmission of mosquito-borne viruses.
Collapse
Affiliation(s)
- Glady Hazitha Samuel
- Texas A & M University, Department of Entomology, Minnie Belle Heep Center, College Station, TX 77843-2475, USA
| | - Zach N Adelman
- Texas A & M University, Department of Entomology, Minnie Belle Heep Center, College Station, TX 77843-2475, USA
| | - Kevin M Myles
- Texas A & M University, Department of Entomology, Minnie Belle Heep Center, College Station, TX 77843-2475, USA.
| |
Collapse
|
40
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
41
|
Kraatz F, Wernike K, Reiche S, Aebischer A, Reimann I, Beer M. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains. Virology 2018; 516:46-54. [PMID: 29329078 DOI: 10.1016/j.virol.2017.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Schmallenberg virus (SBV) induces fetal malformation, abortions and stillbirth in ruminants. While the non-structural protein NSs is a major virulence factor, the biological function of NSm, the second non-structural protein which consists of three hydrophobic transmembrane (I, III, V) and two non-hydrophobic regions (II, IV), is still unknown. Here, a series of NSm mutants displaying deletions of nearly the entire NSm or of the non-hydrophobic domains was generated and the intracellular distribution of NSm was assessed. SBV-NSm is dispensable for the generation of infectious virus and mutants lacking domains II - V showed growth properties similar to the wild-type virus. In addition, a comparable intracellular distribution of SBV-NSm was observed in mammalian cells infected with domain II mutants or wild-type virus. In both cases, NSm co-localized with the glycoprotein Gc in the Golgi compartment. However, domain IV-deletion mutants showed an altered distribution pattern and no co-localization of NSm and Gc.
Collapse
Affiliation(s)
- Franziska Kraatz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
42
|
Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A, Merits A, Fazakerley JK, Graham GJ, McKimmie CS. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 2017; 44:1455-69. [PMID: 27332734 PMCID: PMC4920956 DOI: 10.1016/j.immuni.2016.06.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
Abstract
Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection. Mosquito bites enhance virus replication and dissemination and increase host mortality Neutrophil-driven inflammation retains virus in skin to drive macrophage recruitment Recruited and resident myeloid cells become infected and replicate virus Blocking leukocyte recruitment to bite site inhibits viral infection
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Steven R Bryden
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK; Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | | | - Gerard J Graham
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
43
|
Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses. J Virol 2017; 91:JVI.00743-17. [PMID: 28592543 PMCID: PMC5533932 DOI: 10.1128/jvi.00743-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies.IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA.
Collapse
|
44
|
Differential Antagonism of Human Innate Immune Responses by Tick-Borne Phlebovirus Nonstructural Proteins. mSphere 2017; 2:mSphere00234-17. [PMID: 28680969 PMCID: PMC5489658 DOI: 10.1128/msphere.00234-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022] Open
Abstract
In recent years, several newly discovered tick-borne viruses causing a wide spectrum of diseases in humans have been ascribed to the Phlebovirus genus of the Bunyaviridae family. The nonstructural protein (NSs) of bunyaviruses is the main virulence factor and interferon (IFN) antagonist. We studied the molecular mechanisms of IFN antagonism employed by the NSs proteins of human apathogenic Uukuniemi virus (UUKV) and those of Heartland virus (HRTV) and severe fever with thrombocytopenia syndrome virus (SFTSV), both of which cause severe disease. Using reporter assays, we found that UUKV NSs weakly inhibited the activation of the beta interferon (IFN-β) promoter and response elements. UUKV NSs weakly antagonized human IFN-β promoter activation through a novel interaction with mitochondrial antiviral-signaling protein (MAVS), confirmed by coimmunoprecipitation and confocal microscopy studies. HRTV NSs efficiently antagonized both IFN-β promoter activation and type I IFN signaling pathways through interactions with TBK1, preventing its phosphorylation. HRTV NSs exhibited diffused cytoplasmic localization. This is in comparison to the inclusion bodies formed by SFTSV NSs. HRTV NSs also efficiently interacted with STAT2 and impaired IFN-β-induced phosphorylation but did not affect STAT1 or its translocation to the nucleus. Our results suggest that a weak interaction between STAT1 and HRTV or SFTSV NSs may explain their inability to block type II IFN signaling efficiently, thus enabling the activation of proinflammatory responses that lead to severe disease. Our findings offer insights into how pathogenicity may be linked to the capacity of NSs proteins to block the innate immune system and illustrate the plethora of viral immune evasion strategies utilized by emerging phleboviruses. IMPORTANCE Since 2011, there has been a large expansion in the number of emerging tick-borne viruses that have been assigned to the Phlebovirus genus. Heartland virus (HRTV) and SFTS virus (SFTSV) were found to cause severe disease in humans, unlike other documented tick-borne phleboviruses such as Uukuniemi virus (UUKV). Phleboviruses encode nonstructural proteins (NSs) that enable them to counteract the human innate antiviral defenses. We assessed how these proteins interacted with the innate immune system. We found that UUKV NSs engaged with innate immune factors only weakly, at one early step. However, the viruses that cause more severe disease efficiently disabled the antiviral response by targeting multiple components at several stages across the innate immune induction and signaling pathways. Our results suggest a correlation between the efficiency of the virus protein/host interaction and severity of disease.
Collapse
|
45
|
Jansen van Vuren P, Wiley MR, Palacios G, Storm N, Markotter W, Birkhead M, Kemp A, Paweska JT. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J Gen Virol 2017; 98:935-945. [PMID: 28488954 PMCID: PMC5656801 DOI: 10.1099/jgv.0.000753] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae family comprises viruses causing diseases of public and veterinary health importance, including viral haemorrhagic and arboviral fevers. We report the isolation, identification and genome characterization of a novel orthobunyavirus, named Wolkberg virus (WBV), from wingless bat fly ectoparasites (Eucampsipoda africana) of Egyptian fruit bats (Rousettus aegyptiacus) in South Africa. Complete genome sequence data of WBV suggests it is most closely related to two bat viruses (Mojuí dos Campos and Kaeng Khoi viruses) and an arbovirus (Nyando virus) previously shown to infect humans. WBV replicates to high titres in VeroE6 and C6-36 cells, characteristic of mosquito-borne arboviruses. These findings expand our knowledge of the diversity of orthobunyaviruses and their insect vector host range.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa
| | - Michael R. Wiley
- Centre for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Gustavo Palacios
- Centre for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Nadia Storm
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Monica Birkhead
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Alan Kemp
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Janusz T. Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Janusz T. Paweska,
| |
Collapse
|
46
|
Molecular detection and genetic analysis of Akabane virus genogroup Ib in small ruminants in Turkey. Arch Virol 2017; 162:2769-2774. [DOI: 10.1007/s00705-017-3398-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/22/2017] [Indexed: 11/27/2022]
|
47
|
Takenaka-Uema A, Bangphoomi N, Shioda C, Uchida K, Gen F, Kato K, Haga T, Murakami S, Akashi H, Hoimoto T. Characterization of a recombinant Akabane mutant virus with knockout of a nonstructural protein NSs in a pregnant goat model. Virol Sin 2017; 31:274-7. [PMID: 27068656 DOI: 10.1007/s12250-015-3704-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Akiko Takenaka-Uema
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Department of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Norasuthi Bangphoomi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Phutthamonthon Nakhonpathom, 73170, Thailand
| | - Chieko Shioda
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Fumihiro Gen
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Department of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Takeshi Haga
- Department of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taisuke Hoimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
48
|
The Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses. PLoS Negl Trop Dis 2017; 11:e0005272. [PMID: 28060823 PMCID: PMC5245901 DOI: 10.1371/journal.pntd.0005272] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/19/2017] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
Background Vector arthropods control arbovirus replication and spread through antiviral innate immune responses including RNA interference (RNAi) pathways. Arbovirus infections have been shown to induce the exogenous small interfering RNA (siRNA) and Piwi-interacting RNA (piRNA) pathways, but direct antiviral activity by these host responses in mosquito cells has only been demonstrated against a limited number of positive-strand RNA arboviruses. For bunyaviruses in general, the relative contribution of small RNA pathways in antiviral defences is unknown. Methodology/Principal Findings The genus Orthobunyavirus in the Bunyaviridae family harbours a diverse range of mosquito-, midge- and tick-borne arboviruses. We hypothesized that differences in the antiviral RNAi response in vector versus non-vector cells may exist and that could influence viral host range. Using Aedes aegypti-derived mosquito cells, mosquito-borne orthobunyaviruses and midge-borne orthobunyaviruses we showed that bunyavirus infection commonly induced the production of small RNAs and the effects of the small RNA pathways on individual viruses differ in specific vector-arbovirus interactions. Conclusions/Significance These findings have important implications for our understanding of antiviral RNAi pathways and orthobunyavirus-vector interactions and tropism. A number of orthobunyaviruses such as Oropouche virus, La Crosse virus and Schmallenberg virus are important global human or animal pathogens transmitted by arthropod vectors. Further understanding of the antiviral control mechanisms in arthropod vectors is key to developing novel prevention strategies based on preventing transmission. Antiviral small RNA pathways such as the exogenous siRNA and piRNA pathways have been shown to mediate antiviral activity against positive-strand RNA arboviruses, but information about their activities against negative-strand RNA arboviruses is critically lacking. Here we show that in Aedes aegypti-derived mosquito cells, the antiviral responses to mosquito-borne orthobunyaviruses is largely mediated by both siRNA and piRNA pathways, whereas the piRNA pathway plays only a minor role in controlling midge-borne orthobunyaviruses. This suggests that vector specificity is in part controlled by antiviral responses that depend on the host species. These findings contribute significantly to our understanding of arbovirus-vector interactions.
Collapse
|
49
|
Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization. J Virol 2016; 91:JVI.01263-16. [PMID: 27795408 PMCID: PMC5165206 DOI: 10.1128/jvi.01263-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 01/04/2023] Open
Abstract
Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.
Collapse
|
50
|
Briese T, Williams DT, Kapoor V, Diviney SM, Certoma A, Wang J, Johansen CA, Chowdhary R, Mackenzie JS, Lipkin WI. Analysis of Arbovirus Isolates from Australia Identifies Novel Bunyaviruses Including a Mapputta Group Virus from Western Australia That Links Gan Gan and Maprik Viruses. PLoS One 2016; 11:e0164868. [PMID: 27764175 PMCID: PMC5072647 DOI: 10.1371/journal.pone.0164868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
The Mapputta group comprises antigenically related viruses indigenous to Australia and Papua New Guinea that are included in the family Bunyaviridae but not currently assigned to a specific genus. We determined and analyzed the genome sequences of five Australian viruses isolated from mosquitoes collected during routine arbovirus surveillance in Western Australia (K10441, SW27571, K13190, and K42904) and New South Wales (12005). Based on matching sequences of all three genome segments to prototype MRM3630 of Trubanaman virus (TRUV), NB6057 of Gan Gan virus (GGV), and MK7532 of Maprik virus (MPKV), isolates K13190 and SW27571 were identified as TRUV, 12005 as GGV, and K42904 as a Mapputta group virus from Western Australia linking GGV and MPKV. The results confirmed serum neutralization data that had linked SW27571 to TRUV. The fifth virus, K10441 from Willare, was most closely related to Batai orthobunyavirus, presumably representing an Australian variant of the virus. Phylogenetic analysis also confirmed the close relationship of our TRUV and GGV isolates to two other recently described Australian viruses, Murrumbidgee virus and Salt Ash virus, respectively. Our findings indicate that TRUV has a wide circulation throughout the Australian continent, demonstrating for the first time its presence in Western Australia. Similarly, the presence of a virus related to GGV, which had been linked to human disease and previously known only from the Australian southeast, was demonstrated in Western Australia. Finally, a Batai virus isolate was identified in Western Australia. The expanding availability of genomic sequence for novel Australian bunyavirus variants supports the identification of suitably conserved or diverse primer-binding target regions to establish group-wide as well as virus-specific nucleic acid tests in support of specific diagnostic and surveillance efforts throughout Australasia.
Collapse
Affiliation(s)
- Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail: (TB); (DTW)
| | - David T. Williams
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail: (TB); (DTW)
| | - Vishal Kapoor
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sinead M. Diviney
- School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Andrea Certoma
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jianning Wang
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Cheryl A. Johansen
- The Arbovirus Surveillance and Research Laboratory, University of Western Australia, Nedlands, Western Australia, Australia
| | - Rashmi Chowdhary
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|