1
|
Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS. Pleiotropic role of PARP1: an overview. 3 Biotech 2022; 12:3. [PMID: 34926116 PMCID: PMC8643375 DOI: 10.1007/s13205-021-03038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) protein is encoded by the PARP1 gene located on chromosome 1 (1q42.12) in human cells. It plays a crucial role in post-translational modification by adding poly (ADP-ribose) (PAR) groups to various proteins and PARP1 itself by utilizing nicotinamide adenine dinucleotide (NAD +) as a substrate. Since the discovery of PARP1, its role in DNA repair and cell death has been its identity. This is evident from an overwhelmingly high number of scientific reports in this regard. However, PARP1 also plays critical roles in inflammation, metabolism, tumor development and progression, chromatin modification and transcription, mRNA stability, and alternative splicing. In the present study, we attempted to compile all the scattered scientific information about this molecule, including the structure and multifunctional role of PARP1 in cancer and non-cancer diseases, along with PARP1 inhibitors (PARPis). Furthermore, for the first time, we have classified PARP1-mediated cell death for ease of understanding its role in cell death pathways.
Collapse
Affiliation(s)
- Vikas Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khursheed Ul Islam Mir
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
3
|
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev 2020; 34:321-340. [PMID: 32029456 PMCID: PMC7050491 DOI: 10.1101/gad.334284.119] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, Szanto et al. summarize the metabolic regulatory roles of PARP enzymes and their associated pathologies. Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Collapse
|
4
|
Olaparib induces browning of in vitro cultures of human primary white adipocytes. Biochem Pharmacol 2019; 167:76-85. [PMID: 31251940 DOI: 10.1016/j.bcp.2019.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial biogenesis is a key feature of energy expenditure and organismal energy balance. Genetic deletion of PARP1 or PARP2 was shown to induce mitochondrial biogenesis and energy expenditure. In line with that, PARP inhibitors were shown to induce energy expenditure in skeletal muscle. We aimed to investigate whether pharmacological inhibition of PARPs induces brown or beige adipocyte differentiation. SVF fraction of human pericardial adipose tissue was isolated and human adipose-derived mesenchymal stem cells (hADMSCs) were differentiated to white and beige adipocytes. A subset of hADMSCs were differentiated to white adipocytes in the presence of Olaparib, a potent PARP inhibitor currently in clinical use, to induce browning. Olaparib induced morphological changes (smaller lipid droplets) in white adipocytes that is a feature of brown/beige adipocytes. Furthermore, Olaparib induced mitochondrial biogenesis in white adipocytes and enhanced UCP1 expression. We showed that Olaparib treatment inhibited nuclear and cytosolic PAR formation, induced NAD+/NADH ratio and consequently boosted SIRT1 and AMPK activity and the downstream transcriptional program leading to increases in OXPHOS. Olaparib treatment did not induce the expression of beige adipocyte markers in white adipocytes, suggesting the formation of brown or brown-like adipocytes. PARP1, PARP2 and tankyrases are key players in the formation of white adipose tissue. Hereby, we show that PARP inhibition induces the transdifferentiation of white adipocytes to brown-like adipocytes suggesting that PARP activity could be a determinant of the differentiation of these adipocyte lineages.
Collapse
|
5
|
Vida A, Márton J, Mikó E, Bai P. Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev Biol 2016; 63:135-143. [PMID: 28013023 DOI: 10.1016/j.semcdb.2016.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.
Collapse
Affiliation(s)
- András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Judit Márton
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine University of Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
New route for the activation of poly(ADP-ribose) polymerase-1: a passage that links poly(ADP-ribose) polymerase-1 to lipotoxicity? Biochem J 2015; 469:e9-11. [PMID: 26171833 DOI: 10.1042/bj20150598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this issue of Biochemical Journal, Chen and colleagues characterize an interaction between ACBD3 (acyl-CoA-binding domain-containing 3) protein and PARP [poly(ADP-ribose) polymerase]-1 through the activation of ERKs (extracellular-signal-regulated kinases). This study envisages a pathway through which ABCD3 translates enhanced fatty acid levels to ERK and consequently PARP-1 activation. The consequences of PARP-1 activation lead to cellular and tissue damage, implying that the ACBD3/PARP-1 pathway is an important pathway in lipotoxicity events.
Collapse
|
7
|
Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013; 34:1168-201. [PMID: 23357756 DOI: 10.1016/j.mam.2013.01.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
8
|
Simbulan-Rosenthal CM, Rosenthal DS, Smulson ME. Purification and characterization of poly(ADP-ribosyl)ated DNA replication/repair complexes. Methods Mol Biol 2011; 780:165-90. [PMID: 21870261 DOI: 10.1007/978-1-61779-270-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PARP-1, the best studied isoform and most abundantly expressed member of the PARP family of 18 proteins, catalyzes the poly(ADP-ribosyl)ation (PARylation) of various nuclear proteins and play key roles in DNA repair, genome maintenance, DNA replication, recombination, apoptosis, gene expression, and regulation of chromatin function. PARylation modulates the functions of target proteins, mainly PARP-1 itself. A multifunctional enzyme, PARP-1 has been localized within DNA replication, repair, recombination, and transcription complexes, and modifies and regulates the functions of specific components of these complexes. PARylation can regulate the activities of replicative enzymes, such as DNA polymerases α, δ, and ε, topo I and II, primase, RPA, and PCNA in isolated enzymes or within DNA replication complexes (DNA synthesome). PARP-1 and PARylation may (1) play dual roles in nuclear processes, depending on the levels of the substrate NAD and the presence of PARP-activating DNA breaks, (2) recruit acceptor proteins to certain sites or complexes through direct association or through binding to PAR and PAR-binding proteins, and (3) alters the nucleosomal structure of DNA by PARylation of nucleosomal proteins, such as histone H1 to destabilize higher order chromatin structures and promote access of DNA repair and replication enzymes as well as transcription factors to these sites. Here, we describe biochemical approaches that have been utilized in our laboratory for the purification and characterization of PARylated DNA replicative complexes. These methods can be modified for the purification of complexes involved in other nuclear processes. This chapter also briefly discusses current methods by which new PARylated complexes are being identified and studied. Identification, evaluation, and characterization of new complexes could aid in the elucidation of the molecular mechanisms by which PARylation and PARP mediates its pleiotropic roles in various nuclear processes.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | | | | |
Collapse
|
9
|
Havranek T, Aujla PK, Nickola TJ, Rose MC, Scavo LM. Increased poly(ADP-ribose) polymerase (PARP)-1 expression and activity are associated with inflammation but not goblet cell metaplasia in murine models of allergen-induced airway inflammation. Exp Lung Res 2010; 36:381-9. [PMID: 20715980 DOI: 10.3109/01902141003663360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation plays a key role in lung injury and in the pathogenesis of asthma. Two murine models of allergic airway inflammation-sensitization and challenge to ovalbumin (OVA) and intratracheal exposure to interleukin-13 (IL13)-were used to evaluate the expression of poly(ADP-ribose) polymerase-1 (PARP-1) in allergic airway inflammation. Inflammation is prominent in OVA-induced allergic asthma, but this inflammation is greatly reduced by a PARP-1 inhibitor and almost eliminated when PARP-1 knockout mice are subjected to the OVA model. The present study temporally evaluated PARP-1 protein expression, localization, and activity, as well as inflammation and goblet cell metaplasia (GCM), in murine lungs following a single OVA challenge or IL13 exposure. Following OVA challenge PARP-1 protein expression and activity were greatly increased, being maximal at 3 to 5 days following OVA exposure and beginning to decrease by day 8. These changes correlated with the timing and degree of inflammation and GCM. In contrast, PARP-1 protein or activity did not change following single IL13 exposure, though GCM was manifested without inflammation. This study demonstrates that both PARP-1 protein and activity are increased by allergen-activated inflammatory mediators, excluding IL13, and that PARP-1 increase does not appear necessary for GCM, one of the characteristic markers of allergic airway inflammation in murine models.
Collapse
Affiliation(s)
- Thomas Havranek
- Division of Neonatology, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
10
|
Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, Kiss B, de Murcia G, Auwerx J, Ménissier-de Murcia J. Poly(ADP-ribose) polymerase-2 [corrected] controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma [corrected] heterodimer. J Biol Chem 2007; 282:37738-46. [PMID: 17951580 DOI: 10.1074/jbc.m701021200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARgamma, NR1C3) in complex with the retinoid X receptor (RXR) plays a central role in white adipose tissue (WAT) differentiation and function, regulating the expression of key WAT proteins. In this report we show that poly(ADP-ribose) polymerase-2 (PARP-2), also known as an enzyme participating in the surveillance of the genome integrity, is a member of the PPARgamma/RXR transcription machinery. PARP-2(-/-) mice accumulate less WAT, characterized by smaller adipocytes. In the WAT of PARP-2(-/-) mice the expression of a number of PPARgamma target genes is reduced despite the fact that PPARgamma1 and -gamma2 are expressed at normal levels. Consistent with this, PARP-2(-/-) mouse embryonic fibroblasts fail to differentiate to adipocytes. In transient transfection assays, PARP-2 small interference RNA decreases basal activity and ligand-dependent activation of PPARgamma, whereas PARP-2 overexpression enhances the basal activity of PPARgamma, although it does not change the maximal ligand-dependent activation. In addition, we show a DNA-dependent interaction of PARP-2 and PPARgamma/RXR heterodimer by chromatin immunoprecipitation. In combination, our results suggest that PARP-2 is a novel cofactor of PPARgamma activity.
Collapse
Affiliation(s)
- Péter Bai
- Département Intégrité du Génome, UMR 7175, CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, BP 10413, Illkirch, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sakayama K, Mashima N, Kidani T, Miyazaki T, Yamamoto H, Masuno H. Effect of cortisol on cell proliferation and the expression of lipoprotein lipase and vascular endothelial growth factor in a human osteosarcoma cell line. Cancer Chemother Pharmacol 2007; 61:471-9. [PMID: 17549480 DOI: 10.1007/s00280-007-0492-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study is to investigate whether cortisol inhibited cell proliferation and the expressions of lipoprotein lipase (LPL), a key enzyme involved in the energy metabolism in tumor cells, and vascular endothelial growth factor (VEGF), a potent angiogenic factor in the tumor, in cultures of OST cells, a human osteosarcoma cell line. METHODS OST cells were treated for 48 h with or without cortisol. To examine the effect of cortisol on cell proliferation, the expression of proliferating cell nuclear antigen (PCNA) was examined by Western blotting, and the amount of (3)H-thymidine incorporated into DNA during the last 30 min of the 48-h treatment period was measured. To examine the effect of cortisol on the expression of LPL, the activity and mass of LPL were measured in the extract of acetone/ether powder of cells, and the amount of (35)S-methionine incorporated into LPL during the last 2 h of the 48-h treatment period was measured by immunoprecipitation. The expression of VEGF was examined by immunohistochemistry and Western blotting. RESULTS The amount of (3)H-thymidine incorporated into DNA and the level of PCNA were lower in the cortisol-treated cultures than in the untreated cultures, thus indicating that cortisol inhibited the proliferation of OST cells. The synthetic rate and activity of LPL were lower in the cortisol-treated cultures than in the untreated cultures but no difference in the specific activity of LPL between the two cultures was observed, thus indicating that cortisol inhibited LPL synthesis, thereby resulting in a decreased LPL activity. The expression of VEGF was lower in the cortisol-treated cultures than in the untreated cultures. CONCLUSION Cortisol not only has the ability to inhibit cell proliferation but also the ability to inhibit the expressions of LPL and VEGF in cultures of OST cells.
Collapse
Affiliation(s)
- Kenshi Sakayama
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Gunji A, Uemura A, Tsutsumi M, Nozaki T, Kusuoka O, Omura K, Suzuki H, Nakagama H, Sugimura T, Masutani M. Parp-1 deficiency does not increase the frequency of tumors in the oral cavity and esophagus of ICR/129Sv mice by 4-nitroquinoline 1-oxide, a carcinogen producing bulky adducts. Cancer Lett 2005; 241:87-92. [PMID: 16338061 DOI: 10.1016/j.canlet.2005.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/02/2005] [Accepted: 10/07/2005] [Indexed: 11/16/2022]
Abstract
The impact of poly(ADP-ribose) polymerase-1 (Parp-1)-deficiency on 4-nitroquinoline 1-oxide (4NQO)-induced carcinogenesis was studied in mice with an ICR/129Sv mixed genetic background. Parp-1(+/+), Parp-1(+/-) and Parp-1(-/-) animals given 4NQO for thirty-two weeks at 0.001% in their drinking water developed papillomas and squamous cell carcinomas of the tongue, palate and esophagus, but with no statistically significant variation with the Parp-1 genotype. Thus Parp-1 deficiency does not elevate susceptibility to carcinogenesis induced by a carcinogen which gives rise to bulky DNA lesions. This study also indicated that the ICR/129Sv mixed genetic background is associated with high yield induction of esophageal tumors by 4NQO.
Collapse
Affiliation(s)
- Akemi Gunji
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pellicciari R, Camaioni E, Costantino G. 3. Life or death decisions: the cast of poly(ADP-ribose)polymerase (PARP) as a therapeutic target for brain ischaemia. PROGRESS IN MEDICINAL CHEMISTRY 2005; 42:125-69. [PMID: 15003720 DOI: 10.1016/s0079-6468(04)42003-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Via del Liceo 1, 06123 Perugia, Italy
| | | | | |
Collapse
|
14
|
Ogawa K, Masutani M, Kato K, Tang M, Kamada N, Suzuki H, Nakagama H, Sugimura T, Shirai T. Parp-1 deficiency does not enhance liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline in mice. Cancer Lett 2005; 236:32-8. [PMID: 15955622 DOI: 10.1016/j.canlet.2005.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/25/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
The susceptibility of poly(ADP-ribose) polymerase-1 (Parp-1) knockout mice to 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced liver carcinogenesis was analyzed. Twelve-week-old male Parp-1(+/+), Parp-1(+/-) and Parp-1(-/-) mice of the C57BL/6 congenic strain were fed a diet containing IQ at a concentration of 300 ppm or a control diet for 60 weeks. Hepatocellular carcinomas were observed only in 1/19, 2/18 and 1/17 of the Parp-1(-/-), Parp-1(+/-) and Parp-1(+/+) mice, respectively. Parp-1 deficiency did not affect the susceptibility of mice to carcinogenicity of IQ, which produces bulky DNA adducts that are repaired mainly through the nucleotide excision repair pathway. This result is in sharp contrast to the increased susceptibility of Parp-1(-/-) mice to carcinogenesis induced by alkylating agents that produce DNA damage repaired mainly through base excision repair and DNA strand break repair pathways.
Collapse
Affiliation(s)
- Kumiko Ogawa
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ertsey R, Chapin CJ, Kitterman JA, Scavo LM. Ontogeny of Poly(ADP-Ribose) Polymerase-1 in Lung and Developmental Implications. Am J Respir Cell Mol Biol 2004; 30:853-61. [PMID: 14754756 DOI: 10.1165/rcmb.2003-0248oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is the predominant NAD-dependent modifying enzyme in DNA repair, transcription, and apoptosis; its involvement in development has not been defined. Here, we report expression and cellular localization of PARP-1 in developing rat and human fetal lung, in vivo and in explant culture, and effects of inhibiting PARP-1 activity on lung surfactant protein (SP) expression. PARP-1 was expressed as 113-kD (p113) and 85-kD (p85) fragment in both rat and human lung. In rat lung, p113 content by Western was maximal at Embryonic Days 16-18, decreased sharply by Embryonic Day 20, and continued to decrease postnatally. p85 level was constant in the fetus and decreased postnatally. In human fetal lung, both PARP-1 mRNA expression and protein content changed little between 15 and 24 wk. Immunohistochemistry for PARP-1 in Embryonic Day 18 rat lung showed predominantly nuclear staining in most cells. In later gestation and postnatally, PARP-1 staining was primarily cytoplasmic and progressively restricted to a subset of cells, mainly bronchial epithelial and smooth muscle cells. Cell subfractionation showed that p113 localized to nucleus and p85 to cytoplasm. Inhibition of PARP-1 activity by 5-iodo-6-amino-1,2-benzopyrone in fetal rat lung explant culture did not affect SP-A and -B mRNA, but significantly increased SP-C mRNA. These findings indicate that in lung (i) PARP-1 is abundantly expressed during fetal development; (ii) p113 and p85 levels are differentially regulated; (iii) PARP-1 undergoes complex developmental changes in cellular and subcellular expression, including extensive cytoplasmic localization; and (iv) inhibition of PARP-1 activity differentially affects expression of SPs.
Collapse
Affiliation(s)
- Robert Ertsey
- Cardiovascular Research Institute, Department of Pediatrics, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
16
|
Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 2004; 38:339-48. [PMID: 14566854 DOI: 10.1002/gcc.10250] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Poly(ADP-ribose) and poly(ADP-ribose) polymerase (PARP) were discovered about 40 years ago, but their significance was not well elucidated until recently. In the early stage of the history of PARP, the presence of antibodies in the sera of human patients with lupus erythematosus indicated its natural occurrence. PARP, as well as the degrading enzyme, poly(ADP-ribose) glycohydrolase (PARG), are present in most eukaryotes except for yeasts. Studies that used inhibitors of PARP indicated the involvement of PARP and poly(ADP-ribose) in DNA damage repair, and eventually PARP was purified and the gene was cloned. Molecular analysis then revealed various functional domains, such as the one for binding to strand breaks of DNA. Parp-1-deficient and Parg-deficient cells showed, in general, enhanced sensitivity to the lethal effects of ionizing radiation and alkylating agents. Parp-1 knockout mouse embryonic stem cells developed into teratocarcinoma-like tumors when injected subcutaneously into nude mice, these tumors featuring giant cells similar to syncytiotrophoblastic giant cells with hyperploidy. Parp-1 was also found in centrosomes, suggesting that poly(ADP-ribose) and PARP-1 are functionally involved in the maintenance of chromatin structure and the equal distribution of chromosomes into daughter cells. Intriguing findings on the real biological significance continue to be generated, with new light shed on mechanisms of carcinogenesis and pointing to novel cancer treatments. Highlights during the last four decades of studies by laboratories focusing on poly(ADP-ribose)/PARP, including our own, are condensed and summarized in this review.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | |
Collapse
|
17
|
Lee D, Kim JW, Kim K, Joe CO, Schreiber V, Ménissier-De Murcia J, Choe J. Functional interaction between human papillomavirus type 18 E2 and poly(ADP-ribose) polymerase 1. Oncogene 2002; 21:5877-85. [PMID: 12185587 DOI: 10.1038/sj.onc.1205723] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 06/07/2002] [Accepted: 06/10/2002] [Indexed: 11/09/2022]
Abstract
Human papillomavirus E2 protein is a transcription factor of viral gene expression and DNA replication. Here we show that PARP is a positive regulator of the E2 protein of human papillomavirus type 18 (HPV-18). PARP interacted with the COOH terminal region of HPV-18 E2 in vitro. The E2 interaction domain within PARP is located in the NH(2)-terminal zinc finger motif and the BRCT motif included in the automodification domain. Overexpression of either wild type or the NH(2)-terminal region of PARP containing zinc finger and BRCT stimulated E2-dependent transcription. Gel retardation assay indicates that PARP augments DNA binding activity of E2 in vitro. We also show that PARP-1 is recruited to E2-dependent promoter in vivo using ChIP assay. These results suggest that PARP serves a transcriptional co-activator in E2-dependent transcription by interacting directly with the HPV E2 protein.
Collapse
Affiliation(s)
- Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30108-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Fukuwatari T, Doi M, Sugimoto E, Kawada T, Shibata K. Changes of pyridine nucleotide levels during adipocyte differentiation of mouse 3T3-L1 cells. Biosci Biotechnol Biochem 2001; 65:2565-8. [PMID: 11791736 DOI: 10.1271/bbb.65.2565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The levels of NAD and NADP were measured in 3T3-L1 cells during a differentiation from preadipocytes to adipocytes. The cells were grown in the ordinary medium and differentiated in the medium by adding dexamethasone, 1-methyl-3-isobutylxanthine, and insulin for 2 days, and then they were grown in the medium by adding only insulin for another 8 days to accumulate fat. The levels of cellular NAD and NADP increased abruptly with days after differentiation, and the levels of NAD and NADP reached maximum at day 7, and at day 10 the values were decreased compared with the maximum values. These results suggest that expression of the pyridine nucleotide biosynthesis genes is induced in the differentiation process.
Collapse
Affiliation(s)
- T Fukuwatari
- Department of Life Style Studies, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan.
| | | | | | | | | |
Collapse
|
20
|
Masutani M, Nozaki T, Watanabe M, Ochiya T, Hasegawa F, Nakagama H, Suzuki H, Sugimura T. Involvement of poly(ADP-ribose) polymerase in trophoblastic cell differentiation during tumorigenesis. Mutat Res 2001; 477:111-7. [PMID: 11376692 DOI: 10.1016/s0027-5107(01)00112-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) polymerase (Parp) monitors DNA strand breaks and poly(ADP-ribosyl)ates nuclear proteins using NAD as a substrate. The participation of Parp in DNA damage responses has been demonstrated by recent studies using Parp knockout mice. On the other hand, accumulated evidence has shown that Parp is involved in the regulation of gene expression and cell differentiation. In this study, the role of Parp in tumorigenesis and differentiation was studied with Parp-/- embryonic stem (ES) cells. When Parp+/+, Parp+/-, and Parp-/- ES cells were injected subcutaneously into nude mice, teratocarcinoma-like tumors developed from ES cells. However, only tumors derived from Parp-/- ES cells showed trophoblast giant cells (TGCs) containing single or multiple megalo-nuclei. These TGCs are located in a large blood-lake like hemorrhage. This example suggests that Parp is not essential for tumor formation, however, it is involved in trophoblastic cell differentiation and could consequently affect tumor phenotype.
Collapse
Affiliation(s)
- M Masutani
- Biochemistry Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, 104-0045, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Laniel MA, Poirier GG, Guerin SL. Nuclear factor 1 interferes with Sp1 binding through a composite element on the rat poly(ADP-ribose) polymerase promoter to modulate its activity in vitro. J Biol Chem 2001; 276:20766-73. [PMID: 11278663 DOI: 10.1074/jbc.m010360200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the rapid and extensive poly(ADP-ribosyl)ation of nuclear proteins in response to DNA strand breaks, and its expression, although ubiquitous, is modulated from tissue to tissue and during cellular differentiation. PARP-1 gene promoters from human, rat, and mouse have been cloned, and they share a structure common to housekeeping genes, as they lack a functional TATA box and contain multiple GC boxes, which bind the transcriptional activator Sp1. We have previously shown that, although Sp1 is important for rat PARP1 (rPARP) promoter activity, its finely tuned modulation is likely dependent on other transcription factors that bind the rPARP proximal promoter in vitro. In this study, we identified one such factor as NF1-L, a rat liver isoform of the nuclear factor 1 family of transcription factors. The NF1-L site on the rPARP promoter overlaps one of the Sp1 binding sites previously identified, and we demonstrated that binding of both factors to this composite element is mutually exclusive. Furthermore, we provide evidence that NF1-L has no effect by itself on rPARP promoter activity, but rather down-regulates the Sp1 activity by interfering with its ability to bind the rPARP promoter in order to modulate transcription of the rPARP gene.
Collapse
Affiliation(s)
- M A Laniel
- Oncology and Molecular Endocrinology Research Center and the Unit of Health and Environment, CHUL Research Center, Ste-Foy, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
22
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo RB, Samara R, Jung M, Dritschilo A, Spoonde A, Smulson ME. Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 2001; 3:179-88. [PMID: 11494111 PMCID: PMC1505598 DOI: 10.1038/sj.neo.7900155] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 03/13/2001] [Indexed: 11/08/2022] Open
Abstract
The tumor-suppressor p53 undergoes extensive poly(ADP-ribosyl)ation early during apoptosis in human osteosarcoma cells, and degradation of poly(ADP-ribose) (PAR) attached to p53 coincides with poly(ADP-ribose)polymerase-1, (PARP-1) cleavage, and expression of p53 target genes. The mechanism by which poly(ADP-ribosyl)ation may regulate p53 function has now been investigated. Purified wild-type PARP-1 catalyzed the poly(ADP-ribosyl) of full-length p53 in vitro. In gel supershift assays, poly(ADP-ribosyl)ation suppressed p53 binding to its DNA consensus sequence; however, when p53 remained unmodified in the presence of inactive mutant PARP-1, it retained sequence-specific DNA binding activity. Poly(ADP-ribosyl)ation of p53 by PARP-1 during early apoptosis in osteosarcoma cells also inhibited p53 interaction with its DNA consensus sequence; thus, poly(ADP-ribosyl)ation may represent a novel means for regulating transcriptional activation by p53 in vivo.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Li JH, Zhang J, Smulson ME. Inhibition of poly(ADP-ribose) polymerase activity is insufficient to induce tetraploidy. Nucleic Acids Res 2001; 29:841-9. [PMID: 11160908 PMCID: PMC30380 DOI: 10.1093/nar/29.3.841] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) knockout mice are resistant to murine models of human diseases such as cerebral and myocardial ischemia, traumatic brain injury, diabetes, Parkinsonism, endotoxic shock and arthritis, implicating PARP in the pathogenesis of these diseases. Potent selective PARP inhibitors are therefore being evaluated as novel therapeutic agents in the treatment of these diseases. Inhibition or depletion of PARP, however, increases genomic instability in cells exposed to genotoxic agents. We recently demonstrated the presence of a genomically unstable tetraploid population in PARP(-/-) fibroblasts and its loss after stable transfection with PARP cDNA. To elucidate whether the genomic instability is attributable to PARP deficiency or lack of PARP activity, we investigated the effects of PARP inhibition on development of tetraploidy. Immortalized wild-type and PARP(-/-) fibroblasts were exposed for 3 weeks to 20 microM GPI 6150 (1,11b-dihydro-[2H:]benzopyrano[4,3,2-de]isoquinolin-3-one), a novel small molecule specific competitive inhibitor of PARP (K(i) = 60 nM) and one of the most potent PARP inhibitors to date (IC(50) = 0.15 microM). Although GPI 6150 initially decreased cell growth in wild-type cells, there was no effect on cell growth or viability after 24 h. GPI 6150 inhibited endogenous PARP activity in wild-type cells by approximately 91%, to about the residual levels in PARP(-/-) cells. Flow cytometric analysis of unsynchronized wild-type cells exposed for 3 weeks to GPI 6150 did not induce the development of tetraploidy, suggesting that, aside from its catalytic function, PARP may play other essential roles in the maintenance of genomic stability.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
24
|
Atorino L, Alvarez-Gonzalez R, Cardone A, Lepore I, Farina B, Quesada P. Metabolic changes in the poly(ADP-ribosyl)ation pathway of differentiating rat germinal cells. Arch Biochem Biophys 2000; 381:111-8. [PMID: 11019826 DOI: 10.1006/abbi.2000.1926] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous levels of poly(ADP-ribose) and betaNAD+ have been determined in rat male germinal cells at different stages of differentiation. The levels of both metabolites decreased progressively from primary spermatocytes to secondary spermatocytes and especially in spermatids. We have also determined the size and complexity of the ADP-ribose polymers synthesized in permeabilized germ cells. Polymers of different chain length and complexity were observed in cells incubated with different concentrations of [32P]betaNAD+; short polymers characterized primary spermatocytes incubated with low betaNAD+ concentration. In all cell fractions, polymers of over 20 residues in size were observed at high betaNAD+ levels. Long polymers were associated with the sulfuric acid-insoluble proteins (nonhistone proteins such as PARP itself). By contrast, oligomers of 20 ADP-ribose units or less were found in the sulfuric acid-soluble proteins (histone proteins). We have also identified the main ADP-ribose protein acceptors formed in each cell type. In all cells examined, PARP appears to be extensively automodified. However, by far, the H1t variant of histone H1 appeared to be the preferred ADP-ribose target among the acid-soluble proteins separated by reverse-phase HPLC. Therefore, we conclude that an active protein-poly(ADP-ribosyl)ation system is concentrated in primary spermatocytes, based on a high level of PARP automodification accompanied by the preferential heteromodification of the histone H1 variant specifically expressed in the cells undergoing the pachytene phase of the meiotic division.
Collapse
Affiliation(s)
- L Atorino
- Department of Organic & Biological Chemistry, University Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Smulson ME, Simbulan-Rosenthal CM, Boulares AH, Yakovlev A, Stoica B, Iyer S, Luo R, Haddad B, Wang ZQ, Pang T, Jung M, Dritschilo A, Rosenthal DS. Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F-1. ADVANCES IN ENZYME REGULATION 2000; 40:183-215. [PMID: 10828352 DOI: 10.1016/s0065-2571(99)00024-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- M E Smulson
- Georgetown University School of Medicine, Department of Biochemistry and Molecular Biology, 3900 Reservoir Rd, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Patel YM, Lane MD. Mitotic clonal expansion during preadipocyte differentiation: calpain-mediated turnover of p27. J Biol Chem 2000; 275:17653-60. [PMID: 10749891 DOI: 10.1074/jbc.m910445199] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence is presented that calpain, a calcium-activated protease, degrades the cyclin-dependent kinase inhibitor, p27, during the mitotic clonal expansion phase of 3T3-L1 preadipocyte differentiation. Calpain activity is required during an early stage of the adipocyte differentiation program. Thus, inhibition of calpain with N-acetyl-Leu-Leu-norleucinal (ALLN) blocks clonal expansion and acquisition of the adipocyte phenotype only when added between 12 and 24 h after the induction of differentiation. Likewise, inhibition of calpain by overexpression of calpastatin, the specific endogenous inhibitor of calpain, prevents 2-day post-confluent preadipocytes from reentering the cell cycle triggered by the differentiation inducers. Inhibition of calpain with ALLN causes preadipocytes to arrest just prior to S phase and prevents phosphorylation of the retinoblastoma gene product, DNA replication, clonal expansion, and subsequent adipocyte differentiation but does not affect the expression of immediate early genes (i.e. fos, jun, C/EBPbeta, and C/EBPdelta). Inhibition of calpain by either ALLN or by overexpression of calpastatin blocks the degradation of p27. p27 is degraded in vitro by cell-free extracts from clonally expanding preadipocytes that contain "active" calpain but not by extracts from pre-mitotic preadipocytes that do not. This action is inhibited by calpastatin or ALLN. Likewise, p27 in preadipocyte extracts is a substrate for purified calpain; this proteolytic action was inhibited by heat inactivation, EGTA, or ALLN. Thus, extracellular signals from the differentiation inducers appear to activate calpain, which degrades p27 allowing density-dependent inhibited preadipocytes to reenter the cell cycle and undergo mitotic clonal expansion.
Collapse
Affiliation(s)
- Y M Patel
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
27
|
Sallmann FR, Vodenicharov MD, Wang ZQ, Poirier GG. Characterization of sPARP-1. An alternative product of PARP-1 gene with poly(ADP-ribose) polymerase activity independent of DNA strand breaks. J Biol Chem 2000; 275:15504-11. [PMID: 10809783 DOI: 10.1074/jbc.275.20.15504] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme that catalyzes the synthesis of poly(ADP-ribose) (pADPr) from its substrate NAD(+) upon binding to DNA strand breaks. Poly(ADP-ribosyl)ation has been implicated in many cellular processes including replication, transcription, and the maintenance of genomic stability. However, studies with mice and cells lacking PARP-1 reveal a critical role for the enzyme in the maintenance of genomic integrity only. Recently, a significant level of poly(ADP-ribose) polymerase activity has been detected in fibroblasts derived from mice lacking PARP-1 following treatment with genotoxic agents (Shieh, W. M., Amé, J-C., Wilson, M. V., Wang, Z-Q., Koh, D. W., Jacobson, M. K., and Jacobson, E. L. (1998) J. Biol. Chem. 273, 30069-30072). We have isolated a cDNA that originates from PARP-1 (-/-) fibroblasts and encodes a polypeptide of 493 amino acid residues bearing poly(ADP-ribose) polymerase activity. This protein, that we named sPARP-1 for short poly(ADP-ribose) polymerase-1, has a calculated mass of 55.3 kDa and is identical in deduced amino acid sequence to the catalytic domain of PARP-1. Radiation hybrid analysis assigned the sPARP-1 gene to the chromosome 1H5-H6 in an immediate proximity to the known location of PARP-1 gene, indicating that sPARP-1 and PARP-1 are most probably products of the same gene. Active sPARP-1 is present in both PARP-1 (+/+) and PARP-1 (-/-) cells as demonstrated by activity-Western blotting and immunostaining using a specific antibody developed against sPARP-1. Like PARP-1, sPARP-1 is localized in the cell nucleus, uses NAD(+) as a substrate and is inhibited by nicotinamide analogues. sPARP-1 produces pADPr of similar length and structure to that of PARP-1. However, contrary to PARP-1, sPARP-1 does not require DNA strand breaks for its activation, although it is stimulated following genotoxic treatments.
Collapse
Affiliation(s)
- F R Sallmann
- Poly(ADP-ribose) Metabolism Group, Health and Environment Unit, Laval University Medical Research Center, CHUQ, Laval University, Ste-Foy, Quebec, G1V 4G2 Canada
| | | | | | | |
Collapse
|
28
|
Nozaki T, Masutani M, Watanabe M, Ochiya T, Hasegawa F, Nakagama H, Suzuki H, Sugimura T. Syncytiotrophoblastic giant cells in teratocarcinoma-like tumors derived from Parp-disrupted mouse embryonic stem cells. Proc Natl Acad Sci U S A 1999; 96:13345-50. [PMID: 10557323 PMCID: PMC23950 DOI: 10.1073/pnas.96.23.13345] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme poly(ADP-ribose) polymerase (Parp) catalyzes poly(ADP-ribosyl)ation reaction and is involved in DNA repair and cell death induction upon DNA damages. Meanwhile, poly(ADP-ribosyl)ation of chromosome-associated proteins is suggested to be implicated in the regulation of gene expression and cellular differentiation, both of which are important in tumorigenesis. To investigate directly the role of Parp deficiency in tumorigenicity and differentiation of embryonic stem (ES) cells during tumor formation, studies were conducted by using wild-type J1 (Parp(+/+)) ES cells and Parp(+/-) and Parp(-/-) ES clones generated by disrupting Parp exon 1. These ES cells, irrespective of the Parp genotype, produced tumors phenotypically similar to teratocarcinoma when injected s.c. into nude mice. Remarkably, all tumors derived from Parp(-/-) clones contained syncytiotrophoblastic giant cells (STGCs), which possess single or multiple megalo-nuclei. The STGCs were present within large areas of intratumoral hemorrhage. In contrast, neither STGC nor hemorrhage was observed in tumors of both wild-type J1 cells and Parp(+/-) clones. Electron microscopic examination showed that the STGCs possess microvilli on the cell surface and contained secretory granules in the cytoplasm. Furthermore, the cytoplasms of STGCs were strongly stained with antibody against mouse prolactin, which could similarly stain trophoblasts in placenta. These morphological and histochemical features indicate that the STGCs in teratocarcinoma-like tumors derived from Parp(-/-) clones belong to the trophoblast cell lineage. Our findings thus suggest that differentiation of ES cells into STGCs was possibly induced by the lack of Parp during the development of teratocarcinoma.
Collapse
Affiliation(s)
- T Nozaki
- Division of Biochemistry, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo, 104-0045 Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tian R, Chen D, Dai Y. Assaying poly(ADP-ribose) polymerase activity in plants by polarographic method. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf02886346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Smulson ME. Poly(ADP-ribose) polymerase upregulates E2F-1 promoter activity and DNA pol alpha expression during early S phase. Oncogene 1999; 18:5015-23. [PMID: 10490838 DOI: 10.1038/sj.onc.1202900] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
E2F-1, a transcription factor implicated in the activation of genes required for S phase such as DNA pol alpha, is regulated by interactions with Rb and by cell-cycle dependent alterations in E2F-1 abundance. We have shown that depletion of poly(ADP-ribose) polymerase (PARP) by antisense RNA expression downregulates pol alpha and E2F-1 expression during early S phase. To examine the role of PARP in the regulation of pol alpha and E2F-1 gene expression, we utilized immortalized mouse fibroblasts derived from wild-type and PARP knockout (PARP-/-) mice as well as PARP-/- cells stably transfected with PARP cDNA [PARP-/-(+PARP)]. After release from serum deprivation, wild-type and PARP-/-(+PARP) cells, but not PARP-/- cells, exhibited a peak of cells in S phase by 16 h and had progressed through the cell cycle by 22 h. Whereas [3H]thymidine incorporation remained negligible in PARP-/- cells, in vivo DNA replication maximized after 18 h in wild-type and PARP-/-(+PARP) cells. To investigate the effect of PARP on E2F-1 promoter activity, a construct containing the E2F-1 gene promoter fused to a luciferase reporter gene was transiently transfected into these cells. E2F-1 promoter activity in control and PARP-/-(+PARP) cells increased eightfold after 9 h, but not in PARP-/- cells. PARP-/- cells did not show the marked induction of E2F-1 expression during early S phase apparent in control and PARP-/-(+PARP) cells. RT - PCR analysis and pol alpha activity assays revealed the presence of pol alpha transcripts and a sixfold increase in activity in both wild-type and PARP-/-(+PARP) cells after 20 h, but not in PARP-/- cells. These results suggest that PARP plays a role in the induction of E2F-1 promoter activity, which then positively regulates both E2F-1 and pol alpha expression, when quiescent cells reenter the cell cycle upon recovery from aphidicolin exposure or removal of serum.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry, Georgetown University School of Medicine, Basic Science Building, Room 351, 3900 Reservoir Road NW, Washington DC 20007, USA
| | | | | | | |
Collapse
|
31
|
Warner TG. Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 1999; 9:841-50. [PMID: 10460826 DOI: 10.1093/glycob/9.9.841] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant glycoprotein therapeutics have proven to be invaluable pharmaceuticals for the treatment of chronic and life-threatening diseases. Although these molecules are extraordinarily efficacious, many diseases have high dosage requirements of several hundred milligrams of protein for each administration. Multiple doses at this level are often required for treatment. One of the major challenges currently facing the biotechnology industry is the development of large-scale, cost-effective production and manufacturing processes of these biologically synthesized molecules. Metabolic engineering of animal cell expression hosts promises to address this challenge by substantially enhancing recombinant protein quality, productivity, and biological activity. In this report, we describe a novel approach to metabolic engineering in Chinese hamster ovary cells by control of endogenous gene expression. Analysis of the advantages and limitations of using antisense DNA and gene targeting as a means of control are discussed and several gene candidates for regulation with these techniques are identified. Practical considerations for using these technologies to reduce the levels of the CHO cell sialidase (Warner et al., Glycobiology, 3, 455-463, 1993) as a model gene system for regulation are also presented.
Collapse
|
32
|
Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 1999; 274:22932-40. [PMID: 10438458 DOI: 10.1074/jbc.274.33.22932] [Citation(s) in RCA: 716] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An early transient burst of poly(ADP-ribosyl)ation of nuclear proteins was recently shown to be required for apoptosis to proceed in various cell lines (Simbulan-Rosenthal, C., Rosenthal, D., Iyer, S., Boulares, H., and Smulson, M. (1998) J. Biol. Chem. 273, 13703-13712) followed by cleavage of poly(ADP-ribose) polymerase (PARP), catalyzed by caspase-3. This inactivation of PARP has been proposed to prevent depletion of NAD (a PARP substrate) and ATP, which are thought to be required for later events in apoptosis. The role of PARP cleavage in apoptosis has now been investigated in human osteosarcoma cells and PARP -/- fibroblasts stably transfected with a vector encoding a caspase-3-resistant PARP mutant. Expression of this mutant PARP increased the rate of staurosporine and tumor necrosis factor-alpha-induced apoptosis, at least in part by reducing the time interval required for the onset of caspase-3 activation and internucleosomal DNA fragmentation, as well as the generation of 50-kilobase pair DNA breaks, thought to be associated with early chromatin unfolding. Overexpression of wild-type PARP in osteosarcoma cells also accelerated the apoptotic process, although not to the same extent as that apparent in cells expressing the mutant PARP. These effects of the mutant and wild-type enzymes might be due to the early and transient poly(ADP-ribose) synthesis in response to DNA breaks, and the accompanying depletion of NAD apparent in the transfected cells. The accelerated NAD depletion did not seem to interfere with the later stages of apoptosis. These results indicate that PARP activation and subsequent cleavage have active and complex roles in apoptosis.
Collapse
Affiliation(s)
- A H Boulares
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G, Oliver J, Rolli V, Ménissier-de Murcia J, de Murcia G. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 1999; 81:69-75. [PMID: 10214912 DOI: 10.1016/s0300-9084(99)80040-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a zinc-finger DNA binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these lesions, the immediate poly(ADP-ribosylation) of nuclear proteins converts DNA interruptions into intracellular signals that activate DNA repair or cell death programs. To elucidate the biological function of PARP in vivo, the mouse PARP gene was inactivated by homologous recombination to generate mice lacking a functional PARP gene. PARP knockout mice and the derived mouse embryonic fibroblasts (MEFs) were acutely sensitive to monofunctional alkylating agents and gamma-irradiation demonstrating that PARP is involved in recovery from DNA damage that triggers the base excision repair (BER) process. To address the issue of the role of PARP in BER, the ability of PARP-deficient mammalian cell extracts to repair a single abasic site present on a circular duplex plasmid molecule was tested in a standard in vitro repair assay. The results clearly demonstrate, for the first time, the involvement of PARP in the DNA synthesis step of the base excision repair process.
Collapse
Affiliation(s)
- F Dantzer
- UPR 9003-CNRS, Laboratoire conventionné avec le Commissariat à l'Energie Atomique, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Simbulan-Rosenthal CM, Rosenthal DS, Ding R, Bhatia K, Smulson ME. Prolongation of the p53 response to DNA strand breaks in cells depleted of PARP by antisense RNA expression. Biochem Biophys Res Commun 1998; 253:864-8. [PMID: 9918821 DOI: 10.1006/bbrc.1998.9792] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The observation that 3-aminobenzamide, which inhibits a variety of ADP-ribose transferases, prolongs the gamma-irradiation-induced increase in intracellular p53 concentration suggested that one or more of such enzymes may determine the duration of the p53 response during G1 arrest. The role of poly(ADP-ribose) polymerase (PARP), an abundant nuclear enzyme activated by DNA strand breaks, in the p53 response to y-irradiation was investigated in Burkitt's lymphoma AG876 cells stably transfected with an inducible PARP antisense construct. Immunoblot analysis revealed that the cellular content of PARP was reduced to virtually undetectable levels after incubation of transfected cells for 72 h with the inducer dexamethasone. In noninduced antisense cells, the p53 concentration reached a maximum 2 h after exposure to 6.3 Gy of gamma-radiation and returned to control values by 4 h. In contrast, the p53 response in PARP-depleted antisense cells peaked at 4 h, with the levels of p53 remaining elevated for up to 12 h after y-irradiation. The maximal increase in p53 concentration was similar in both induced and noninduced cells. These results thus indicate that PARP activity, in part, determines the duration, but not the magnitude, of the p53 response to DNA damage.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
35
|
Ferrari J, Gunson J, Lofgren J, Krummen L, Warner TG. Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant dnase in batch culture with increased sialic acid. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19981205)60:5<589::aid-bit9>3.0.co;2-k] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Simbulan-Rosenthal CM, Rosenthal DS, Boulares AH, Hickey RJ, Malkas LH, Coll JM, Smulson ME. Regulation of the expression or recruitment of components of the DNA synthesome by poly(ADP-ribose) polymerase. Biochemistry 1998; 37:9363-70. [PMID: 9649317 DOI: 10.1021/bi9731089] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a component of the multiprotein DNA replication complex (MRC, DNA synthesome) that catalyzes replication of viral DNA in vitro. PARP poly(ADP-ribosyl)ates 15 of the approximately 40 proteins of the MRC, including DNA polymerase alpha (DNA pol alpha), DNA topoisomerase I (topo I), and proliferating-cell nuclear antigen (PCNA). Although about equal amounts of MRC-complexed and free forms of PCNA were detected by immunoblot analysis of HeLa cell extracts, only the complexed form was poly(ADP-ribosyl)ated, suggesting that poly(ADP-ribosyl)ation of PCNA may regulate its function within the MRC. NAD inhibited the activity of DNA pol delta in the MRC in a dose-dependent manner, whereas the PARP inhibitor, 3-AB, reversed this inhibitory effect. The roles of PARP in modulating the composition and enzyme activities of the DNA synthesome were further investigated by characterizing the complex purified from 3T3-L1 cells before and 24 h after induction of a round of DNA replication required for differentiation of these cells; at the latter time point, approximately 95% of the cells are in S phase and exhibit a transient peak of PARP expression. The MRC was also purified from similarly treated 3T3-L1 cells depleted of PARP by antisense RNA expression; these cells do not undergo DNA replication nor terminal differentiation. Both PARP protein and activity and essentially all of the DNA pol alpha and delta activities exclusively cosedimented with the MRC fractions from S phase control cells, and were not detected in the MRC fractions from PARP-antisense or uninduced control cells. Immunoblot analysis further revealed that, although PCNA and topo I were present in total extracts from both control and PARP-antisense cells, they were present in the MRC fraction only from induced control cells, indicating that PARP may play a role in their assembly into an active DNA synthesome. In contrast, expression of DNA pol alpha, DNA primase, and RPA was down-regulated in PARP-antisense cells, suggesting that PARP may be involved in the expression of these proteins. Depletion of PARP also prevented induction of the expression of the transcription factor E2F-1, which positively regulates transcription of the DNA pol alpha and PCNA genes; thus, PARP may be necessary for expression of these genes when quiescent cells are stimulated to proliferate.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Synthesis and accumulation of a receptor regulatory protein associated with lipid droplet accumulation in 3T3-L1 cells. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32539-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Abstract
Peroxynitrite and hydroxyl radicals are potent initiators of DNA single strand breakage, which is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose)synthetase (PARS). Rapid activation of PARS depletes the intracellular concentration of its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. This process can result in acute cell dysfunction and cell necrosis. Accordingly, inhibitors of PARS protect against cell death under these conditions. In addition to the direct cytotoxic pathway regulated by DNA injury and PARS activation, PARS also appears to modulate the course of inflammation by regulating the expression of a number of genes, including the gene for intercellular adhesion molecule 1, collagenase and the inducible nitric oxide synthase. The research into the role of PARS in inflammatory conditions is now supported by novel tools, such as novel, potent inhibitors of PARS, and genetically engineered animals lacking the gene for PARS. In vivo data demonstrate that inhibition of PARS protects against various forms of inflammation, including zymosan or endotoxin induced multiple organ failure, arthritis, allergic encephalomyelitis, and diabetic islet cell destruction. Pharmacological inhibition of PARS may be a promising novel approach for the experimental therapy of various forms of inflammation.
Collapse
Affiliation(s)
- C Szabó
- Children's Hospital Medical Center, Division of Critical Care, Cincinnati, OH 45229, USA
| |
Collapse
|
39
|
Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 1998; 273:13703-12. [PMID: 9593711 DOI: 10.1074/jbc.273.22.13703] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transient burst of poly(ADP-ribosyl)ation of nuclear proteins occurs early, prior to commitment to death, in human osteosarcoma cells undergoing apoptosis, followed by caspase-3-mediated cleavage of poly(ADP-ribose) polymerase (PARP). The generality of this early burst of poly(ADP-ribosyl)ation has now been investigated with human HL-60 cells, mouse 3T3-L1, and immortalized fibroblasts derived from wild-type mice. The effects of eliminating this early transient modification of nuclear proteins by depletion of PARP protein either by antisense RNA expression or by gene disruption on various morphological and biochemical markers of apoptosis were then examined. Marked caspase-3-like PARP cleavage activity, proteolytic processing of CPP32 to its active form, internucleosomal DNA fragmentation, and nuclear morphological changes associated with apoptosis were induced in control 3T3-L1 cells treated for 24 h with anti-Fas and cycloheximide but not in PARP-depleted 3T3-L1 antisense cells exposed to these inducers. Similar results were obtained with control and PARP-depleted human Jurkat T cells. Whereas immortalized PARP +/+ fibroblasts showed the early burst of poly(ADP-ribosyl)ation and a rapid apoptotic response when exposed to anti-Fas and cycloheximide, PARP -/- fibroblasts exhibited neither the early poly (ADP-ribosyl)ation nor any of the biochemical or morphological changes characteristic of apoptosis when similarly treated. Stable transfection of PARP -/- fibroblasts with wild-type PARP rendered the cells sensitive to Fas-mediated apoptosis. These results suggest that PARP and poly(ADP-ribosyl)ation may trigger key steps in the apoptotic program. Subsequent degradation of PARP by caspase-3-like proteases may prevent depletion of NAD and ATP or release certain nuclear proteins from poly(ADP-ribosyl)ation-induced inhibition, both of which might be required for late stages of apoptosis.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20007, USA
| | | | | | | | | |
Collapse
|
40
|
Dantzer F, Nasheuer HP, Vonesch JL, de Murcia G, Ménissier-de Murcia J. Functional association of poly(ADP-ribose) polymerase with DNA polymerase alpha-primase complex: a link between DNA strand break detection and DNA replication. Nucleic Acids Res 1998; 26:1891-8. [PMID: 9518481 PMCID: PMC147507 DOI: 10.1093/nar/26.8.1891] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is an element of the DNA damage surveillance network evolved by eukaryotic cells to cope with numerous environmental and endogenous genotoxic agents. PARP has been found to be involved in vivo in both cell proliferation and base excision repair of DNA. In this study the interaction between PARP and the DNA polymerase alpha-primase tetramer has been examined. We provide evidence that in proliferating cells: (i) PARP is physically associated with the catalytic subunit of the DNA polymerase alpha-primase tetramer, an association confirmed by confocal microscopy, demonstrating that both enzymes are co-localized at the nuclear periphery of HeLa cells; (ii) this interaction requires the integrity of the second zinc finger of PARP and is maximal during the S and G2/M phases of the cell cycle; (iii) PARP-deficient cells derived from PARP knock-out mice exhibited reduced DNA polymerase activity, compared with the parental cells, a reduction accentuated following exposure to sublethal doses of methylmethanesulfonate. Altogether, the present results strongly suggest that PARP participates in a DNA damage survey mechanism implying its nick-sensor function as part of the control of replication fork progression when breaks are present in the template.
Collapse
Affiliation(s)
- F Dantzer
- UPR 9003 du Centre National de la Recherche Scientifique 'Cancérogenèse et Mutagenèse Moléculaire et Structurale', Laboratoire correspondant du CEA no. 14, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France
| | | | | | | | | |
Collapse
|
41
|
Nie J, Sakamoto S, Song D, Qu Z, Ota K, Taniguchi T. Interaction of Oct-1 and automodification domain of poly(ADP-ribose) synthetase. FEBS Lett 1998; 424:27-32. [PMID: 9537509 DOI: 10.1016/s0014-5793(98)00131-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We isolated several clones from a matchmaker two-hybrid system human lymphocyte cDNA library using an automodification domain of poly(ADP-ribose) synthetase (PARS) as a probe. A DNA sequence (approximately 1 kbp) of the clone was identical to part of the Oct-1 DNA sequence. We then constructed either a His-tagged or GST fusion protein of the inserted cDNA from the clone and the fusion protein was shown to interact with PARS by far-Western blot analysis and co-precipitation with affinity resin. Furthermore, the His-tagged Oct-1/POU-homeo fusion protein interacted weakly with the octamer motif of the DRa promoter and the addition of PARS fusion protein greatly increased the DNA binding activity. These results suggest that PARS interacts with Oct-1 and stabilizes the binding of Oct-1 to the octamer motif.
Collapse
Affiliation(s)
- J Nie
- Laboratory of Molecular Biology, Medical Research Center, Kochi Medical School, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Rawling JM, Alvarez-Gonzalez R. TFIIF, a basal eukaryotic transcription factor, is a substrate for poly(ADP-ribosyl)ation. Biochem J 1997; 324 ( Pt 1):249-53. [PMID: 9164864 PMCID: PMC1218424 DOI: 10.1042/bj3240249] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the susceptibility of some of the basal eukaryotic transcription factors as covalent targets for poly(ADP-ribosyl)ation. Human recombinant TATA-binding protein, transcription factor (TF)IIB and TFIIF (made up of the 30 and 74 kDa RNA polymerase II-associated proteins RAP30 and RAP74) were incubated with calf thymus poly(ADP-ribose) polymerase and [32P]NAD+ at 37 degrees C. On lithium dodecyl sulphate/PAGE and autoradiography, two bands of radioactivity, coincident with RAP30 and RAP74, were observed. No radioactivity co-migrated with TATA-binding protein or TFIIB. The phenomenon was dependent on the presence of nicked DNA, which is essential for poly(ADP-ribose) polymerase activity. Covalent modification of TFIIF increased with time of incubation, with increasing TFIIF concentration and with increasing NAD+ concentration. High-resolution PAGE confirmed that the radioactive species associated with RAP30 and RAP74 were ADP-ribose polymers. From these observations, we conclude that both TFIIF subunits are highly specific substrates for covalent poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- J M Rawling
- Department of Microbiology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | |
Collapse
|
44
|
Rosenthal DS, Ding R, Simbulan-Rosenthal CM, Vaillancourt JP, Nicholson DW, Smulson M. Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res 1997; 232:313-21. [PMID: 9168807 DOI: 10.1006/excr.1997.3536] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP), which is catalytically activated by DNA strand breaks, has been implicated in apoptosis, or programmed cell death. A protease (CPP32) responsible for the cleavage of PARP and necessary for apoptosis was recently purified and characterized. The coordinated sequence of events related to PARP activation and cleavage in apoptosis has now been examined in individual cells. Apoptosis was studied in a human osteosarcoma cell line that undergoes a slow (8 to 10 days), spontaneous, and reproducible death program in culture. Changes in the abundance of intact PARP, poly(ADP-ribose) (PAR), and a proteolytic cleavage product of PARP that contains the DNA-binding domain were examined during apoptosis in the context of individual, whole cells by immunofluorescence with specific antibodies. The synthesis of PAR from NAD increased early, within 2 days of cell plating for apoptosis, prior to the appearance of internucleosomal DNA cleavage and before the cells become irreversibly committed to apoptosis, since replating yields viable, nonapoptotic cells. Strong expression of full-length PARP was also detected, by immunofluorescence as well as by Western analysis, during this same time period. However, after approximately 4 days in culture, the abundance of both full-length PARP and PAR decreased markedly. After 6 days, a proteolytic cleavage product containing the DNA-binding domain of PARP was detected immunocytochemically and confirmed by Western analysis, both in the nuclei and in the cytoplasm of cells. A recombinant peptide spanning the DNA-binding domain of PARP was expressed, purified, and biotinylated, and was then used as a probe for DNA strand breaks. Fluorescence microscopy with this probe revealed extensive DNA fragmentation during the later stages of apoptosis. This is the first report, using individual, intact cells, demonstrating that poly(ADP-ribosyl)ation of nuclear proteins occurs prior to the commitment to apoptosis, that inactivation and cleavage of PARP begin shortly thereafter, and that very little PAR per se is present during the later stages of apoptosis, despite the presence of a very large number of DNA strand breaks. These results suggest a negative regulatory role for PARP during apoptosis, which in turn may reflect the requirement for adequate NAD and ATP during the later stages of programmed cell death.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
45
|
Oei SL, Griesenbeck J, Schweiger M. The role of poly(ADP-ribosyl)ation. Rev Physiol Biochem Pharmacol 1997; 131:127-73. [PMID: 9204691 DOI: 10.1007/3-540-61992-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
46
|
Simbulan-Rosenthal CM, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G, Smulson ME. The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry 1996; 35:11622-33. [PMID: 8794742 DOI: 10.1021/bi953010z] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
3T3-L1 preadipocytes have been shown to exhibit a transient increase in poly(ADP-ribose) polymerase (PARP) protein and activity, as well as an association of PARP with DNA polymerase alpha, within 12-24 h of exposure to inducers of differentiation, whereas 3T3-L1 cells expressing PARP antisense RNA showed no increase in PARP and are unable to complete the round of DNA replication required for differentiation into adipocytes. The role of PARP in differentiation-linked DNA replication has now been further clarified at both the cellular and enzymological levels. Flow cytometric analysis revealed that control 3T3-L1 cells progressed through one round of DNA replication prior to the onset of terminal differentiation, whereas cells expressing PARP antisense RNA were blocked at the G0/G1 phase of the cell cycle. Confocal microscope image analysis of control S phase cells demonstrated that PARP was localized within distinct intranuclear granular foci associated with DNA replication centers. On the basis of these results, purified replicative complexes from other cell types that had been characterized for their ability to catalyze viral DNA replication in vitro were analyzed for the presence of PARP. PARP exclusively copurified through a series of centrifugation and chromatography steps with core proteins of an 18-21S multiprotein replication complex (MRC) from human HeLa cells, as well as with the corresponding mouse MRC from FM3A cells. The MRC were shown to contain DNA polymerases alpha and delta, DNA primase, DNA helicase, DNA ligase, and topoisomerases I and II, as well as accessory proteins such as PCNA, RF-C, and RP-A. Finally, immunoblot analysis of MRCs from both cell types with monoclonal antibodies to poly (ADP-ribose) revealed the presence of approximately 15 poly(ADP-ribosyl)ated proteins, some of which were further confirmed to be DNA polymerase alpha, DNA topoisomerase I, and PCNA by immunoprecipitation experiments. These results suggest that PARP may play a regulatory role within the replicative apparatus as a molecular nick sensor controlling the progression of the replication fork or modulates component replicative enzymes or factors in the complex by directly associating with them or by catalyzing their poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Szabó C. DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 1996; 21:855-69. [PMID: 8902531 DOI: 10.1016/0891-5849(96)00170-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide. Although its reactivity and decomposition are very much dependent on the constituents of the cellular environment, peroxynitrite is considered a potent oxidant that reacts with proteins, lipids, and DNA. Inasmuch as peroxynitrite is formed in many pathophysiological conditions that are associated with NO and/or superoxide overproduction, the investigation of the cytotoxic pathways triggered by peroxynitrite is of major importance. Here we review the evidence that peroxynitrite is a potent initiator of DNA strand breakage, which is an obligatory stimulus for the activation of the nuclear enzyme poly ADP ribosyl synthetase (PARS). We present an overview of experimental data that demonstrate or suggest that the peroxynitrite-PARS pathway, by leading to cell necrosis or apoptosis, contributes to cellular injury in a number of pathophysiological conditions including shock and inflammation, pancreatic islet cell destruction, and diabetes, stroke, and neurodegenerative disorders, as well as the toxic effects of various environmental oxidants or cytotoxic drugs.
Collapse
Affiliation(s)
- C Szabó
- Children's Hospital Medical Center, Division of Critical Care, Cineinnati, Ohio 45229, USA
| |
Collapse
|
48
|
Simbulan-Rosenthal CM, Rosenthal DS, Ding R, Jackman J, Smulson ME. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influence on genomic stability, chromatin organization, DNA repair, and DNA replication. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:135-56. [PMID: 8787609 DOI: 10.1016/s0079-6603(08)60192-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| | | | | | | | | |
Collapse
|
49
|
Rosenthal DS, Shima TB, Celli G, De Luca LM, Smulson ME. Engineered human skin model using poly(ADP-ribose) polymerase antisense expression shows a reduced response to DNA damage. J Invest Dermatol 1995; 105:38-43. [PMID: 7615974 DOI: 10.1111/1523-1747.ep12312525] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Poly(ADP-ribose) polymerase (PADPRP) modifies nuclear proteins in response to DNA-damaging agents. The principal organ subject to exposure to many of these agents is the skin. To understand the role of PADPRP in the maintenance of the epidermis, a model system has been developed in which we have selectively lowered the levels of this enzyme by the use of induced expression of antisense RNA. Human keratinocyte lines were stably transfected with the cDNA for human PADPRP in the antisense orientation under an inducible promoter. Induction of this antisense RNA in cultured cells selectively lowers the levels of PADPRP mRNA, protein, and enzyme activity. Induction of antisense RNA also led to a reduction in the levels of PADPRP in individual cell nuclei, as well as the loss of the ability of cells to synthesize and modify proteins by poly(ADP-ribose) polymer in response to DNA damage. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice, they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a DNA alkylating agent to the grafted transfected skin layers. Accordingly, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as well. This system will be a useful tool to study the role of PADPRP and DNA repair in general in essential biologic processes in the epidermis.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| | | | | | | | | |
Collapse
|
50
|
Rosenthal DS, Simbulan CM, Smulson ME. Model systems for the study of the role of PADPRP in essential biological processes. Biochimie 1995; 77:439-43. [PMID: 7578426 DOI: 10.1016/0300-9084(96)88157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nuclear enzyme poly(ADP-ribose) polymerase (PADPRP) is implicated in a number of cellular processes, including DNA repair, replication, and differentiation. We have been using several model systems to examine these potential roles of PADPRP. A human keratinocyte model system has been developed in which stable lines of epidermal cells contain an inducible construct harboring the antisense cDNA to PADPRP. When PADPRP antisense RNA is induced in culture, endogenous PADPRP mRNA, protein, and enzymatic activity is lowered, and the pattern of poly(ADP) ribosylation in response to alkylating agents is altered. When keratinocyte clones containing the antisense construct or empty vector alone were grafted onto nude mice, they formed histologically normal human skin. The PADPRP antisense construct was also inducible in vivo by the topical application of dexamethasone to the reconstituted epidermis, as determined by in situ hybridization. In addition, poly(ADP-ribose) polymer could be induced and detected in vivo following the topical application of a DNA alkylating agent to the grafted transfected skin layers. Thus, a model system has been developed in which the levels of PADPRP can be selectively manipulated in human keratinocytes in cell culture, and potentially in reconstituted epidermis as these keratinocyte lines can be grafted to nude mice, whereupon they form a histologically and immunocytochemically normal human epidermis. Another system that we have been utilizing to examine the role of PADPRP in proliferation and differentiation is stable lines of mouse preadipocytes that contain an inducible antisense PADPRP RNA. Similar to the keratinocyte system, these cells can inducibly express antisense PADPRP RNA, and subsequently lower levels of endogenous PADPRP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | |
Collapse
|