1
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
2
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
3
|
Merlo S, Caruso GI, Bonfili L, Spampinato SF, Costantino G, Eleuteri AM, Sortino MA. Microglial polarization differentially affects neuronal vulnerability to the β-amyloid protein: Modulation by melatonin. Biochem Pharmacol 2022; 202:115151. [PMID: 35750198 DOI: 10.1016/j.bcp.2022.115151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Microglial cells play a central but yet debated role in neuroinflammatory events occurring in Alzheimer's disease (AD). We here explored how microglial features are modulated by melatonin following β-amyloid (Aβ42)-induced activation and examined the cross-talk with Aβ-challenged neuronal cells. Human microglial HMC3 cells were exposed to Aβ42 (200 nM) in the presence of melatonin (MEL; 1 μM) added since the beginning (MELco) or after a 72 h-exposure to Aβ42 (MELpost). In both conditions, MEL favored an anti-inflammatory activation and rescued SIRT1 and BDNF expression/release. Caspase-1 up-regulation and phospho-ERK induction following a prolonged exposure to Aβ42 were prevented by MEL. In addition, MEL partially restored proteasome functionality that was altered by long-term Aβ42 treatment, re-establishing both 20S and 26S chymotrypsin-like activity. Differentiated neuronal-like SH-SY5Y cells were exposed to Aβ42 (200 nM for 24 h) in basal medium or in the presence of conditioned medium (CM) collected from microglia exposed for different times to Aβ42 alone or in combination with MELco or MELpost. Aβ42 significantly reduced pre-synaptic proteins synaptophysin and VAMP2 and mean neuritic length. These effects were prevented by CM from anti-inflammatory microglia (Aβ42 for 6 h), or from MELco and MELpost microglia, but the reduction of neuritic length was not rescued when the SIRT1 inhibitor EX527 was added. In conclusion, our data add to the concept that melatonin shows a promising anti-inflammatory action on microglia that is retained even after pro-inflammatory activation, involving modulation of proteasome function and translating into neuroprotective microglial effects.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Simona Federica Spampinato
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 13, Turin 10125, Italy.
| | - Giuseppe Costantino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| |
Collapse
|
4
|
Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, Cingolani G. Differential recognition of canonical NF-κB dimers by Importin α3. Nat Commun 2022; 13:1207. [PMID: 35260573 PMCID: PMC8904830 DOI: 10.1038/s41467-022-28846-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. In unstimulated cells, p50/p65 is retained by the inhibitor IκBα in the cytoplasm that masks the p65-nuclear localization sequence (NLS). Upon activation, p50/p65 is translocated into the nucleus by the adapter importin α3 and the receptor importin β. Here, we describe a bipartite NLS in p50/p65, analogous to nucleoplasmin NLS but exposed in trans. Importin α3 accommodates the p50- and p65-NLSs at the major and minor NLS-binding pockets, respectively. The p50-NLS is the predominant binding determinant, while the p65-NLS induces a conformational change in the Armadillo 7 of importin α3 that stabilizes a helical conformation of the p65-NLS. Neither conformational change was observed for importin α1, which makes fewer bonds with the p50/p65 NLSs, explaining the preference for α3. We propose that importin α3 discriminates between the transcriptionally active p50/p65 heterodimer and p50/p50 and p65/65 homodimers, ensuring fidelity in NF-κB signaling. Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. Here, the authors identify a bipartite Nuclear Localization Signal in the NF-κB p50/p65 heterodimer that is recognized with high affinity by importin α3.
Collapse
Affiliation(s)
- Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Daniel P Yeggoni
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Rajeshwer S Sankhala
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Connor A Ott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Asadi A, Farahani H, Mahmoudi T, Tabaeian SP, Rezamand G, Mohammadbeigi A, Dabiri R, Nobakht H, Rezvan S, Mohammadi F. CIRCULATING GHRELIN LEVELS AND SUSCEPTIBILITY TO COLORECTAL CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:316-321. [PMID: 34705965 DOI: 10.1590/s0004-2803.202100000-54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Considering the association between colorectal cancer (CRC) and both insulin resistance and obesity, and the prominent role of ghrelin in these metabolic disorders, we explored whether plasma levels of ghrelin were associated with CRC. Moreover, in the patients with CRC the possible correlations between ghrelin and insulin, insulin resistance, and body mass index (BMI) as an indicator of obesity were examined. METHODS A total of 170 subjects, including 82 cases with CRC and 88 controls were enrolled in this study. Plasma levels of ghrelin, insulin, and glucose were measured in all the subjects using ELISA and glucose oxidase methods. Furthermore, insulin resistance was assessed by calculating HOMA-IR index. RESULTS The cases with CRC had decreased ghrelin levels (P<0.001) and a higher HOMA-IR index (P<0.001) than controls. Interestingly, when CRC patients were stratified based on tumor site, lower ghrelin levels and a higher HOMA-IR index were observed in the patients with either colon or rectal cancer vs. controls too. Additionally, there were an age and BMI-independent negative correlation between ghrelin levels and HOMA-IR (r=-0.365, P<0.05), and an age-independent negative correlation between ghrelin levels and BMI (r=-0.335, P<0.05) in the rectal subgroup. CONCLUSION Our findings support a role for ghrelin in connection with insulin resistance and obesity in CRC susceptibility; however, it needs to be corroborated by further studies.
Collapse
Affiliation(s)
- Asadollah Asadi
- University of Mohaghegh Ardabili, Faculty of Science, Department of Biology, Ardabil, Iran
| | - Hamid Farahani
- Qom University of Medical Sciences, School of Medicine, Department of Physiology and Pharmacology, Qom, Iran
| | - Touraj Mahmoudi
- Shahid Beheshti University of Medical Sciences, Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Iran University of Medical Sciences, School of Medicine, Department of Internal Medicine, Tehran, Iran.,Iran University of Medical Sciences, Colorectal Research Center, Tehran, Iran
| | - Gholamreza Rezamand
- Iran University of Medical Sciences, Colorectal Research Center, Tehran, Iran
| | - Abolfazl Mohammadbeigi
- Qom University of Medical Sciences, School of Health, Health Policy and Promotion Research Center, Department of Epidemiology, Qom, Iran
| | - Reza Dabiri
- Semnan University of Medical Sciences, Internal Medicine Department, Semnan, Iran
| | - Hossein Nobakht
- Semnan University of Medical Sciences, Internal Medicine Department, Semnan, Iran
| | - Sajad Rezvan
- Rafsanjan University of Medical Sciences, School of Medicine, Department of Radiology, Kerman, Iran
| | - Fatemeh Mohammadi
- Qom University of Medical Sciences, Deputy of Research and Technology, Qom, Iran
| |
Collapse
|
6
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
7
|
Zharkov MI, Zenkova MA, Vlassov VV, Chernolovskaya EL. Molecular Mechanism of the Antiproliferative Activity of Short Immunostimulating dsRNA. Front Oncol 2020; 9:1454. [PMID: 31921696 PMCID: PMC6933605 DOI: 10.3389/fonc.2019.01454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022] Open
Abstract
Small double-stranded RNAs with certain sequence motifs are able to interact with pattern-recognition receptors and activate the innate immune system. Recently, we identified a set of short double-stranded 19-bp RNA molecules with 3-nucleotide 3′-overhangs that exhibited pronounced antiproliferative activity against cancer cells in vitro, and antitumor and antimetastatic activities in mouse models in vivo. The main objectives of this study were to identify the pattern recognition receptors that mediate the antiproliferative action of immunostimulating RNA (isRNA). Two cell lines, epidermoid carcinoma KB-3-1 cells and lung cancer A549 cells, were used in the study. These lines respond to the action of isRNA by a decrease in the growth rate, and in the case of A549 cells, also by a secretion of IL-6. Two sets of cell lines with selectively silenced genes encoding potential sensors and signal transducers of isRNA action were obtained on the basis of KB-3-1 and A549 cells. It was found that the selective silencing of PKR and RIG-I genes blocked the antiproliferative effect of isRNA, both in KB-3-1 and A549 cells, whereas the expression of MDA5 and IRF3 was not required for the antiproliferative action of isRNA. It was shown that, along with PKR and RIG-I genes, the expression of IRF3 also plays a role in isRNA mediated IL-6 synthesis in A549 cells. Thus, PKR and RIG-I sensors play a major role in the anti-proliferative signaling triggered by isRNA.
Collapse
Affiliation(s)
- Mikhail I Zharkov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
8
|
Mata-Cantero L, Chaparro MJ, Colmenarejo G, Cid C, Cortes Cabrera A, Rodriguez MS, Martín J, Gamo FJ, Gomez-Lorenzo MG. Identification of Small Molecules Disrupting the Ubiquitin Proteasome System in Malaria. ACS Infect Dis 2019; 5:2105-2117. [PMID: 31644867 DOI: 10.1021/acsinfecdis.9b00216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitin proteasome system (UPS) is one of the main proteolytic pathways in eukaryotic cells, playing an essential role in key cellular processes such as cell cycling and signal transduction. Changes in some of the components of this pathway have been implicated in various conditions, including cancer and infectious diseases such as malaria. The success of therapies based on proteasome inhibitors has been shown in human clinical trials. In addition to its proven tractability, the essentiality of the Plasmodium falciparum UPS underlines its potential as a source of targets to identify new antimalarial treatments. Two assays, previously developed to quantify the parasite protein ubiquitylation levels in a high throughput format, have been used to identify compounds that inhibit parasite growth by targeting P. falciparum UPS. Among the positive hits, specific inhibitors of the P. falciparum proteasome have been identified and characterized. Hits identified using this approach may be used as starting points for development of new antimalarial drugs. They may also be used as tools to further understand proteasome function and to identify new targets in P. falciparum UPS.
Collapse
Affiliation(s)
- Lydia Mata-Cantero
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - María Jesús Chaparro
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gonzalo Colmenarejo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
- IMDEA Food, Biostatistics and Bioinformatics Unit, Ctra Cantoblanco 8, 28049 Madrid, Spain
| | - Concepción Cid
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Alvaro Cortes Cabrera
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Manuel S. Rodriguez
- Université de Toulouse, ITAV CNRS and IPBS CNRS, 1 place Pierre Potier, Oncopole entrée B, 31106 Toulouse, France
| | - Julio Martín
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Maria G. Gomez-Lorenzo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World. GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|
9
|
Aljoundi AK, Agoni C, Olotu FA, Soliman MES. Turning to Computer-aided Drug Design in the Treatment of Diffuse Large B-cell Lymphoma: Has it been Helpful? Anticancer Agents Med Chem 2019; 19:1325-1339. [PMID: 30950356 DOI: 10.2174/1871520619666190405111526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Amidst the numerous effective therapeutic options available for the treatment of Diffuse Large B-cell Lymphoma (DLBCL), about 30-40% of patients treated with first-line chemoimmunotherapy still experience a relapse or refractory DLBCL. This has necessitated a continuous search for new therapeutic agents to augment the existing therapeutic arsenal. METHODS The dawn of Computer-Aided Drug Design (CADD) in the drug discovery process has accounted for persistency in the application of computational approaches either alone or in combinatorial strategies with experimental methods towards the identification of potential hit compounds with high therapeutic efficacy in abrogating DLBCL. RESULTS This review showcases the interventions of structure-based and ligand-based computational approaches which have led to the identification of numerous small molecule inhibitors against implicated targets in DLBCL therapy, even though many of these potential inhibitors are piled-up awaiting further experimental validation and exploration. CONCLUSION We conclude that a successful and a conscious amalgamation of CADD and experimental approaches could pave the way for the discovery of the next generation potential leads in DLBCL therapy with improved activities and minimal toxicities.
Collapse
Affiliation(s)
- Aimen K Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
10
|
Rhodes J, Landsburg DJ. Small-Molecule Inhibitors for the Treatment of Diffuse Large B Cell Lymphoma. Curr Hematol Malig Rep 2018; 13:356-368. [DOI: 10.1007/s11899-018-0467-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Zhang Y, Yang B, Zhao J, Li X, Zhang L, Zhai Z. Proteasome Inhibitor Carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal (MG132) Enhances Therapeutic Effect of Paclitaxel on Breast Cancer by Inhibiting Nuclear Factor (NF)-κB Signaling. Med Sci Monit 2018; 24:294-304. [PMID: 29332931 PMCID: PMC5779800 DOI: 10.12659/msm.908139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), a peptide aldehyde proteasome inhibitor, can inhibit tumor progression by inactivating nuclear factor (NF)-κB signaling. Paclitaxel (PTX) is part of a routine regimen for the treatment of breast cancer. However, activation of the NF-κB pathway after treatment with PTX confers insensitivity to this drug. This study investigated the potential effect of MG132 as a co-treatment with PTX against breast cancer, and clarifies the underlying molecular mechanisms. Material/Methods Breast cancer cells were treated with PTX, MG132, or PTX plus MG132, and the therapeutic effects were evaluated phenotypically. A mouse model of breast cancer was used to determine the combined effect of PTX plus MG132 in vivo. Results Treatment with PTX plus MG132 suppressed aggressive phenotypes of breast cancer cells more effectively than PTX alone. Consistently, MG132 also enhanced the suppressive effect of PTX on tumor growth in C57BL/6 mice. Significantly, activation of the NF-κB pathway by PTX was attenuated by MG132. Conclusions Based on our findings, we suggest the application of MG132 in clinical practice in combination with PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yunjing Zhang
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Bin Yang
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Jinping Zhao
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Xiaoli Li
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Long Zhang
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Zhenhua Zhai
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland).,Department of Oncology, Cancer Centre, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| |
Collapse
|
12
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
13
|
Bhutani D, Zonder JA. Use of carfilzomib in second-line therapy and beyond for relapsed multiple myeloma. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2017; 7:53-60. [PMID: 31360084 PMCID: PMC6467339 DOI: 10.2147/blctt.s82444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of proteasome inhibitors has been a major advance in therapy of multiple myeloma, accounting, in part, for the significant increase in the survival of patients diagnosed with this disease. Bortezomib was the first proteasome inhibitor to be approved for the therapy of multiple myeloma. Carfilzomib is a second-generation proteasome inhibitor with irreversible binding to proteasome and less off-target toxicity. The drug has been approved for use in relapsed/refractory multiple myeloma. In this article, we review the use of carfilzomib as second-line therapy in multiple myeloma. We also review the current standards of care for relapsed/refractory multiple myeloma, with particular focus on the use of carfilzomib in advanced disease.
Collapse
Affiliation(s)
- Divaya Bhutani
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA,
| | - Jeffrey A Zonder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
14
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
15
|
Luo K, Li L, Li Y, Wu C, Yin Y, Chen Y, Deng M, Nowsheen S, Yuan J, Lou Z. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes Dev 2016; 30:2581-2595. [PMID: 27941124 PMCID: PMC5204351 DOI: 10.1101/gad.289439.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
Abstract
Homologous recombination (HR) is one of the major DNA double-strand break (DSB) repair pathways in mammalian cells. Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51, which is recruited to DSBs by BRCA2. However, the regulation of the BRCA2-RAD51 axis remains unclear. Here we report that ubiquitination of RAD51 hinders RAD51-BRCA2 interaction, while deubiquitination of RAD51 facilitates RAD51-BRCA2 binding and RAD51 recruitment and thus is critical for proper HR. Mechanistically, in response to DNA damage, the deubiquitinase UCHL3 is phosphorylated and activated by ATM. UCHL3, in turn, deubiquitinates RAD51 and promotes the binding between RAD51 and BRCA2. Overexpression of UCHL3 renders breast cancer cells resistant to radiation and chemotherapy, while depletion of UCHL3 sensitizes cells to these treatments, suggesting a determinant role of UCHL3 in cancer therapy. Overall, we identify UCHL3 as a novel regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination cascade dynamically regulates the BRCA2-RAD51 pathway.
Collapse
Affiliation(s)
- Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine, Rochester, Minnesota 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
16
|
Yazdi S, Naumann M, Stein M. Double phosphorylation-induced structural changes in the signal-receiving domain of IκBα in complex with NF-κB. Proteins 2016; 85:17-29. [DOI: 10.1002/prot.25181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Samira Yazdi
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group; Sandtorstrasse 1 39106 Magdeburg Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg; Leipziger Strasse 44 39120 Magdeburg Germany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group; Sandtorstrasse 1 39106 Magdeburg Germany
| |
Collapse
|
17
|
King TA, Ghazaleh RA, Juhn SK, Adams GL, Ondrey FG. Induction of Heat Shock Protein 70 Inhibits NF-kappa-B in Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 2016; 133:70-9. [PMID: 16025056 DOI: 10.1016/j.otohns.2004.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE: To determine the relationship between heat shock proteins (HSPs) and the proinflammatory, anti-apoptosis mediator NF-kappa-B in squamous cell carcinoma.STUDY DESIGN AND SETTING: CA-9-22 cells were exposed to heat stress to induce the production of HSPs. Immunoblot and reporter gene experiments determined the inducibility of HSP production and the activation of cytokine-induced NF-kappa-B. Immunoblot experiments determined the presence of the inhibitor- k-B-α (I kBα).RESULTS: CA-9-22 cells can be induced by heat stress to produce HSPs at 100-fold above baseline levels. The induction of HSPs prevents the activation and nuclear translocation of NF-kappa-B despite stimulation with IL-1β and TNF-α.CONCLUSIONS: Constitutive activation of NF-kappa-B is prevented by HSP induction through an increase in I kBα synthesis.SIGNIFICANCE: The induction of HSP70 alters the inflammatory milieu associated with squamous cell carcinoma progression through the inhibition of NF-kappa-B and may ultimately promote apoptosis in head and neck carcinoma.
Collapse
Affiliation(s)
- Timothy A King
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
18
|
Moarbess G, Guichou JF, Paniagua-Gayraud S, Chouchou A, Marcadet O, Leroy F, Ruédas R, Cuq P, Deleuze-Masquéfa C, Bonnet PA. New IKK inhibitors: Synthesis of new imidazo[1,2-a]quinoxaline derivatives using microwave assistance and biological evaluation as IKK inhibitors. Eur J Med Chem 2016; 115:268-74. [PMID: 27017554 DOI: 10.1016/j.ejmech.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022]
Abstract
The inhibition of the NF-κB-dependent pathways by IKK inhibitors plays an important role in immunity, inflammation, and cancer. New imidazoquinoxalines tricyclic derivatives are prepared using microwave assistance and their biological activities as IKK inhibitors are described. Compounds 6a present a potent inhibition activity and selectivity for IKK2. Docking studies in the IKK2 binding site allowed identification of residues most likely to interact with theses inhibitors and explain their potent IKK2 inhibition activity and selectivity.
Collapse
Affiliation(s)
- Georges Moarbess
- Lebanese University, Faculty of Sciences II, Department of Chemistry and Biochemistry, Campus Fanar, BP 90656 Jdeideh, Lebanon
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Stéphanie Paniagua-Gayraud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Adrien Chouchou
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Olivier Marcadet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Fiona Leroy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Rémi Ruédas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France.
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault,BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
19
|
Bozic M, Álvarez Á, de Pablo C, Sanchez-Niño MD, Ortiz A, Dolcet X, Encinas M, Fernandez E, Valdivielso JM. Impaired Vitamin D Signaling in Endothelial Cell Leads to an Enhanced Leukocyte-Endothelium Interplay: Implications for Atherosclerosis Development. PLoS One 2015; 10:e0136863. [PMID: 26322890 PMCID: PMC4556440 DOI: 10.1371/journal.pone.0136863] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Endothelial cell activation leading to leukocyte recruitment and adhesion plays an essential role in the initiation and progression of atherosclerosis. Vitamin D has cardioprotective actions, while its deficiency is a risk factor for the progression of cardiovascular damage. Our aim was to assess the role of basal levels of vitamin D receptor (VDR) on the early leukocyte recruitment and related endothelial cell-adhesion-molecule expression, as essential prerequisites for the onset of atherosclerosis. Knockdown of VDR in endothelial cells (shVDR) led to endothelial cell activation, characterized by upregulation of VCAM-1, ICAM-1 and IL-6, decreased peripheral blood mononuclear cell (PBMC) rolling velocity and increased PBMC rolling flux and adhesion to the endothelium. shVDR cells showed decreased IκBα levels and accumulation of p65 in the nucleus compared to shRNA controls. Inhibition of NF-κB activation with super-repressor IκBα blunted all signs of endothelial cell activation caused by downregulation of VDR in endothelial cells. In vivo, deletion of VDR led to significantly larger aortic arch and aortic root lesions in apoE-/- mice, with higher macrophage content. apoE-/-VDR-/-mice showed higher aortic expression of VCAM-1, ICAM-1 and IL-6 when compared to apoE-/-VDR+/+ mice. Our data demonstrate that lack of VDR signaling in endothelial cells leads to a state of endothelial activation with increased leukocyte-endothelial cell interactions that may contribute to the more severe plaque accumulation observed in apoE-/-VDR-/- mice. The results reveal an important role for basal levels of endothelial VDR in limiting endothelial cell inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Milica Bozic
- Nephrology Research Department, IRB Lleida, Lleida, Spain
| | - Ángeles Álvarez
- Department of Pharmacology and CIBERehd, University of Valencia, Valencia, Spain
| | - Carmen de Pablo
- Department of Pharmacology and CIBERehd, University of Valencia, Valencia, Spain
| | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, UAM and IRSIN, Madrid, Spain
| | - Xavier Dolcet
- Pathology Group, Pathology and Molecular Genetics Department, Hospital Universitari Arnau de Vilanova, University of Lleida and IRB Lleida, Spain
| | - Mario Encinas
- Department of Experimental Medicine, University of Lleida and IRB Lleida, Lleida, Spain
| | | | | |
Collapse
|
20
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
21
|
Tsuchiya R, Tanaka T, Hozumi Y, Nakano T, Okada M, Topham MK, Iino M, Goto K. Downregulation of diacylglycerol kinase ζ enhances activation of cytokine-induced NF-κB signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:361-9. [PMID: 25450975 DOI: 10.1016/j.bbamcr.2014.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
Abstract
The transcription factor NF-κB family serves as a key component of many pathophysiological events such as innate and adaptive immune response, inflammation, apoptosis, and oncogenesis. Various cell signals trigger activation of the regulatory mechanisms of NF-κB, resulting in its nuclear translocation and transcriptional initiation. The diacylglycerol kinase (DGK) family, a lipid second messenger-metabolizing enzyme in phosphoinositide signaling, is shown to regulate widely various cellular processes. Results of recent studies suggest that one family member, DGKζ, is closely involved in immune and inflammatory responses. Nevertheless, little is known about the regulatory mechanism of DGKζ on NF-κB pathway in cytokine-induced inflammatory signaling. This study shows that siRNA-mediated DGKζ knockdown in HeLa cells facilitates degradation of IκB, followed by nuclear translocation of NF-κB p65 subunit. In addition, DGKζ-deficient MEFs show upregulation of p65 subunit phosphorylation at Serine 468 and 536 and its interaction with CBP transcriptional coactivator upon TNF-α stimulation. These modifications of p65 subunit might engender enhanced NF-κB transcriptional reporter assay of DGKζ knockdown cells. These findings provide further insight into the regulatory mechanisms of cytokine-induced NF-κB activation.
Collapse
Affiliation(s)
- Rieko Tsuchiya
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan; Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Yasukazu Hozumi
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Matthew K Topham
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| |
Collapse
|
22
|
Sol Fustiñana M, de la Fuente V, Federman N, Freudenthal R, Romano A. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory. ACTA ACUST UNITED AC 2014; 21:478-87. [PMID: 25135196 PMCID: PMC4138359 DOI: 10.1101/lm.035998.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- María Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | | | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, 1428EHA, Buenos Aires, Argentina
| |
Collapse
|
23
|
Bonfili L, Cuccioloni M, Cecarini V, Mozzicafreddo M, Palermo FA, Cocci P, Angeletti M, Eleuteri AM. Ghrelin induces apoptosis in colon adenocarcinoma cells via proteasome inhibition and autophagy induction. Apoptosis 2014; 18:1188-200. [PMID: 23632965 DOI: 10.1007/s10495-013-0856-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ghrelin is a metabolism-regulating hormone recently investigated for its role in cancer survival and progression. Controversially, ghrelin may act as either anti-apoptotic or pro-apoptotic factor in different cancer cells, suggesting that the effects are cell type dependent. Limited data are currently available on the effects exerted by ghrelin on intracellular proteolytic pathways in cancer. Both the lysosomal and the proteasomal systems are fundamental in cellular proliferation and apoptosis regulation. With the aim of exploring if the proteasome and autophagy may be possible targets of ghrelin in cancer, we exposed human colorectal adenocarcinoma cells to ghrelin. Preliminary in vitro fluorimetric assays evidenced for the first time a direct inhibition of 20S proteasomes by ghrelin, particularly evident for the trypsin-like activity. Moreover, 1 μM ghrelin induced apoptosis in colorectal adenocarcinoma cells by inhibiting the ubiquitin-proteasome system and by activating autophagy, with p53 having an "interactive" role.
Collapse
Affiliation(s)
- Laura Bonfili
- School of Biosciences and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Macerata, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Programmed cell death (apoptosis) is a coordinated set of events eventually leading to the massive activation of specialized proteases (caspases) that cleave numerous substrates, orchestrating fairly uniform biochemical changes than culminate in cellular suicide. Apoptosis can be triggered by a variety of stimuli, from external signals or growth factor withdrawal to intracellular conditions, such as DNA damage or ER stress. Arrestins regulate many signaling cascades involved in life-or-death decisions in the cell, so it is hardly surprising that numerous reports document the effects of ubiquitous nonvisual arrestins on apoptosis under various conditions. Although these findings hardly constitute a coherent picture, with the same arrestin subtypes, sometimes via the same signaling pathways, reported to promote or inhibit cell death, this might reflect real differences in pro- and antiapoptotic signaling in different cells under a variety of conditions. Recent finding suggests that one of the nonvisual subtypes, arrestin-2, is specifically cleaved by caspases. Generated fragment actively participates in the core mechanism of apoptosis: it assists another product of caspase activity, tBID, in releasing cytochrome C from mitochondria. This is the point of no return in committing vertebrate cells to death, and the aspartate where caspases cleave arrestin-2 is evolutionary conserved in vertebrate, but not in invertebrate arrestins. In contrast to wild-type arrestin-2, its caspase-resistant mutant does not facilitate cell death.
Collapse
Affiliation(s)
- Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
25
|
Abstract
SUMO (small ubiquitin-like modifier) emerged from the shadow of the well-established ubiquitin some 15 years ago when it was shown that a distinct conjugation pathway was responsible for SUMO modification. Since then it has been established that SUMO modifies over a thousand substrates and plays diverse roles in many important biological processes. Recognition of SUMO is mediated by short peptide sequences known as SIMs (SUMO-interaction motifs) that allow effector proteins to engage SUMO-modified substrates. Like ubiquitin, SUMO can form polymeric chains, and these chains can be recognized by proteins containing multiple SIMs. One protein that contains such a sequence of SIMs also contains a RING (really interesting new gene) domain that is the hallmark of a ubiquitin E3 ligase. This ubiquitin ligase known as RNF4 (RING finger protein 4) has the unique property that it can recognize SUMO-modified proteins and target them for ubiquitin-mediated proteolysis. Structural and biochemical analyses of RNF4 has shed light on the long sought after mechanism of ubiquitin transfer and illustrates how its RING domain primes the ubiquitin-loaded E2 for catalysis.
Collapse
|
26
|
Yang CS, Yuk JM, Kim JJ, Hwang JH, Lee CH, Kim JM, Oh GT, Choi HS, Jo EK. Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2. PLoS One 2013; 8:e63435. [PMID: 23704907 PMCID: PMC3660347 DOI: 10.1371/journal.pone.0063435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 01/15/2023] Open
Abstract
The orphan nuclear receptor, small heterodimer partner (SHP), appears to play a negative regulatory role in innate immune signaling. Emerging evidence warrants further study on the therapeutic targeting of SHP to suppress excessive and deleterious inflammation. Here we show that fenofibrate, which targets SHP, is required for inhibiting systemic inflammation via mitochondrial uncoupling protein 2 (UCP2). In vivo administration of fenofibrate ameliorated systemic inflammatory responses and increased survival upon experimental sepsis through SHP. An abundance of SHP was observed in mice fed fenofibrate and in cultured macrophages through LKB1-dependent activation of the AMP-activated protein kinase pathway. Fenofibrate significantly blocked endotoxin-triggered inflammatory signaling responses via SHP, but not via peroxisome proliferator-activated receptor (PPAR)-α. In addition to the known mechanism by which SHP modulates innate signaling, we identify a new role of fenofibrate-induced SHP on UCP2 induction, which is required for the suppression of inflammatory responses through modulation of mitochondrial ROS production. These data strongly suggest that the SHP-inducing drug fenofibrate paves the way for novel therapies for systemic inflammation by targeting SHP.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Jae-Min Yuk
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Jwa-Jin Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Jung Hwan Hwang
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, S. Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, S. Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Goo Taeg Oh
- Division of Life and Pharmaceutical Science, Ewha Womans University, Seoul, S. Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, S. Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
- * E-mail:
| |
Collapse
|
27
|
Hotta K, Nashimoto A, Yasumura E, Suzuki M, Azuma M, Iizumi Y, Shima D, Nabeshima R, Hiramoto M, Okada A, Sakata-Sogawa K, Tokunaga M, Ito T, Ando H, Sakamoto S, Kabe Y, Aizawa S, Imai T, Yamaguchi Y, Watanabe H, Handa H. Vesnarinone suppresses TNFα mRNA expression by inhibiting valosin-containing protein. Mol Pharmacol 2013; 83:930-8. [PMID: 23393163 DOI: 10.1124/mol.112.081935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Vesnarinone is a synthetic quinolinone derivative used in the treatment of cardiac failure and cancer. It is also known to cause agranulocytosis as a side effect, which restricts its use, although the mechanism underlying agranulocytosis is not well understood. Here, we show that vesnarinone binds to valosin-containing protein (VCP), which interacts with polyubiquitinated proteins and is essential for the degradation of IκBα to activate nuclear factor (NF)κB. We show that vesnarinone impairs the degradation of IκBα, and that the impairment of the degradation of IκBα is the result of the inhibition of the interaction between VCP and the 26S proteasome by vesnarinone. These results suggest that vesnarinone suppresses NFκB activation by inhibiting the VCP-dependent degradation of polyubiquitinated IκBα, resulting in the suppression of tumor necrosis factor-α mRNA expression.
Collapse
Affiliation(s)
- Kentaro Hotta
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aillet F, Lopitz-Otsoa F, Egaña I, Hjerpe R, Fraser P, Hay RT, Rodriguez MS, Lang V. Heterologous SUMO-2/3-ubiquitin chains optimize IκBα degradation and NF-κB activity. PLoS One 2012; 7:e51672. [PMID: 23284737 PMCID: PMC3527444 DOI: 10.1371/journal.pone.0051672] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 11/05/2012] [Indexed: 01/09/2023] Open
Abstract
The NF-κB pathway is regulated by SUMOylation at least at three levels: the inhibitory molecule IκBα, the IKK subunit γ/NEMO and the p52 precursor p100. Here we investigate the role of SUMO-2/3 in the degradation of IκBα and activation of NF-κB mediated by TNFα. We found that under conditions of deficient SUMOylation, an important delay in both TNFα-mediated proteolysis of IκBα and NF-κB dependent transcription occurs. In vitro and ex vivo approaches, including the use of ubiquitin-traps (TUBEs), revealed the formation of chains on IκBα containing SUMO-2/3 and ubiquitin after TNFα stimulation. The integration of SUMO-2/3 appears to promote the formation of ubiquitin chains on IκBα after activation of the TNFα signalling pathway. Furthermore, heterologous chains of SUMO-2/3 and ubiquitin promote a more efficient degradation of IκBα by the 26S proteasome in vitro compared to chains of either SUMO-2/3 or ubiquitin alone. Consistently, Ubc9 silencing reduced the capture of IκBα modified with SUMO-ubiquitin hybrid chains that display a defective proteasome-mediated degradation. Thus, hybrid SUMO-2/3-ubiquitin chains increase the susceptibility of modified IκBα to the action of 26S proteasome, contributing to the optimal control of NF-κB activity after TNFα-stimulation.
Collapse
Affiliation(s)
- Fabienne Aillet
- Proteomics Unit, CIC bioGUNE, CIBERehd, Derio, Bizkaia, Spain
- Ubiquitylation & Cancer Molecular Biology Laboratory, Inbiomed, San Sebastián-Donostia, Gipuzkoa, Spain
| | | | - Isabel Egaña
- Proteomics Unit, CIC bioGUNE, CIBERehd, Derio, Bizkaia, Spain
| | - Roland Hjerpe
- Proteomics Unit, CIC bioGUNE, CIBERehd, Derio, Bizkaia, Spain
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Ron T. Hay
- Centre for Interdisciplinary Research, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | | | - Valérie Lang
- Proteomics Unit, CIC bioGUNE, CIBERehd, Derio, Bizkaia, Spain
- Ubiquitylation & Cancer Molecular Biology Laboratory, Inbiomed, San Sebastián-Donostia, Gipuzkoa, Spain
| |
Collapse
|
29
|
McKelvey L, Gutierrez H, Nocentini G, Crampton SJ, Davies AM, Riccardi CR, O'keeffe GW. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling. Biol Open 2012; 1:1016-23. [PMID: 23213379 PMCID: PMC3507174 DOI: 10.1242/bio.20121024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023] Open
Abstract
NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth.
Collapse
Affiliation(s)
- Laura McKelvey
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork , Cork , Ireland
| | | | | | | | | | | | | |
Collapse
|
30
|
Cronin JG, Turner ML, Goetze L, Bryant CE, Sheldon IM. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biol Reprod 2012; 86:51. [PMID: 22053092 DOI: 10.1095/biolreprod.111.092718] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infection of the bovine endometrium with Gram-negative bacteria commonly causes uterine disease. Toll-like receptor 4 (TLR4) on cells of the immune system bind Gram-negative bacterial lipopolysaccharide (LPS), stimulating the secretion of the proinflammatory cytokines interleukin 1B (IL1B) and IL6, and the chemokine IL8. Because the endometrium is the first barrier to infection of the uterus, the signaling cascade triggered by LPS and the subsequent expression of inflammatory mediators were investigated in endometrial epithelial and stromal cells, and the key pathways identified using short interfering RNA (siRNA) and biochemical inhibitors. Treatment of endometrial cells with ultrapure LPS stimulated an inflammatory response characterized by increased IL1B, IL6, and IL8 mRNA expression, and IL6 protein accumulation in epithelial cells, and by increased IL1B and IL8 mRNA expression, and IL6 and IL8 protein accumulation in stromal cells. Treatment of endometrial cells with LPS also induced the degradation of IKB and the nuclear translocation of NFKB, as well as rapid phosphorylation of mitogen-activated protein kinase 3/1 (MAPK3/1) and MAPK14. Knockdown of TLR4 or its signaling adaptor molecule, myeloid differentiation factor 88 (MYD88), using siRNA reduced the inflammatory response to LPS in epithelial and stromal cells. Biochemical inhibition of MAPK3/1, but not JNK or MAPK14, reduced LPS-induced IL1B, IL6, and IL8 expression in endometrial cells. In conclusion, epithelial and stromal cells have an intrinsic role in innate immune surveillance in the endometrium, and in the case of LPS this recognition occurs via TLR4- and MYD88-dependent cell signaling pathways.
Collapse
Affiliation(s)
- James G Cronin
- Institute of Life Science, School of Medicine, Swansea University, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15:2335-81. [PMID: 21194351 PMCID: PMC3166203 DOI: 10.1089/ars.2010.3534] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O(2)•- and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H(2)O(2), enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | | |
Collapse
|
32
|
Reuter S, Prasad S, Phromnoi K, Ravindran J, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Thiocolchicoside exhibits anticancer effects through downregulation of NF-κB pathway and its regulated gene products linked to inflammation and cancer. Cancer Prev Res (Phila) 2010; 3:1462-72. [PMID: 20978115 PMCID: PMC3142676 DOI: 10.1158/1940-6207.capr-10-0037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The discovery of new uses for older, clinically approved drugs is one way to expedite drug development for cancer. Thiocolchicoside, a semisynthetic colchicoside from the plant Gloriosa superba, is a muscle relaxant and used to treat rheumatologic and orthopedic disorders because of its analgesic and anti-inflammatory mechanisms. Given that activation of the transcription factor NF-κB plays a major role in inflammation and tumorigenesis, we postulated that thiocolchicoside would inhibit NF-κB and exhibit anticancer effects through the modulation of NF-κB-regulated proteins. We show that thiocolchicoside inhibited proliferation of leukemia, myeloma, squamous cell carcinoma, breast, colon, and kidney cancer cells. Formation of tumor colonies was also suppressed by thiocolchicoside. The colchicoside induced apoptosis, as indicated by caspase-3 and poly(ADP-ribose) polymerase cleavage, and suppressed the expression of cell survival [e.g., Bcl-2, X-linked inhibitor of apoptosis (XIAP), MCL-1, bcl-xL, cIAP-1, cIAP-2, and cFLIP] proteins. Cell proliferation biomarkers such as c-MYC and phosphorylation of phosphoinositide 3-kinase and glycogen synthase kinase 3β were also blocked by thiocolchicoside. Because most cell survival and proliferation gene products are regulated by NF-κB, we studied the effect of thiocolchicoside on this transcription factor and found that thiocolchicoside inhibited NF-κB activation, degradation of inhibitory κBα (IκBα), IκBα ubiquitination, and phosphorylation, abolished the activation of IκBα kinase, and suppressed p65 nuclear translocation. This effect of thiocolchicoside on the NF-κB pathway led to inhibition of NF-κB reporter activity and cyclooxygenase-2 promoter activity. Our results indicate that thiocolchicoside exhibits anticancer activity through inhibition of NF-κB and NF-κB-regulated gene products, which provides novel insight into a half-century old drug.
Collapse
Affiliation(s)
- Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Belli C, Anand S, Tassi G, Fennell D, Mutti L. Translational therapies for malignant pleural mesothelioma. Expert Rev Respir Med 2010; 4:249-60. [PMID: 20406091 DOI: 10.1586/ers.10.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malignant pleural mesothelioma is a highly invasive tumor arising from the mesothelial cells of serosal surfaces. Several chemotherapeutic agents have been tested for the treatment of this disease and doublet cisplatin with antifolates has been demonstrated to have significant efficacy in Phase III studies. However, the benefit of these treatments remains poor and the median survival time of patients is low, ranging between 9 and 17 months. Targeted therapies are being developed in oncology and emerging evidence suggests that they offer disease control in several tumors. This article reviews the knowledge on the malignant pleural mesothelioma molecular pathway and focuses on results of clinical trials conducted on this devastating disease.
Collapse
Affiliation(s)
- Carmen Belli
- Oncology Department, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | |
Collapse
|
34
|
Synthesis and biological evaluation of tricyclic anilinopyrimidines as IKKbeta inhibitors. Bioorg Med Chem Lett 2010; 20:3821-5. [PMID: 20471256 DOI: 10.1016/j.bmcl.2010.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/22/2022]
Abstract
A series of tricyclic anilinopyrimidines were synthesized and evaluated as IKKbeta inhibitors. Several analogues, including tricyclic phenyl (10, 18a, 18c, 18d, and 18j) and thienyl (26 and 28) derivatives were shown to have good in vitro enzyme potency and excellent cellular activity. Pharmaceutical profiling of a select group of tricyclic compounds compared to the non-tricyclic analogues suggested that in some cases, the improved cellular activity may be due to increased clog P and permeability.
Collapse
|
35
|
Kanno Y, Sakurai D, Hase H, Kojima H, Kobata T. TACI induces cIAP1-mediated ubiquitination of NIK by TRAF2 and TANK to limit non-canonical NF-kappaB signaling. J Recept Signal Transduct Res 2010; 30:121-32. [PMID: 20184394 DOI: 10.3109/10799891003634509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell-activating factor of the TNF family (BAFF) is a critical factor for B-cell survival and maturation through non-canonical nuclear factor kappaB (NF-kappaB) pathway, a NF-kappaB inducing kinase (NIK)-dependent pathway for the processing of NF-kappaB2 p100 to generate p52. While BAFF acts primarily through BAFF receptor (BAFF-R), the transmembrane activator and CAML interactor (TACI), the other receptor for BAFF, is thought to serve as a negative regulator for B-cell responses. However, how TACI regulates NF-kappaB2 activity is largely unknown. In this study, we showed that constitutive activation of TACI signaling suppressed BAFF-R-mediated NF-kappaB2 p100 processing with the up-regulation of cellular inhibitors of apoptosis 1 (cIAP1) and TNF receptor associated factor (TRAF)-associated NF-kappaB activator (TANK). The ubiquitination of NIK by cIAP1 was inhibited by the expression of TRAF2 with physical binding to cIAP1. TANK deficiency by small interfering RNA (siRNA) impaired TACI-dependent inhibition of NF-kappaB2 p100 processing. TANK also inhibited TRAF2-mediated cIAP1 inactivation. Moreover, the recruitment of TRAF2 to TACI induced the ubiquitination of NIK. Taken together, the regulation of NIK by TACI through the interaction of TANK/TRAF2/cIAP1 plays a pivotal role in the suppression of non-canonical NF-kappaB signaling.
Collapse
Affiliation(s)
- Yumiko Kanno
- Department of Immunology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | |
Collapse
|
36
|
Thoms HC, Loveridge CJ, Simpson J, Clipson A, Reinhardt K, Dunlop MG, Stark LA. Nucleolar targeting of RelA(p65) is regulated by COMMD1-dependent ubiquitination. Cancer Res 2010; 70:139-49. [PMID: 20048074 DOI: 10.1158/0008-5472.can-09-1397] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of the NF-kappaB pathway can have proapoptotic or antiapoptotic consequences, and one mechanism that determines the outcome is the nuclear distribution of RelA. Certain stress stimuli induce nucleolar accumulation of RelA thereby mediating apoptosis, whereas others induce nucleoplasmic accumulation and inhibition of apoptosis. Here we investigated the mechanisms that regulate the nuclear distribution of RelA, specifically, the role of the ubiquitin/proteasome system. We found that stress-induced nucleolar translocation of RelA is preceded by ubiquitination of the protein. We also found that chemical proteasome inhibitors induce the ubiquitination and nucleolar translocation of RelA and that this is required for the apoptotic response to these agents. We show that the RelA nucleolar localization signal (amino acids 27-30) is a critical domain for ubiquitination of the protein but that the lysine residue within this motif is not a direct target. We show that RelA binds COMMD1, the rate-limiting component of the RelA ubiquitin ligase complex, in response to stress. Furthermore, we show that overexpression of COMMD1 promotes stress-mediated nucleolar targeting of RelA, whereas knockdown of COMMD1 blocks this effect, causing RelA to remain in the nucleoplasm. These data identify a new role for COMMD1 in regulating the nuclear/nucleolar distribution of RelA and suggest that ubiquitination acts as a signal for transport of RelA to the nucleolus. These findings have relevance to the design of chemopreventative/anticancer agents that act by targeting RelA to the nucleolar compartment.
Collapse
Affiliation(s)
- Hazel C Thoms
- Colon Cancer Genetics Group, University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Toshinaga A, Hosokawa R, Okinaga T, Masaki C, Tsujisawa T, Nishihara T. Inflammatory response in epithelial cells induced by mechanical stress is suppressed by hyaluronic acid. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. J Virol 2009; 83:11694-703. [PMID: 19726520 DOI: 10.1128/jvi.00499-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Arginine methylation of human immunodeficiency virus type 1 (HIV-1) Tat protein downregulates its key function in viral-gene transactivation. The fate of methylated Tat is unknown, so it is unclear whether methylated Tat is degraded or persists in the cell for additional functions. Here we show that the arginine methyltransferase PRMT6 increases Tat protein half-life by 4.7-fold. Tat stabilization depends on the catalytic activity of PRMT6 and requires arginine methylation within the Tat basic domain. In contrast, HIV-1 Rev, which is also methylated by PRMT6, is completely refractory to the stabilizing effect. Proteasome inhibition and silencing experiments demonstrated that Tat can be degraded by a REGgamma-independent proteasome, against which PRMT6 appears to act to increase Tat half-life. Our data reveal a proteasome-dependent Tat degradation pathway that is inhibited by arginine methylation. The stabilizing action of PRMT6 could allow Tat to persist within the cell and the extracellular environment and thereby enable functions implicated in AIDS-related cancer, neurodegeneration, and T-cell death.
Collapse
|
39
|
Plantivaux A, Szegezdi E, Samali A, Egan L. Is There a Role for Nuclear Factor κB in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance? Ann N Y Acad Sci 2009; 1171:38-49. [DOI: 10.1111/j.1749-6632.2009.04725.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, Chen XM. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1617-24. [PMID: 19592657 PMCID: PMC2906382 DOI: 10.4049/jimmunol.0804362] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Posttranscriptional gene regulation by microRNAs (miRNAs) has been implicated in the fine-tuning of TLR-mediated inflammatory response. The cytokine-inducible Src homology 2-containing protein (CIS), one member of the suppressors of cytokine signaling family of proteins, is an important negative regulator for inflammatory cytokine signaling. Using in vitro models using normal human biliary epithelial cells (cholangiocytes), we demonstrated that LPS stimulation or infection with the parasitic protozoan Cryptosporidium parvum induced expression of CIS protein without a change in CIS mRNA levels by activating the TLR signaling pathway. Of those miRNAs expressed in cholangiocytes, we found that targeting of the 3'-untranslated region of CIS by microRNA-98 (miR-98) or let-7 resulted in translational repression, but not CIS mRNA degradation. LPS stimulation or C. parvum infection decreased cholangiocyte expression of miR-98 and let-7. Down-regulation of miR-98 and let-7 relieved miRNA-mediated translational suppression of CIS and contributed to LPS- and C. parvum-stimulated CIS protein expression. Moreover, gain-of-function (by overexpression of CIS) and loss-of-function (by siRNA interference) studies revealed that CIS could enhance IkappaBalpha degradation and regulate NF-kappaB activation in cholangiocytes in response to LPS stimulation or C. parvum infection. Our data suggest that miR-98 and let-7 confer cholangiocyte expression of CIS in response to microbial challenge, a process that may be relevant to the regulation of TLR-mediated epithelial innate immune response.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| | - Rui Zhou
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| | - Jun Liu
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| | - Alex N. Eischeid
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| | - Jared W. Dittman
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178
| |
Collapse
|
41
|
Bogner C, Peschel C, Decker T. Targeting the proteasome in mantle cell lymphoma: A promising therapeutic approach. Leuk Lymphoma 2009; 47:195-205. [PMID: 16321849 DOI: 10.1080/10428190500144490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mantle cell lymphoma (MCL) is a distinctive non-Hodgkin's lymphoma sub-type, characterized by over-expression of cyclin D1 as a consequence of chromosomal translocation t(11;14)(q13;q32). MCL remains an incurable disease, combining the unfavorable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL, which is often associated with additional cytogenetic alterations, has an even worse prognosis and new treatment options are clearly needed. The 26S proteasome is a large multi-catalytic multi-protein complex, present in all eukaryotic cells. It is responsible for the degradation of a variety of short-lived proteins and exhibits a key position in cellular processes including apoptosis and cell cycle progression. Targeting the ubiquitin - proteasome pathway has only recently been identified as a promising new therapeutic option for cancer patients. Interestingly, an increased activity of the proteasome pathway has been described in MCL cells and the inhibition of the proteasome seems to be a promising therapeutic approach for this incurable disease.
Collapse
Affiliation(s)
- Christian Bogner
- IIIrd Department of Medicine, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
42
|
Belli C, Fennell D, Giovannini M, Gaudino G, Mutti L. Malignant pleural mesothelioma: current treatments and emerging drugs. Expert Opin Emerg Drugs 2009; 14:423-37. [DOI: 10.1517/14728210903074563] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Bonfili L, Amici M, Cecarini V, Cuccioloni M, Tacconi R, Angeletti M, Fioretti E, Keller JN, Eleuteri AM. Wheat sprout extract-induced apoptosis in human cancer cells by proteasomes modulation. Biochimie 2009; 91:1131-44. [PMID: 19527768 DOI: 10.1016/j.biochi.2009.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 06/02/2009] [Indexed: 02/06/2023]
Abstract
Natural occurring modulators of proteasome functionality are extensively investigated for their implication in cancer therapy. On the basis of our previous evidences both on proteasomal inhibition by monomeric polyphenols, and on the characterization of wheat sprout hydroalcoholic extract, herein we thoroughly report on a comparative study of the effect of wheat sprout extract on both normal and tumour cells. Treatment of isolated 20S proteasomes with wheat sprout extracts induced a gradual inhibition of all proteasome activities. Next, two wheat sprout extract components were separated: a polyphenol and a protein fraction. Both components exerted an in vitro inhibitory effect on proteasome activity. HeLa tumour cells and FHs 74 Int normal cells were exposed to both fractions, resulting in different rates of proteasome inhibition, with tumour cells showing a significantly higher degree of proteasome impairment and apoptosis induction. Furthermore, a decrease in proteasome activities and in cell survival of the human plasmacytoma RPMI 8226 cell line, upon the same treatments, was observed. Collectively, our results provide additional evidences supporting the possible use of natural extracts as coadjuvants in cancer treatments.
Collapse
Affiliation(s)
- Laura Bonfili
- Department of Molecular, Cellular and Animal Biology, University of Camerino, 62032 Camerino, MC, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Proteasome inhibition promotes functional recovery after peripheral nerve reperfusion injury. ACTA ACUST UNITED AC 2009; 66:743-8. [PMID: 19276748 DOI: 10.1097/ta.0b013e3181941218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The proteasome degrades NF-kappaB blocking protein (I-kappaB) and activates NF-kappaB that plays as a key transcriptional factor to regulate inflammatory factors that are involved in the tissue reperfusion injury. This study was designed to assess whether the proteasome inhibitor can attenuate peripheral nerve ischemia/reperfusion (I/R) injury and consequently promote motor functional recovery after ischemic insult. METHODS Rat sciatic nerves were exposed to 2 hour of ischemia followed by various periods of reperfusion. Rats were administered either proteasome inhibitor (bortezomib) or phosphate-buffered saline 30 minutes before reperfusion start. Results were evaluated using a walking track test, and an isolated muscle contraction test, and by muscle weight, and histology. RESULTS Bortezomib treatment induced an earlier improvement in sciatic functional index and a more rapid restoration of contractile force and wet weight of extensor digitorum longus muscle. Bortezomib reduced early axonal degeneration and promoted regeneration. CONCLUSION This study indicates that bortezomib; a proteasome inhibitor, is effective at promoting the functional recovery of reperfused peripheral nerve. The proteasome inhibition may play a role as one of the clinical strategy in the peripheral nervous system I/R injury with further understanding its mechanism of action.
Collapse
|
46
|
Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, Eifes S, Dicato M, Aggarwal BB, Visvikis A, Diederich M. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol 2009; 77:397-411. [PMID: 18996094 DOI: 10.1016/j.bcp.2008.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.
Collapse
Affiliation(s)
- Simone Reuter
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hedhli N, Lizano P, Hong C, Fritzky LF, Dhar SK, Liu H, Tian Y, Gao S, Madura K, Vatner SF, Depre C. Proteasome inhibition decreases cardiac remodeling after initiation of pressure overload. Am J Physiol Heart Circ Physiol 2008; 295:H1385-93. [PMID: 18676687 PMCID: PMC2593511 DOI: 10.1152/ajpheart.00532.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/29/2008] [Indexed: 11/22/2022]
Abstract
We tested the possibility that proteasome inhibition may reverse preexisting cardiac hypertrophy and improve remodeling upon pressure overload. Mice were submitted to aortic banding and followed up for 3 wk. The proteasome inhibitor epoxomicin (0.5 mg/kg) or the vehicle was injected daily, starting 2 wk after banding. At the end of the third week, vehicle-treated banded animals showed significant (P<0.05) increase in proteasome activity (PA), left ventricle-to-tibial length ratio (LV/TL), myocyte cross-sectional area (MCA), and myocyte apoptosis compared with sham-operated animals and developed signs of heart failure, including increased lung weight-to-TL ratio and decreased ejection fraction. When compared with that group, banded mice treated with epoxomicin showed no increase in PA, a lower LV/TL and MCA, reduced apoptosis, stabilized ejection fraction, and no signs of heart failure. Because overload-mediated cardiac remodeling largely depends on the activation of the proteasome-regulated transcription factor NF-kappaB, we tested whether epoxomicin would prevent this activation. NF-kappaB activity increased significantly upon overload, which was suppressed by epoxomicin. The expression of NF-kappaB-dependent transcripts, encoding collagen types I and III and the matrix metalloprotease-2, increased (P<0.05) after banding, which was abolished by epoxomicin. The accumulation of collagen after overload, as measured by histology, was 75% lower (P<0.05) with epoxomicin compared with vehicle. Myocyte apoptosis increased by fourfold in hearts submitted to aortic banding compared with sham-operated hearts, which was reduced by half upon epoxomicin treatment. Therefore, we propose that proteasome inhibition after the onset of pressure overload rescues ventricular remodeling by stabilizing cardiac function, suppressing further progression of hypertrophy, repressing collagen accumulation, and reducing myocyte apoptosis.
Collapse
Affiliation(s)
- Nadia Hedhli
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gutierrez H, O'Keeffe GW, Gavaldà N, Gallagher D, Davies AM. Nuclear factor kappa B signaling either stimulates or inhibits neurite growth depending on the phosphorylation status of p65/RelA. J Neurosci 2008; 28:8246-56. [PMID: 18701687 PMCID: PMC3512167 DOI: 10.1523/jneurosci.1941-08.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 06/26/2008] [Accepted: 07/03/2008] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) signaling is known to promote neurite growth from developing sensory neurons and to enhance the size and complexity of pyramidal neuron dendritic arbors in the developing cerebral cortex. In marked contrast, here we show that NF-kappaB signaling can also exert a potent inhibitory influence on neurite growth in certain neurons, and can either promote or inhibit neurite growth in the same neurons depending on the mechanism of NF-kappaB activation. In neonatal superior cervical ganglion sympathetic neurons, enhancing NF-kappaB transcriptional activity by overexpressing either the p65 NF-kappaB subunit or the IkappaB kinase-beta (IKKbeta) subunit of the IkappaB kinase complex, or by tumor necrosis factor alpha (TNFalpha) treatment, strongly inhibits neurite growth. Paradoxically in neonatal nodose ganglion sensory neurons, enhancing NF-kappaB transcriptional activity by p65/p50 overexpression increases neurite growth, whereas enhancing NF-kappaB transcriptional activity by IKKbeta overexpression inhibits neurite growth. In addition to activating NF-kappaB, IKKbeta overexpression leads to phosphorylation of p65 on serine 536. Blockade of serine 536 phosphorylation by a S536A-p65 mutant protein prevents the growth-inhibitory effects of IKKbeta overexpression in both sensory and sympathetic neurons and the growth-inhibitory effects of TNFalpha on sympathetic neurons. Furthermore, expression of a p65 S536D phosphomimetic mutant inhibits neurite growth from sensory neurons. These results demonstrate that NF-kappaB can either stimulate or inhibit neurite growth in developing neurons depending on the phosphorylation status of p65.
Collapse
Affiliation(s)
- Humberto Gutierrez
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | - Gerard W. O'Keeffe
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | - Núria Gavaldà
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | - Denis Gallagher
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | - Alun M. Davies
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| |
Collapse
|
49
|
Abstract
The intestinal microflora has a significant role in intestinal health and gut function. The neonatal population is unique in that intestinal colonization is not established and is known to be influenced by delivery method, feeding, gestational age, and medical interventions. The preterm infant is particularly sensitive to colonization patterns as inherent intestinal defense mechanisms are immature and immature intestinal epithelial cells are known to have exaggerated inflammatory responses to both commensal and pathogenic bacteria. These responses contribute to the development of neonatal necrotizing enterocolitis in this patient population. As certain bacteria are known to influence intestinal maturation and down-regulate intestinal inflammation, it has been suggested that influencing the intestinal flora of preterm infants may be beneficial. Clinical studies indicate that probiotic therapy may decrease the incidence of necrotizing enterocolitis and studies are ongoing to elucidate the mechanism of action of different probiotic organisms. Although concerns remain and further study is necessary, probiotics are a plausible means of optimizing intestinal colonization and influencing outcome of these vulnerable infants.
Collapse
Affiliation(s)
- Erika C Claud
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
50
|
Hong JR, Guan BJ, Her GM, Evensen O, Santi N, Wu JL. Aquatic birnavirus infection activates the transcription factor NF-kappaB via tyrosine kinase signalling leading to cell death. JOURNAL OF FISH DISEASES 2008; 31:451-460. [PMID: 18471101 DOI: 10.1111/j.1365-2761.2008.00928.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Our previous studies found that infectious pancreatic necrosis virus (IPNV) induces host apoptotic cell death, possibly through a newly synthesized protein trigger. Here, we examine whether IPNV infection can induce NF-kappaB activation through tyrosine kinase signalling of CHSE-214 cell death (host cell death). Using the electrophoretic mobility shift assay (EMSA) to detect transcription factor activation, we found that NF-kappaB is apparently activated 6-8 h post-IPNV infection. Using genistein (100 microg mL(-1); a tyrosine kinase inhibitor) to determine whether NF-kappaB activation requires tyrosine kinase activation, we found genistein blocks NF-kappaB activation at 8 h post-infection (p.i), and either enhances cell viability up to 50% at 12 h p.i. or blocks DNA fragmentation at 24 h p.i. Furthermore, the proteasome inhibitors PSI-I and PSI-II (both at 40 microm) also effectively blocked the NF-kappaB activation as well as stimulating a 30% increase in cell viability (30% decrease in apoptosis) at 8 and 12 h p.i. Taken together our data suggest that IPNV may induce NF-kappaB activation through tyrosine kinase signalling, which may be associated with induction of apoptosis.
Collapse
Affiliation(s)
- J-R Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|