1
|
Li X, Edén A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA, Sellgren CM, Engberg G, Piehl F, Gisslen M, Kumlien E, Virhammar J, Orhan F, Rostami E, Schwieler L, Erhardt S. Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses. Brain Behav Immun 2025; 124:163-176. [PMID: 39615604 DOI: 10.1016/j.bbi.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients. Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers. Single cell transcriptomic data from a previous study of 130 COVID-19 patients was used to investigate the expression of key genes in the kynurenine pathway. The present study reveals that the neuroactive kynurenine pathway metabolites quinolinic acid (QUIN) and kynurenic acid (KYNA) are increased in CSF in patients with acute COVID-19. In addition, CSF levels of kynurenine, ratio of kynurenine/tryptophan (rKT) and QUIN correlate with neurodegenerative markers. Furthermore, tryptophan is significantly decreased in plasma but not in the CSF. In addition, the kynurenine pathway is strongly activated in the plasma and correlates with the peripheral immunological marker neopterin. Single-cell transcriptomics revealed upregulated gene expressions of the rate-limiting enzyme indoleamine 2,3- dioxygenase1 (IDO1) in CD14+ and CD16+ monocytes that correlated with type II-interferon response exclusively in COVID-19 patients. In summary, our study confirms significant activation of the peripheral kynurenine pathway in patients with acute COVID-19 and, notably, this is the first study to identify elevated levels of kynurenine metabolites in the central nervous system associated with the disease. Our findings suggest that peripheral inflammation, potentially linked to overexpression of IDO1 in monocytes, activates the kynurenine pathway. Increased plasma kynurenine, crossing the blood-brain barrier, serves as a source for elevated brain KYNA and neurotoxic QUIN. We conclude that blocking peripheral-to-central kynurenine transport could be a promising strategy to protect against neurotoxic effects of QUIN in COVID-19 patients.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Janet L Cunningham
- Department of Medical Science, Psychiatry, Uppsala University, Uppsala 75185, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry─BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden; The ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | | | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Fredrik Piehl
- Unit of Neuroimmunology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm 17177, Sweden; Division of Neurology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden; Public Health Agency of Sweden, Solna, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
2
|
Tai TS, Hsu DW, Yang YS, Tsai CY, Shi JW, Wu CH, Hsu SC. IL-10RA governor the expression of IDO in the instruction of lymphocyte immunity. Br J Cancer 2025; 132:126-136. [PMID: 39592739 PMCID: PMC11723913 DOI: 10.1038/s41416-024-02893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO) impairs anti-pathogen and anti-tumour immunity. Mesenchymal stem cells (MSCs) modulate immunity via IDO but also suppress IFN-γ. While MSC IDO induction by IFN-γ is established, other drivers in this immunosuppressive setting remain unknown. METHODS Human bone marrow mesenchymal stem cells (MSCs) with IDO or IL-10RA knockdown were co-cultured with healthy donor T cells to assess immunosuppression. PDAC organoid anticancer activity was also tested in these co-cultures. RESULTS Co-culturing MSCs with T cells in an IL-10RA-enriched environment enhances IDO expression, resulting in T cell suppression. Moreover, IL-10RA-positive MSCs collected from co-cultures with IL-10 supplementation show increased IDO expression. Conversely, MSCs with IL-10RA knockdown exhibit a significant reduction in IDO RNA and protein expression, as well as STAT3 phosphorylation status, which is a known upstream signalling pathway in IDO gene regulation, in T cell co-cultures. Down-regulation of IL-10RA also inhibits IDO activity in MSCs, resulting in reduced T cell suppression, and enabling the co-cultured T cells to kill PDAC organoids. CONCLUSION Our research reveals IL-10RA as a pharmacological target in stromal cells for enhancing T cell-mediated PDAC eradication by downregulating IDO via blocked IL-10/IL-10RA signalling in MSCs. This advances IL-10RA interference in the tumour microenvironment (TME) to restore T cell cytotoxicity against cancers.
Collapse
Affiliation(s)
- Tzong-Shyuan Tai
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| | - Yu-Shao Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Yen Tsai
- Transgenic Core Facility, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jai-Wen Shi
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung City, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Hui Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
- Graduate Institute of Biomedical Science, Immunology Research and Development Center, China Medical University, Taichung City, Taiwan.
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan.
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan.
| |
Collapse
|
3
|
Olivas J, Nogueira C, Helble J, Starnbach MN. Cytotoxic CD4+ T Cells Are Induced during Infection with Chlamydia trachomatis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:328-338. [PMID: 38905023 PMCID: PMC11279525 DOI: 10.4049/jimmunol.2300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection in both men and women. Immunity to C. trachomatis involves many cell types, but CD4+ T cells play a key role in protecting the host during natural infection. Specifically, IFN-γ production by CD4+ T cells is the main effector responsible for bacterial clearance, yet the exact mechanism by which IFN-γ confers protection is poorly defined. In our efforts to define the specific mechanisms for bacterial clearance, we now show that IFN-γ upregulates expression of MHC class II (MHCII) on nonhematopoietic cells during C. trachomatis infection in vivo. We also find that MHCII expression on epithelial cells of the upper genital tract contributes to the efficient clearance of bacteria mediated by pathogen-specific CD4+ Th1 cells. As we further cataloged the protective mechanisms of C. trachomatis-specific CD4+ T cells, we found that the T cells also express granzyme B (GzmB) when coincubated with infected cells. In addition, during C. trachomatis infection of mice, primed activated-naive CD4+ Th1 cells displayed elevated granzyme transcripts (GzmA, GzmB, GzmM, GzmK, GzmC) compared with memory CD4+ T cells in vivo. Finally, using intracellular cytokine staining and a GzmB-/- mouse strain, we show that C. trachomatis-specific CD4+ Th1 cells express GzmB upon Ag stimulation, and that this correlates with Chlamydia clearance in vivo. Together these results have led us to conclude that Chlamydia-specific CD4+ Th1 cells develop cytotoxic capacity through engagement with nonhematopoietic MHCII, and this correlates to C. trachomatis clearance.
Collapse
Affiliation(s)
- Joanna Olivas
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Caterina Nogueira
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Helble
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Chajadine M, Laurans L, Radecke T, Mouttoulingam N, Al-Rifai R, Bacquer E, Delaroque C, Rytter H, Bredon M, Knosp C, Vilar J, Fontaine C, Suffee N, Vandestienne M, Esposito B, Dairou J, Launay JM, Callebert J, Tedgui A, Ait-Oufella H, Sokol H, Chassaing B, Taleb S. Harnessing intestinal tryptophan catabolism to relieve atherosclerosis in mice. Nat Commun 2024; 15:6390. [PMID: 39080345 PMCID: PMC11289133 DOI: 10.1038/s41467-024-50807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Tryptophan (Trp) is an essential amino acid, whose metabolism is a key gatekeeper of intestinal homeostasis. Yet, its systemic effects, particularly on atherosclerosis, remain unknown. Here we show that high-fat diet (HFD) increases the activity of intestinal indoleamine 2, 3-dioxygenase 1 (IDO), which shifts Trp metabolism from the production of microbiota-derived indole metabolites towards kynurenine production. Under HFD, the specific deletion of IDO in intestinal epithelial cells leads to intestinal inflammation, impaired intestinal barrier, augmented lesional T lymphocytes and atherosclerosis. This is associated with an increase in serotonin production and a decrease in indole metabolites, thus hijacking Trp for the serotonin pathway. Inhibition of intestinal serotonin production or supplementation with indole derivatives alleviates plaque inflammation and atherosclerosis. In summary, we uncover a pivotal role of intestinal IDO in the fine-tuning of Trp metabolism with systemic effects on atherosclerosis, paving the way for new therapeutic strategies to relieve gut-associated inflammatory diseases.
Collapse
Affiliation(s)
- Mouna Chajadine
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Tobias Radecke
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Rida Al-Rifai
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Emilie Bacquer
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Clara Delaroque
- Microbiome-Host interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Université Paris Cité, Paris, France
| | - Héloïse Rytter
- Microbiome-Host interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Université Paris Cité, Paris, France
| | - Marius Bredon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Knosp
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - José Vilar
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Coralie Fontaine
- Inserm U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432 Toulouse cedex 04, cedex, France
| | - Nadine Suffee
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Bruno Esposito
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France. 45 rue des Saints Pères, 75006, Paris, France
| | - Jean Marie Launay
- Assistance Publique Hôpitaux de Paris, Service de Biochimie and INSERM U942, Hôpital Lariboisière, Paris, France
| | - Jacques Callebert
- Assistance Publique Hôpitaux de Paris, Service de Biochimie and INSERM U942, Hôpital Lariboisière, Paris, France
| | - Alain Tedgui
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France
| | - Benoit Chassaing
- Microbiome-Host interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Université Paris Cité, Paris, France
| | - Soraya Taleb
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
| |
Collapse
|
5
|
Gan J, Wang Y, Deng Y, Zhang J, Wang S, Jiang X, Guo M, Song L. Sacubitril/valsartan ameliorates cardiac function and ventricular remodeling in CHF rats via the inhibition of the tryptophan/kynurenine metabolism and inflammation. Sci Rep 2024; 14:12377. [PMID: 38811632 PMCID: PMC11136956 DOI: 10.1038/s41598-024-62472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1β, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1β, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.
Collapse
Affiliation(s)
- Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Deng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lili Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Chen HY, Hsieh WC, Liu YC, Li HY, Liu PY, Hsu YT, Hsu SC, Luo AC, Kuo WC, Huang YJ, Liou GG, Lin MY, Ko CJ, Tsai HC, Chang SJ. Mitochondrial injury induced by a Salmonella genotoxin triggers the proinflammatory senescence-associated secretory phenotype. Nat Commun 2024; 15:2778. [PMID: 38555361 PMCID: PMC10981749 DOI: 10.1038/s41467-024-47190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.
Collapse
Affiliation(s)
- Han-Yi Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chieh Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yo Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Hsu
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Chi Luo
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jhen Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gan-Guang Liou
- Cryo-EM Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yun Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Jung Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Rudjord-Levann AM, Ye Z, Hafkenscheid L, Horn S, Wiegertjes R, Nielsen MA, Song M, Mathiesen CB, Stoop J, Stowell S, Straten PT, Leffler H, Vakhrushev SY, Dabelsteen S, Olsen JV, Wandall HH. Galectin-1 induces a tumor-associated macrophage phenotype and upregulates indoleamine 2,3-dioxygenase-1. iScience 2023; 26:106984. [PMID: 37534161 PMCID: PMC10391608 DOI: 10.1016/j.isci.2023.106984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Galectins are a group of carbohydrate-binding proteins with a presumed immunomodulatory role and an elusive function on antigen-presenting cells. Here we analyzed the expression of galectin-1 and found upregulation of galectin-1 in the extracellular matrix across multiple tumors. Performing an in-depth and dynamic proteomic and phosphoproteomic analysis of human macrophages stimulated with galectin-1, we show that galectin-1 induces a tumor-associated macrophage phenotype with increased expression of key immune checkpoint protein programmed cell death 1 ligand 1 (PD-L1/CD274) and immunomodulator indoleamine 2,3-dioxygenase-1 (IDO1). Galectin-1 induced IDO1 and its active metabolite kynurenine in a dose-dependent manner through JAK/STAT signaling. In a 3D organotypic tissue model system equipped with genetically engineered tumorigenic epithelial cells, we analyzed the cellular source of galectin-1 in the extracellular matrix and found that galectin-1 is derived from epithelial and stromal cells. Our results highlight the potential of targeting galectin-1 in immunotherapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Asha M. Rudjord-Levann
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Hafkenscheid
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabrina Horn
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renske Wiegertjes
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A.I. Nielsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Song
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B.K. Mathiesen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesse Stoop
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sean Stowell
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Per Thor Straten
- Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Hakon Leffler
- Division of Microbiology, Immunology and Glycobiology, BMC C1228b, Klinikgatan 28, Lund, Sweden
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
9
|
Yoshioka S, Ikeda T, Fukuchi S, Kawai Y, Ohta K, Murakami H, Ogo N, Muraoka D, Takikawa O, Asai A. Identification and Characterization of a Novel Dual Inhibitor of
Indoleamine 2,3-dioxygenase 1 and Tryptophan 2,3-dioxygenase. Int J Tryptophan Res 2022; 15:11786469221138456. [PMCID: PMC9716449 DOI: 10.1177/11786469221138456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Kynurenine (Kyn), a metabolite of tryptophan (Trp), is a key regulator of mammal
immune responses such as cancer immune tolerance. Indoleamine-2,3-dioxygenase
(IDO) and tryptophan-2,3-dioxygenase (TDO) are main enzymes regulating the first
and rate-limiting step of the Kyn pathway. To identify new small molecule
inhibitors of TDO, we selected A172 glioblastoma cell line constitutively
expressed TDO. Characterization of this cell line using kinase inhibitor library
resulted in identification of MEK/ERK pathway-dependent TDO expression. After
knowing the properties for TDO expression, we further proceeded to screen
chemical library for TDO inhibitors. We previously determined that
S-benzylisothiourea derivatives are enzymatic inhibitors of indoleamine
2,3-dioxygenase 1 (IDO1) and suggested that the isothiourea moiety could be an
important pharmacophore for binding to heme. Based on this premise, we screened
an in-house library composed of various isothiourea derivatives and identified a
bisisothiourea derivative, PVZB3001, as an inhibitor of TDO. Interestingly,
PVZB3001 also inhibited the enzymatic activity of IDO1 in both cell-based and
cell-free assays but did not inhibit other heme enzymes. Molecular docking
studies suggested the importance of isothiourea moieties at the ortho position
of the phenyl ring for the inhibition of catalytic activity. PVZB3001 showed
competitive inhibition against TDO, and this was supported by the docking
simulation. PVZB3001 recovered natural killer (NK) cell viability and functions
by inhibiting Kyn accumulation in conditioned medium of both IDO1- and
TDO-expressing cells. Furthermore, oral administration of IDO1-overexpressing
tumor-bearing mice with PVZB3001 significantly inhibited tumor growth. Thus, we
identified a novel selective dual inhibitor of IDO1 and TDO using the Kyn
production assay with a glioblastoma cell line. This inhibitor could be a useful
pharmacological tool for modulating the Kyn pathway in a variety of experimental
systems.
Collapse
Affiliation(s)
- Saeko Yoshioka
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomonori Ikeda
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sogo Fukuchi
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yurika Kawai
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Katsumi Ohta
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hisashi Murakami
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Daisuke Muraoka
- Department of Oncology, Nagasaki
University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Osamu Takikawa
- National Institute for Longevity
Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate
School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan,Akira Asai, Graduate School of
Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka
422-8526, Japan.
| |
Collapse
|
10
|
Paeslack N, Mimmler M, Becker S, Gao Z, Khuu MP, Mann A, Malinarich F, Regen T, Reinhardt C. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids 2022; 54:1339-1356. [PMID: 35451695 PMCID: PMC9641817 DOI: 10.1007/s00726-022-03161-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/27/2022] [Indexed: 12/17/2022]
Abstract
The essential amino acid tryptophan (Trp) is metabolized by gut commensals, yielding in compounds that affect innate immune cell functions directly, but also acting on the aryl hydrocarbon receptor (AHR), thus regulating the maintenance of group 3 innate lymphoid cells (ILCs), promoting T helper 17 (TH17) cell differentiation, and interleukin-22 production. In addition, microbiota-derived Trp metabolites have direct effects on the vascular endothelium, thus influencing the development of vascular inflammatory phenotypes. Indoxyl sulfate was demonstrated to promote vascular inflammation, whereas indole-3-propionic acid and indole-3-aldehyde had protective roles. Furthermore, there is increasing evidence for a contributory role of microbiota-derived indole-derivatives in blood pressure regulation and hypertension. Interestingly, there are indications for a role of the kynurenine pathway in atherosclerotic lesion development. Here, we provide an overview on the emerging role of gut commensals in the modulation of Trp metabolism and its influence in cardiovascular disease development.
Collapse
Affiliation(s)
- Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Maximilian Mimmler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Stefanie Becker
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Frano Malinarich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112756. [PMID: 35681736 PMCID: PMC9179436 DOI: 10.3390/cancers14112756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in the tumor microenvironment (TME). Recent studies have shown that the main cellular components of TME interact with each other through this pathway to promote the formation of tumor immunosuppressive microenvironment. Here, we review the role of the immunosuppression mechanisms mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as a new tumor immunotherapy target, as well as the current clinical research progress.
Collapse
|
12
|
LI XM, YUAN DY, LIU YH, ZHU L, QIN HK, YANG YB, LI Y, YAN F, WANG YJ. Panax notoginseng saponins prevent colitis-associated colorectal cancer via inhibition IDO1 mediated immune regulation. Chin J Nat Med 2022; 20:258-269. [DOI: 10.1016/s1875-5364(22)60179-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 12/11/2022]
|
13
|
Khoshnevisan K, Chehrehgosha M, Conant M, Mohammad Meftah A, Baharifar H, Ejtahed HS, Angoorani P, Gholami M, Sharifi F, Maleki H, Larijani B, Khorramizadeh MR. Interactive relationship between Trp metabolites and gut microbiota: The impact on human pathology of disease. J Appl Microbiol 2022; 132:4186-4207. [PMID: 35304801 DOI: 10.1111/jam.15533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
Tryptophan (Trp), an α-amino acid, is the precursor of serotonin (5-hydroxytryptamine, 5-HT), which is involved in a variety of features of metabolic function and human nutrition. Evidence highlights the role of Trp metabolites (exclusively 5-HT) in the gastrointestinal (GI) tract; however, the mechanisms of action involved in the release of 5-HT in the GI tract are still unknown. Considering the fact that variations of 5-HT may facilitate the growth of certain GI disorders, gaining a better understanding of the function and release of 5-HT in the GI tract would be beneficial. Additionally, investigating Trp metabolism may clarify the relationship between Trp and gut microbiota. It is believed that other metabolites of Trp (mostly that of the kynurenine pathway) may play a significant role in controlling gut microbiota function. In this review, we have attempted to summarize the current research investigating the relationship of gut microbiota, Trp, and 5-HT metabolism (with particular attention paid to their metabolite type, as well as a discussion of the research methods used in each study). Taking together, regarding the role that Trp/5-HT plays in a range of physical and mental diseases, the gut bacterial types, as well as the related disorders, have been exclusively considered.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Chehrehgosha
- Department of Surgical Technology, Paramedical School, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Gerontology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Melissa Conant
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Amir Mohammad Meftah
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Gholami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Savino F, Daprà V, Savino A, Calvi C, Montanari P, Galliano I, Bergallo M. Assessment of interferon gamma and indoleamine 2,3-dioxygenase 1 analysis during respiratory syncytial virus infection in infants in Italy: an observational case-control study. BMJ Open 2022; 12:e053323. [PMID: 35228282 PMCID: PMC8886424 DOI: 10.1136/bmjopen-2021-053323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The aim of this study was to measure interferon gamma (IFN-γ) and indoleamine 2,3-dioxygenase 1 (IDO1) values in the White blood cells of infants during respiratory tract infections and to compare these with healthy age-matched controls. DESIGN This was a prospective, observational case-control study conducted in 2019-2020. SETTING The study took place at Regina Margherita Children's Hospital, Turin, Italy. PARTICIPANTS The study comprised 63 infants, including 26 patients hospitalised for bronchiolitis due to a respiratory syncytial virus (RSV) infection and 37 age-matched controls. The inclusion criteria included a positive RSV test for an infant with bronchiolitis. METHODS We collected peripheral blood and measured the relative quantification of messenger RNA (mRNA) expression of IFN-γ and IDO1 with TaqMan real-time PCR amplification. The data were collected on the first day of admission. RESULTS The mean age of the 26 patients with RSV bronchiolitis (53.8% female) was 85 (9-346) days when they were admitted to the hospital. Their mean gestational age at birth was 38 weeks and their mean birth weight was 3100 (2780-3730) g. The expression of IFN-γ was significantly reduced in patients with bronchiolitis RSV compared with healthy controls (p=0.0132). However, there was no significant difference between the two groups when the IDO1 mRNA expression values in their WCC were measured (p=0.0642). CONCLUSION Our findings did not clarify whether IDO1 expression was related to the early stage of the disease or to the young age of the infants. The data provide evidence that IFN-γ was significantly reduced in infants with bronchiolitis due to RSV, compared with age-matched healthy controls, but the IDO1 was not different. New investigations that focus on subjects infected with RSV at different stages of infancy would help to clarify whether IDO1 expression can be related to age.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric care, Regina Margherita Children's Hospital, AOU, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Valentina Daprà
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Andrea Savino
- Post graduate School of Pediatrics, University of Turin. Piazza Polonia, 94 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Pediatric Laboratory, University of Turin, Medical School, 10126 Turin, Italy
| |
Collapse
|
15
|
Zhao J, Wang Y. Editorial: Functional heart recovery in an adult mammal, the spiny mouse. Int J Cardiol 2021; 342:63-64. [PMID: 34425139 DOI: 10.1016/j.ijcard.2021.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
16
|
Somarribas Patterson LF, Vardhana SA. Metabolic regulation of the cancer-immunity cycle. Trends Immunol 2021; 42:975-993. [PMID: 34610889 DOI: 10.1016/j.it.2021.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies.
Collapse
Affiliation(s)
- Luis F Somarribas Patterson
- Department of Biochemistry, School of Medicine, University of Costa Rica, 11501-2060 San José, Costa Rica; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
17
|
Tryptophan: From Diet to Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189904. [PMID: 34576067 PMCID: PMC8472285 DOI: 10.3390/ijms22189904] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the major causes of mortality worldwide. Inflammation is the underlying common mechanism involved in CVD. It has been recently related to amino acid metabolism, which acts as a critical regulator of innate and adaptive immune responses. Among different metabolites that have emerged as important regulators of immune and inflammatory responses, tryptophan (Trp) metabolites have been shown to play a pivotal role in CVD. Here, we provide an overview of the fundamental aspects of Trp metabolism and the interplay between the dysregulation of the main actors involved in Trp metabolism such as indoleamine 2, 3-dioxygenase 1 (IDO) and CVD, including atherosclerosis and myocardial infarction. IDO has a prominent and complex role. Its activity, impacting on several biological pathways, complicates our understanding of its function, particularly in CVD, where it is still under debate. The discrepancy of the observed IDO effects could be potentially explained by its specific cell and tissue contribution, encouraging further investigations regarding the role of this enzyme. Thus, improving our understanding of the function of Trp as well as its derived metabolites will help to move one step closer towards tailored therapies aiming to treat CVD.
Collapse
|
18
|
Millischer V, Heinzl M, Faka A, Resl M, Trepci A, Klammer C, Egger M, Dieplinger B, Clodi M, Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation 2021; 18:158. [PMID: 34273987 PMCID: PMC8286561 DOI: 10.1186/s12974-021-02196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Administration of lipopolysaccharide (LPS) from Gram-negative bacteria, also known as the human endotoxemia model, is a standardized and safe model of human inflammation. Experimental studies have revealed that peripheral administration of LPS leads to induction of the kynurenine pathway followed by depressive-like behavior and cognitive dysfunction in animals. The aim of the present study is to investigate how acute intravenous LPS administration affects the kynurenine pathway in healthy male human subjects. Methods The present study is a prospective, single-blinded, randomized, placebo-controlled cross-over study to investigate the effects of intravenously administered LPS (Escherichia coli O113, 2 ng/kg) on tryptophan and kynurenine metabolites over 48 h and their association with interleukin-6 (IL-6) and C-reactive protein (CRP). The study included 10 healthy, non-smoking men (18–40 years) free from medication. Statistical differences in tryptophan and kynurenine metabolites as well as associations with IL-6 and CRP in LPS and placebo treated subjects were assessed with linear mixed-effects models. Results Systemic injection of LPS was associated with significantly lower concentrations of plasma tryptophan and kynurenine after 4 h, as well as higher concentrations of quinolinic acid (QUIN) after 48 h compared to the placebo injection. No differences were found in kynurenic acid (KYNA) or picolinic acid plasma concentrations between LPS or placebo treatment. The KYNA/kynurenine ratio peaked at 6 h post LPS injection while QUIN/kynurenine maintained significantly higher from 3 h post LPS injection until 24 h. The kynurenine/tryptophan ratio was higher at 24 h and 48 h post LPS treatment. Finally, we report an association between the kynurenine/tryptophan ratio and CRP. Conclusions Our findings strongly support the concept that an inflammatory challenge with LPS induces the kynurenine pathway in humans, activating both the neurotoxic (QUIN) and neuroprotective (KYNA) branch of the kynurenine pathway. Trial registration This study is based on a study registered at ClinicalTrials.gov, NCT03392701. Registered 21 December 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02196-x.
Collapse
Affiliation(s)
- Vincent Millischer
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Translational Psychiatry, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Heinzl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Anthi Faka
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Resl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Ada Trepci
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Klammer
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria.,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria
| | - Margot Egger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Linz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Linz, Austria
| | - Martin Clodi
- Department of Internal Medicine, Konventhospital Barmherzige Brueder (St. John of God Hospital), Seilerstaette 2, 4021, Linz, Austria. .,ICMR-Institute for Cardiovascular and Metabolic Research, JKU Linz, Linz, Austria.
| | - Lilly Schwieler
- Department of Physiology & Pharmacology, Sec. Neuropsychoimmunology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Yarza R, Bover M, Agulló-Ortuño MT, Iglesias-Docampo LC. Current approach and novel perspectives in nasopharyngeal carcinoma: the role of targeting proteasome dysregulation as a molecular landmark in nasopharyngeal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:202. [PMID: 34154654 PMCID: PMC8215824 DOI: 10.1186/s13046-021-02010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) represents a molecularly paradigmatic tumor given the complex diversity of environmental as well as host dependent factors that are closely implicated in tissue transformation and carcinogenesis. Epstein Barr Virus (EBV) plays a key role in tissue invasion, hyperplasia and malignant transformation. Therefore, EBV related oncoviral proteins such as Latent Membrane Protein family (LMP1, LMP2), Epstein Barr Nuclear Antigen 1 (EBNA1) and EBV related glycoprotein B (gB) are responsible for inducing intracellular signalling aberrations leading to sustained proliferation and further acquisition of NPC related invasive nature and metastatic potential.Dysregulation of proteasome signaling seems to be centrally implicated in oncoviral protein stabilization as well as in modulating tumor microenvironment. Different studies in vitro and in vivo suggest a potential role of proteasome inhibitors in the therapeutic setting of NPC. Furthermore, alterations affecting proteasome signalling in NPC have been associated to tumor growth and invasion, distant metastasis, immune exclusion and resistance as well as to clinical poor prognosis. So on, recent studies have shown the efficacy of immunotherapy as a suitable therapeutic approach to NPC. Nevertheless, novel strategies seem to look for combinatorial regimens aiming to potentiate immune recognition as well as to restore both primary and acquired immune resistance.In this work, our goal is to thoroughly review the molecular implications of proteasome dysregulation in the molecular pathogenesis of NPC, together with their direct relationship with EBV related oncoviral proteins and their role in promoting immune evasion and resistance. We also aim to hypothesize about the feasibility of the use of proteasome inhibitors as part of immunotherapy-including combinatorial regimens for their potential role in reversing immune resistance and favouring tumor recognition and eventual tumor death.
Collapse
Affiliation(s)
- Ramon Yarza
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain. .,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.
| | - Mateo Bover
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Maria Teresa Agulló-Ortuño
- Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain. .,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain. .,Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain. .,Facultad de Fisioterapia y Enfermería, Universidad de Castilla La Mancha (UCLM), Toledo, Spain.
| | - Lara Carmen Iglesias-Docampo
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
20
|
Konje VC, Rajendiran TM, Bellovich K, Gadegbeku CA, Gipson DS, Afshinnia F, Mathew AV, the Michigan Kidney Translational Core CPROBE Investigator Group. Tryptophan levels associate with incident cardiovascular disease in chronic kidney disease. Clin Kidney J 2021; 14:1097-1105. [PMID: 34094518 PMCID: PMC8173620 DOI: 10.1093/ckj/sfaa031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-traditional risk factors like inflammation and oxidative stress play an essential role in the increased cardiovascular disease (CVD) risk prevalent in chronic kidney disease (CKD). Tryptophan catabolism by the kynurenine pathway (KP) is linked to systemic inflammation and CVD in the general and dialysis population. However, the relationship of KP to incident CVD in the CKD population is unknown. METHODS We measured tryptophan metabolites using targeted mass spectrometry in 92 patients with a history of CVD (old CVD); 46 patients with no history of CVD and new CVD during follow-up (no CVD); and 46 patients with no CVD history who developed CVD in the median follow-up period of 2 years (incident CVD). RESULTS The three groups are well-matched in age, gender, race, diabetes status and CKD stage, and only differed in total cholesterol and proteinuria. Tryptophan and kynurenine levels significantly decreased in patients with 'Incident CVD' compared with the no CVD or old CVD groups (P = 5.2E-7; P = 0.003 respectively). Kynurenic acid, 3-hydroxykynurenine and kynurenine are all increased with worsening CKD stage (P < 0.05). An increase in tryptophan levels at baseline was associated with 0.32-fold lower odds of incident CVD (P = 0.000014) compared with the no CVD group even after adjustment for classic CVD risk factors. Addition of tryptophan and kynurenine levels to the receiver operating curve constructed from discriminant analysis predicting incident CVD using baseline clinical variables increased the area under the curve from 0.76 to 0.82 (P = 0.04). CONCLUSIONS In summary, our study demonstrates that low tryptophan levels are associated with incident CVD in CKD.
Collapse
Affiliation(s)
- Vetalise C Konje
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Thekkelnaycke M Rajendiran
- Department of Pathology, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Keith Bellovich
- Division of Nephrology, St Clair Nephrology Research, Detroit, MI, USA
| | - Crystal A Gadegbeku
- Section of Nephrology, Hypertension and Kidney Transplantation, Temple University, Philadelphia, PA, USA
| | - Debbie S Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anna V Mathew
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
21
|
D Helble J, N Starnbach M. T cell responses to Chlamydia. Pathog Dis 2021; 79:6164867. [PMID: 33693620 DOI: 10.1093/femspd/ftab014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is the most commonly reported sexually transmitted infection in the United States. The high prevalence of infection and lack of a vaccine indicate a critical knowledge gap surrounding the host's response to infection and how to effectively generate protective immunity. The immune response to C. trachomatis is complex, with cells of the adaptive immune system playing a crucial role in bacterial clearance. Here, we discuss the CD4+ and CD8+ T cell response to Chlamydia, the importance of antigen specificity and the role of memory T cells during the recall response. Ultimately, a deeper understanding of protective immune responses is necessary to develop a vaccine that prevents the inflammatory diseases associated with Chlamydia infection.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107,Corresponding Author: Xinliang (Xin) Ma, M.D., Ph.D., Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Philadelphia, PA19107, Tel: (215)955-4994, Fax: (215)923-6225,
| |
Collapse
|
23
|
Correale J. Immunosuppressive Amino-Acid Catabolizing Enzymes in Multiple Sclerosis. Front Immunol 2021; 11:600428. [PMID: 33552055 PMCID: PMC7855700 DOI: 10.3389/fimmu.2020.600428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system. Although the pathogenesis of MS is not yet fully elucidated, several evidences suggest that autoimmune processes mediated by Th1, Th17, and B cells play an important role in the development of the disease. Similar to other cells, immune cells need continuous access to amino acids (AA) in order to maintain basal metabolism and maintain vitality. When immune cells are activated by inflammation or antigenic signals, their demand for AA increases rapidly. Although AA deprivation itself may weaken the immune response under certain conditions, cells also have AA sensitive pathways that can activate intense alterations in cell metabolism based on changes in AA levels. Several data indicate that cells expressing enzymes that can degrade AA can regulate the functions of antigen-presenting cells and lymphocytes, revealing that the AA pathways are essential for controlling the function, and survival of immune cells, as well as immune cell gene expression. Basal AA catabolism may contribute to immune homeostasis and prevent autoimmunity, while increased AA catalytic activity may enhance immune suppression. In addition, there is increasing evidence that some downstream AA metabolites are important biological mediators of autoimmune response regulation. Two of the most important AA that modulate the immune response are L-Tryptophan (Trp) and L-Arginine (Arg). Tryptophan is catabolized through 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) 1 and IDO2 enzymes, while three other enzymes catabolize Arg: inducible nitric oxide synthetase (iNOS), and two arginase isoforms (ARG1, ARG2). Genes encoding IDO, iNOS and ARG are induced by inflammatory cues such as cytokines, a key feature that distinguishes them from enzymes that catabolize other AA. Evidence suggests that AA catabolism is decreased in MS patients and that this decrease has functional consequences, increasing pro-inflammatory cytokines and decreasing Treg cell numbers. These effects are mediated by at least two distinct pathways involving serine/threonine kinases: the general control nonderepressible 2 kinase (GCN2K) pathway; and the mammalian target of rapamycin (mTOR) pathway. Similarly, IDO1-deficient mice showed exacerbation of experimental autoimmune encephalomyelitis (EAE), increased Th1 and Th17 cells, and decreased Treg cells. On the contrary, the administration of downstream Trp metabolite 3-HAA, inhibits Th1/Th17 effector cells and promotes Treg response by up-regulating TGF-β production by dendritic cells, thereby improving EAE. Collectively, these observations stand out the significance of AA catabolism in the regulation of the immune responses in MS patients. The molecules related to these pathways deserve further exploration as potential new therapeutic targets in MS.
Collapse
|
24
|
Yu B, Zhang W, Kwak K, Choi H, Kim DH. Electric Pulse Responsive Magnetic Nanoclusters Loaded with Indoleamine 2,3-Dioxygenase Inhibitor for Synergistic Immuno-Ablation Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54415-54425. [PMID: 33237729 DOI: 10.1021/acsami.0c15679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An overlay of local ablation and immunotherapies could be one of the promising approaches to treat solid tumors, but finding the synergistic combination is still challenging with immune tolerance. Herein, electric pulse responsive iron-oxide-nanocube clusters (IONCs) loaded with indoleamine 2,3-dioxygenase inhibitors (IDOi) are prepared for the enhancement of irreversible electroporation (IRE) cell killing and modulation of the tumor immunosuppressive microenvironment (TIM). IDOi-loaded-IONCs (IDOi-IONCs) show highly responsive movement upon the application of IRE electric pulses inducing local magnetic fields. In vitro and in vivo IRE cell-killing efficiency are significantly enhanced by the IDOi-IONCs. The IRE with IDOi-IONCs also triggers IDOi release from IONCs for TIM modulation. The enhanced cell death and local IDOi release of the IRE with IDOi-IONCs demonstrate a synergistic anticancer effect in vivo with overturning the TIM. The increased infiltration of CD8+ T cells and the elevated ratio of CD8+ T cells to regulatory T cells are confirmed after the IRE with IDOi-IONCs. Further, synergistic interaction between IRE and IDOi-modulated TIM resulted in enhanced elimination of primary and secondary tumors. This proof-of-concept work illustrates a robust modality to guide immune-modulating nanoparticle-mediated immuno-ablation cancer therapies that can be easily tailored to improve its therapeutic outcome.
Collapse
Affiliation(s)
- Bo Yu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Wentao Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
| | - Kijung Kwak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|
25
|
Melhem NJ, Chajadine M, Gomez I, Howangyin KY, Bouvet M, Knosp C, Sun Y, Rouanet M, Laurans L, Cazorla O, Lemitre M, Vilar J, Mallat Z, Tedgui A, Ait-Oufella H, Hulot JS, Callebert J, Launay JM, Fauconnier J, Silvestre JS, Taleb S. Endothelial Cell Indoleamine 2, 3-Dioxygenase 1 Alters Cardiac Function After Myocardial Infarction Through Kynurenine. Circulation 2020; 143:566-580. [PMID: 33272024 DOI: 10.1161/circulationaha.120.050301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ischemic cardiovascular diseases, particularly acute myocardial infarction (MI), is one of the leading causes of mortality worldwide. Indoleamine 2, 3-dioxygenase 1 (IDO) catalyzes 1 rate-limiting step of L-tryptophan metabolism, and emerges as an important regulator of many pathological conditions. We hypothesized that IDO could play a key role to locally regulate cardiac homeostasis after MI. METHODS Cardiac repair was analyzed in mice harboring specific endothelial or smooth muscle cells or cardiomyocyte or myeloid cell deficiency of IDO and challenged with acute myocardial infarction. RESULTS We show that kynurenine generation through IDO is markedly induced after MI in mice. Total genetic deletion or pharmacological inhibition of IDO limits cardiac injury and cardiac dysfunction after MI. Distinct loss of function of IDO in smooth muscle cells, inflammatory cells, or cardiomyocytes does not affect cardiac function and remodeling in infarcted mice. In sharp contrast, mice harboring endothelial cell-specific deletion of IDO show an improvement of cardiac function as well as cardiomyocyte contractility and reduction in adverse ventricular remodeling. In vivo kynurenine supplementation in IDO-deficient mice abrogates the protective effects of IDO deletion. Kynurenine precipitates cardiomyocyte apoptosis through reactive oxygen species production in an aryl hydrocarbon receptor-dependent mechanism. CONCLUSIONS These data suggest that IDO could constitute a new therapeutic target during acute MI.
Collapse
Affiliation(s)
- Nada Joe Melhem
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Mouna Chajadine
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Ingrid Gomez
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Kiave-Yune Howangyin
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Marion Bouvet
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Camille Knosp
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Yanyi Sun
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Marie Rouanet
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Ludivine Laurans
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Olivier Cazorla
- PHYSIOLOGIE ET MÉDECINE EXPÉRIMENTALE DU COEUR ET DES MUSCLES (PHYMEDEXP), Institut national de la santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, France (O.C., J.F.)
| | - Mathilde Lemitre
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - José Vilar
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Ziad Mallat
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.).,Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom (Z.M.)
| | - Alain Tedgui
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Hafid Ait-Oufella
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Jean-Sébastien Hulot
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Jacques Callebert
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, and Institut National de la Santé et de la Recherche Médicale UMR942, Hôpital Lariboisière, France (J.C., J.-M.L.)
| | - Jean-Marie Launay
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, and Institut National de la Santé et de la Recherche Médicale UMR942, Hôpital Lariboisière, France (J.C., J.-M.L.)
| | - Jeremy Fauconnier
- PHYSIOLOGIE ET MÉDECINE EXPÉRIMENTALE DU COEUR ET DES MUSCLES (PHYMEDEXP), Institut national de la santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, France (O.C., J.F.)
| | - Jean-Sébastien Silvestre
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| | - Soraya Taleb
- Université de Paris, Paris-Centre de Recherche Cardiovasculaire (PARCC), Institut National de la Santé et de la Recherche Médicale, France (N.-J.M., M.C., I.G., K.-Y.H., M.B., C.K., Y.S., M.R., L.L., M.L., J.V., Z.M., A.T., H.A.-O., J.-S.H., J.-S.S., S.T.)
| |
Collapse
|
26
|
García-Bernal D, García-Arranz M, García-Guillén AI, García-Hernández AM, Blanquer M, García-Olmo D, Sackstein R, Moraleda JM, Zapata AG. Exofucosylation of Adipose Mesenchymal Stromal Cells Alters Their Secretome Profile. Front Cell Dev Biol 2020; 8:584074. [PMID: 33324641 PMCID: PMC7726227 DOI: 10.3389/fcell.2020.584074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) constitute the cell type more frequently used in many regenerative medicine approaches due to their exclusive immunomodulatory properties, and they have been reported to mediate profound immunomodulatory effects in vivo. Nevertheless, MSCs do not express essential adhesion molecules actively involved in cell migration, a phenotypic feature that hampers their ability to home inflamed tissues following intravenous administration. In this study, we investigated whether modification by fucosylation of murine AdMSCs (mAdMSCs) creates Hematopoietic Cell E-/L-selectin Ligand, the E-selectin-binding CD44 glycoform. This cell surface glycan modification of CD44 has previously shown in preclinical studies to favor trafficking of mAdMSCs to inflamed or injured peripheral tissues. We analyzed the impact that exofucosylation could have in other innate phenotypic and functional properties of MSCs. Compared to unmodified counterparts, fucosylated mAdMSCs demonstrated higher in vitro migration, an altered secretome pattern, including increased expression and secretion of anti-inflammatory molecules, and a higher capacity to inhibit mitogen-stimulated splenocyte proliferation under standard culture conditions. Together, these findings indicate that exofucosylation could represent a suitable cell engineering strategy, not only to facilitate the in vivo MSC colonization of damaged tissues after systemic administration, but also to convert MSCs in a more potent immunomodulatory/anti-inflammatory cell therapy-based product for the treatment of a variety of autoimmune, inflammatory, and degenerative diseases.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
- Department of Internal Medicine, Medicine School, University of Murcia, Murcia, Spain
| | - Mariano García-Arranz
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Ana I. García-Guillén
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | - Ana M. García-Hernández
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | - Miguel Blanquer
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
- Department of Internal Medicine, Medicine School, University of Murcia, Murcia, Spain
| | - Damián García-Olmo
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Robert Sackstein
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain
- Department of Internal Medicine, Medicine School, University of Murcia, Murcia, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
27
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
28
|
Rocco D, Gregorc V, Della Gravara L, Lazzari C, Palazzolo G, Gridelli C. New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinical to phase I clinical trials. Expert Opin Investig Drugs 2020; 29:1005-1023. [PMID: 32643447 DOI: 10.1080/13543784.2020.1793956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The development of immune checkpoint inhibitors (ICI) has represented a revolution in the treatment of non-small cell lung cancer (NSCLC) and has established a new standard of care for different settings. However, through adaptive changes, cancer cells can develop resistance mechanisms to these drugs, hence the necessity for novel immunotherapeutic agents. AREAS COVERED This paper explores the immunotherapeutics currently under investigation in phase I clinical trials for the treatment of NSCLC as monotherapies and combination therapies. It provides two comprehensive tables of phase I agents which are listed according to target, drug, drug class, mechanism of action, setting, trial identifier, and trial status. A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed and ClinicalTrials.gov. EXPERT OPINION A key hurdle to success in this field is our limited understanding of the synergic interactions of the immune targets in the context of the TME. While we can recognize the links between inhibitors and some particularly promising new targets such as TIM-3 and LAG3, we continue to develop approaches to exploit their interactions to enhance the immune response of the patient to tumor cells.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN Dei Colli Monaldi , Naples, Italy
| | - Vanesa Gregorc
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | - Luigi Della Gravara
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli" , Caserta, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital , Avellino, Italy
| |
Collapse
|
29
|
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2020; 53:e12712. [PMID: 31730279 PMCID: PMC6985662 DOI: 10.1111/cpr.12712] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be derived from various adult tissues with multipotent and self-renewal abilities. The characteristics of presenting no major ethical concerns, having low immunogenicity and possessing immune modulation functions make MSCs promising candidates for stem cell therapies. MSCs could promote inflammation when the immune system is underactivated and restrain inflammation when the immune system is overactivated to avoid self-overattack. These cells express many immune suppressors to switch them from a pro-inflammatory phenotype to an anti-inflammatory phenotype, resulting in immune effector cell suppression and immune suppressor cell activation. We would discuss the mechanisms governing the immune modulation function of these cells in this review, especially the immune-suppressive effects of MSCs.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesHealth Science CenterShenzhen UniversityShenzhenChina
- Department of Anatomy, Histology & Developmental BiologyHealth Science CenterShenzhen UniversityShenzhenChina
| | - Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesHealth Science CenterShenzhen UniversityShenzhenChina
- Department of Anatomy, Histology & Developmental BiologyHealth Science CenterShenzhen UniversityShenzhenChina
- Department of ImmunologyHealth Science CenterShenzhen UniversityShenzhenChina
| |
Collapse
|
30
|
Taleb S. Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Front Immunol 2019; 10:2113. [PMID: 31552046 PMCID: PMC6746884 DOI: 10.3389/fimmu.2019.02113] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The intestine has a major role in the digestion and absorption of nutrients, and gut barrier is the first defense line against harmful pathogens. Alteration of the intestinal barrier is associated with enhanced intestinal permeability and development of numerous pathological diseases including gastrointestinal and cardiometabolic diseases. Among the metabolites that play an important role within intestinal health, L Tryptophan (Trp) is one of the nine essential amino acids supplied by diet, whose metabolism appears as a key modulator of gut microbiota, with major impacts on physiological, and pathological pathways. Recently, emerging evidence showed that the Trp catabolism through one major enzyme indoleamine 2,3-dioxygenase 1 (IDO1) expressed by the host affects Trp metabolism by gut microbiota to generate indole metabolites, thereby altering gut function and health in mice and humans. In this mini review, I summarize the most recent advances concerning the role of Trp metabolism in host–microbiota cross-talk in health, and metabolic diseases. This novel aspect of IDO1 function in intestine will better explain its complex roles in a broad range of disease states where the gut function affects local as well as systemic health, and will open new therapeutic strategies.
Collapse
Affiliation(s)
- Soraya Taleb
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, and Université Paris-Descartes, Paris, France
| |
Collapse
|
31
|
Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, Kalergis AM. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol 2019; 106:933-942. [PMID: 31091352 PMCID: PMC7166882 DOI: 10.1002/jlb.4ru0219-051rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
IDO is an enzyme that participates in the degradation of tryptophan (Trp), which is an essential amino acid necessary for vital cellular processes. The degradation of Trp and the metabolites generated by the enzymatic activity of IDO can have immunomodulating effects, notably over T cells, which are particularly sensitive to the absence of Trp and leads to the inhibition of T cell activation, cell death, and the suppression of T cell effector functions. Noteworthy, T cells participate in the cellular immune response against the human respiratory syncytial virus (hRSV) and are essential for viral clearance, as well as the total recovery of the host. Furthermore, inadequate or non‐optimal polarization of T cells is often seen during the acute phase of the disease caused by this pathogen. Here, we discuss the capacity of hRSV to exploit the immunosuppressive features of IDO to reduce T cell function, thus acquiring relevant aspects during the biology of the virus. Additionally, we review studies on the influence of IDO over T cell activation and its relationship with hRSV infection.
Collapse
Affiliation(s)
- Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
32
|
Ott E, Bilonda L, Dansette D, Deleine C, Duchalais E, Podevin J, Volteau C, Bennouna J, Touchefeu Y, Fourquier P, El Alami Thomas W, Chetritt J, Bezieau S, Denis M, Toquet C, Mosnier JF, Jarry A, Bossard C. The density of Tbet+ tumor-infiltrating T lymphocytes reflects an effective and druggable preexisting adaptive antitumor immune response in colorectal cancer, irrespective of the microsatellite status. Oncoimmunology 2019; 8:e1562834. [PMID: 30906656 PMCID: PMC6422378 DOI: 10.1080/2162402x.2018.1562834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023] Open
Abstract
Purpose: The recent success of anti-PD1 antibody in metastatic colorectal cancer (CRC) patients with microsatellite instability (MSI), known to be associated with an upregulated Th1/Tc1 gene signature, provides new promising therapeutic strategies. However, the partial objective response highlights a crucial need for relevant, easily evaluable, predictive biomarkers. Here we explore whether in situ assessment of Tbet+ tumor infiltrating lymphocytes (TILs) reflects a pre-existing functional antitumor Th1/Tc1/IFNγ response, in relation with clinicopathological features, microsatellite status and expression of immunoregulatory molecules (PD1, PDL1, IDO-1). Methodology: In two independent cohorts of CRC (retrospective n = 80; prospective n = 27) we assessed TILs density (CD3, Tbet, PD1) and expression profile of PDL1 and IDO-1 by immunohistochemistry/image analysis. Furthermore, the prospective cohort allowed to perform ex vivo CRC explant cultures and measure by Elisa the IFNγ response, at baseline and upon anti-PD1 treatment. Results: The density of Tbet+ TILs was significantly higher in MSI CRC, especially in the medullary subtype but also in a subgroup of MSS (microsatellite stable), and positively correlated with PD1 and PDL1 expression, but not with IDO-1. Finally, a high number of Tbet+ TILs was associated with a favorable overall survival. These Tbet+ TILs were functional as their density positively correlated with basal IFNγ levels. In addition, the combined score of Tbet+ PD1+ TILs coupled with IDO-1 expression predicted the magnitude of the IFNγ response upon anti-PD1. Conclusion: Altogether, immunohistochemical quantification of Tbet+ TILs is a reliable and accurate tool to recapitulate a preexisting Th1/Tc1/IFNγ antitumor response that can be reinvigorated by anti-PD1 treatment.
Collapse
Affiliation(s)
- Eva Ott
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Linda Bilonda
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Institut Roche, Boulogne-Billancourt, France
| | - Delphine Dansette
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Cécile Deleine
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Emilie Duchalais
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Service de Chirurgie digestive et endocrinienne, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Juliette Podevin
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Service de Chirurgie digestive et endocrinienne, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Christelle Volteau
- Plateforme de Biométrie, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Jaafar Bennouna
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Yann Touchefeu
- Institut des Maladies de l'Appareil Digestif, Oncologie Digestive, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Pierre Fourquier
- Service de Chirurgie Viscérale et Digestive, Hôpital privé du Confluent, Nantes, France
| | | | | | - Stéphane Bezieau
- Faculté de Médecine, Université de Nantes, Nantes, France.,Plateforme de Génétique moléculaire des cancers, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Marc Denis
- Faculté de Médecine, Université de Nantes, Nantes, France.,Plateforme de Génétique moléculaire des cancers, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Claire Toquet
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Jean-François Mosnier
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Anne Jarry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
33
|
Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, Reimann F, Blottière HM, Lapaque N. Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2,3-Dioxygenase 1 ( IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Front Immunol 2018; 9:2838. [PMID: 30619249 PMCID: PMC6297836 DOI: 10.3389/fimmu.2018.02838] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Commensal bacteria are crucial for the development and maintenance of a healthy immune system therefore contributing to the global well-being of their host. A wide variety of metabolites produced by commensal bacteria are influencing host health but the characterization of the multiple molecular mechanisms involved in host-microbiota interactions is still only partially unraveled. The intestinal epithelial cells (IECs) take a central part in the host-microbiota dialogue by inducing the first microbial-derived immune signals. Amongst the numerous effector molecules modulating the immune responses produced by IECs, indoleamine 2,3-dioxygenase-1 (IDO-1) is essential for gut homeostasis. IDO-1 expression is dependent on the microbiota and despites its central role, how the commensal bacteria impacts its expression is still unclear. Therefore, we investigated the impact of individual cultivable commensal bacteria on IDO-1 transcriptional expression and found that the short chain fatty acid (SCFA) butyrate was the main metabolite controlling IDO-1 expression in human primary IECs and IEC cell-lines. This butyrate-driven effect was independent of the G-protein coupled receptors GPR41, GPR43, and GPR109a and of the transcription factors SP1, AP1, and PPARγ for which binding sites were reported in the IDO-1 promoter. We demonstrated for the first time that butyrate represses IDO-1 expression by two distinct mechanisms. Firstly, butyrate decreases STAT1 expression leading to the inhibition of the IFNγ-dependent and phosphoSTAT1-driven transcription of IDO-1. In addition, we described a second mechanism by which butyrate impairs IDO-1 transcription in a STAT1-independent manner that could be attributed to its histone deacetylase (HDAC) inhibitor property. In conclusion, our results showed that IDO-1 expression is down-regulated by butyrate via a dual mechanism: the reduction of STAT1 level and the HDAC inhibitor property of SCFAs.
Collapse
Affiliation(s)
- Camille Martin-Gallausiaux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,IFD, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Pierre Larraufie
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anne Jarry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Ludovica Marinelli
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,IFD, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Florence Ledue
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frank Reimann
- MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,US 1367 MetaGenoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Lapaque
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
34
|
Yentz S, Smith D. Indoleamine 2,3-Dioxygenase (IDO) Inhibition as a Strategy to Augment Cancer Immunotherapy. BioDrugs 2018; 32:311-317. [PMID: 29980987 DOI: 10.1007/s40259-018-0291-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an enzyme of interest in immuno-oncology because of the immunosuppressive effects that result from its role in tryptophan catabolism. IDO is upregulated in malignancy and is associated with poor prognosis in multiple cancer types. IDO inhibitors have been developed to target IDO, both directly and indirectly. Pre-clinical data have shown combined IDO and checkpoint inhibition to be an efficacious strategy for tumor control. Clinical trials of IDO inhibitors with chemotherapy or immunotherapy are currently underway. This review describes the function of IDO and its inhibitors and summarizes the efficacy and toxicity data from recent clinical trials with these drugs.
Collapse
Affiliation(s)
- Sarah Yentz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Health System, 1500 E. Medical Center Drive, C369 Med Inn Building, SPC 5848, Ann Arbor, MI, 48109, USA.
| | - David Smith
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Health System, 1500 E. Medical Center Drive, C369 Med Inn Building, SPC 5848, Ann Arbor, MI, 48109, USA
| |
Collapse
|
35
|
Adam I, Dewi DL, Mooiweer J, Sadik A, Mohapatra SR, Berdel B, Keil M, Sonner JK, Thedieck K, Rose AJ, Platten M, Heiland I, Trump S, Opitz CA. Upregulation of tryptophanyl-tRNA synthethase adapts human cancer cells to nutritional stress caused by tryptophan degradation. Oncoimmunology 2018; 7:e1486353. [PMID: 30524887 PMCID: PMC6279332 DOI: 10.1080/2162402x.2018.1486353] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 01/19/2023] Open
Abstract
Tryptophan (Trp) metabolism is an important target in immuno-oncology as it represents a powerful immunosuppressive mechanism hijacked by tumors for protection against immune destruction. However, it remains unclear how tumor cells can proliferate while degrading the essential amino acid Trp. Trp is incorporated into proteins after it is attached to its tRNA by tryptophanyl-tRNA synthestases. As the tryptophanyl-tRNA synthestases compete for Trp with the Trp-catabolizing enzymes, the balance between these enzymes will determine whether Trp is used for protein synthesis or is degraded. In human cancers expression of the Trp-degrading enzymes indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan-2,3-dioxygenase (TDO2) was positively associated with the expression of the tryptophanyl-tRNA synthestase WARS. One mechanism underlying the association between IDO1 and WARS identified in this study is their joint induction by IFNγ released from tumor-infiltrating T cells. Moreover, we show here that IDO1- and TDO2-mediated Trp deprivation upregulates WARS expression by activating the general control non-derepressible-2 (GCN2) kinase, leading to phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) and induction of activating transcription factor 4 (ATF4). Trp deprivation induced cytoplasmic WARS expression but did not increase nuclear or extracellular WARS levels. GCN2 protected the cells against the effects of Trp starvation and enabled them to quickly make use of Trp for proliferation once it was replenished. Computational modeling of Trp metabolism revealed that Trp deficiency shifted Trp flux towards WARS and protein synthesis. Our data therefore suggest that the upregulation of WARS via IFNγ and/or GCN2-peIF2α-ATF4 signaling protects Trp-degrading cancer cells from excessive intracellular Trp depletion.
Collapse
Affiliation(s)
- Isabell Adam
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dyah L Dewi
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joram Mooiweer
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soumya R Mohapatra
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Berdel
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Keil
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana K Sonner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Thedieck
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Adam J Rose
- Nutrient Metabolism and Signalling Lab, Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Hospital and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT Arctic University of Norway, Tromsø, Norway
| | - Saskia Trump
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christiane A Opitz
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Ibana JA, Sherchand SP, Fontanilla FL, Nagamatsu T, Schust DJ, Quayle AJ, Aiyar A. Chlamydia trachomatis-infected cells and uninfected-bystander cells exhibit diametrically opposed responses to interferon gamma. Sci Rep 2018; 8:8476. [PMID: 29855501 PMCID: PMC5981614 DOI: 10.1038/s41598-018-26765-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The intracellular bacterial pathogen, Chlamydia trachomatis, is a tryptophan auxotroph. Therefore, induction of the host tryptophan catabolizing enzyme, indoleamine-2,3-dioxgenase-1 (IDO1), by interferon gamma (IFNγ) is one of the primary protective responses against chlamydial infection. However, despite the presence of a robust IFNγ response, active and replicating C. trachomatis can be detected in cervical secretions of women. We hypothesized that a primary C. trachomatis infection may evade the IFNγ response, and that the protective effect of this cytokine results from its activation of tryptophan catabolism in bystander cells. To test this hypothesis, we developed a novel method to separate a pool of cells exposed to C. trachomatis into pure populations of live infected and bystander cells and applied this technique to distinguish between the effects of IFNγ on infected and bystander cells. Our findings revealed that the protective induction of IDO1 is suppressed specifically within primary infected cells because Chlamydia attenuates the nuclear import of activated STAT1 following IFNγ exposure, without affecting STAT1 levels or phosphorylation. Critically, the IFNγ-mediated induction of IDO1 activity is unhindered in bystander cells. Therefore, the IDO1-mediated tryptophan catabolism is functional in these cells, transforming these bystander cells into inhospitable hosts for a secondary C. trachomatis infection.
Collapse
Affiliation(s)
- Joyce A Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| | - Shardulendra P Sherchand
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Francis L Fontanilla
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty Medicine, University of Tokyo, Tokyo, Japan
| | - Danny J Schust
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 15276, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
37
|
Wigner P, Czarny P, Synowiec E, Bijak M, Talarowska M, Galecki P, Szemraj J, Sliwinski T. Variation of genes encoding KAT1, AADAT and IDO1 as a potential risk of depression development. Eur Psychiatry 2018; 52:95-103. [PMID: 29777939 DOI: 10.1016/j.eurpsy.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Numerous data suggests that the disorders of tryptophan catabolites (TRYCATs) pathway, including a decreased level of tryptophan or evaluated concentration of harmful TRYCATs -kynurenine, quinolinic acid, 3-hydroxyanthranilic acid, 3-hydroxytryptophan - may cause the occurrence of DD symptoms. In this work, we assessed the relationship between single-nucleotide polymorphisms (SNPs) of KAT1, KAT2 and IDO1 gene encoding, and the risk of depression development. Our study was performed on the DNA isolated from peripheral blood of 281 depressed patients and 236 controls. We genotyped, by using TaqMan probes, four polymorphisms: c.*456G > A of KAT1 (rs10988134), c.975-7T > C of AADAT (rs1480544), c.-1849C > A (rs3824259) and c.-1493G > C(rs10089084)of IDO1. We found that only the A/A genotype of c.*456G > A - KAT1 (rs10988134) increased the risk of depression occurrence. Interestingly, when we stratified the study group according to gender, this relationship was present only in male population. However, a gene-gene analysis revealed a link between the T/T-C/C genotype of c.975-7T > C - AADAT (rs1480544)or c.-1493G > C - IDO1 (rs10089084) and C/C-C/A genotype of c.975-7T > C - AADAT (rs1480544)and c. -1849C > A - IDO1 (rs3824259) and the disease. Moreover, we found, that the c.975-7T > C - AADAT and c. *456G > A KAT1 (rs10988134) polymorphisms may modulate the effectiveness of selective serotonin reuptake inhibitors therapy. Concluding, our results confirm the hypothesis formulated in our recently published article that the SNPs of genes involved in TRYCATs pathway may modulate the risk of depression. This provides some further evidence that the pathway plays the crucial role in development of the disease.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michał Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
38
|
Luo Q, Yan L, Xu P, Xiong C, Yang Z, Hu P, Hu H, Hong R. Discovery of a polysaccharide from the fruiting bodies of Lepista sordida as potent inhibitors of indoleamine 2, 3-dioxygenase (IDO) in HepG2 cells via blocking of STAT1-mediated JAK-PKC-δ signaling pathways. Carbohydr Polym 2018; 197:540-547. [PMID: 30007645 DOI: 10.1016/j.carbpol.2018.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022]
Abstract
The present study examined the role of a polysaccharide (LSP, 25 and 100 μg/ml) from the fruiting bodies of Lepista sordid on the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO) in HepG2 cells, and the possible mechanism of action. IDO expression and kynurenine production from LSP-treated HepG2 cells following IFN-γ stimulation were dramatically inhibited by LSP treatment. In line with this, the medium of HepG2 cells pretreated with LSP improved the survival rate of primary CD4+ and CD8+ T cells as compared with IFN-γ-treated control cells. Moreover, tyrosine 701 and serine 727 phosphorylation of STAT1 were dramatically reduced by LSP pretreatment in IFN-γ-stimulated HepG2 cells. Furthermore phosphorylation of JAK-1 and JAK-2 was also inhibited by LSP. Additionally, two IDO promoters (GAS and ISRE) were inhibited in cells pretreated with LSP prior to IFN-γ exposure. These findings suggest that LSP exerts antitumor effects on HepG2 cells by inhibiting IDO via JAK-PKC-δ-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Qiang Luo
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liang Yan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Pan Xu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Zhirong Yang
- Sichuan Province Key Laboratory of Nature Resources Microbiology and Technique, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Peng Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huidong Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ren Hong
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
39
|
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2018; 7:48788-48812. [PMID: 27166190 PMCID: PMC5217051 DOI: 10.18632/oncotarget.9195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Collapse
|
40
|
Song X, Zhang Y, Zhang L, Song W, Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget 2018; 9:11572-11580. [PMID: 29545920 PMCID: PMC5837754 DOI: 10.18632/oncotarget.24098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-associated metabolic reprogramming modulates the biological functions of many immune and non-immune cells, and affects immune response types and intensities. Adenosine and indoleamine 2,3-dioxygenase (IDO) are known immunosuppressors, and adenosine is a hypoxia-associated product. We investigated the impact of hypoxia on IDO production in dendritic cells (DCs). We found that hypoxia (1% O2) enhances IDO production in DCs, and this increase was dependent on the adenosine A3 receptor (A3R), but not A2aR or A2bR. A3R blockade during hypoxia inhibited IDO production in DCs, while A2bR blockade further enhanced IDO production. Activating A2aR had no effect on IDO production. Hypoxia (1% O2) upregulated CD86, CD274, HLA-DR, and CD54, and downregulated CD40 and CD83 in DCs as compared to normoxia (21% O2). IDO inhibition in hypoxia-conditioned DCs reversed MHC-II, CD86, CD54, and CD274 upregulation, but further downregulated CD40 and CD83. Our findings offer guidance for pharmacological administration of adenosine receptor agonists or antagonists with the goal of achieving immune tolerance or controlling insulin resistance and other metabolic disorders via IDO modulation.
Collapse
Affiliation(s)
- Xiang Song
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li Zhang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Wengang Song
- Institute of Immunology, Taishan Medical University, Tai'an 271000, China
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
41
|
Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, Plaen ED, Van den Eynde B. Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance. Cancer Immunol Res 2017; 5:695-709. [PMID: 28765120 DOI: 10.1158/2326-6066.cir-16-0400] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Tumors use various mechanisms to avoid immune destruction. Cyclooxygenase-2 (COX-2) expression may be a driver of immune suppression in melanoma, but the mechanisms involved remain elusive. Here, we show that COX-2 expression drives constitutive expression of indoleamine 2,3-dioxygenase 1 (IDO1) in human tumor cells. IDO1 is an immunosuppressive enzyme that degrades tryptophan. In a series of seven human tumor lines, constitutive IDO1 expression depends on COX-2 and prostaglandin E2 (PGE2), which, upon autocrine signaling through the EP receptor, activates IDO1 via the PKC and PI3K pathways. COX-2 expression itself depends on the MAPK pathway, which therefore indirectly controls IDO1 expression. Most of these tumors carry PI3K or MAPK oncogenic mutations, which may favor constitutive IDO1 expression. Celecoxib treatment promoted immune rejection of IDO1-expressing human tumor xenografts in immunodeficient mice reconstituted with human allogeneic lymphocytes. This effect was associated with a reduced expression of IDO1 in those ovarian SKOV3 tumors and an increased infiltration of CD3+ and CD8+ cells. Our results highlight the role of COX-2 in constitutive IDO1 expression by human tumors and substantiate the use of COX-2 inhibitors to improve the efficacy of cancer immunotherapy, by reducing constitutive IDO1 expression, which contributes to the lack of T-cell infiltration in "cold" tumors, which fail to respond to immunotherapy. Cancer Immunol Res; 5(8); 695-709. ©2017 AACR.
Collapse
Affiliation(s)
- Marc Hennequart
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefania Cane
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
42
|
Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer 2017; 76:167-182. [PMID: 28324751 DOI: 10.1016/j.ejca.2017.01.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO, also referred to as IDO1) has been demonstrated to be a normal endogenous mechanism of acquired peripheral immune tolerance in vivo. In the field of oncology, IDO expression and/or activity has been observed in several cancer types and has usually been associated with negative prognostic factors and worse outcome measures. This manuscript reviews current available data on the role of IDO in cancer and the current results obtained with IDO inhibition, both in animal models and in phase 1 and 2 clinical trials in humans. Preliminary results with IDO inhibitors, usually combined with other anti-cancer drugs, seem encouraging. Further studies are needed to clarify the conditions in which IDO inhibitors can be of value as an anti-cancer strategy. In addition, further research should address whether the expression of IDO in tissue or blood can be a marker to select patients who can benefit most from IDO inhibition.
Collapse
Affiliation(s)
- Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Belgium; Dermatology Research Unit, Ghent, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium; Cancer Research Institute Ghent (CRIG), Belgium.
| | - Ines Chevolet
- Department of Dermatology, Ghent University Hospital, Belgium; Dermatology Research Unit, Ghent, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium
| | - Vibeke Kruse
- Department of Medical Oncology, Ghent University Hospital, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium
| |
Collapse
|
43
|
Loisel S, Dulong J, Ménard C, Renoud ML, Meziere N, Isabelle B, Latour M, Bescher N, Pedeux R, Bertheuil N, Flecher E, Sensebé L, Tarte K. Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence. Stem Cells 2017; 35:1431-1436. [DOI: 10.1002/stem.2580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Séverine Loisel
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Joëlle Dulong
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Cédric Ménard
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | | | - Bezier Isabelle
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Maëlle Latour
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Nadège Bescher
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Rémy Pedeux
- UMR U917, INSERM, Université Rennes 1; Rennes France
- UMR U1242, INSERM; Centre Eugéne Marquis; Rennes, France
| | - Nicolas Bertheuil
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
- Department of Plastic; Reconstructive and Aesthetic Surgery
| | - Erwan Flecher
- Department of Thoracic and Cardiac Surgery; CHU Rennes; France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | - Karin Tarte
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| |
Collapse
|
44
|
Dewi DL, Mohapatra SR, Blanco Cabañes S, Adam I, Somarribas Patterson LF, Berdel B, Kahloon M, Thürmann L, Loth S, Heilmann K, Weichenhan D, Mücke O, Heiland I, Wimberger P, Kuhlmann JD, Kellner KH, Schott S, Plass C, Platten M, Gerhäuser C, Trump S, Opitz CA. Suppression of indoleamine-2,3-dioxygenase 1 expression by promoter hypermethylation in ER-positive breast cancer. Oncoimmunology 2017; 6:e1274477. [PMID: 28344890 DOI: 10.1080/2162402x.2016.1274477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Kynurenine formation by tryptophan-catabolic indoleamine-2,3-dioxygenase 1 (IDO1) plays a key role in tumor immune evasion and inhibition of IDO1 is efficacious in preclinical models of breast cancer. As the response of breast cancer to immune checkpoint inhibitors may be limited, a better understanding of the expression of additional targetable immunomodulatory pathways is of importance. We therefore investigated the regulation of IDO1 expression in different breast cancer subtypes. We identified estrogen receptor α (ER) as a negative regulator of IDO1 expression. Serum kynurenine levels as well as tumoral IDO1 expression were lower in patients with ER-positive than ER-negative tumors and an inverse relationship between IDO1 and estrogen receptor mRNA was observed across 14 breast cancer data sets. Analysis of whole genome bisulfite sequencing, 450k, MassARRAY and pyrosequencing data revealed that the IDO1 promoter is hypermethylated in ER-positive compared with ER-negative breast cancer. Reduced induction of IDO1 was also observed in human ER-positive breast cancer cell lines. IDO1 induction was enhanced upon DNA demethylation in ER-positive but not in ER-negative cells and methylation of an IDO1 promoter construct reduced IDO1 expression, suggesting that enhanced methylation of the IDO1 promoter suppresses IDO1 in ER-positive breast cancer. The association of ER overexpression with epigenetic downregulation of IDO1 appears to be a particular feature of breast cancer as IDO1 was not suppressed by IDO1 promoter hypermethylation in the presence of high ER expression in cervical or endometrial cancer.
Collapse
Affiliation(s)
- Dyah L Dewi
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Soumya R Mohapatra
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Saioa Blanco Cabañes
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Isabell Adam
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | - Bianca Berdel
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Masroor Kahloon
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Loreen Thürmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ , Leipzig, Germany
| | - Stefanie Loth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ , Leipzig, Germany
| | - Katharina Heilmann
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Dieter Weichenhan
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Oliver Mücke
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT Arctic University of Norway , Tromsø, Norway
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sarah Schott
- Department of Obstetrics and Gynecology, University of Heidelberg , Heidelberg, Germany
| | - Christoph Plass
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Michael Platten
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhäuser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Saskia Trump
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ , Leipzig, Germany
| | - Christiane A Opitz
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Jiang GM, Wang HS, Du J, Ma WF, Wang H, Qiu Y, Zhang QG, Xu W, Liu HF, Liang JP. Bortezomib Relieves Immune Tolerance in Nasopharyngeal Carcinoma via STAT1 Suppression and Indoleamine 2,3-Dioxygenase Downregulation. Cancer Immunol Res 2016; 5:42-51. [PMID: 27923823 DOI: 10.1158/2326-6066.cir-16-0102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/28/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Feng Ma
- Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Changsha, Hunan, China
| | - Yu Qiu
- Department of ICU, Hunan Children's Hospital, Changsha, Hunan, China
| | - Qiu-Gui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui-Fang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jian-Ping Liang
- Department of Thoracic Surgery 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
46
|
Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S, Petretto A, Fabbi M, Ferrini S. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 2016; 6:43267-80. [PMID: 26657115 PMCID: PMC4791231 DOI: 10.18632/oncotarget.6530] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023] Open
Abstract
IL-27 is a member of the IL-12 family that is produced by macrophages and dendritic cells. IL-27 inhibits the growth and invasiveness of different cancers and therefore represents a potential anti-tumor agent. By contrast, it may exert immune-regulatory properties in different biological systems. We reported that IL-27 induces the expression of the IL-18 inhibitor IL-18BP, in human Epithelial Ovarian Cancer (EOC) cells, thus potentially limiting the immune response. Here, we tested whether IL-27 may modulate other immune-regulatory molecules involved in EOC progression, including Indoleamine 2,3-dioxygenase (IDO) and Programmed Death-Ligand (PD-L)1. IDO and PD-L1 were not constitutively expressed by EOC cells in vitro, but IL-27 increased their expression through STAT1 and STAT3 tyrosine phosphorylation. Differently, cells isolated from EOC ascites showed constitutive activation of STAT1 and STAT3 and IDO expression. These findings, together with the expression of IL-27 in scattered leukocytes in EOC ascites and tissues, suggest a potential role of IL-27 in immune-regulatory networks of EOC. In addition, IL-27 induced IDO or PD-L1 expression in monocytes and in human PC3 prostate and A549 lung cancer cells. A current paradigm in tumor immunology is that tumor cells may escape from immune control due to “adaptive resistance” mediated by T cell-secreted IFN-γ, which induces PD-L1 and IDO expression in tumor cells. Our present data indicate that also IL-27 has similar activities and suggest that the therapeutic use of IL-27 as anti-cancer agent may have dual effects, in some tumors.
Collapse
Affiliation(s)
- Grazia Carbotti
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gaia Barisione
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Irma Airoldi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Bagnoli
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simone Ferrero
- Department of Surgery, Unit of Obstetrics and Gynaecology, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, and DINOGMI, University of Genoa Genoa, Italy
| | | | - Marina Fabbi
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
47
|
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation. J Immunol Res 2016; 2016:7121580. [PMID: 27529074 PMCID: PMC4978836 DOI: 10.1155/2016/7121580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/08/2016] [Indexed: 02/08/2023] Open
Abstract
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications.
Collapse
|
48
|
Shibata Y, Hara T, Matsumoto T, Nakamura N, Nakamura H, Ninomiya S, Kitagawa J, Goto N, Nannya Y, Ito H, Kito Y, Miyazaki T, Takeuchi T, Saito K, Seishima M, Takami T, Moriwaki H, Shimizu M, Tsurumi H. Serum concentrations ofl-kynurenine predict clinical outcomes of patients with peripheral T-cell lymphoma, not otherwise specified. Hematol Oncol 2016; 35:637-644. [DOI: 10.1002/hon.2318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yuhei Shibata
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Takeshi Hara
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Takuro Matsumoto
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Nobuhiko Nakamura
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Hiroshi Nakamura
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Soranobu Ninomiya
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Junichi Kitagawa
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Naoe Goto
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Yasuhito Nannya
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research; Gifu University Graduate School of Medicine; Gifu Japan
| | | | - Tamotsu Takeuchi
- Department of Pathology and Translational Research; Gifu University Graduate School of Medicine; Gifu Japan
| | - Kuniaki Saito
- Human Health Sciences, Graduate School of Medicine and Faculty of Medicine; Kyoto University; Kyoto Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Tsuyoshi Takami
- Department of Pathology and Translational Research; Gifu University Graduate School of Medicine; Gifu Japan
| | - Hisataka Moriwaki
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Masahito Shimizu
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| | - Hisashi Tsurumi
- First Department of Internal Medicine; Gifu University Graduate School of Medicine; Gifu Japan
| |
Collapse
|
49
|
Blohmke CJ, Darton TC, Jones C, Suarez NM, Waddington CS, Angus B, Zhou L, Hill J, Clare S, Kane L, Mukhopadhyay S, Schreiber F, Duque-Correa MA, Wright JC, Roumeliotis TI, Yu L, Choudhary JS, Mejias A, Ramilo O, Shanyinde M, Sztein MB, Kingsley RA, Lockhart S, Levine MM, Lynn DJ, Dougan G, Pollard AJ. Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 2016; 213:1061-77. [PMID: 27217537 PMCID: PMC4886356 DOI: 10.1084/jem.20151025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/08/2016] [Indexed: 12/30/2022] Open
Abstract
Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever.
Collapse
Affiliation(s)
- Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Nicolas M. Suarez
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, OX1 2JD, England, UK
| | - Liqing Zhou
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| | - Jennifer Hill
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Simon Clare
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Leanne Kane
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Subhankar Mukhopadhyay
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Fernanda Schreiber
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Maria A. Duque-Correa
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - James C. Wright
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | | | - Lu Yu
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Jyoti S. Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Milensu Shanyinde
- Nuffield Department of Primary Care Health Sciences, University of Oxford, OX1 2JD, England, UK
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Robert A. Kingsley
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Stephen Lockhart
- Emergent Product Development UK, Emergent BioSolutions, Wokingham RG41 5TU, England, UK
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - David J. Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia,School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Gordon Dougan
- Microbial Pathogenesis Group, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, England, UK
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, England, UK
| |
Collapse
|
50
|
Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, Xia XF, Sun X, Li GG, Hu QD, Fu QH, Liang TB. Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res 2016; 76:818-830. [PMID: 26837767 DOI: 10.1158/0008-5472.can-15-0977] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022]
Abstract
Portal vein tumor thrombosis (PVTT) is a significant risk factor for metastasis in hepatocellular carcinoma (HCC) patients and is therefore associated with poor prognosis. The presence of PVTT frequently accompanies substantial hypoxia within the tumor microenvironment, which is suggested to accelerate tumor metastasis, but it is unclear how this occurs. Recent evidence has shown that the hypoxia-inducible factor HIF-1α induces epithelial-to-mesenchymal transition (EMT) in tumor cells to facilitate metastasis. In this study, we investigated whether hypoxia-induced EMT in cancer cells also affects immune cells in the tumor microenvironment to promote immunosuppression. We found that hypoxia-induced EMT increased the expression of the CCL20 cytokine in hepatoma cells. Furthermore, coculture of monocyte-derived macrophages with hypoxic hepatoma cells revealed that the expression of indoleamine 2, 3-dioxygenase (IDO) was induced in monocyte-derived macrophages in a CCL20-dependent manner. In turn, these IDO-expressing monocyte-derived macrophages suppressed T-cell proliferation and promoted the expansion of immunosuppressive regulatory T cells. Moreover, high CCL20 expression in HCC specimens was associated with PVTT and poor patient survival. Collectively, our findings suggest that the HIF-1α/CCL20/IDO axis in hepatocellular carcinoma is important for accelerating tumor metastasis through both the induction of EMT and the establishment of an immunosuppressive tumor microenvironment, warranting further investigation into the therapeutic effects of blocking specific nodes of this signaling network.
Collapse
Affiliation(s)
- Long-Yun Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China. Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China. Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xing-Yuan Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China. Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China. Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue-Feng Xia
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xu Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guo-Gang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi-Da Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi-Han Fu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China. Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China Collaborative Innovation Center for Cancer Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|