1
|
Wang ZY, Mehra A, Wang QC, Gupta S, Ribeiro da Silva A, Juan T, Günther S, Looso M, Detleffsen J, Stainier DYR, Marín-Juez R. flt1 inactivation promotes zebrafish cardiac regeneration by enhancing endothelial activity and limiting the fibrotic response. Development 2024; 151:dev203028. [PMID: 39612288 PMCID: PMC11634031 DOI: 10.1242/dev.203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
VEGFA administration has been explored as a pro-angiogenic therapy for cardiovascular diseases including heart failure for several years, but with little success. Here, we investigate a different approach to augment VEGFA bioavailability: by deleting the VEGFA decoy receptor VEGFR1 (also known as FLT1), one can achieve more physiological VEGFA concentrations. We find that after cryoinjury, zebrafish flt1 mutant hearts display enhanced coronary revascularization and endocardial expansion, increased cardiomyocyte dedifferentiation and proliferation, and decreased scarring. Suppressing Vegfa signaling in flt1 mutants abrogates these beneficial effects of flt1 deletion. Transcriptomic analyses of cryoinjured flt1 mutant hearts reveal enhanced endothelial MAPK/ERK signaling and downregulation of the transcription factor gene egr3. Using newly generated genetic tools, we observe egr3 upregulation in the regenerating endocardium, and find that Egr3 promotes myofibroblast differentiation. These data indicate that with enhanced Vegfa bioavailability, the endocardium limits myofibroblast differentiation via egr3 downregulation, thereby providing a more permissive microenvironment for cardiomyocyte replenishment after injury.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Armaan Mehra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Qian-Chen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Savita Gupta
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Agatha Ribeiro da Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Stefan Günther
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jan Detleffsen
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5 Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, H3T 1J4 Montréal, QC, Canada
| |
Collapse
|
2
|
Nishida M, Sato A, Shimizu A, Rahman N, Wada A, Kageyama S, Ogita H. EphA-Mediated Regulation of Stomatin Expression in Prostate Cancer Cells. Cancer Med 2024; 13:e70276. [PMID: 39377541 PMCID: PMC11459579 DOI: 10.1002/cam4.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND AIMS Tumor growth and progression are affected by interactions between tumor cells and stromal cells within the tumor microenvironment. We previously showed that the expression of an integral membrane protein, called stomatin, was increased in cancer cells following their association with stromal cells. Additionally, stomatin impaired the Akt signaling pathway to suppress tumor growth. However, it remains unclear how stomatin expression is regulated. To explore this, we examined the cell surface molecules that can transduce the intercellular communication signals between cancer cells and stromal cells. RESULTS Among these molecules, EphA3 and EphA7 receptors and their ligand ephrin-A5 were found to be expressed in prostate cancer cells, but not in prostate stromal cells. Cell-to-cell contact of prostate cancer cells through the EphA-ephrin-A interaction suppressed stomatin expression, while knockdown of EphA3/7 or ephrin-A5 increased stomatin expression. This increase contributed to an inhibition of prostate cancer cell proliferation. Intracellularly, the binding of ephrin-A to EphA attenuated extracellular signaling-regulated kinase (ERK) activation that promoted stomatin expression. Furthermore, ELK1 and ELK4, which are Ets family transcription factors phosphorylated by ERK, were involved in the induction of stomatin expression. We also found that higher Gleason score prostate cancer tissue samples had increased activation of EphA, while the stomatin expression and activated ERK and ELK levels were all low. In the mouse xenograft tumor samples generated by implantation of prostate cancer cells, EphA3 phosphorylation was attenuated and the ERK-ELK signaling and stomatin expression were enhanced in the area where stromal cells infiltrated the tumor. CONCLUSION The EphA-mediated signaling suppresses the ERK-ELK pathway, leading to the reduction of stomatin expression that affects prostate cancer malignancy.
Collapse
Affiliation(s)
- Masanari Nishida
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Nor Idayu A. Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| | - Akinori Wada
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Susumu Kageyama
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular BiologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
3
|
Ohkawara B, Tomita H, Inoue T, Zhang S, Kanbara S, Koshimizu H, Miyasaka Y, Takeda JI, Nishiwaki H, Nakashima H, Ito M, Masuda A, Ishiguro N, Ogi T, Ohno T, Imagama S, Ohno K. Calcitriol ameliorates motor deficits and prolongs survival of Chrne-deficient mouse, a model for congenital myasthenic syndrome, by inducing Rspo2. Neurotherapeutics 2024; 21:e00318. [PMID: 38233267 DOI: 10.1016/j.neurot.2024.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroyuki Tomita
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Inoue
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Kanbara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Koshimizu
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyasaka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
4
|
Jiang C, Saiki Y, Hirota S, Iwata K, Wang X, Ito Y, Murakami K, Imura T, Inoue J, Masamune A, Hirayama A, Goto M, Furukawa T. Ablation of Dual-Specificity Phosphatase 6 Protects against Nonalcoholic Fatty Liver Disease via Cytochrome P450 4A and Mitogen-Activated Protein Kinase. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1988-2000. [PMID: 37741451 DOI: 10.1016/j.ajpath.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Dual-specificity phosphatase 6 (DUSP6) is a specific phosphatase for mitogen-activated protein kinase (MAPK). This study used a high-fat diet (HFD)-induced murine nonalcoholic fatty liver disease model to investigate the role of DUSP6 in this disease. Wild-type (WT) and Dusp6-haploinsufficiency mice developed severe obesity and liver pathology consistent with nonalcoholic fatty liver disease when exposed to HFD. In contrast, Dusp6-knockout (KO) mice completely eliminated these phenotypes. Furthermore, primary hepatocytes isolated from WT mice exposed to palmitic and oleic acids exhibited abundant intracellular lipid accumulation, whereas hepatocytes from Dusp6-KO mice showed minimal lipid accumulation. Transcriptome analysis revealed significant down-regulation of genes encoding cytochrome P450 4A (CYP4A), known to promote ω-hydroxylation of fatty acids and hepatic steatosis, in Dusp6-KO hepatocytes compared with that in WT hepatocytes. Diminished CYP4A expression was observed in the liver of Dusp6-KO mice compared with WT and Dusp6-haploinsufficiency mice. Knockdown of DUSP6 in HepG2, a human liver-lineage cell line, also promoted a reduction of lipid accumulation, down-regulation of CYP4A, and up-regulation of phosphorylated/activated MAPK. Furthermore, inhibition of MAPK activity promoted lipid accumulation in DUSP6-knockdown HepG2 cells without affecting CYP4A expression, indicating that CYP4A expression is independent of MAPK activation. These findings highlight the significant role of DUSP6 in HFD-induced steatohepatitis through two distinct pathways involving CYP4A and MAPK.
Collapse
Affiliation(s)
- Can Jiang
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shuto Hirota
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kosei Iwata
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xinyue Wang
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Ito
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keigo Murakami
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
5
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:15-32. [PMID: 37223856 DOI: 10.1007/978-981-99-1304-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' non-coding region, three open reading frames (ORFs), and a 3' non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.
Collapse
Affiliation(s)
- Yan Zhou
- RegCMC, Great Regulatory Affairs, Sanofi (China) Investment Co., Ltd, Beijing, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yabin Tian
- Division II of In Vitro Diagnostics for Infectious Diseases, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
6
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
7
|
Tsukano K, Yamamoto T, Watanabe T, Michiue T. Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm. Dev Biol 2022; 488:81-90. [DOI: 10.1016/j.ydbio.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
|
8
|
Kidger AM, Saville MK, Rushworth LK, Davidson J, Stellzig J, Ono M, Kuebelsbeck LA, Janssen KP, Holzmann B, Morton JP, Sansom OJ, Caunt CJ, Keyse SM. Suppression of mutant Kirsten-RAS (KRAS G12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene 2022; 41:2811-2823. [PMID: 35418690 PMCID: PMC9106580 DOI: 10.1038/s41388-022-02302-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6-/- mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5-/- animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis.
Collapse
Affiliation(s)
- Andrew M Kidger
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Mark K Saville
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Linda K Rushworth
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Jane Davidson
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Julia Stellzig
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Motoharu Ono
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Ludwig A Kuebelsbeck
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jennifer P Morton
- Institute of Cancer Sciences, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
9
|
Sabaie H, Gholipour M, Asadi MR, Abed S, Sharifi-Bonab M, Taheri M, Hussen BM, Brand S, Neishabouri SM, Rezazadeh M. Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Front Psychiatry 2022; 13:1010977. [PMID: 36405929 PMCID: PMC9671706 DOI: 10.3389/fpsyt.2022.1010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental condition with an unknown cause. According to the reports, Brodmann Area 10 (BA10) is linked to the pathology and cortical dysfunction of SCZ, which demonstrates a number of replicated findings related to research on SCZ and the dysfunction in tasks requiring cognitive control in particular. Genetics' role in the pathophysiology of SCZ is still unclear. Therefore, it may be helpful to understand the effects of these changes on the onset and progression of SCZ to find novel mechanisms involved in the regulation of gene transcription. In order to determine the molecular regulatory mechanisms affecting the SCZ, the long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) axes in the BA10 area were determined using a bioinformatics approach in the present work. A microarray dataset (GSE17612) consisted of brain post-mortem tissues of the BA10 area from SCZ patients and matched healthy subjects was downloaded from the Gene Expression Omnibus (GEO) database. This dataset included probes for both lncRNAs and mRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also discovered using the DIANA-LncBase and miRTarBase databases. In the ceRNA network, positive correlations between DEmRNAs and DElncRNAs were evaluated using the Pearson correlation coefficient. Finally, lncRNA-associated ceRNA axes were built by using the co-expression and DElncRNA-miRNA-DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes, which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs (hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore, DEmRNAs were found to be enriched in the "AGE-RAGE signaling pathway in diabetic complications", "Amoebiasis", "Transcriptional misregulation in cancer", "Human T-cell leukemia virus 1 infection", and "MAPK signaling pathway". This study offers research targets for examining significant molecular pathways connected to the pathogenesis of SCZ, even though the function of these ceRNA axes still needs to be investigated.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics of the University of Basel, Basel, Switzerland
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Shi Y, Xu S, Ngoi NYL, Zeng Q, Ye Z. PRL-3 dephosphorylates p38 MAPK to promote cell survival under stress. Free Radic Biol Med 2021; 177:72-87. [PMID: 34662712 DOI: 10.1016/j.freeradbiomed.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/21/2023]
Abstract
Hypoxia within the tumor microenvironment, which leads to excessive ROS and genomic instability, is one of the hallmarks of cancer, contributing to self-renewal capability, metastasis, and radio-chemotherapy resistance. PRL-3 is an oncoprotein involved in various pro-survival signaling pathways, such as Ras/Erk, PI3K/Akt, Src/STAT, mTORC1 and JAK/STAT. However, there is little evidence connecting PRL-3-mediated apoptosis resistance to tumor microenvironmental stress. In this study, by profiling the PRL-3 expression of multiple tumor types retrieved from public databases (TCGA and NCBI GEO), we confirmed the oncogenic function of PRL-3 and found an intriguing connection between PRL-3 expression and tumor hypoxia signature genes. Moreover, by using CoCl2, a hypoxia mimetic and ROS inducer, we discovered that cells stably expressing PRL-3, but not catalytically-inactive mutant PRL-3 C104S, showed significant resistance to CoCl2 -induced apoptosis. This resistance to apoptosis was found to depend on p38 MAPK signaling and was further confirmed in other conditions of microenvironmental stress, including UV, H2O2 and hypoxia. Mechanistically, we proved that PRL-3 is a direct phosphatase of p38 MAPK under stressed conditions. Additionally, in mouse models of tumor metastasis, higher lung metastatic burden and lower p38 MAPK phosphorylation were found in mice seeded with GFP-PRL-3 expressing cells compared with those seeded with GFP-Ctrl cells. Taken together, our study identified a critical role of RPL-3 in tumorigenesis by negatively regulating p38 MAPK activity in order to facilitate tumor cell adaptation to a hypoxic stressed tumor microenvironment and suggests that PRL-3 could serve as a promising novel therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA; Department of Hematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR Agency for Science Technology and Research, 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119260, Singapore.
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore; Institute of Molecular and Cell Biology, A*STAR Agency for Science Technology and Research, 138673, Singapore; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| |
Collapse
|
11
|
Zhao W, Wang Q. Knockdown of TRIM9 attenuates irinotecan‑induced intestinal mucositis in IEC‑6 cells by regulating DUSP6 expression via the P38 pathway. Mol Med Rep 2021; 24:867. [PMID: 34676875 PMCID: PMC8554382 DOI: 10.3892/mmr.2021.12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucositis is a common side effect of cancer chemotherapy and it limits the dose of chemotherapy given to a patient. Tripartite motif family (TRIM) proteins have been reported to be implicated in the regulation of cancer chemotherapy. The present study aimed to investigate the effect of TRIM9 on irinotecan‑induced intestinal mucositis in the rat intestinal epithelial cell line IEC‑6. The expression of several TRIMs, such as TRIM1, TRIM9, TRIM18, TRIM36, TRIM46 and TRIM67, was examined. After TRIM9 knockdown or overexpression by lentivirus infection, cell proliferation and apoptosis, epithelial barrier tight‑junction proteins, inflammatory cytokines, transepithelial electrical resistance (TEER) and FITC dextran were measured. Treatment with irinotecan significantly inhibited cell proliferation and induced cell apoptosis, TRIM9 expression, intestinal mucosal barrier impairment, the levels of inflammatory cytokines and P38 phosphorylation in IEC‑6 cells, while the expression levels of epithelial barrier tight‑junction protein ZO‑1 and Claudin‑4 were decreased. Knockdown of TRIM9 partly counteracted the effect of irinotecan treatment, and inhibition of P38 potently reversed the effect of TRIM9 overexpression in IEC‑6 cells. Moreover, co‑immunoprecipitation showed an interaction between TRIM9 and DUSP6 in IEC‑6 cells, and overexpression of DUSP6 notably counteracted the effect of TRIM9 overexpression. The results demonstrated that TRIM9 knockdown may benefit patients with intestinal mucositis by inhibiting inflammatory cytokine expression and repairing intestinal barrier functions, which was probably due to inhibition of the activation of the P38 pathway via targeting DUSP6.
Collapse
Affiliation(s)
- Wenjun Zhao
- Department of Anorectal Section, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201999, P.R. China
| | - Qingming Wang
- Department of Anorectal Section, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
12
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Ingram K, Samson SC, Zewdu R, Zitnay RG, Snyder EL, Mendoza MC. NKX2-1 controls lung cancer progression by inducing DUSP6 to dampen ERK activity. Oncogene 2021; 41:293-300. [PMID: 34689179 PMCID: PMC8738158 DOI: 10.1038/s41388-021-02076-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
The RAS→RAF→MEK→ERK pathway is hyperactivated in the majority of human lung adenocarcinoma (LUAD). However, the initial activating mutations induce homeostatic feedback mechanisms that limit ERK activity. How ERK activation reaches the tumor-promoting levels that overcome the feedback and drive malignant progression is unclear. We show here that the lung lineage transcription factor NKX2-1 suppresses ERK activity. In human tissue samples and cell lines, xenografts, and genetic mouse models, NKX2-1 induces the ERK phosphatase DUSP6, which inactivates ERK. In tumor cells from late-stage LUAD with silenced NKX2-1, re-introduction of NKX2-1 induces DUSP6 and inhibits tumor growth and metastasis. We show that DUSP6 is necessary for NKX2-1-mediated inhibition of tumor progression in vivo and that DUSP6 expression is sufficient to inhibit RAS-driven LUAD. Our results indicate that NKX2-1 silencing, and thereby DUSP6 downregulation, is a mechanism by which early LUAD can unleash ERK hyperactivation for tumor progression.
Collapse
Affiliation(s)
- Kelley Ingram
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Rediet Zewdu
- Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric L Snyder
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA. .,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
14
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Schriever SC, Kabra DG, Pfuhlmann K, Baumann P, Baumgart EV, Nagler J, Seebacher F, Harrison L, Irmler M, Kullmann S, Corrêa-da-Silva F, Giesert F, Jain R, Schug H, Castel J, Martinez S, Wu M, Häring HU, de Angelis MH, Beckers J, Müller TD, Stemmer K, Wurst W, Rozman J, Nogueiras R, De Angelis M, Molkentin JD, Krahmer N, Yi CX, Schmidt MV, Luquet S, Heni M, Tschöp MH, Pfluger PT. Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. J Clin Invest 2021; 130:6093-6108. [PMID: 32780722 DOI: 10.1172/jci136363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Recent genome-wide association studies (GWAS) identified DUSP8, encoding a dual-specificity phosphatase targeting mitogen-activated protein kinases, as a type 2 diabetes (T2D) risk gene. Here, we reveal that Dusp8 is a gatekeeper in the hypothalamic control of glucose homeostasis in mice and humans. Male, but not female, Dusp8 loss-of-function mice, either with global or corticotropin-releasing hormone neuron-specific deletion, had impaired systemic glucose tolerance and insulin sensitivity when exposed to high-fat diet (HFD). Mechanistically, we found impaired hypothalamic-pituitary-adrenal axis feedback, blunted sympathetic responsiveness, and chronically elevated corticosterone levels driven by hypothalamic hyperactivation of Jnk signaling. Accordingly, global Jnk1 ablation, AAV-mediated Dusp8 overexpression in the mediobasal hypothalamus, or metyrapone-induced chemical adrenalectomy rescued the impaired glucose homeostasis of obese male Dusp8-KO mice, respectively. The sex-specific role of murine Dusp8 in governing hypothalamic Jnk signaling, insulin sensitivity, and systemic glucose tolerance was consistent with functional MRI data in human volunteers that revealed an association of the DUSP8 rs2334499 risk variant with hypothalamic insulin resistance in men. Further, expression of DUSP8 was increased in the infundibular nucleus of T2D humans. In summary, our findings suggest the GWAS-identified gene Dusp8 as a novel hypothalamic factor that plays a functional role in the etiology of T2D.
Collapse
Affiliation(s)
- Sonja C Schriever
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dhiraj G Kabra
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd., Vadodara, India
| | - Katrin Pfuhlmann
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Peter Baumann
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, School of Medicine, Technical University of Munich, Munich, Germany
| | - Emily V Baumgart
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Fabian Seebacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Luke Harrison
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Kullmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
| | - Felipe Corrêa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Ruchi Jain
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
| | - Hannah Schug
- SYNLAB Analytics and Services, Switzerland AG, Dielsdorf, Switzerland
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Moya Wu
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jan Rozman
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ruben Nogueiras
- Department of Physiology, Instituto de Investigación Sanitaria, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Mathias V Schmidt
- Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Qiao X, Zhu Y, Dang W, Wang R, Sun M, Chen Y, Shi Y, Zhang L. Dual-specificity phosphatase 15 (DUSP15) in the nucleus accumbens is a novel negative regulator of morphine-associated contextual memory. Addict Biol 2021; 26:e12884. [PMID: 32043707 DOI: 10.1111/adb.12884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Drug relapse among addicts often occurs due to the learned association between drug-paired cues and the rewarding effects of these drugs, such as morphine. Contextual memory associated with morphine has a central role in maintenance and relapse. We showed that morphine-conditioned place preference (CPP) activates extracellular-regulated protein kinase (ERK) in the nucleus accumbens (NAc). The main enzymes that mediate ERK dephosphorylation are members of the dual-specificity phosphatase (DUSP) superfamily. It is unclear which members regulate the morphine CPP-induced activation of ERK. After screening, DUSP15 was found to be decreased during both morphine CPP expression and the reinstatement period. Intra-NAc infusions of AAV-DUSP15 (overexpression) not only prevented the expression of morphine-induced CPP but also facilitated extinction, inhibited reinstatement, and abolished ERK activation. However, after repeated morphine exposure and withdrawal in mice, there was no change in the expression of p-ERK and DUSP15, and the overexpression of DUSP15 in the NAc did not improve the impaired spatial memory or anxiety-like behaviour induced by morphine. Together, these findings indicate that DUSP15 not only prevents the expression of drug-paired contextual memory but also promotes the extinction of existing addiction memories, thus providing a novel therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Wei Dang
- The Sixth Ward, Xi'an Mental Health Center China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Yuanyuan Chen
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Yuhui Shi
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences Zhengzhou University China
| |
Collapse
|
17
|
Baumann P, Schriever SC, Kullmann S, Zimprich A, Peter A, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Wurst W, Tschöp MH, Heni M, Hölter SM, Pfluger PT. Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain Behav 2021; 11:e01928. [PMID: 33131190 PMCID: PMC7821601 DOI: 10.1002/brb3.1928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dusp8 is the first GWAS-identified gene that is predominantly expressed in the brain and has previously been linked with the development of diabetes type 2 in humans. In this study, we unravel how Dusp8 is involved in the regulation of sucrose reward behavior. METHODS Female, chow-fed global Dusp8 WT and KO mice were tested in an observer-independent IntelliCage setup for self-administrative sucrose consumption and preference followed by a progressive ratio task with restricted sucrose access to monitor seeking and motivation behavior. Sixty-three human carriers of the major C and minor T allele of DUSP8 SNP rs2334499 were tested for their perception of food cues by collecting a rating score for sweet versus savory high caloric food. RESULTS Dusp8 KO mice showed a comparable preference for sucrose, but consumed more sucrose compared to WT mice. In a progressive ratio task, Dusp8 KO females switched to a "trial and error" strategy to find sucrose while control Dusp8 WT mice kept their previously established seeking pattern. Nonetheless, the overall motivation to consume sucrose, and the levels of dopaminergic neurons in the brain areas NAcc and VTA were comparable between genotypes. Diabetes-risk allele carriers of DUSP8 SNP rs2334499 preferred sweet high caloric food compared to the major allele carriers, rating scores for savory food remained comparable between groups. CONCLUSION Our data suggest a novel role for Dusp8 in the perception of sweet high caloric food as well as in the control of sucrose consumption and foraging in mice and humans.
Collapse
Affiliation(s)
- Peter Baumann
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
19
|
Gannam ZTK, Min K, Shillingford SR, Zhang L, Herrington J, Abriola L, Gareiss PC, Pantouris G, Tzouvelekis A, Kaminski N, Zhang X, Yu J, Jamali H, Ellman JA, Lolis E, Anderson KS, Bennett AM. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Sci Signal 2020; 13:eaba3043. [PMID: 32843541 PMCID: PMC7569488 DOI: 10.1126/scisignal.aba3043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) have been considered "undruggable," but their position as regulators of the MAPKs makes them promising therapeutic targets. MKP5 has been suggested as a potential target for the treatment of dystrophic muscle disease. Here, we identified an inhibitor of MKP5 using a p38α MAPK-derived, phosphopeptide-based small-molecule screen. We solved the structure of MKP5 in complex with this inhibitor, which revealed a previously undescribed allosteric binding pocket. Binding of the inhibitor to this pocket collapsed the MKP5 active site and was predicted to limit MAPK binding. Treatment with the inhibitor recapitulated the phenotype of MKP5 deficiency, resulting in activation of p38 MAPK and JNK. We demonstrated that MKP5 was required for TGF-β1 signaling in muscle and that the inhibitor blocked TGF-β1-mediated Smad2 phosphorylation. TGF-β1 pathway antagonism has been proposed for the treatment of dystrophic muscle disease. Thus, allosteric inhibition of MKP5 represents a therapeutic strategy against dystrophic muscle disease.
Collapse
Affiliation(s)
- Zira T K Gannam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James Herrington
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Peter C Gareiss
- Yale Center for Molecular Discovery, Yale West Campus, West Haven, CT 06516, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinbo Zhang
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Haya Jamali
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 766] [Impact Index Per Article: 153.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Li Z, Zhu H, Guo Y, Du X, Qin C. Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer's disease. J Neurochem 2020; 155:448-461. [PMID: 32319677 DOI: 10.1111/jnc.15031] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Gut microbiota, comprising a vast number of microorganism species with complex metagenome, are known to be associated with Alzheimer's disease (AD) and amyloid deposition. However, studies related to gut microbiota have been mostly restricted to comparisons of amyloid deposits, while investigations on neurobehavioral changes and the pathogenesis of AD are limited. Therefore, we aimed to identify the relationship between changes in the intestinal microbiome and the pathogenesis of AD. APPswe /PS1ΔE9 (PAP) transgenic mice and wild-type (WT) mice of different age groups were used. The composition of intestinal bacterial communities in the mice was determined by 16S ribosomal RNA sequencing (16S rRNA Seq), and the Y maze was used to measure cognitive function. Transcriptome sequencing (RNA Seq) and Gene Expression Omnibus (GEO) database (GSE 36980) were used to filter differentially expressed genes (DEGs) between specific pathogen-free (SPF) and germ-free (GF) mice. Quantitative reverse-transcriptase PCR (qRT-PCR) and western blot (WB) were used to verify the results. We found that the intestinal microbiota was significantly different between 5-month-old PAP and WT mice and the cognition of SPF PAP mice was diminished compared to GF PAP and SPF WT mice. DEGs in 5-month-old SPF and GF mice were enriched in the MAPK signalling pathway, and expression of amyloid precursor protein and amyloid deposition increased in 5-month-old SPF PAP mice. Results from this study showed that changes in intestinal microbiota were correlated with impairment of cognitive function and might promote amyloid deposition by stimulating the MAPK signalling pathway in the brain.
Collapse
Affiliation(s)
- Zhuo Li
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hua Zhu
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yaxi Guo
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xiaopeng Du
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medicine Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
22
|
Men M, Wang X, Wu J, Zeng W, Jiang F, Zheng R, Li JD. Prevalence and associated phenotypes of DUSP6, IL17RD and SPRY4 variants in a large Chinese cohort with isolated hypogonadotropic hypogonadism. J Med Genet 2020; 58:66-72. [PMID: 32389901 DOI: 10.1136/jmedgenet-2019-106786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND FGF8-FGFR1 signalling is involved in multiple biological processes, while impairment of this signalling is one of the main reasons for isolated hypogonadotropic hypogonadism (IHH). Recently, several negative modulators of FGF8-FGFR1 signalling were also found to be involved in IHH, including DUSP6, IL17RD, SPRY2 and SPRY4. The aim of this study was to investigate the genotypic and phenotypic spectra of these genes in a large cohort of Chinese patients with IHH. METHODS A total of 196 patients with IHH were enrolled in this study. Whole-exome sequencing was performed to identify variants, which was verified by PCR and Sanger sequencing. RESULTS Four heterozygous DUSP6 variants (p.S157I, p.R83Q, p.P188L and p.N355I) were found in six patients. Cryptorchidism, dental agenesis, syndactyly and blue colour blindness were commonly observed in patients with DUSP6 mutations. Six heterozygous IL17RD variants (p.P191L, p.G35V, p.S671L, p.A221T, p.I329M and p.I329V) were found in seven patients. Segregation analysis indicated that 100% (5/5) of probands inherited the IL17RD variants from their unaffected parents, and oligogenicity was found in 4/7 patients. One rare SPRY4 variant (p.T68S) was found in a female patient with Kallmann syndrome who also carried a PLXNA1 mutation. CONCLUSION Our study greatly enriched the genotypic and phenotypic spectra of DUSP6, IL17RD and SPRY4 in IHH. Mutations in DUSP6 alone seem sufficient to cause IHH in an autosomal dominant manner, whereas IL17RD or SPRY4 mutations may cause IHH phenotypes in synergy with variants in other IHH-associated genes.
Collapse
Affiliation(s)
- Meichao Men
- Health Management Center, Xiangya Hospital Central South University, Changsha, Hunan, China.,Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Xinying Wang
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wang Zeng
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Fang Jiang
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Ruizhi Zheng
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jia-Da Li
- Central South University School of Life Sciences, Changsha, Hunan, China .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
23
|
Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040880. [PMID: 32260415 PMCID: PMC7226328 DOI: 10.3390/cancers12040880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.
Collapse
|
24
|
Kato M, Onoyama I, Yoshida S, Cui L, Kawamura K, Kodama K, Hori E, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Dual-specificity phosphatase 6 plays a critical role in the maintenance of a cancer stem-like cell phenotype in human endometrial cancer. Int J Cancer 2020; 147:1987-1999. [PMID: 32159851 PMCID: PMC7496376 DOI: 10.1002/ijc.32965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
The prognosis of patients with high‐grade or advanced‐stage endometrial cancer remains poor. As cancer stem‐like cells (CSCs) are thought to be associated with endometrial cancers, it is essential to investigate the molecular mechanisms that regulate endometrial CSCs. Dual‐specificity phosphatase 6 (DUSP6) functions as a negative‐feedback regulator of MAPK–ERK1/2 signaling, but its role in endometrial cancer remains unknown. We investigated whether DUSP6 is involved in cancer cell stemness using endometrial cancer cell lines and specimens from endometrial cancer patients. DUSP6 induced the expression of CSC‐related genes including ALDH1, Nanog, SOX2 and Oct4A, increased the population of cells in the G0/G1 phase, and promoted sphere formation ability. DUSP6 knockdown resulted in reduced cell invasion and metastasis, whereas DUSP6 overexpression inhibited apoptosis under serum‐free conditions. Moreover, DUSP6 decreased phosphorylated ERK1/2 and increased phosphorylated Akt levels, which potentially induces CSC features. In patients with endometrial cancers, DUSP6 expression was determined using immunohistochemistry, and based on the results, the patients were dichotomized into high‐ and low‐DUSP6‐expression groups. Progression‐free survival and overall survival were significantly shorter in the high‐DUSP6‐expression group. These results suggest that DUSP6 has potential value as a biomarker of CSCs and as a target of therapies designed to eliminate CSCs in endometrial cancer. What's new? Although cancer stem‐like cells (CSCs) are involved in human endometrial cancers, the underlying molecular mechanisms and biomarkers for CSCs in endometrial cancers remain elusive. Here, the authors found that DUSP6 plays an important role in regulating endometrial CSC phenotypes by increasing self‐renewal ability and starvation resistance. DUSP6 expression was required for inducing invasion and metastasis and resulted in ERK1/2 dephosphorylation and Akt phosphorylation, which potentially contribute to the promotion of CSC phenotypes. As DUSP6 expression was also positively associated with worse progression‐free and overall survival, DUSP6 represents a potential biomarker for endometrial CSCs and a therapeutic target in endometrial cancers.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Ichiro Onoyama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Sachiko Yoshida
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Lin Cui
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keiko Kawamura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Kodama
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Emiko Hori
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yumiko Matsumura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hiroshi Yagi
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuo Asanoma
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Hideaki Yahata
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Satoru Takeda
- Department of Obstetrics and GynecologySchool of Medical Sciences, Juntendo UniversityTokyoJapan
| | - Kiyoko Kato
- Department of Obstetrics and GynecologySchool of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
25
|
Dusp8 affects hippocampal size and behavior in mice and humans. Sci Rep 2019; 9:19483. [PMID: 31862894 PMCID: PMC6925303 DOI: 10.1038/s41598-019-55527-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/30/2019] [Indexed: 12/29/2022] Open
Abstract
Dual-specificity phosphatase 8 (Dusp8) acts as physiological inhibitor for the MAPKs Jnk, Erk and p38 which are involved in regulating multiple CNS processes. While Dusp8 expression levels are high in limbic areas such as the hippocampus, the functional role of Dusp8 in hippocampus morphology, MAPK-signaling, neurogenesis and apoptosis as well as in behavior are still unclear. It is of particular interest whether human carriers of a DUSP8 allelic variant show similar hippocampal alterations to mice. Addressing these questions using Dusp8 WT and KO mouse littermates, we found that KOs suffered from mildly impaired spatial learning, increased locomotor activity and elevated anxiety. Cell proliferation, apoptosis and p38 and Jnk phosphorylation were unaffected, but phospho-Erk levels were higher in hippocampi of the KOs. Consistent with a decreased hippocampus size in Dusp8 KO mice, we found reduced volumes of the hippocampal subregions subiculum and CA4 in humans carrying the DUSP8 allelic variant SNP rs2334499:C > T. Overall, aberrations in morphology and behavior in Dusp8 KO mice and a decrease in hippocampal volume of SNP rs2334499:C > T carriers point to a novel, translationally relevant role of Dusp8 in hippocampus function that warrants further studies on the role of Dusp8 within the limbic network.
Collapse
|
26
|
Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019; 20:ijms20246157. [PMID: 31817617 PMCID: PMC6941053 DOI: 10.3390/ijms20246157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation affects conformational change, interaction, catalytic activity, and subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions, and embryonic development. However, the activation of the JNK pathway is also implicated in human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, the proper balance between activation and inactivation of the JNK pathway needs to be tightly regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in recent studies.
Collapse
|
27
|
Chao Y, Wang C, Jia H, Zhai N, Wang H, Xu B, Li H, Guo X. Identification of an Apis cerana cerana MAP kinase phosphatase 3 gene (AccMKP3) in response to environmental stress. Cell Stress Chaperones 2019; 24:1137-1149. [PMID: 31664697 PMCID: PMC6882995 DOI: 10.1007/s12192-019-01036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
MAP kinase phosphatase 3 (MKP3), a member of the dual-specificity protein phosphatase (DUSP) superfamily, has been widely studied for its role in development, cancer, and environmental stress in many organisms. However, the functions of MKP3 in various insects have not been well studied, including honeybees. In this study, we isolated an MKP3 gene from Apis cerana cerana and explored the role of this gene in the resistance to oxidation. We found that AccMKP3 is highly conserved in different species and shares the closest evolutionary relationship with AmMKP3. We determined the expression patterns of AccMKP3 under various stresses. qRT-PCR results showed that AccMKP3 was highly expressed during the pupal stages and in adult muscles. We further found that AccMKP3 was induced in all the stress treatments. Moreover, we discovered that the enzymatic activities of peroxidase, superoxide dismutase, and catalase increased and that the expression levels of several antioxidant genes were affected after AccMKP3 was knocked down. Collectively, these results suggest that AccMKP3 may be associated with antioxidant processes involved in response to various environmental stresses.
Collapse
Affiliation(s)
- Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Ding T, Zhou Y, Long R, Chen C, Zhao J, Cui P, Guo M, Liang G, Xu L. DUSP8 phosphatase: structure, functions, expression regulation and the role in human diseases. Cell Biosci 2019; 9:70. [PMID: 31467668 PMCID: PMC6712826 DOI: 10.1186/s13578-019-0329-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases (PTPs), many of which dephosphorylate the residues of phosphor-serine/threonine and phosphor-tyrosine on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). Homologue of Vaccinia virus H1 phosphatase gene clone 5 (HVH-5), also known as DUSP8, is a unique member of the DUSPs family of phosphatases. Accumulating evidence has shown that DUSP8 plays an important role in phosphorylation-mediated signal transduction of MAPK signaling ranging from cell oxidative stress response, cell apoptosis and various human diseases. It is generally believed that DUSP8 exhibits significant dephosphorylation activity against JNK, however, with the deepening of research, plenty of new literature reports that DUSP8 also has effective dephosphorylation activity on p38 MAPK and ERKs, successfully affects the transduction of MAPKs pathway, indicating that DUSP8 presents a unknown diversity of DUSPs family on distinct corresponding dephosphorylated substrates in different biological events. Therefore, the in-depth study of DUSP8 not only throws a new light on the multi-biological function of DUSPs, but also is much valuable for the reveal of complex pathobiology of clinical diseases. In this review, we provide a detail overview of DUSP8 phosphatase structure, biological function and expression regulation, as well as its role in related clinical human diseases, which might be help for the understanding of biological function of DUSP8 and the development of prevention, diagnosis and therapeutics in related human diseases.
Collapse
Affiliation(s)
- Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ya Zhou
- 3Department of Medical Physics, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Panpan Cui
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Guiyou Liang
- 4Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China.,5Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| |
Collapse
|
29
|
Taylor CA, Cormier KW, Keenan SE, Earnest S, Stippec S, Wichaidit C, Juang YC, Wang J, Shvartsman SY, Goldsmith EJ, Cobb MH. Functional divergence caused by mutations in an energetic hotspot in ERK2. Proc Natl Acad Sci U S A 2019; 116:15514-15523. [PMID: 31296562 PMCID: PMC6681740 DOI: 10.1073/pnas.1905015116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.
Collapse
Affiliation(s)
- Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kevin W Cormier
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Shannon E Keenan
- Department of Chemical and Biological Engineering, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Steve Stippec
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Chonlarat Wichaidit
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Yu-Chi Juang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Junmei Wang
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | | | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
30
|
Andreas N, Weber F, Meininger I, Templin N, Gaestel M, Kamradt T, Drube S. IL‐33‐activated murine mast cells control the dichotomy between RORγt+and Helios+Tregsvia the MK2/3‐mediated IL‐6 production in vitro. Eur J Immunol 2019; 49:2159-2171. [DOI: 10.1002/eji.201948154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nico Andreas
- Institut für ImmunologieUniversitätsklinikum Jena Jena Germany
| | - Franziska Weber
- Institut für ImmunologieUniversitätsklinikum Jena Jena Germany
| | | | - Nicole Templin
- Institut für ImmunologieUniversitätsklinikum Jena Jena Germany
| | - Matthias Gaestel
- Institut für ZellbiochemieMedizinische Hochschule Hannover Hannover Germany
| | - Thomas Kamradt
- Institut für ImmunologieUniversitätsklinikum Jena Jena Germany
| | - Sebastian Drube
- Institut für ImmunologieUniversitätsklinikum Jena Jena Germany
| |
Collapse
|
31
|
Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. Int J Mol Sci 2019; 20:ijms20112668. [PMID: 31151270 PMCID: PMC6600639 DOI: 10.3390/ijms20112668] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of signal transduction and cell responses. Abnormalities in MAPKs are associated with multiple diseases. Dual-specificity phosphatases (DUSPs) dephosphorylate many key signaling molecules, including MAPKs, leading to the regulation of duration, magnitude, or spatiotemporal profiles of MAPK activities. Hence, DUSPs need to be properly controlled. Protein post-translational modifications, such as ubiquitination, phosphorylation, methylation, and acetylation, play important roles in the regulation of protein stability and activity. Ubiquitination is critical for controlling protein degradation, activation, and interaction. For DUSPs, ubiquitination induces degradation of eight DUSPs, namely, DUSP1, DUSP4, DUSP5, DUSP6, DUSP7, DUSP8, DUSP9, and DUSP16. In addition, protein stability of DUSP2 and DUSP10 is enhanced by phosphorylation. Methylation-induced ubiquitination of DUSP14 stimulates its phosphatase activity. In this review, we summarize the knowledge of the regulation of DUSP stability and ubiquitination through post-translational modifications.
Collapse
|
32
|
Toro CA, Zhang L, Cao J, Cai D. Sex differences in Alzheimer's disease: Understanding the molecular impact. Brain Res 2019; 1719:194-207. [PMID: 31129153 DOI: 10.1016/j.brainres.2019.05.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents with cognitive impairment and behavioral disturbance. Approximately 5.5 million people in the United States live with AD, most of whom are over the age of 65 with two-thirds being woman. There have been major advancements over the last decade or so in the understanding of AD neuropathological changes and genetic involvement. However, studies of sex impact in AD have not been adequately integrated into the investigation of disease development and progression. It becomes indispensable to acknowledge in both basic science and clinical research studies the importance of understanding sex-specific differences in AD pathophysiology and pathogenesis, which could guide future effort in the discovery of novel targets for AD. Here, we review the latest and most relevant literature on this topic, highlighting the importance of understanding sex dimorphism from a molecular perspective and its association to clinical trial design and development in AD research field.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
33
|
Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR‐Ras‐Erk signalling and suppresses increased Ras‐Erk signalling‐induced tumour formation in mice. J Pathol 2019; 249:39-51. [DOI: 10.1002/path.5279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Taeko Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
34
|
Wang L, Xia W, Chen H, Xiao ZX. ΔNp63α modulates phosphorylation of p38 MAP kinase in regulation of cell cycle progression and cell growth. Biochem Biophys Res Commun 2019; 509:784-789. [PMID: 30635119 DOI: 10.1016/j.bbrc.2018.12.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/30/2018] [Indexed: 02/03/2023]
Abstract
p53-related p63 plays a critical role in regulation of cell proliferation, survival and cell differentiation. Dysregulation of p63 functions results in a disruption of a variety of normal biological processes, including stem cell biology, embryonic development, aging and tumorigenesis. ΔNp63α, a predominantly expressed p63 protein isoform in epithelial cells, plays a crucial role in regulation of cell cycle progression and cell growth. p38 MAP kinases (p38MAPK) are the members of mitogen-activated protein kinases family and are critical in regulation of cell survival in response to stress signals. In this study, we show that ectopic expression of ΔNp63α inhibited phosphorylation of p38MAPK. Acute knockdown of p63 led to a significant upregulation of p38MAPK phosphorylation, resulting in increased p21cip1/waf1 expression, reduced phosphorylation of retinoblastoma protein (RB), cell cycle G1 arrest and cell growth retardation. Restoration of ΔNp63α expression reversed cell cycle arrest and growth inhibition induced by p63 ablation. Pharmacological inhibition of p38MAPK significantly suppressed ΔNp63α ablation-induced cell cycle G1/S arrest. In addition, MAP Kinase Phosphatase 3 (MKP3) was responsible for ΔNp63α-mediated regulation of p38MAPK phosphorylation. Together, these results suggest that ΔNp63α-MPK3-p38MAPK signaling pathway plays an important role in cell cycle progression and cell growth.
Collapse
Affiliation(s)
- Liang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wanqiang Xia
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
35
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
36
|
Mendell AL, MacLusky NJ. The testosterone metabolite 3α-androstanediol inhibits oxidative stress-induced ERK phosphorylation and neurotoxicity in SH-SY5Y cells through an MKP3/DUSP6-dependent mechanism. Neurosci Lett 2018; 696:60-66. [PMID: 30552945 DOI: 10.1016/j.neulet.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Testosterone exerts neuroprotective effects on the brain, but the mechanisms by which these effects are exerted appear to be different in males and females. While in females they involve local conversion to estradiol, in males they may be androgen receptor-dependent, or mediated through metabolism to neurosteroids such as 5α-androstane-3α,17β-diol (3α-diol), which acts through different mechanisms than testosterone itself. Recently, we demonstrated that 3α-diol can protect neurons and neuronal-like cells against oxidative stress-induced neurotoxicity associated with prolonged phosphorylation of the extracellular signal-regulated kinase (ERK). The mechanism(s) responsible for these effects remain unknown. In the present study, we sought to determine whether the ERK-specific phosphatase, mitogen-activated protein kinase phosphatase 3/dual specificity phosphatase 6 (MKP3/DUSP6), is involved in the cytoprotective effects of 3α-diol in SH-SY5Y human female neuroblastoma cells. 3α-diol inhibited ERK phosphorylation and ameliorated cell death induced by the oxidative stressor hydrogen peroxide (H2O2). These protective effects were significantly reduced by pre-treatment with the MKP3/DUSP6 inhibitor BCI. In addition, H2O2 decreased expression of MKP3/DUSP6, and this was prevented by co-treatment with 3α-diol. These findings suggest that the protective effects of 3α-diol are mediated through regulation of ERK phosphorylation in neurotoxic conditions and indicate that these effects may be exerted through modulation of MKP3/DUSP6. Targeting the regulation of MKP3/DUSP6 may be beneficial in reducing toxicity under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
37
|
Unni AM, Harbourne B, Oh MH, Wild S, Ferrarone JR, Lockwood WW, Varmus H. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. eLife 2018; 7:33718. [PMID: 30475204 PMCID: PMC6298772 DOI: 10.7554/elife.33718] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
Synthetic lethality results when mutant KRAS and EGFR proteins are co-expressed in human lung adenocarcinoma (LUAD) cells, revealing the biological basis for mutual exclusivity of KRAS and EGFR mutations. We have now defined the biochemical events responsible for the toxic effects by combining pharmacological and genetic approaches and to show that signaling through extracellular signal-regulated kinases (ERK1/2) mediates the toxicity. These findings imply that tumors with mutant oncogenes in the RAS pathway must restrain the activity of ERK1/2 to avoid toxicities and enable tumor growth. A dual specificity phosphatase, DUSP6, that negatively regulates phosphorylation of (P)-ERK is up-regulated in EGFR- or KRAS-mutant LUAD, potentially protecting cells with mutations in the RAS signaling pathway, a proposal supported by experiments with DUSP6-specific siRNA and an inhibitory drug. Targeting DUSP6 or other negative regulators might offer a treatment strategy for certain cancers by inducing the toxic effects of RAS-mediated signaling.
Collapse
Affiliation(s)
- Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| | - Bryant Harbourne
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Min Hee Oh
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Sophia Wild
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - John R Ferrarone
- Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| |
Collapse
|
38
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
39
|
Beaudry K, Langlois MJ, Montagne A, Cagnol S, Carrier JC, Rivard N. Dual-specificity phosphatase 6 deletion protects the colonic epithelium against inflammation and promotes both proliferation and tumorigenesis. J Cell Physiol 2018; 234:6731-6745. [PMID: 30273442 PMCID: PMC6519001 DOI: 10.1002/jcp.27420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
Abstract
The Ras/mitogen‐activated protein kinase (MAPK) pathway controls fundamental cellular processes such as proliferation, differentiation, and apoptosis. The dual‐specificity phosphatase 6 (DUSP6) regulates cytoplasmic MAPK signaling by dephosphorylating and inactivating extracellular signal‐regulated kinase (ERK1/2) MAPK. To determine the role of DUSP6 in the maintenance of intestinal homeostasis, we characterized the intestinal epithelial phenotype of
Dusp6 knockout (KO) mice under normal, oncogenic, and proinflammatory conditions. Our results show that loss of Dusp6 increased crypt depth and epithelial cell proliferation without altering colonic architecture. Crypt regeneration capacity was also enhanced, as revealed by ex vivo
Dusp6 KO organoid cultures. Additionally, loss of Dusp6 induced goblet cell expansion without affecting enteroendocrine and absorptive cell differentiation. Our data also demonstrate that
Dusp6 KO mice were protected from acute dextran sulfate sodium‐induced colitis, as opposed to wild‐type mice. In addition,
Dusp6 gene deletion markedly enhanced tumor load in
ApcMin/+ mice. Decreased DUSP6 expression by RNA interference in HT29 colorectal cancer cells enhanced ERK1/2 activation levels and promoted both anchorage‐independent growth in soft agar as well as invasion through Matrigel. Finally,
DUSP6 mRNA expression in human colorectal tumors was decreased in advanced stage tumors compared with paired normal tissues. These results demonstrate that DUSP6 phosphatase, by controlling ERK1/2 activation, regulates colonic inflammatory responses, and protects the intestinal epithelium against oncogenic stress.
Collapse
Affiliation(s)
- Katia Beaudry
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Amélie Montagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
40
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
41
|
DUSP6 mediates T cell receptor-engaged glycolysis and restrains T FH cell differentiation. Proc Natl Acad Sci U S A 2018; 115:E8027-E8036. [PMID: 30087184 DOI: 10.1073/pnas.1800076115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6-/-), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (TFH) cell differentiation and T cell metabolism. In vitro, DUSP6-/- CD4+ TFH cells produced elevated IL-21. In vivo, TFH cells were increased in DUSP6-/- mice and in transgenic OTII-DUSP6-/- mice at steady state. After immunization, DUSP6-/- and OTII-DUSP6-/- mice generated more TFH cells and produced more antigen-specific IgG2 than controls. Activated DUSP6-/- T cells showed enhanced JNK and p38 phosphorylation but impaired glycolysis. JNK or p38 inhibitors significantly reduced IL-21 production but did not restore glycolysis. TCR-stimulated DUSP6-/- T cells could not induce phosphofructokinase activity and relied on glucose-independent fueling of mitochondrial respiration. Upon CD28 costimulation, activated DUSP6-/- T cells did not undergo the metabolic commitment to glycolysis pathway to maintain viability. Unexpectedly, inhibition of fatty acid oxidation drastically lowered IL-21 production in DUSP6-/- TFH cells. Our findings suggest that DUSP6 connects TCR signaling to activation-induced metabolic commitment toward glycolysis and restrains TFH cell differentiation via inhibiting IL-21 production.
Collapse
|
42
|
Whittaker SR, Barlow C, Martin MP, Mancusi C, Wagner S, Self A, Barrie E, Te Poele R, Sharp S, Brown N, Wilson S, Jackson W, Fischer PM, Clarke PA, Walton MI, McDonald E, Blagg J, Noble M, Garrett MD, Workman P. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor. Mol Oncol 2018; 12:287-304. [PMID: 29063678 PMCID: PMC5830651 DOI: 10.1002/1878-0261.12148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/18/2023] Open
Abstract
Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimized from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II, and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small-molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2 family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer.
Collapse
Affiliation(s)
- Steven R. Whittaker
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Clare Barlow
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Mathew P. Martin
- Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneMedical SchoolNewcastle upon TyneUK
| | - Caterina Mancusi
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Steve Wagner
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Annette Self
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Elaine Barrie
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Robert Te Poele
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Swee Sharp
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Nathan Brown
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Stuart Wilson
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Wayne Jackson
- Cyclacel Ltd.DundeeUK
- Present address:
Samuel Lister AcademyBingleyWest YorkshireBD16 1TZUK
| | - Peter M. Fischer
- Cyclacel Ltd.DundeeUK
- Present address:
School of Pharmacy and Centre for Biomolecular SciencesUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Michael I. Walton
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Edward McDonald
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Martin Noble
- Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneMedical SchoolNewcastle upon TyneUK
| | - Michelle D. Garrett
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
School of BiosciencesUniversity of KentCanterburyKentCT2 7NJUK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
43
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
44
|
Hendriks W, Bourgonje A, Leenders W, Pulido R. Proteinaceous Regulators and Inhibitors of Protein Tyrosine Phosphatases. Molecules 2018; 23:molecules23020395. [PMID: 29439552 PMCID: PMC6016963 DOI: 10.3390/molecules23020395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Proper control of the phosphotyrosine content in signal transduction proteins is essential for normal cell behavior and is lost in many pathologies. Attempts to normalize aberrant tyrosine phosphorylation levels in disease states currently involve either the application of small compounds that inhibit tyrosine kinases (TKs) or the addition of growth factors or their mimetics to boost receptor-type TK activity. Therapies that target the TK enzymatic counterparts, the multi-enzyme family of protein tyrosine phosphatases (PTPs), are still lacking despite their undisputed involvement in human diseases. Efforts to pharmacologically modulate PTP activity have been frustrated by the conserved structure of the PTP catalytic core, providing a daunting problem with respect to target specificity. Over the years, however, many different protein interaction-based regulatory mechanisms that control PTP activity have been uncovered, providing alternative possibilities to control PTPs individually. Here, we review these regulatory principles, discuss existing biologics and proteinaceous compounds that affect PTP activity, and mention future opportunities to drug PTPs via these regulatory concepts.
Collapse
Affiliation(s)
- Wiljan Hendriks
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Annika Bourgonje
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - William Leenders
- Department of Biochemistry, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
45
|
Lu C, Liu X, Zhang CS, Gong H, Wu JW, Wang ZX. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation. Biochemistry 2017; 56:6165-6175. [PMID: 29077400 DOI: 10.1021/acs.biochem.7b00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction pathways, which are down-regulated by the MAPK phosphatases (MKPs). Catalytic activity of the MKPs is controlled both by their ability to recognize selective MAPKs and by allosteric activation upon binding to MAPK substrates. Here, we use a combination of experimental and computational techniques to elucidate the molecular mechanism for the ERK2-induced MKP3 activation. Mutational and kinetic study shows that the 334FNFM337 motif in the MKP3 catalytic domain is essential for MKP3-mediated ERK2 inactivation and is responsible for ERK2-mediated MKP3 activation. The long-term molecular dynamics (MD) simulations further reveal a complete dynamic process in which the catalytic domain of MKP3 gradually changes to a conformation that resembles an active MKP catalytic domain over the time scale of the simulation, providing a direct time-dependent observation of allosteric signal transmission in ERK2-induced MKP3 activation.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Xin Liu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Chen-Song Zhang
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Haipeng Gong
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Jia-Wei Wu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| |
Collapse
|
46
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
47
|
Pfuhlmann K, Pfluger PT, Schriever SC, Müller TD, Tschöp MH, Stemmer K. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice. PLoS One 2017; 12:e0183488. [PMID: 28873424 PMCID: PMC5584967 DOI: 10.1371/journal.pone.0183488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance. Our data are in conflict to earlier reports that propose protection from diet-induced obesity and glucose intolerance in DUSP6 deficient mice. Reasons for the discrepancies remain elusive, but may entail differential genetic backgrounds, environmental factors such as the type and source of HFD, or alterations in the gut microbiome between facilities.
Collapse
Affiliation(s)
- Katrin Pfuhlmann
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Paul T. Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C. Schriever
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
48
|
Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, Scarpa JR, Moy G, Loh YHE, Cahill M, Lorsch ZS, Hamilton PJ, Calipari ES, Hodes GE, Issler O, Kronman H, Pfau M, Obradovic ALJ, Dong Y, Neve RL, Russo S, Kazarskis A, Tamminga C, Mechawar N, Turecki G, Zhang B, Shen L, Nestler EJ. Sex-specific transcriptional signatures in human depression. Nat Med 2017; 23:1102-1111. [PMID: 28825715 DOI: 10.1038/nm.4386] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions. We overlap our human profiles with those from a mouse model, chronic variable stress, and capitalize on converging pathways to define molecular and physiological mechanisms underlying the expression of stress susceptibility in males and females. Our results show a major rearrangement of transcriptional patterns in MDD, with limited overlap between males and females, an effect seen in both depressed humans and stressed mice. We identify key regulators of sex-specific gene networks underlying MDD and confirm their sex-specific impact as mediators of stress susceptibility. For example, downregulation of the female-specific hub gene Dusp6 in mouse prefrontal cortex mimicked stress susceptibility in females, but not males, by increasing ERK signaling and pyramidal neuron excitability. Such Dusp6 downregulation also recapitulated the transcriptional remodeling that occurs in prefrontal cortex of depressed females. Together our findings reveal marked sexual dimorphism at the transcriptional level in MDD and highlight the importance of studying sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivia Engmann
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Caroline Menard
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph R Scarpa
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory Moy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter J Hamilton
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erin S Calipari
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgia E Hodes
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Orna Issler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hope Kronman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madeline Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aleksandar L J Obradovic
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Kazarskis
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carol Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naguib Mechawar
- Department of Psychiatry, McGill University, Montreal, Québec, Canada.,McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Québec, Canada.,McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling. Curr Genet 2017; 64:103-108. [PMID: 28799069 DOI: 10.1007/s00294-017-0732-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023]
Abstract
In eukaryotic cells, RNA binding proteins (RBPs) play critical roles in regulating almost every aspect of gene expression, often shuttling between the nucleus and the cytoplasm. They are also key determinants in cell fate via controlling the target mRNAs under the regulation of various signaling pathways in response to environmental stresses. Therefore, understanding the mechanisms that couple the location of mRNA and RBPs is a major challenge in the field of gene expression and signal responses. In fission yeast, a KH-type RBP Rnc1 negatively regulates MAPK signaling activation via mRNA stabilization of the dual-specificity MAPK phosphatase Pmp1, which dephosphorylates MAPK Pmk1. Rnc1 also serves as a target of MAPK phosphorylation, which makes a feedback loop mediated by an RBP. We recently discovered that the nuclear export of Rnc1 requires mRNA-binding ability and the mRNA export factor Rae1. This strongly suggested the presence of an mRNA-export system, which recognizes the mRNA/RBP complex and dictates the location and post-transcriptional regulation of mRNA cargo. Here, we briefly review the known mechanisms of general nuclear transporting systems, with an emphasis on our recent findings on the spatial regulation of Rnc1 and its impact on the regulation of the MAPK signal transduction cascade.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
50
|
Sharma V, Kohli S, Brahmachari V. Correlation between desiccation stress response and epigenetic modifications of genes in Drosophila melanogaster: An example of environment-epigenome interaction. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1058-1068. [PMID: 28801151 DOI: 10.1016/j.bbagrm.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/05/2017] [Indexed: 01/12/2023]
Abstract
Animals from different phyla including arthropods tolerate water stress to different extent. This tolerance is accompanied by biochemical changes which in turn are due to transcriptional alteration. The changes in transcription can be an indirect effect on some of the genes, ensuing from the effect of stress on the regulators of transcription including epigenetic regulators. Within this paradigm, we investigated the correlation between stress response and epigenetic modification underlying gene expression modulation during desiccation stress in Canton-S. We report altered resistance of flies in desiccation stress for heterozygote mutants of PcG and TrxG members. Pc/+ mutant shows lower survival, while ash1/+ mutants show higher survival under desiccation stress as compared to Canton-S. We detect expression alteration in stress related genes as well the genes of the Polycomb and trithorax complex in Canton-S subjected to desiccation stress. Concomitant with this, there is an altered enrichment of H3K27me3 and H3K4me3 at the upstream regions of the stress responsive genes. The enrichment of activating mark, H3K4me3, is higher in non-stress condition. H3K27me3, the repressive mark, is more pronounced under stress condition, which in turn, can be correlated with the binding of Pc. Our results show that desiccation stress induces dynamic switching in expression and enrichment of PcG and TrxG in the upstream region of genes, which correlates with histone modifications. We provide evidence that epigenetic modulation could be one of the mechanisms to adapt to the desiccation stress in Drosophila. Thus, our study proposes the interaction of epigenome and environmental factors.
Collapse
Affiliation(s)
- Vineeta Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India.
| | - Surbhi Kohli
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110 007, India
| |
Collapse
|