1
|
Chang L, Čok Z, Yu L. Protein Kinases as Mediators for miRNA Modulation of Neuropathic Pain. Cells 2025; 14:577. [PMID: 40277902 PMCID: PMC12025903 DOI: 10.3390/cells14080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropathic pain is a chronic condition resulting from injury or dysfunction in the somatosensory nervous system, which leads to persistent pain and a significant impairment of quality of life. Research has highlighted the complex molecular mechanisms that underlie neuropathic pain and has begun to delineate the roles of microRNAs (miRNAs) in modulating pain pathways. miRNAs, which are small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to influence key cellular processes, including neuroinflammation, neuronal excitability, and synaptic plasticity. These processes contribute to the persistence of neuropathic pain, and miRNAs have emerged as critical regulators of pain behaviors by modulating signaling pathways that control pain sensitivity. miRNAs can influence neuropathic pain by targeting genes that encode protein kinases involved in pain signaling. This review focuses on miRNAs that have been demonstrated to modulate neuropathic pain behavior through their effects on protein kinases or their immediate upstream regulators. The relationship between miRNAs and neuropathic pain behaviors is characterized as either an upregulation or a downregulation of miRNA levels that leads to a reduction in neuropathic pain. In the case of miRNA upregulation resulting in an alleviation of neuropathic pain behaviors, protein kinases exhibit a positive correlation with neuropathic pain, whereas decreased protein kinase levels correlate with diminished neuropathic pain behaviors. The only exception is GRK2, which shows an inverse correlation with neuropathic pain. In the case of miRNA downregulation resulting in a reduction in neuropathic pain behaviors, protein kinases display mixed relationships to neuropathic pain, with some kinases exhibiting positive correlation, while others exhibit negative correlation. By exploring how protein kinases mediate miRNA modulation of neuropathic pain, valuable insight may be gained into the pathophysiology of neuropathic pain, offering potential therapeutic targets for developing more effective strategies for pain management.
Collapse
Affiliation(s)
| | | | - Lei Yu
- Department of Genetics, Center of Alcohol & Substance Use Studies, Rutgers University, Piscataway, NJ 08854, USA; (L.C.)
| |
Collapse
|
2
|
Ji Y, Gao B, Zhao D, Zhang L, Wu H, Xie Y, Shi Q, Wang Y, Guo W. The role of 20-hydroxyecdysone and juvenile hormone in insecticidal activity of Bacillus thuringiensis regulated by DUOX-ROS immunity in Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106222. [PMID: 40015833 DOI: 10.1016/j.pestbp.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 03/01/2025]
Abstract
Insect midgut bacteria can be transferred to the blood cavity due to Bt infection and proliferate, becoming pathogens and enhancing Bt insecticidal activity. Dual oxidase (DUOX)-reactive oxygen species (ROS) signaling pathway plays a key role in regulating microbial homeostasis and resisting pathogen infection. However, the functions of MEKK and MKK associated with DUOX-ROS immunity are rarely studied in insects, moreover, the regulatory mechanisms underlying DUOX-ROS immunity via 20-Hydroxyecdysone (20E) and juvenile hormone (JH) are underexplored. In this study, we investigated that Spodoptera exigua MAPK kinase kinase 4 (SeMEKK4) and MAPK kinase 6 (SeMKK6) were required for Sep38β expression, and RNAi-mediated knockdown of SeMEKK4 and SeMKK6 significantly decreased ROS level and increased bacterial load in the midgut of S. exigua larvae, thereby enhancing Bt insecticidal activity. Furthermore, 20E and JH titers were elevated in insects infected with Bt. 20E upregulated the expression of SeMEKK4, SeMKK6, and Sep38β through SeEcR and SeUSP receptors, and activated the expression of SeDUOX to increase ROS level and decrease bacterial load in the midgut, which was not conducive to the enhancement of Bt insecticide activity. JH showed an opposite effect on midgut-related DUOX-ROS immunity via SeMet1 and SeMet2, and it was noteworthy that JH played a dominant role in negatively regulating DUOX-ROS immunity post Bt infection, which enhanced Bt insecticidal activity. This is an adjustment strategy for insects to cope with Bt infection, providing a new perspective for pest management.
Collapse
Affiliation(s)
- Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Gao
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lu Zhang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Xie
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuyu Shi
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Huang Y, Wang G, Zhang N, Zeng X. MAP3K4 kinase action and dual role in cancer. Discov Oncol 2024; 15:99. [PMID: 38568424 PMCID: PMC10992237 DOI: 10.1007/s12672-024-00961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
It is commonly known that the MAPK pathway is involved in translating environmental inputs, regulating downstream reactions, and maintaining the intrinsic dynamic balance. Numerous essential elements and regulatory processes are included in this pathway, which are essential to its functionality. Among these, MAP3K4, a member of the serine/threonine kinases family, plays vital roles throughout the organism's life cycle, including the regulation of apoptosis and autophagy. Moreover, MAP3K4 can interact with key partners like GADD45, which affects organism's growth and development. Notably, MAP3K4 functions as both a tumor promotor and suppressor, being activated by a variety of factors and triggering diverse downstream pathways that differently influence cancer progression. The aim of this study is to provide a brief overview of physiological functions of MAP3K4 and shed light on its contradictory roles in tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Zhang M, Zhang Q, Cao Z, Cai X, Liu J, Jiang Y, Zhu Y, Zhou J, Yu L, Zhen X, Hu Y, Yan G, Sun H. MEKK4-mediated Phosphorylation of HOXA10 at Threonine 362 facilitates embryo adhesion to the endometrial epithelium. Cell Death Dis 2022; 8:415. [PMID: 36216824 PMCID: PMC9550837 DOI: 10.1038/s41420-022-01203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
Embryo adhesion is a very important step in the embryo implantation process. Homeobox A10 (HOXA10), a key transcriptional factor of endometrial receptivity, is indispensable for embryo adhesion. However, how to control the activation status of HOXA10 remains elusive. Here, we found that Mitogen-activated protein kinase kinase kinase 4 (MEKK4) was associated with HOXA10 and directly phosphorylated HOXA10 at threonine 362. This MEKK4-mediated phosphorylation enhanced HOXA10-mediated transcriptional responses and adhesion between the embryo and endometrial epithelium. Specific deletion or kinase inactivation of MEKK4 in endometrial epithelial cells attenuates adhesion between embryo and epithelium. Therefore, the identification of MEKK4 as a novel physiological positive regulator of HOXA10 activation provides mechanistic insights to improve embryo implantation success. Moreover, when Thr362 was mutated to alanine (T362A) to mimic its dephosphorylation, the protein stability and transcriptional regulation of HOXA10 were decreased. In addition, HOXA10 -promoted embryo adhesion was weakened after the mutation of Thr362, suggesting that the phosphorylation of HOXA10 at this site may be a new indicator for evaluating endometrial receptivity and judging the ‘implantation window’.
Collapse
Affiliation(s)
- Mei Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Qun Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Jingyu Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yingchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China. .,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China. .,Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211116, China.
| |
Collapse
|
5
|
Diallo I, Ho J, Lambert M, Benmoussa A, Husseini Z, Lalaouna D, Massé E, Provost P. A tRNA-derived fragment present in E. coli OMVs regulates host cell gene expression and proliferation. PLoS Pathog 2022; 18:e1010827. [PMID: 36108089 PMCID: PMC9514646 DOI: 10.1371/journal.ppat.1010827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells. We previously outlined by RNA-Sequencing (RNA-seq) the existence of abundant very small (<16 nt) bacterial and eukaryote RNA (vsRNA) population with potential regulatory functions. However, it is not exceptional to see vsRNA species removed from the RNA-seq libraries or datasets because being considered as random degradation products. As a proof of concept, we present in this study a 13 nt in length isoleucine tRNA-derived fragment (Ile-tRF-5X) which is selectively modulated by nutritional and thermal stress while remaining unaffected by transcription and translation inhibitions. We also showed that OMVs and their Ile-tRF-5X vsRNAs are delivered into human HCT116 cells and both can promote host cell gene expression and proliferation. Ile-tRF-5X appears to regulate gene silencing properties of miRNAs by competition. Our findings provide a novel perspective and paradigm on the existing symbiosis between hosts and bacteria but also brings a new insight of host-pathogen interactions mediated by tRFs which remain so far poorly characterized in bacteria.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jeffrey Ho
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marine Lambert
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Abderrahim Benmoussa
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Zeinab Husseini
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Provost
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
6
|
Sun Y, Lv Y, Ren HW, Wang GY, Xuan LN, Luo YY, Luan ZL. Association between MAP3K4 gene polymorphisms and the risk of schizophrenia susceptibility in a Northeast Chinese Han population. Metab Brain Dis 2022; 37:1365-1371. [PMID: 35445959 DOI: 10.1007/s11011-022-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
Schizophrenia stands out as one of the most devastating psychiatric disorders. Previous findings have shown that schizophrenia is a polygenic genetic disorder. Thus, abnormal neurodevelopment and neurogenesis may be associated with the etiology of schizophrenia, so genes which affect these processes may be potential candidate genes of schizophrenia. Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) gene is a member of the mitogen-activated protein kinase family. Taking into account previous findings, MAP3K4 plays a crucial role in the fundamental pathology of various nervous system diseases. In the present study, we aim to explore the association of MAP3K4 and schizophrenia in an independent case-control sample including 627 schizophrenic patients and 1175 healthy controls from a Northeast Chinese Han population. Both the allelic and genotypic association analyses showed that 6 SNPs in MAP3K4 were significantly associated with schizophrenia (rs590988, rs625977, rs9295134, rs12110787, rs1001808 and rs9355870). After rigorous Bonferroni correction, 4 SNPs (rs9295134, rs12110787, rs1001808 and rs9355870) were still significantly associated with the disease. The haplotype composed of these four SNPs also showed significantly global and individual association with schizophrenia. These results suggest that MAP3K4 is a susceptibility gene for schizophrenia in the Northeast Chinese Han population.
Collapse
Affiliation(s)
- Yang Sun
- Department of Psychiatry, Dalian Seventh People's Hospital, 116023, Dalian, China
| | - Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, 9 W., S. Lvshun Blvd, 116044, Dalian, China
| | - Hui-Wen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, 9 W., S. Lvshun Blvd, 116044, Dalian, China
| | - Guan-Yu Wang
- Department of Neurosurgery, Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Li-Na Xuan
- Department of Neurosurgery, Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, 9 W., S. Lvshun Blvd, 116044, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, 9 W., S. Lvshun Blvd, 116044, Dalian, China.
| |
Collapse
|
7
|
Qu F, Li J, Zeng X, She Q, Li Y, Xie W, Cao S, Zhou Y, He Z, Tang J, Mao Z, Wang Y, Fang J, Xu W, Liu Z. Grass carp MAP3K4 participates in the intestinal immune response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 120:82-91. [PMID: 34780976 DOI: 10.1016/j.fsi.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) is a multifunctional mediator of the conserved MAPK signaling pathway that plays essential roles in the regulation of immune responses in mammals. However, the function of teleost MAP3K4s in innate immunity, especially in the intestinal immune system, is still poorly understood. In the current study, we identified a fish MAP3K4 homolog (CiMAP3K4) in Ctenopharyngodon idella as well as its immune function in intestine following bacterial infection in vivo and in vitro. The open reading frame (ORF) of CiMAP3K4 encodes putative peptide of 1544 amino acids containing a predicted serine/threonine protein kinase (S_TKc) domain with high identity with other fish MAP3K4s. Phylogenetic analysis revealed the CiMAP3K4 belonged to the fish cluster and showed the closest relationship to Pimephales promelas. Quantitative real-time PCR (qRT-PCR) analysis revealed that CiMAP3K4 transcripts were widely distributed in all tested tissues, especially with high expression in the muscle and intestine of healthy grass carp. In vitro, CiMAP3K4 gene expression was upregulated by bacterial PAMPs (lipolysaccharide (LPS), peptidoglycan (PGN), L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) and muramyl dipeptide (MDP)) and pathogens (Aeromonas hydrophila and Aeromonas veronii) in primary intestinal cells. In vivo, the mRNA expression levels of CiMAP3K4 in the intestine were significantly induced by bacterial MDP challenge in a time-dependent manner; however, this effect could be inhibited by the bioactive dipeptides β-alanyl-l-histidine (carnosine) and alanyl-glutamine (Ala-Gln). Moreover, CiMAP3K4 was located primarily in the cytoplasm, and its overexpression increased the transcriptional activity of AP-1 in HEK293T cells. Collectively, these results suggested that CiMAP3K4 might play an important role in the intestinal immune response to bacterial infections, which paves the way for a better understanding of the intestinal immune system of grass carp.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yurong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wenjie Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yuping Wang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
8
|
Schmitz I. Gadd45 Proteins in Immunity 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:69-86. [DOI: 10.1007/978-3-030-94804-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Li D, Kong L, Cui Z, Zhao F, Deng Y, Tan A, Jiang L. MEKK3 in hybrid snakehead (Channa maculate ♀ ×Channa argus ♂): Molecular characterization and immune response to infection with Nocardia seriolae and Aeromonas schubertii. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110643. [PMID: 34186154 DOI: 10.1016/j.cbpb.2021.110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is a serine/threonine protein kinase that acts as a key regulator and is widely involved in various innate and acquired immune signaling pathways. In this study, we first cloned the complete open reading frame (ORF) of the MEKK3 gene (named CcMEKK3) in a hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The full-length ORF of CcMEKK3 is 1851 bp, and encodes a putative protein of 616 amino acids containing a serine/threonine kinase catalytic (S-TKc) domain and a Phox and Bem1p (PB1) domain. A sequence alignment and phylogenetic tree analysis showed that CcMEKK3 is highly conserved relative to the MEKK3 proteins of other teleost species. CcMEKK3 was constitutively expressed in all the healthy hybrid snakehead tissues tested, with greatest expression in the immune tissues, such as the head kidney and spleen. The expression of CcMEKK3 was usually upregulated in the head kidney, spleen, and liver at different time points after infection with Nocardia seriolae or Aeromonas schubertii. Similarly, the dynamic expression levels of CcMEKK3 in head kidney leukocytes after stimulation revealed that CcMEKK3 was induced by LTA, LPS, and poly(I:C). In the subcellular localization analysis, CcMEKK3 was evenly distributed in the cytoplasm of HEK293T cells, and its overexpression significantly promoted the activities of NF-κB and AP-1. These results suggest that CcMEKK3 is involved in the immune defense against these two pathogens, and plays a crucial role in activating the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lulu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China.
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| |
Collapse
|
10
|
Shendy NAM, Broadhurst AL, Shoemaker K, Read R, Abell AN. MAP3K4 kinase activity dependent control of mouse gonadal sex determination†. Biol Reprod 2021; 105:491-502. [PMID: 33912929 DOI: 10.1093/biolre/ioab083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
Sex determination requires the commitment of bipotential gonads to either a testis or an ovarian fate. Gene deletion of the kinase Map3k4 results in gonadal sex reversal in XY mice, and transgenic re-expression of Map3k4 rescues the sex reversal phenotype. Map3k4 encodes a large, multi-functional protein possessing a kinase domain and several, additional protein-protein interaction domains. Although MAP3K4 plays a critical role in male gonadal sex determination, it is unknown if the kinase activity of MAP3K4 is required. Here, we use mice expressing full-length, kinase-inactive MAP3K4 from the endogenous Map3k4 locus to examine the requirement of MAP3K4 kinase activity in sex determination. Although homozygous kinase-inactivation of MAP3K4 (Map3k4KI/KI) is lethal, a small fraction survive to adulthood. We show Map3k4KI/KI adults exhibit a 4:1 female-biased sex ratio. Many adult Map3k4KI/KI phenotypic females have a Y chromosome. XY Map3k4KI/KI adults with sex reversal display female mating behavior, but do not give rise to offspring. Reproductive organs are overtly female, but there is a broad spectrum of ovarian phenotypes, including ovarian absence, primitive ovaries, reduced ovarian size, and ovaries having follicles in all stages of development. Further, XY Map3k4KI/KI adults are smaller than either male or female Map3k4WT/WT mice. Examination of the critical stage of gonadal sex determination at E11.5 shows that loss of MAP3K4 kinase activity results in the loss of Sry expression in XY Map3k4KI/KI embryos, indicating embryonic male gonadal sex reversal. Together, these findings demonstrate the essential role for kinase activity of MAP3K4 in male gonadal sex determination.
Collapse
Affiliation(s)
- Noha A M Shendy
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amber L Broadhurst
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Kristin Shoemaker
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Robert Read
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Amy N Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
11
|
Zhou H, Simion V, Pierce JB, Haemmig S, Chen AF, Feinberg MW. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4. FASEB J 2020; 35:e21133. [PMID: 33184917 DOI: 10.1096/fj.202001654rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic vascular inflammation plays a key role in the pathogenesis of atherosclerosis. Long non-coding RNAs (lncRNAs) have emerged as essential inflammation regulators. We identify a novel lncRNA termed lncRNA-MAP3K4 that is enriched in the vessel wall and regulates vascular inflammation. In the aortic intima, lncRNA-MAP3K4 expression was reduced by 50% during the progression of atherosclerosis (chronic inflammation) and 70% during endotoxemia (acute inflammation). lncRNA-MAP3K4 knockdown reduced the expression of key inflammatory factors (eg, ICAM-1, E-selectin, MCP-1) in endothelial cells or vascular smooth muscle cells and decreased monocytes adhesion to endothelium, as well as reducing TNF-α, IL-1β, COX2 expression in macrophages. Mechanistically, lncRNA-MAP3K4 regulates inflammation through the p38 MAPK signaling pathway. lncRNA-MAP3K4 shares a bidirectional promoter with MAP3K4, an upstream regulator of the MAPK signaling pathway, and regulates its transcription in cis. lncRNA-MAP3K4 and MAP3K4 show coordinated expression in response to inflammation in vivo and in vitro. Similar to lncRNA-MAP3K4, MAP3K4 knockdown reduced the expression of inflammatory factors in several different vascular cells. Furthermore, lncRNA-MAP3K4 and MAP3K4 knockdown showed cooperativity in reducing inflammation in endothelial cells. Collectively, these findings unveil the role of a novel lncRNA in vascular inflammation by cis-regulating MAP3K4 via a p38 MAPK pathway.
Collapse
Affiliation(s)
- Haoyang Zhou
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob B Pierce
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex F Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Liao Z, Zhang X, Song C, Lin W, Cheng Y, Xie Z, Chen S, Nie Y, Li A, Zhang H, Li H, Li H, Xie Q. ALV-J inhibits autophagy through the GADD45β/MEKK4/P38MAPK signaling pathway and mediates apoptosis following autophagy. Cell Death Dis 2020; 11:684. [PMID: 32826872 PMCID: PMC7442830 DOI: 10.1038/s41419-020-02841-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis, which are important processes for host immunity, are commonly exploited by viruses to facilitate their survival. However, to the best of our knowledge, very few studies have researched the mechanisms of action of the autophagic and apoptotic signaling pathways following viral infection. Thus, the present study aimed to investigate the mechanisms of action of growth arrest and DNA-damage-inducible β (GADD45β), an important resistance gene involved in the host resistance to ALV-J. Both ALV-J infection and the overexpression of GADD45β inhibited autophagy during the early stages, which prevented the autophagosomes from binding to the lysosomes and resulted in an incomplete autophagic flux. Notably, GADD45β was discovered to interact with MEKK4 in DF-1 cells. The genetic knockdown of GADD45β and MEKK4 using small interfering RNA-affected ALV-J infection, which suggested that ALV-J may promote the binding of GADD45β to MEKK4 to activate the p38MAPK signaling pathway, which subsequently inhibits autophagy. Furthermore, ALV-J was revealed to affect the autophagic pathway prior to affecting the apoptotic pathway. In conclusion, to the best of our knowledge, the present study was the first to investigate the combined effects of ALV-J infection on autophagy and apoptosis, and to suggest that ALV-J inhibits autophagy via the GADD45β/MEKK4/p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhihong Liao
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
| | - Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, 510642, Guangzhou, PR China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, 510642, Guangzhou, PR China
| | - Cailiang Song
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, 510642, Guangzhou, PR China
| | - Wencheng Lin
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, 510642, Guangzhou, PR China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, 510642, Guangzhou, PR China
| | - Yuzhen Cheng
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, 510642, Guangzhou, PR China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
| | - Yu Nie
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
| | - Aijun Li
- College of Science and Engineering, Jinan University, 510632, Guangzhou, PR China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Hongxin Li
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, 510642, Guangzhou, PR China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, 510642, Guangzhou, PR China
| | - Haiyun Li
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, PR China.
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, 510642, Guangzhou, PR China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, 510642, Guangzhou, PR China.
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, 510642, Guangzhou, PR China.
| |
Collapse
|
13
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
14
|
Barata AG, Dick TP. A role for peroxiredoxins in H 2O 2- and MEKK-dependent activation of the p38 signaling pathway. Redox Biol 2020; 28:101340. [PMID: 31629169 PMCID: PMC6807362 DOI: 10.1016/j.redox.2019.101340] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in the cellular response to various stresses and its deregulation accompanies pathological conditions such as cancer and chronic inflammation. Hydrogen peroxide (H2O2) is a well-established activator of the p38 MAPK signaling pathway. However, the mechanisms of H2O2-induced p38 activation are not yet fully understood. In Drosophila cells, we find that H2O2-induced activation of p38 depends on the MAPK kinase kinase (MAP3K) Mekk1. In line with the emerging role of peroxiredoxins as H2O2 sensors and signal transmitters we observe an H2O2-dependent interaction between Mekk1 and the cytosolic peroxiredoxin of Drosophila, Jafrac1. In human cells, MEKK4 (the homologue of Mekk1) and peroxiredoxin-2 (Prx2) interact in a similar manner, suggesting an evolutionarily conserved mechanism. In both organisms, H2O2 induces transient disulfide-linked conjugates between the MAP3K and a typical 2-Cys peroxiredoxin. We propose that these conjugates represent the relaying of oxidative equivalents from H2O2 to the MAP3K and that the oxidation of Mekk1/MEKK4 leads to the downstream activation of p38 MAPK. Indeed, the depletion of cytosolic 2-Cys peroxiredoxins in human cells diminished H2O2-induced activation of p38 MAPK.
Collapse
Affiliation(s)
- Ana G Barata
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Fang Y, Xu XY, Zhang M, Bai Y, Zhang XS, Shen Y, Li J. Cloning, functional analysis, and microRNA-induced negative regulation of growth arrest and DNA damage-inducible 45 γ (Gadd45g) in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103400. [PMID: 31129273 DOI: 10.1016/j.dci.2019.103400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Growth arrest and DNA damage-inducible 45 gamma (Gadd45g) is a member of Gadd45 gene family of immunological proteins in mammals. Herein, we identified and characterised Gadd45g from grass carp. The cDNA spans over 1189 bp, with an open reading frame of 480 bp encoding a 159 amino acid protein. CiGadd45g mRNAs were expressed in all tissues investigated, with abundant expression in liver, kidney, heart, brain, blood and skin. Following infection with Aeromonas hydrophila, CiGadd45g expression was upregulated in these immune-related tissues (gill, liver, spleen, intestine, kidney and head kidney). Immune-related cytokines (p38 and JNK) and proinflammatory cytokines (IL-8, IFN-1 and TNF-α) were activated by CiGadd45g. CiGadd45g and downstream genes were regulated by microRNA miR-429b. These results indicate that CiGadd45g plays an important immune role in the response to A. hydrophila infection in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China
| | - Meng Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xue-Shu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
16
|
Garcia-Flores AE, Sollome JJ, Thavathiru E, Bower JL, Vaillancourt RR. HER2/HER3 regulates lactate secretion and expression of lactate receptor mRNA through the MAP3K4 associated protein GIT1. Sci Rep 2019; 9:10823. [PMID: 31346208 PMCID: PMC6658559 DOI: 10.1038/s41598-019-46954-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
One of the major features of cancer is Otto Warburg’s observation that many tumors have increased extracellular acidification compared to healthy tissues. Since Warburg’s observation, the importance of extracellular acidification in cancer is now considered a hallmark of cancer. Human MAP3K4 functions upstream of the p38 and JNK mitogen activated protein kinases (MAPKs). Additionally, MAP3K4 is required for cell migration and extracellular acidification of breast cancer cells in response to HER2/HER3 signaling. Here, we demonstrate that GIT1 interacts with MAP3K4 by immunoprecipitation, while cellular lactate production and the capacity of MCF-7 cells for anchorage independent growth in soft agar were dependent on GIT1. Additionally, we show that activation of HER2/HER3 signaling leads to reduced expression of lactate receptor (GPR81) mRNA and that both, GIT1 and MAP3K4, are necessary for constitutive expression of GPR81 mRNA. Our study suggests that targeting downstream proteins in the HER2/HER3-induced extracellular lactate signaling pathway may be a way to inhibit the Warburg Effect to disrupt tumor growth.
Collapse
Affiliation(s)
- Alejandro E Garcia-Flores
- The Department of Pharmacology and Toxicology, College of Pharmacy University of Arizona, Tucson, Arizona, 85721, USA
| | | | | | - Joseph L Bower
- University of Texas Southwestern Medical Center, Dallas, United States
| | - Richard R Vaillancourt
- The Department of Pharmacology and Toxicology, College of Pharmacy University of Arizona, Tucson, Arizona, 85721, USA.
| |
Collapse
|
17
|
Choi JP, Wang R, Yang X, Wang X, Wang L, Ting KK, Foley M, Cogger V, Yang Z, Liu F, Han Z, Liu R, Baell J, Zheng X. Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. SCIENCE ADVANCES 2018; 4:eaau0731. [PMID: 30417093 PMCID: PMC6221540 DOI: 10.1126/sciadv.aau0731] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 05/13/2023]
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular disease that can occur sporadically or be inherited. They are major causes of stroke, cerebral hemorrhage, and neurological deficits in the younger population. Loss-of-function mutations in three genes, CCM1, CCM2, and CCM3, have been identified as the cause of human CCMs. Currently, no drug is available to treat CCM disease. Hyperactive mitogen-activated protein kinase kinase Kinase 3 (MEKK3) kinase signaling as a consequence of loss of CCM genes is an underlying cause of CCM lesion development. Using a U.S. Food and Drug Administration-approved kinase inhibitor library combined with virtual modeling and biochemical and cellular assays, we have identified a clinically approved small compound, ponatinib, that is capable of inhibiting MEKK3 activity and normalizing expression of downstream kruppel-like factor (KLF) target genes. Treatment with this compound in neonatal mouse models of CCM can prevent the formation of new CCM lesions and reduce the growth of already formed lesions. At the ultracellular level, ponatinib can normalize the flattening and disorganization of the endothelium caused by CCM deficiency. Collectively, our study demonstrates ponatinib as a novel compound that may prevent CCM initiation and progression in mouse models through inhibition of MEKK3-KLF signaling.
Collapse
Affiliation(s)
- Jaesung P. Choi
- Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xian Wang
- Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Lu Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ka Ka Ting
- Centre for the Endothelium, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Matthew Foley
- Australian Centre for Microscopy & Microanalysis, University of Sydney, Sydney, NSW 2006, Australia
| | - Victoria Cogger
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Zhuo Yang
- Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Corresponding author.
| |
Collapse
|
18
|
Liu G, Chen M, Yu C, Wang W, Yang L, Li Z, Wang W, Chen J. Molecular cloning, characterization and functional analysis of a putative mitogen-activated protein kinase kinase kinase 4 (MEKK4) from blood clam Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2017; 66:372-381. [PMID: 28476674 DOI: 10.1016/j.fsi.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam.
Collapse
Affiliation(s)
- Guosheng Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China.
| | - Chen Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China.
| |
Collapse
|
19
|
Abstract
The ADP-ribosyltransferase C3 exoenzyme from C. botulinum selectively inactivates Rho and is therefore often used as an inhibitor for investigations on Rho signaling. Previous studies of our group revealed that C3 inhibited cell proliferation in HT22 cells accompanied by increased transcriptional activities of Sp1 and c-Jun and reduced levels of cyclin D1, p21 and phosphorylated p38. By use of a p38α-deficient and a p38α-expressing control cell line, the impact of p38 on C3-mediated inhibition of cell proliferation and alterations on MAPK signaling was studied by growth kinetic experiments and Western blot analyses. The cell growth of p38α-expressing cells was impaired by C3, while the p38α-deficient cells did not exhibit any C3-induced effect. The activity of the MKK3/6-p38 MAPK signaling cascade as well as the phosphorylation of c-Jun and JNK was reduced by C3 exclusively in the presence of p38α. Moreover, the activity of upstream MAPKKK TAK1 was lowered in the p38α-expressing cells. These results indicated a resistance of p38α-deficient cells to C3-mediated inhibition of cell growth. This anti-proliferative effect was highly associated with the decreased activity of c-Jun and upstream p38 and JNK MAPK signaling as a consequence of the absence of p38α in these cells.
Collapse
|
20
|
Abstract
Physiological stimuli activate protein kinases for finite periods of time, which is critical for specific biological outcomes. Mimicking this transient biological activity of kinases is challenging due to the limitations of existing methods. Here, we report a strategy enabling transient kinase activation in living cells. Using two protein-engineering approaches, we achieve independent control of kinase activation and inactivation. We show successful regulation of tyrosine kinase c-Src (Src) and Ser/Thr kinase p38α (p38), demonstrating broad applicability of the method. By activating Src for finite periods of time, we reveal how the duration of kinase activation affects secondary morphological changes that follow transient Src activation. This approach highlights distinct roles for sequential Src-Rac1- and Src-PI3K-signaling pathways at different stages during transient Src activation. Finally, we demonstrate that this method enables transient activation of Src and p38 in a specific signaling complex, providing a tool for targeted regulation of individual signaling pathways.
Collapse
|
21
|
Yang LX, Gao Q, Shi JY, Wang ZC, Zhang Y, Gao PT, Wang XY, Shi YH, Ke AW, Shi GM, Cai JB, Liu WR, Duan M, Zhao YJ, Ji Y, Gao DM, Zhu K, Zhou J, Qiu SJ, Cao Y, Tang QQ, Fan J. Mitogen-activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial-mesenchymal transition. Hepatology 2015; 62:1804-1816. [PMID: 26340507 DOI: 10.1002/hep.28149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED The molecular pathogenesis of intrahepatic cholangiocarcinoma (iCCA) is poorly understood, and its incidence continues to increase worldwide. Deficiency of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) has been reported to induce the epithelial-mesenchymal transition (EMT) process of placental and embryonic development, yet its role in human cancer remains unknown. MAP3K4 has somatic mutation in iCCA so we sequenced all exons of MAP3K4 in 124 iCCA patients. We identified nine somatic mutations in 10 (8.06%) patients, especially in those with lymph node metastasis and intrahepatic metastasis. We also showed that messenger RNA and protein levels of MAP3K4 were significantly reduced in iCCA versus paired nontumor tissues. Furthermore, knockdown of MAP3K4 in cholangiocarcinoma cells markedly enhanced cell proliferation and invasiveness in vitro and tumor progression in vivo, accompanied by a typical EMT process. In contrast, overexpression of MAP3K4 in cholangiocarcinoma cells obviously reversed EMT and inhibited cell invasion. Mechanistically, MAP3K4 functioned as a negative regulator of EMT in iCCA by antagonizing the activity of the p38/nuclear factor κB/snail pathway. We found that the tumor-inhibitory effect of MAP3K4 was abolished by inactivating mutations. Clinically, a tissue microarray study containing 322 iCCA samples from patients revealed that low MAP3K4 expression in iCCA positively correlated with aggressive tumor characteristics, such as vascular invasion and intrahepatic or lymph node metastases, and was independently associated with poor survival and increased recurrence after curative surgery. CONCLUSIONS MAP3K4, significantly down-regulated, frequently mutated, and potently regulating the EMT process in iCCA, was a putative tumor suppressor of iCCA.
Collapse
Affiliation(s)
- Liu-Xiao Yang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Zhi-Chao Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Yong Zhang
- Department of General Surgery, Zhongshang Hospital (South), Fudan University, Shanghai, P.R. China
| | - Ping-Ting Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Wei-Ren Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Meng Duan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ying-Jun Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Kai Zhu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, P.R. China
| | - Qi-Qun Tang
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
22
|
Mizuno T, Masuda Y, Irie K. The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response. PLoS Genet 2015; 11:e1005491. [PMID: 26394309 PMCID: PMC4578879 DOI: 10.1371/journal.pgen.1005491] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
Accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) causes ER stress. Snf1, the Saccharomyces cerevisiae ortholog of AMP–activated protein kinase (AMPK), plays a crucial role in the response to various environmental stresses. However, the role of Snf1 in ER stress response remains poorly understood. In this study, we characterize Snf1 as a negative regulator of Hog1 MAPK in ER stress response. The snf1 mutant cells showed the ER stress resistant phenotype. In contrast, Snf1-hyperactivated cells were sensitive to ER stress. Activated Hog1 levels were increased by snf1 mutation, although Snf1 hyperactivation interfered with Hog1 activation. Ssk1, a specific activator of MAPKKK functioning upstream of Hog1, was induced by ER stress, and its induction was inhibited in a manner dependent on Snf1 activity. Furthermore, we show that the SSK1 promoter is important not only for Snf1-modulated regulation of Ssk1 expression, but also for Ssk1 function in conferring ER stress tolerance. Our data suggest that Snf1 downregulates ER stress response signal mediated by Hog1 through negatively regulating expression of its specific activator Ssk1 at the transcriptional level. We also find that snf1 mutation upregulates the unfolded protein response (UPR) pathway, whereas Snf1 hyperactivation downregulates the UPR activity. Thus, Snf1 plays pleiotropic roles in ER stress response by negatively regulating the Hog1 MAPK pathway and the UPR pathway. All organisms are always exposed to several environmental stresses, including ultraviolet, heat, and chemical compounds. Therefore, every cell possesses defense mechanisms to maintain their survival under stressed conditions. Numerous studies have shown that a family of protein kinases plays a principal role in adaptive response to environmental stresses and perturbation of their regulation is implicated in a variety of human pathologies, such as cancer and neurodegenerative diseases. Elucidation of molecular mechanisms controlling their activities is still important not only for understanding how the organism acquires stress tolerance, but also for development of therapies for various diseases. In Saccharomyces cerevisiae, the Hog1 stress-responsive MAP kinase is activated by ER stress and coordinates a pleiotropic response to ER stress. However, the mechanisms for regulating Hog1 activity during ER stress response remain poorly understood. In this paper, we demonstrate that a Saccharomyces cerevisiae ortholog of mammalian AMP–activated protein kinase (AMPK), Snf1, negatively regulates Hog1 in ER stress response. ER stress induces expression of Ssk1, a specific activator of the Hog1 MAPK cascade. Snf1 lowers the expression level of Ssk1, thereby downregulating the signaling from upstream components to the Hog1 MAPK cascade. The activity of Snf1 is also enhanced by ER stress. Thus, our data suggest that Snf1 plays an important role in regulation of ER stress response signal mediated by Hog1.
Collapse
Affiliation(s)
- Tomoaki Mizuno
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| | - Yuto Masuda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
23
|
Suppressed expression of mitogen-activated protein kinases in hyperthermia induced defective neural tube. Neurosci Lett 2015; 594:6-11. [PMID: 25818329 DOI: 10.1016/j.neulet.2015.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
Abstract
Neural tube defects (NTDs) are common congenital malformations. Mitogen-activated protein kinases (MAPKs) pathway is involved in many physiological processes. HMGB1 has been showed closely associated with neurulation and NTDs induced by hyperthermia and could activate MAPKs pathway. Since hyperthermia caused increased activation of MAPKs in many systems, the present study aims to investigate whether HMGB1 contributes to hyperthermia induced NTDs through MAPKs pathway. The mRNA levels of MAPKs and HMGB1 between embryonic day 8.5 and 10 (E8.5-10) in hyperthermia induced defective neural tube were detected by real-time quantitative polymerase chain reaction (qPCR). By immunofluorescence and western blotting, the expressions of HMGB1 and phosphorylated MAPKs (ERK1/2, JNK and p38) in neural tubes after hyperthermia were studied. The mRNA levels of MAPKs and HMGB1, as well as the expressions of HMGB1 along with phosphorylated JNK, p38 and ERK, were downregulated in NTDs groups induced by hyperthermia compared with control. The findings suggested that HMGB1 may contribute to hyperthermia induced NTDs formation through decreased cell proliferation due to inhibited phosphorylated ERK1/2 MAPK.
Collapse
|
24
|
Nakamura T, Saito H, Takekawa M. SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nat Commun 2013; 4:1775. [PMID: 23653187 DOI: 10.1038/ncomms2752] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/15/2013] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 4 is essential for centrosome duplication, but its hyperactivation causes supernumerary centrosomes. Here we report that polo-like kinase 4 is directly phosphorylated and activated by stress-activated protein kinase kinase kinases (SAPKKKs). Stress-induced polo-like kinase 4 activation promotes centrosome duplication, whereas stress-induced SAPK activation prevents centrosome duplication. In the early phase of stress response, the balance of these opposing signals prevents centrosome overduplication. However, in the late phase of stress response, p53 downregulates polo-like kinase 4 expression, thereby preventing sustained polo-like kinase 4 activity and centrosome amplification. If both p53 and the SAPKK MKK4 are simultaneously inactivated, as is frequently found in cancer cells, persistent polo-like kinase 4 activity combined with the lack of SAPK-mediated inhibition of centrosome duplication conspire to induce supernumerary centrosomes under stress. Indeed, tumour-derived MKK4 mutants induced centrosome amplification under genotoxic stress, but only in p53-negative cells. Thus, our results reveal a mechanism that preserves the numeral integrity of centrosomes, and an unexplored tumour-suppressive function of MKK4.
Collapse
Affiliation(s)
- Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
25
|
Sollome JJ, Thavathiru E, Camenisch TD, Vaillancourt RR. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal 2013; 26:70-82. [PMID: 24036211 DOI: 10.1016/j.cellsig.2013.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.
Collapse
Affiliation(s)
- James J Sollome
- The Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
26
|
Li P, Gu J, Yang X, Cai H, Tao J, Yang X, Lu Q, Wang Z, Yin C, Gu M. Functional promoter -94 ins/del ATTG polymorphism in NFKB1 gene is associated with bladder cancer risk in a Chinese population. PLoS One 2013; 8:e71604. [PMID: 23977085 PMCID: PMC3748046 DOI: 10.1371/journal.pone.0071604] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022] Open
Abstract
Background A functional -94 insertion/deletion polymorphism (rs28362491) in the promoter of the NFKB1 gene was reported to influence NFKB1 expression and confer susceptibility to different types of cancer. This study aims to determine whether the polymorphism is associated with risk of bladder cancer. Materials and methods TaqMan assay was used to determine genotype among 609 cases and 640 controls in a Chinese population. Logistic regression was used to assess the association between the polymorphism and bladder cancer risk, and quantitative real-time polymerase chain reaction was used to determine NFKB1 mRNA expression. Results Compared with the ins/ins/ins/del genotypes, the del/del genotype was associated with a significantly increased risk of bladder cancer [adjusted odd ratio (OR) = 1.92, 95% confidence interval (CI) = 1.42–2.59]. The increased risk was more prominent among subjects over 65 years old (OR = 2.37, 95% CI = 1.52–3.70), male subjects (OR = 1.97, 95% CI = 1.40–2.79) and subjects with self-reported family history of cancer (OR = 3.59, 95% CI = 1.19–10.9). Furthermore, the polymorphism was associated with a higher risk of developing non-muscle invasive bladder cancer (OR = 2.07, 95% CI = 1.51–2.85), grade 1 bladder cancer (OR = 2.40, 95% CI = 1.68–3.43), single tumor bladder cancer (OR = 2.04, 95% CI = 1.48–2.82) and smaller tumor size bladder cancer (OR = 2.10, 95% CI = 1.51–2.92). The expression of NFKB1 mRNA in bladder cancer tissues with homozygous insertion genotype was higher than that with deletion allele. Conclusions In conclusion, the -94 ins/del ATTG polymorphism in NFKB1 promoter may contribute to the etiology of bladder cancer in the Chinese population.
Collapse
Affiliation(s)
- Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinbao Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongzhou Cai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuejian Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (CY); (MG)
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (CY); (MG)
| |
Collapse
|
27
|
Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e81. [PMID: 23511335 PMCID: PMC3615819 DOI: 10.1038/mtna.2013.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-methyl (2'-OMe) phosphorothioate (PT)-modified (CAG)7 oligo (PS58), which selectively silences mutant DMPK transcripts through recognition of the abnormally long (CUG)n tract. We present here a comprehensive collection of triplet repeat AONs and found that oligo length and nucleotide chemistry are important determinants for activity. For significant reduction of expanded DMPK mRNAs, a minimal length of five triplets was required. 2'-O,4'-C-ethylene-bridged nucleic acid (ENA)-modified AONs appeared not effective, probably due to lack of nuclear internalization. Selectivity for products from the expanded DMPK allele in patient myoblasts, an important requirement to minimize unwanted side effects, appeared also dependent on AON chemistry. In particular, RNase-H-dependent (CAG)n AONs did not show (CUG)n length specificity. We provide evidence that degradation of long DMPK transcripts induced by PS58-type AONs is an RNase-H independent process, does not involve oligo-intrinsic RNase activity nor does it interfere with splicing of DMPK transcripts. Our collection of triplet repeat AONs forms an important resource for further development of a safe therapy for DM1 and other unstable microsatellite diseases.Molecular Therapy-Nucleic Acids (2013) 2, e81; doi:10.1038/mtna.2013.9; published online 19 March 2013.
Collapse
|
28
|
Abstract
The vertebrate immune system protects the host against invading pathogens such as viruses, bacteria and parasites. It consists of an innate branch and an adaptive branch that provide immediate and long-lasting protection, respectively. As the immune system is composed of different cell types and distributed throughout the whole body, immune cells need to communicate with each other. Intercellular communication in the immune system is mediated by cytokines, which bind to specific receptors on the cell surface and activate intracellular signalling networks. Growth arrest and DNA damage-inducible 45 (Gadd45) proteins are important components of these intracellular signalling networks. They are induced by a number of cytokines and by bacterial lipopolysaccharide. Within the innate immune system, Gadd45 proteins are crucial for the differentiation of myeloid cells as well as for the function of granulocytes and macrophages. Moreover, Gadd45β regulates autophagy, a catabolic pathway that also degrades intracellular pathogens. Regarding adaptive immunity, Gadd45 proteins are especially well characterized in T cells. For instance, Gadd45β and Gadd45γ regulate cytokine expression and Th1 differentiation, while Gadd45α inhibits p38 kinase activation downstream of the T cell receptor. Due to their many functions in the immune system, deficiency in Gadd45 proteins causes autoimmune diseases and less efficient tumour immunosurveillance.
Collapse
Affiliation(s)
- Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany,
| |
Collapse
|
29
|
Brefeldin A-inhibited guanine exchange factor 2 regulates filamin A phosphorylation and neuronal migration. J Neurosci 2012; 32:12619-29. [PMID: 22956851 DOI: 10.1523/jneurosci.1063-12.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Periventricular heterotopia (PH) is a human malformation of cortical development associated with gene mutations in ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2 encodes for Big2 protein) and Filamin A (FLNA). PH is thought to derive from neuroependymal disruption, but the extent to which neuronal migration contributes to this phenotype is unknown. Here, we show that Arfgef2 null mice develop PH and exhibit impaired neural migration with increased protein expression for both FlnA and phosphoFlnA at Ser2152. Big2 physically interacts with FlnA and overexpression of phosphomimetic Ser2512 FLNA impairs neuronal migration. FlnA phosphorylation directs FlnA localization toward the cell cytoplasm, diminishes its binding affinity to actin skeleton, and alters the number and size of paxillin focal adhesions. Collectively, our results demonstrate a molecular mechanism whereby Big2 inhibition promotes phosphoFlnA (Ser2152) expression, and increased phosphoFlnA impairs its actin binding affinity and the distribution of focal adhesions, thereby disrupting cell intrinsic neuronal migration.
Collapse
|
30
|
Warr N, Carre GA, Siggers P, Faleato JV, Brixey R, Pope M, Bogani D, Childers M, Wells S, Scudamore CL, Tedesco M, del Barco Barrantes I, Nebreda AR, Trainor PA, Greenfield A. Gadd45γ and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell 2012; 23:1020-31. [PMID: 23102580 PMCID: PMC3526779 DOI: 10.1016/j.devcel.2012.09.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/04/2012] [Accepted: 09/19/2012] [Indexed: 01/09/2023]
Abstract
Loss of the kinase MAP3K4 causes mouse embryonic gonadal sex reversal due to reduced expression of the testis-determining gene, Sry. However, because of widespread expression of MAP3K4, the cellular basis of this misregulation was unclear. Here, we show that mice lacking Gadd45γ also exhibit XY gonadal sex reversal caused by disruption to Sry expression. Gadd45γ is expressed in a dynamic fashion in somatic cells of the developing gonads from 10.5 days postcoitum (dpc) to 12.5 dpc. Gadd45γ and Map3k4 genetically interact during sex determination, and transgenic overexpression of Map3k4 rescues gonadal defects in Gadd45γ-deficient embryos. Sex reversal in both mutants is associated with reduced phosphorylation of p38 MAPK and GATA4. In addition, embryos lacking both p38α and p38β also exhibit XY gonadal sex reversal. Taken together, our data suggest a requirement for GADD45γ in promoting MAP3K4-mediated activation of p38 MAPK signaling in embryonic gonadal somatic cells for testis determination in the mouse.
Collapse
Affiliation(s)
- Nick Warr
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
32
|
Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 2012; 20:321-32. [PMID: 23059785 DOI: 10.1038/cdd.2012.129] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway important for cellular homeostasis, mammalian development, cancer and immunity. Many molecular components of autophagy have been identified, but little is known about regulatory mechanisms controlling their effector functions. Here, we show that, in contrast to other p38 MAP kinase activators, the growth arrest and DNA damage 45 beta (Gadd45β)-MAPK/ERK kinase kinase 4 (MEKK4) pathway specifically directs p38 to autophagosomes. This process results in an accumulation of autophagosomes through p38-mediated inhibition of lysosome fusion. Conversely, autophagic flux is increased in p38-deficient fibroblasts and Gadd45β-deficient cells. We further identified the underlying mechanism and demonstrate that phosphorylation of the autophagy regulator autophagy-related (Atg)5 at threonine 75 through p38 is responsible for inhibition of starvation-induced autophagy. Thus, we show for the first time that Atg5 activity is controlled by phosphorylation and, moreover, that the spatial regulation of p38 by Gadd45β/MEKK4 negatively regulates the autophagic process.
Collapse
|
33
|
Defective IL-1A expression in patients with Crohn’s disease is related to attenuated MAP3K4 signaling. Hum Immunol 2012; 73:912-9. [DOI: 10.1016/j.humimm.2012.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/21/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022]
|
34
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1063] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|
35
|
Choi MC, Cohen TJ, Barrientos T, Wang B, Li M, Simmons BJ, Yang JS, Cox GA, Zhao Y, Yao TP. A direct HDAC4-MAP kinase crosstalk activates muscle atrophy program. Mol Cell 2012; 47:122-32. [PMID: 22658415 DOI: 10.1016/j.molcel.2012.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Prolonged deficits in neural input activate pathological muscle remodeling, leading to atrophy. In denervated muscle, activation of the atrophy program requires HDAC4, a potent repressor of the master muscle transcription factor MEF2. However, the signaling mechanism that connects HDAC4, a protein deacetylase, to the atrophy machinery remains unknown. Here, we identify the AP1 transcription factor as a critical target of HDAC4 in neurogenic muscle atrophy. In denervated muscle, HDAC4 activates AP1-dependent transcription, whereas AP1 inactivation recapitulates HDAC4 deficiency and blunts the muscle atrophy program. We show that HDAC4 activates AP1 independently of its canonical transcriptional repressor activity. Surprisingly, HDAC4 stimulates AP1 activity by activating the MAP kinase cascade. We present evidence that HDAC4 binds and promotes the deacetylation and activation of a key MAP3 kinase, MEKK2. Our findings establish an HDAC4-MAPK-AP1 signaling axis essential for neurogenic muscle atrophy and uncover a direct crosstalk between acetylation- and phosphorylation-dependent signaling cascades.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wei J, Chu C, Wang Y, Yang Y, Wang Q, Li T, Zhang L, Ma X. Association study of 45 candidate genes in nicotine dependence in Han Chinese. Addict Behav 2012; 37:622-6. [PMID: 22309839 DOI: 10.1016/j.addbeh.2012.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/09/2011] [Accepted: 01/10/2012] [Indexed: 02/05/2023]
Abstract
Numerous genetic linkages, association studies have been performed in different ethnic groups and revealed many susceptibility loci and genes for nicotine dependence. However, limited similar researches were performed in Han Chinese. This study was designed to investigate the association of candidate genes with nicotine dependence in Han Chinese. We genotyped 384 SNPs within 45 candidate genes with nicotine dependence in a Han Chinese population consisting 223 high nicotine dependent subjects and 257 low nicotine dependent subjects by employing GoldenGate genotyping assay (Illumina). Following association analysis was performed using PLINK software. Individual SNP-based association analysis revealed that nine SNPs located in DRD3 (rs2630351), DRD5 (rs1967550), MAP3K4 (rs2314378), DDC (rs11575461), CHRNB3 (rs4954), GABBR2 (rs2779562), DRD2 (rs11214613 and rs6589377) and CHRNA4 (rs2236196) were significantly associated with FTND after correction for multiple testing with the p values from 2.59×10(-7) to 9.99×10(-5). Haplotype-based association analysis revealed haplotype G-A-A formed by rs2630351, rs167771 and rs324032 and haplotype G-G-G-A formed by rs3773678, rs2630349, rs2630351 and rs167771 in DRD3; haplotype of G-A formed by rs2779562 and rs2808566 in GABBR2 and haplotype of T-T-A-G-A formed by rs6832644, rs4057797, rs9764, rs4552421 and rs10033119 in NPY1R are associated with FTND (p=3.61×10(-7)-8.78×10(-6)). Our results provided confirmation of the previous findings that DRD2, DRD3, DDC, CHRNB3, GABBR2 and CHRNA4 are associated with nicotine dependence. Furthermore, we for the first time report a significant association between nicotine dependence and DRD5, MAP3K4 and NPY1R. These findings need independent replication in the future studies.
Collapse
Affiliation(s)
- Jinxue Wei
- Psychiatric Laboratory and Department of Psychiatry, West China Hospital, Sichuan University, No. 1 Keyuan Si Road, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Warr N, Bogani D, Siggers P, Brixey R, Tateossian H, Dopplapudi A, Wells S, Cheeseman M, Xia Y, Ostrer H, Greenfield A. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1. PLoS One 2011; 6:e19572. [PMID: 21559298 PMCID: PMC3086927 DOI: 10.1371/journal.pone.0019572] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/10/2011] [Indexed: 12/27/2022] Open
Abstract
In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD) have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK) signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB) phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.
Collapse
Affiliation(s)
- Nick Warr
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Debora Bogani
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Rachel Brixey
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Hilda Tateossian
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Asha Dopplapudi
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Sara Wells
- The Mary Lyon Centre, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Michael Cheeseman
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
- The Mary Lyon Centre, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| | - Ying Xia
- Department of Environmental Health and Center
of Environmental Genetics, School of Medicine, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Harry Ostrer
- Human Genetics Program, New York University
School of Medicine, New York, New York, United States of America
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research
Council, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
38
|
Coyne CB, Bozym R, Morosky SA, Hanna SL, Mukherjee A, Tudor M, Kim KS, Cherry S. Comparative RNAi screening reveals host factors involved in enterovirus infection of polarized endothelial monolayers. Cell Host Microbe 2011; 9:70-82. [PMID: 21238948 PMCID: PMC3048761 DOI: 10.1016/j.chom.2011.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
Abstract
Enteroviruses, including coxsackievirus B (CVB) and poliovirus (PV), can access the CNS through the blood brain barrier (BBB) endothelium to cause aseptic meningitis. To identify cellular components required for CVB and PV infection of human brain microvascular endothelial cells, an in vitro BBB model, we performed comparative RNAi screens and identified 117 genes that influenced infection. Whereas a large proportion of genes whose depletion enhanced infection (17 of 22) were broadly antienteroviral, only 46 of the 95 genes whose depletion inhibited infection were required by both CVB and PV and included components of cell signaling pathways such as adenylate cyclases. Downregulation of genes including Rab GTPases, Src tyrosine kinases, and tyrosine phosphatases displayed specificity in their requirement for either CVB or PV infection. These findings highlight the pathways hijacked by enteroviruses for entry and replication in the BBB endothelium, a specialized and clinically relevant cell type for these viruses.
Collapse
Affiliation(s)
- Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Rebecca Bozym
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Stefanie A. Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Sheri L. Hanna
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania19104, USA
| | - Amitava Mukherjee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania19104, USA
| |
Collapse
|
39
|
Cubero FJ, Trautwein C. Oxidative Stress and Liver Injury. MOLECULAR PATHOLOGY LIBRARY 2011:427-435. [DOI: 10.1007/978-1-4419-7107-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
40
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
41
|
Karginov AV, Ding F, Kota P, Dokholyan NV, Hahn KM. Engineered allosteric activation of kinases in living cells. Nat Biotechnol 2010; 28:743-7. [PMID: 20581846 PMCID: PMC2902629 DOI: 10.1038/nbt.1639] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/27/2010] [Indexed: 11/16/2022]
Abstract
Studies of cellular and tissue dynamics benefit greatly from tools that can control protein activity with specificity and precise timing in living systems. Here we describe an approach to confer allosteric regulation specifically on the catalytic activity of protein kinases. A highly conserved portion of the kinase catalytic domain is modified with a small protein insert that inactivates catalytic activity but does not affect other protein functions (Fig. 1a). Catalytic activity is restored by addition of rapamycin or non-immunosuppresive rapamycin analogs. Molecular modeling and mutagenesis indicate that the protein insert reduces activity by increasing the flexibility of the catalytic domain. Drug binding restores activity by increasing rigidity. We demonstrate the approach by specifically activating focal adhesion kinase (FAK) within minutes in living cells and show that FAK is involved in the regulation of membrane dynamics. Successful regulation of Src and p38 by insertion of the rapamycin-responsive element at the same conserved site used in FAK suggests that our strategy will be applicable to other kinases.
Collapse
Affiliation(s)
- Andrei V. Karginov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Pradeep Kota
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Klaus M. Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| |
Collapse
|
42
|
Kedar VP, Darby MK, Williams JG, Blackshear PJ. Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85. PLoS One 2010; 5:e9588. [PMID: 20221403 PMCID: PMC2833206 DOI: 10.1371/journal.pone.0009588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Background Tristetraprolin (TTP) is the prototype member of a family of CCCH tandem zinc finger proteins and is considered to be an anti-inflammatory protein in mammals. TTP plays a critical role in the decay of tumor necrosis factor alpha (TNF) mRNA, among others, by binding AU-rich RNA elements in the 3′-untranslated regions of this transcript and promoting its deadenylation and degradation. Methodology/Principal Findings We used yeast two-hybrid analysis to identify potential protein binding partners for human TTP (hTTP). Various regions of hTTP recovered 31 proteins that fell into 12 categories based on sequence similarities. Among these, the interactions between hTTP and CIN85, cytoplasmic poly (A) binding protein (PABP), nucleolin and heat shock protein 70 were confirmed by co-immunoprecipitation experiments. CIN85 and hTTP co-localized in the cytoplasm of cells as determined by confocal microscopy. CIN85 contains three SH3 domains that specifically bind a unique proline-arginine motif (PXXXPR) found in several CIN85 effectors. We found that the SH3 domains of CIN85 bound to a PXXXPR motif located near the C-terminus of hTTP. Co-expression of CIN85 with hTTP resulted in the increased phosphorylation of hTTP at serine residues in positions 66 and 93, possibly due in part to the demonstrated association of mitogen-activated protein kinase kinase kinase 4 (MEKK4) to both proteins. The presence of CIN85 did not appear to alter hTTP's binding to RNA probes or its stimulated breakdown of TNF mRNA. Conclusions/Significance These studies describe interactions between hTTP and nucleolin, cytoplasmic PABP, heat shock protein 70 and CIN85; these interactions were initially discovered by two-hybrid analysis, and confirmed by co-immunoprecipitation. We found that CIN85 binding to a C-terminal motif within hTTP led to the increased phosphorylation of hTTP, possibly through enhanced association with MEKK4. The functional consequences to each of the members of this putative complex remain to be determined.
Collapse
Affiliation(s)
- Vishram P. Kedar
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Martyn K. Darby
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Jason G. Williams
- Protein Microcharacterization Core Facility, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gupta S, Maurya MR, Subramaniam S. Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells. PLoS Comput Biol 2010; 6:e1000654. [PMID: 20126526 PMCID: PMC2813256 DOI: 10.1371/journal.pcbi.1000654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022] Open
Abstract
Signaling pathways mediate the effect of external stimuli on gene expression in cells. The signaling proteins in these pathways interact with each other and their phosphorylation levels often serve as indicators for the activity of signaling pathways. Several signaling pathways have been identified in mammalian cells but the crosstalk between them is not well understood. Alliance for Cellular Signaling (AfCS) has measured time-course data in RAW 264.7 macrophage cells on important phosphoproteins, such as the mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STATs), in single- and double-ligand stimulation experiments for 22 ligands. In the present work, we have used a data-driven approach to analyze the AfCS data to decipher the interactions and crosstalk between signaling pathways in stimulated macrophage cells. We have used dynamic mapping to develop a predictive model using a partial least squares approach. Significant interactions were selected through statistical hypothesis testing and were used to reconstruct the phosphoprotein signaling network. The proposed data-driven approach is able to identify most of the known signaling interactions such as protein kinase B (Akt) --> glycogen synthase kinase 3alpha/beta (GSKalpha/beta) etc., and predicts potential novel interactions such as P38 --> RSK and GSK --> ezrin/radixin/moesin. We have also shown that the model has good predictive power for extrapolation. Our novel approach captures the temporal causality and directionality in intracellular signaling pathways. Further, case specific analysis of the phosphoproteins in the network has led us to propose hypothesis about inhibition (phosphorylation) of GSKalpha/beta via P38.
Collapse
Affiliation(s)
- Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Mano Ram Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Chemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
- Graduate Program in Bioinformatics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
44
|
Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 2009; 9:915-30. [PMID: 20025601 PMCID: PMC3762688 DOI: 10.2174/156800909790192383] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45alpha, Gadd45beta, and Gadd45gamma) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-kappaB (NF-kappaB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-kappaB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-kappaB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-kappaB, and how they affect MAPK activation, are reviewed.
Collapse
Affiliation(s)
- Z. Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - L. Song
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - C. Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
45
|
Mizote I, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, Tamai T, Oyabu J, Matsumura Y, Nishida K, Komuro I, Hori M, Otsu K. Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. J Mol Cell Cardiol 2009; 48:302-9. [PMID: 19850048 DOI: 10.1016/j.yjmcc.2009.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/20/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
MTK1 (MEKK4) is a mitogen-activated protein kinase kinase kinase that regulates the activity of its downstream mitogen-activated kinases, p38, and c-Jun N-terminal kinase (JNK). However, the physiological function of MTK1 in the heart remains to be determined. Here, we attempted to elucidate the function of MTK1 in the heart using in vitro and in vivo models. MTK1 was activated in the hearts of mice subjected to pressure overload-induced heart failure. Overexpression of a constitutively active mutant of MTK1 (MTK1DeltaN) induced apoptosis in isolated neonatal rat cardiomyocytes, whereas a kinase domain-deleted form of MTK1 attenuated H(2)O(2)-induced apoptosis. Specific inhibitors of p38 or JNK effectively protected cardiomyocytes from MTK1DeltaN-induced cell death. In mice, cardiac-specific overexpression of MTK1DeltaN resulted in early mortality compared with the lifespan of littermate controls. Echocardiographic analysis revealed increases in end-diastolic and end-systolic left ventricular internal dimensions and a decrease in fractional shortening in MTK1DeltaN transgenic mice. In addition, the mice showed characteristic phenotypes of heart failure such as an increase in lung weight. The number of TUNEL-positive myocytes and the level of cleaved caspase 3 protein were both increased in MTK1DeltaN transgenic mice. Thus, MTK1 plays an important role in the regulation of cell death and is also involved in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Isamu Mizote
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Halfter U, Derbyshire Z, Vaillancourt R. Interferon-gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Biochem J 2009; 388:17-28. [PMID: 15601262 PMCID: PMC1186689 DOI: 10.1042/bj20041236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IFNgamma (interferon-gamma) binding to its cognate receptor results, through JAK (Janus kinase), in direct activation of receptor-bound STAT1 (signal transducer and activator of transcription 1), although there is evidence for additional activation of a MAPK (mitogen-activated protein kinase) pathway. In the present paper, we report IFNgamma-dependent activation of the MEKK4 (MAPK/extracellular-signal-regulated kinase kinase kinase 4) pathway in HaCaT human keratinocytes. MEKK4 is tyrosine-phosphorylated and the IFNgamma-dependent phosphorylation requires intracellular calcium. Calcium-dependent phosphorylation of MEKK4 is mediated by Pyk2. Moreover, MEKK4 and Pyk2 co-localize in an IFNgamma-dependent manner in the perinuclear region. Furthermore, the calcium-binding protein, annexin II, and the calcium-regulated kinase, Pyk2, co-immunoprecipitate with MEKK4 after treatment with IFNgamma. Immunofluorescence imaging of HaCaT cells shows an IFNgamma-dependent co-localization of annexin II with Pyk2 in the perinuclear region, suggesting that annexin II mediates the calcium-dependent regulation of Pyk2. Tyrosine phosphorylation of MEKK4 correlates with its activity to phosphorylate MKK6 (MAPK kinase 6) in vitro and subsequent p38 MAPK activation in an IFNgamma-dependent manner. Additional studies demonstrate that the SH2 (Src homology 2)-domain-containing tyrosine phosphatase SHP2 co-immunoprecipitates with MEKK4 in an IFNgamma-dependent manner and co-localizes with MEKK4 after IFNgamma stimulation in the perinuclear region in HaCaT cells. Furthermore, we provide evidence that SHP2 dephosphorylates MEKK4 and Pyk2, terminating the MEKK4-dependent branch of the IFNgamma signalling pathway.
Collapse
Affiliation(s)
- Ursula M. Halfter
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Zachary E. Derbyshire
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Richard R. Vaillancourt
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Huang G, Shi LZ, Chi H. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine 2009; 48:161-9. [PMID: 19740675 DOI: 10.1016/j.cyto.2009.08.002] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/10/2009] [Indexed: 01/01/2023]
Abstract
Stress-activated MAP kinases (MAPKs), comprised of JNK and p38, play prominent roles in the innate and adaptive immune systems. Activation of MAPKs is mediated by a three-tiered kinase module comprised of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks) and MAPKs through sequential protein phosphorylation. Activated MAPKs, in turn, phosphorylate transcription factors and other targets to regulate gene transcription and immune responses. Recent studies have provided new insight into the upstream and downstream components of the MAPK pathway that facilitate the activation and propagation of MAPK signaling in immune responses. Moreover, MAPK activity is negatively regulated by MAPK phosphatases (MKPs), a group of dual-specificity phosphatases that dephosphorylate and inactivate the MAPKs. Here we discuss the recent advances in our understanding of these regulatory processes in MAPK signaling with a focus on their impacts on immune function.
Collapse
Affiliation(s)
- Gonghua Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
48
|
Yu Y, Wan Y, Huang C. The biological functions of NF-kappaB1 (p50) and its potential as an anti-cancer target. Curr Cancer Drug Targets 2009; 9:566-71. [PMID: 19519322 DOI: 10.2174/156800909788486759] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a key transcriptional factor family that consists of five members in mammalian cells, including NF-kappaB1 (p50), NF-kappaB2 (p52), RelA (p65), RelB and c-Rel. NF-kappaB is implicated in multiple physiological and pathological processes, including cell proliferation and differentiation, inflammatory and immune response, cell survival and apoptosis, cellular stress reactions and tumorigenesis. Recent studies by our group and others have highlighted the novel functions of the p50 protein. In this review, we will focus on the regulation and functions of NF-kappaB p50.
Collapse
Affiliation(s)
- Yonghui Yu
- Open Laboratory for Oversea Scientists, Center for Medical Research, Wuhan University, 115 Donghu Rd., Wuhan, Hubei 430071, China
| | | | | |
Collapse
|
49
|
Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, Williams D, Wilhelm D, Koopman P, Flavell RA, Chi H, Ostrer H, Wells S, Cheeseman M, Greenfield A. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 2009; 7:e1000196. [PMID: 19753101 PMCID: PMC2733150 DOI: 10.1371/journal.pbio.1000196] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022] Open
Abstract
Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular mechanisms underlying sex determination in mice and disorders of sexual development in humans.
Collapse
Affiliation(s)
- Debora Bogani
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Rachel Brixey
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Sarah Beddow
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Jessica Edwards
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Debbie Williams
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Dagmar Wilhelm
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Peter Koopman
- The Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Harry Ostrer
- Human Genetics Program, New York University School of Medicine, New York, New York, United States of America
| | - Sara Wells
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Michael Cheeseman
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
- The Mary Lyon Centre, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council (MRC) Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
50
|
Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD. MAP3Ks as central regulators of cell fate during development. Dev Dyn 2009; 237:3102-14. [PMID: 18855897 DOI: 10.1002/dvdy.21750] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic serine/threonine kinases transduce extracellular signals into regulatory events that impact cellular responses. The induction of one kinase triggers the activation of several downstream kinases, leading to the regulation of transcription factors to affect gene function. This arrangement allows for the kinase cascade to be amplified, and integrated according to the cellular context. An upstream mitogen or growth factor signal initiates a module of three kinases: a mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK; e.g., Raf) that phosphorylates and activates a MAP kinase kinase (MAPKK; e.g., MEK) and finally activation of MAP kinase (MAPK; e.g., ERK). Thus, this MAP3K-MAP2K-MAPK module represents critical effectors that regulate extracellular stimuli into cellular responses, such as differentiation, proliferation, and apoptosis all of which function during development. There are 21 characterized MAP3Ks that activate known MAP2Ks, and they function in many aspects of developmental biology. This review summarizes known transduction routes linked to each MAP3K and highlights mouse models that provide clues to their physiological functions. This perspective reveals that some of these MAP3K effectors may have redundant functions, and also serve as unique nexus depending on the context of the signaling pathway.
Collapse
Affiliation(s)
- Evisabel A Craig
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|