1
|
Baysal H, Siozopoulou V, Zaryouh H, Hermans C, Lau HW, Lambrechts H, Fransen E, De Pauw I, Jacobs J, Peeters M, Pauwels P, Vermorken JB, Smits E, Lardon F, De Waele J, Wouters A. The prognostic impact of the immune signature in head and neck squamous cell carcinoma. Front Immunol 2022; 13:1001161. [PMID: 36268020 PMCID: PMC9576890 DOI: 10.3389/fimmu.2022.1001161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that retain their poor prognosis despite recent advances in their standard of care. As the involvement of the immune system against HNSCC development is well-recognized, characterization of the immune signature and the complex interplay between HNSCC and the immune system could lead to the identification of novel therapeutic targets that are required now more than ever. In this study, we investigated RNA sequencing data of 530 HNSCC patients from The Cancer Genome Atlas (TCGA) for which the immune composition (CIBERSORT) was defined by the relative fractions of 10 immune-cell types and expression data of 45 immune checkpoint ligands were quantified. This initial investigation was followed by immunohistochemical (IHC) staining for a curated selection of immune cell types and checkpoint ligands markers in tissue samples of 50 advanced stage HNSCC patients. The outcome of both analyses was correlated with clinicopathological parameters and patient overall survival. Our results indicated that HNSCC tumors are in close contact with both cytotoxic and immunosuppressive immune cells. TCGA data showed prognostic relevance of dendritic cells, M2 macrophages and neutrophils, while IHC analysis associated T cells and natural killer cells with better/worse prognostic outcome. HNSCC tumors in our TCGA cohort showed differential RNA over- and underexpression of 28 immune inhibitory and activating checkpoint ligands compared to healthy tissue. Of these, CD73, CD276 and CD155 gene expression were negative prognostic factors, while CD40L, CEACAM1 and Gal-9 expression were associated with significantly better outcomes. Our IHC analyses confirmed the relevance of CD155 and CD276 protein expression, and in addition PD-L1 expression, as independent negative prognostic factors, while HLA-E overexpression was associated with better outcomes. Lastly, the co-presence of both (i) CD155 positive cells with intratumoral NK cells; and (ii) PD-L1 expression with regulatory T cell infiltration may hold prognostic value for these cohorts. Based on our data, we propose that CD155 and CD276 are promising novel targets for HNSCC, possibly in combination with the current standard of care or novel immunotherapies to come.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- *Correspondence: Hasan Baysal,
| | - Vasiliki Siozopoulou
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | | | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Downing J, D'Orsogna L. High-resolution human KIR genotyping. Immunogenetics 2022; 74:369-379. [PMID: 35050404 PMCID: PMC9262774 DOI: 10.1007/s00251-021-01247-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Killer immunoglobulin-like receptors (KIR) regulate the function of natural killer cells through interactions with various ligands on the surface of cells, thereby determining whether natural killer (NK) cells are to be activated or inhibited from killing the cell being interrogated. The genes encoding these proteins display extensive variation through variable gene content, copy number and allele polymorphism. The combination of KIR genes and their ligands is implicated in various clinical settings including haematopoietic stem cell and solid organ transplant and infectious disease progression. The determination of KIR genes has been used as a factor in the selection of optimal stem cell donors with haplotype variations in recipient and donor giving differential clinical outcomes. Methods to determine KIR genes have primarily involved ascertaining the presence or absence of genes in an individual. With the more recent introduction of massively parallel clonal next-generation sequencing and single molecule very long read length third-generation sequencing, high-resolution determination of KIR alleles has become feasible. Determining the extent and functional impact of allele variation has the potential to lead to further optimisation of clinical outcomes as well as a deeper understanding of the functional properties of the receptors and their interactions with ligands. This review summarizes recently published high-resolution KIR genotyping methods and considers the various advantages and disadvantages of the approaches taken. In addition the application of allele level genotyping in the setting of transplantation and infectious disease control is discussed.
Collapse
Affiliation(s)
- Jonathan Downing
- Department of Clinical Immunology, PathWest, Perth, WA, Australia. .,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, PathWest, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Fu YY, Ren CE, Qiao PY, Meng YH. Uterine natural killer cells and recurrent spontaneous abortion. Am J Reprod Immunol 2021; 86:e13433. [PMID: 33896061 DOI: 10.1111/aji.13433] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Recurrent spontaneous abortion (RSA), termed as two or more consecutive pregnancy loss is a great problem for some women of childbearing age. A large number of evidence confirm that there may be an immune background of RSA. As a member of the innate immune system, uterine natural killer (uNK) cells account for about 70% of total lymphocytes during pregnancy and play a critical role in the establishment and maintenance of pregnancy. This review mainly introduces the phenotype, origin, receptor, and function of uNK cells to illuminate its relationship with RSA.
Collapse
Affiliation(s)
- Yao-Yao Fu
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Peng-Yun Qiao
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Strategies for Mast Cell Inhibition in Food Allergy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:719-731. [PMID: 33380934 PMCID: PMC7757070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells are tissue resident allergic effector cells that drive IgE-mediated food allergies. There are several steps leading to mast cell activation in the context of allergic disease that can be targeted to prevent mast cell activation and degranulation. These include blocking IgE-FcεRI crosslinking and type 2 cytokine receptor activation; modulating cell-surface neural chemical receptors; stabilizing mast cell membranes to prevent co-localization of activating receptors; impeding intracellular signaling; and engaging cell surface inhibitory receptors. This review highlights several ITIM-containing inhibitory mast cell surface receptors that could serve as pharmaceutical targets to prevent mast cell activation and degranulation in the context of food allergy. When activated, these ITIM-containing inhibitory receptors recruit the phosphatases SHP-1, SHP-2, and/or SHIP to dephosphorylate the tyrosine kinases responsible for activation signals downstream of the IgE-FcεRI complex. We describe several members of the Ig and Ig-like inhibitory receptor and C-type lectin inhibitory receptor superfamilies. Fundamental studies exploring the behavior of these receptors within the context of experimental food allergy models are needed. A deeper understanding of how these receptors modulate mast cell-driven food allergic responses will shape future strategies to harness these inhibitory receptors to treat food allergy.
Collapse
|
5
|
Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front Immunol 2020; 11:592329. [PMID: 33193438 PMCID: PMC7641642 DOI: 10.3389/fimmu.2020.592329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Among the areas of most impactful recent progress in immunology is the discovery of inhibitory receptors and the subsequent translation of this knowledge to the clinic. Although the original and canonical member of this family is FcγRIIB, more recent studies defined PD1 as an inhibitory receptor that constrains T cell immunity to tumors. These studies led to development of “checkpoint blockade” immunotherapies (CBT) for cancers in which PD1 interactions with its ligand are blocked. Unfortunately, although very effective in some patients, only a small proportion respond to this therapy. This suggests that additional as yet undescribed inhibitory receptors exist, which could be exploited. Here, we describe a new platform, termed inhibitory receptor trap (IRT), for discovery of members of this family. The approach takes advantage of the fact that many of the known inhibitory receptors mediate signaling by phospho-immunoreceptor tyrosine-based inhibition motif (ITIM) mediated recruitment of Src Homology 2 (SH2) domain-containing phosphatases including the SH2 domain-containing inositol phosphatase SHIP1 encoded by the INPP5D gene and the SH2 domain-containing phosphotyrosine phosphatases SHP1 and SHP2 encoded by the PTPN6 and PTPN11 genes respectively. Here, we describe the IRT discovery platform in which the SH2 domains of inhibitory phosphatases are used for affinity-based isolation and subsequent identification of candidate effectors via immunoblotting and high sensitivity liquid chromatography–mass spectrometry. These receptors may represent alternative targets that can be exploited for improved CBT. Salient observations from these studies include the following: SH2 domains derived from the respective phosphatases bind distinct sets of candidates from different cell types. Thus, cells of different identity and different activation states express partially distinct repertoires of up and downstream phosphatase effectors. Phosphorylated PD1 binds not only SHP2 but also SHIP1, thus the latter may be important in its inhibitory function. B cell antigen receptor signaling leads predominantly to CD79 mono-phosphorylation as indicated by much greater binding to LynSH2 than Syk(SH2)2. This balance of ITAM mono- versus bi-phosphorylation likely tunes signaling by varying activation of inhibitory (Lyn) and stimulatory (Syk) pathways.
Collapse
Affiliation(s)
- Bergren W Crute
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rachel Sheraden
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Vanessa L Ott
- Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - Isaac T W Harley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| |
Collapse
|
6
|
Lupo KB, Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol 2020; 13:76. [PMID: 32532329 PMCID: PMC7291472 DOI: 10.1186/s13045-020-00913-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors, modulating their anti-tumor function through a balance activating and inhibitor ligands on their cell surface. Though still emerging, cancer immunotherapies utilizing NK cells are proving promising as a modality for the treatment of a number of solid tumors, including glioblastoma (GBM) and other gliomas, but are often limited due to complex immunosuppression associated with the GBM tumor microenvironment which includes overexpression of inhibitory receptors on GBM cells. CD155, or poliovirus receptor (PVR), has recently emerged as a pro-tumorigenic antigen, overexpressed on GBM and contributing to increased GBM migration and aggressiveness. CD155 has also been established as an immunomodulatory receptor, able to both activate NK cells through interactions with CD226 (DNAM-1) and CD96 and inhibit them through interaction with TIGIT. However, NK cell TIGIT expression has been shown to be upregulated in cancer, establishing CD155 as a predominantly inhibitory receptor within the context of GBM and other solid tumors, and rendering it of interest as a potential target for antigen-specific NK cell-based immunotherapy. This review will explore the function of CD155 within GBM as it relates to tumor migration and NK cell immunoregulation, as well as pre-clinical and clinical targeting of CD155/TIGIT and the potential that this pathway holds for the development of emerging NK cell-based immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Adhesion
- Cell Movement
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/therapy
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Mice
- Neoplasm Invasiveness/immunology
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Oncolytic Virotherapy
- Poliovirus/physiology
- Reassortant Viruses/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
- Rhinovirus/physiology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, West Lafayette, IN, 47906, USA.
| |
Collapse
|
7
|
Malbec O, Cassard L, Albanesi M, Jönsson F, Mancardi D, Chicanne G, Payrastre B, Dubreuil P, Vivier E, Daëron M. Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Sci Signal 2016; 9:ra126. [PMID: 27999175 DOI: 10.1126/scisignal.aag1401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic and autoimmune inflammation are associated with the activation of mast cells and basophils by antibodies against allergens or auto-antigens, respectively. Both cell types express several receptors for the Fc portion of antibodies, the engagement of which by antigen-antibody complexes controls their responses. When aggregated on the plasma membrane, high-affinity immunoglobulin E (IgE) receptors (FcεRI) and low-affinity IgG receptors (FcγRIIIA in mice, FcγRIIA in humans) induce these cells to release and secrete proinflammatory mediators, chemokines, and cytokines that account for clinical symptoms. When coaggregated with activating receptors on the same cells, other low-affinity IgG receptors (FcγRIIB in both species) inhibit mast cell and basophil activation. We found that FcγRIIB inhibited not only signals triggered by activating receptors with which they were coengaged (cis-inhibition), but also signals triggered by receptors engaged independently (trans-inhibition). Trans-inhibition acted upon the FcεRI-dependent activation of mouse mast cells, mouse basophils, and human basophils, and upon growth factor receptor (Kit)-dependent normal mouse mast cell proliferation, as well as the constitutive in vitro proliferation and the in vivo growth of oncogene (v-Abl)-transformed mastocytoma cells. Trans-inhibition was induced by receptors, whether inhibitory (FcγRIIB) or activating (FcεRI), which recruited the lipid phosphatase SHIP1. By hydrolyzing PI(3,4,5)P3, SHIP1 induced a global unresponsiveness that affected biological responses triggered by receptors that use phosphoinositide 3-kinase to signal. These data suggest that trans-inhibition controls numerous physiological and pathological processes, and that it may be used as a therapeutic tool in inflammation, especially but not exclusively, in allergy and autoimmunity.
Collapse
Affiliation(s)
- Odile Malbec
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Lydie Cassard
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Marcello Albanesi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - David Mancardi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Gaëtan Chicanne
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Patrice Dubreuil
- Inserm, Unité 1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Université, Marseille, France.,CNRS, UMR 7258, Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Hôpital de la Conception, Marseille, France
| | - Marc Daëron
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France. .,Inserm, Unité 760, Paris, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
8
|
Getahun A, Cambier JC. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 2016; 268:66-73. [PMID: 26497513 DOI: 10.1111/imr.12336] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
9
|
Kumar S, Sarkar P, Sim MJW, Rajagopalan S, Vogel SS, Long EO. A single amino acid change in inhibitory killer cell Ig-like receptor results in constitutive receptor self-association and phosphorylation. THE JOURNAL OF IMMUNOLOGY 2014; 194:817-26. [PMID: 25505289 DOI: 10.4049/jimmunol.1401830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling by immunoreceptors is often initiated by phosphorylation of cytosolic tyrosines, which then recruit effector molecules. In the case of MHC class I-specific inhibitory receptors, phosphorylation of cytosolic tyrosine residues within ITIMs results in recruitment of a protein tyrosine phosphatase that blocks activation signals. Recent work showed that signaling by an HLA-C-specific killer cell Ig-like receptor (KIR) is independent of signaling by activation receptors. It is not known how ITIM phosphorylation is initiated and regulated. In this article, we show that substitution of His-36 in the first Ig domain of KIR2DL1 with alanine (KIR2DL1-H36A) resulted in constitutive KIR2DL1 self-association and phosphorylation, as well as recruitment of tyrosine phosphatase SHP-1. Furthermore, substitution of His-36 with a similar bulky amino acid, phenylalanine, maintained the receptor in its unphosphorylated state, suggesting that steric hindrance by the His-36 side chain prevents constitutive KIR2DL1 self-association and ITIM phosphorylation. The equally strong phosphorylation of KIR2DL1 and KIR2DL1-H36A after inhibition of tyrosine phosphatase by pervanadate suggested that KIR2DL1-H36A is selectively protected from dephosphorylation. We propose that KIR phosphorylation is controlled by the accessibility of ITIM to tyrosine phosphatases and that KIR binding to HLA-C must override the hindrance that His-36 puts on KIR2DL1 self-association. Expression of KIR2DL1-H36A on NK cells led to stronger inhibition of lysis of HLA-C(+) target cells than did expression of wild-type KIR2DL1. These results revealed that ITIM phosphorylation is controlled by self-association of KIR and that His-36 serves as a gatekeeper to prevent unregulated signaling through KIR2DL1.
Collapse
Affiliation(s)
- Santosh Kumar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Pabak Sarkar
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892; and
| | - Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892; and
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
10
|
Rahim MMA, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PDA, Makrigiannis AP. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014; 5:145. [PMID: 24765094 PMCID: PMC3980100 DOI: 10.3389/fimmu.2014.00145] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 11/13/2022] Open
Abstract
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; College of Applied Medical Sciences, Taibah University , Madinah Munawwarah , Kingdom of Saudi Arabia
| | - Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Elias Abou-Samra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Patricia D A Lima
- Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
11
|
Huse M, Catherine Milanoski S, Abeyweera TP. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol Rev 2013; 251:143-53. [PMID: 23278746 DOI: 10.1111/imr.12014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
12
|
Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31:227-58. [PMID: 23516982 PMCID: PMC3868343 DOI: 10.1146/annurev-immunol-020711-075005] [Citation(s) in RCA: 935] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding how signals are integrated to control natural killer (NK) cell responsiveness in the absence of antigen-specific receptors has been a challenge, but recent work has revealed some underlying principles that govern NK cell responses. NK cells use an array of innate receptors to sense their environment and respond to alterations caused by infections, cellular stress, and transformation. No single activation receptor dominates; instead, synergistic signals from combinations of receptors are integrated to activate natural cytotoxicity and cytokine production. Inhibitory receptors for major histocompatibility complex class I (MHC-I) have a critical role in controlling NK cell responses and, paradoxically, in maintaining NK cells in a state of responsiveness to subsequent activation events, a process referred to as licensing. MHC-I-specific inhibitory receptors both block activation signals and trigger signals to phosphorylate and inactivate the small adaptor Crk. These different facets of inhibitory signaling are incorporated into a revocable license model for the reversible tuning of NK cell responsiveness.
Collapse
Affiliation(s)
- Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Hun Sik Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
- Department of Medicine, Graduate School, University of Ulsan, Seoul 138-736, Korea;
| | - Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030;
| | - Mary E. Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
13
|
Abeyweera TP, Merino E, Huse M. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. ACTA ACUST UNITED AC 2011; 192:675-90. [PMID: 21339333 PMCID: PMC3044118 DOI: 10.1083/jcb.201009135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cell-activating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it.
Collapse
Affiliation(s)
- Thushara P Abeyweera
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
14
|
Guia S, Jaeger BN, Piatek S, Mailfert S, Trombik T, Fenis A, Chevrier N, Walzer T, Kerdiles YM, Marguet D, Vivier E, Ugolini S. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance. Sci Signal 2011; 4:ra21. [PMID: 21467299 DOI: 10.1126/scisignal.2001608] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.
Collapse
Affiliation(s)
- Sophie Guia
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Campus de Luminy, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx.
Collapse
Affiliation(s)
- Yuval Yarkoni
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| | | | | |
Collapse
|
16
|
Taner SB, Pando MJ, Roberts A, Schellekens J, Marsh SGE, Malmberg KJ, Parham P, Brodsky FM. Interactions of NK cell receptor KIR3DL1*004 with chaperones and conformation-specific antibody reveal a functional folded state as well as predominant intracellular retention. THE JOURNAL OF IMMUNOLOGY 2010; 186:62-72. [PMID: 21115737 DOI: 10.4049/jimmunol.0903657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variable interaction between the Bw4 epitope of HLA-B and the polymorphic KIR3DL1/S1 system of inhibitory and activating NK cell receptors diversifies the development, repertoire formation, and response of human NK cells. KIR3DL1*004, a common KIR3DL1 allotype, in combination with Bw4(+) HLA-B, slows progression of HIV infection to AIDS. Analysis in this study of KIR3DL1*004 membrane traffic in NK cells shows this allotype is largely misfolded but stably retained in the endoplasmic reticulum, where it binds to the chaperone calreticulin and does not induce the unfolded protein response. A small fraction of KIR3DL1*004 folds correctly and leaves the endoplasmic reticulum to be expressed on the surface of primary NK and transfected NKL cells, in a form that can be triggered to inhibit NK cell activation and secretion of IFN-γ. Consistent with this small proportion of correctly folded molecules, trace amounts of MHC class I coimmunoprecipitated with KIR3DL1*004. There was no indication of any extensive intracellular interaction between unfolded KIR3DL1*004 and cognate Bw4(+) HLA-B. A similarly limited interaction of Bw4 with KIR3DL1*002, when both were expressed by the same cell, was observed despite the efficient folding of KIR3DL1*002 and its abundance on the NK cell surface. Several positions of polymorphism modulate KIR3DL1 abundance at the cell surface, differences that do not necessarily correlate with the potency of allotype function. In this context, our results suggest the possibility that the effect of Bw4(+) HLA-B and KIR3DL1*004 in slowing progression to AIDS is mediated by interaction of Bw4(+) HLA-B with the small fraction of cell surface KIR3DL1*004.
Collapse
Affiliation(s)
- Sabrina B Taner
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Cady CT, Powell MS, Harbeck RJ, Giclas PC, Murphy JR, Katial RK, Weber RW, Hogarth PM, Johnson S, Bonvini E, Koenig S, Cambier JC. IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcgammaRIIA and FcgammaRIIB. Immunol Lett 2010; 130:57-65. [PMID: 20004689 PMCID: PMC2849848 DOI: 10.1016/j.imlet.2009.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/13/2009] [Accepted: 12/02/2009] [Indexed: 02/08/2023]
Abstract
The majority of human subjects who receive subcutaneous allergen immunotherapy (IT) develop decreased sensitivity to their allergens. Multiple factors may explain the efficacy of IT, some evidence support a role for allergen specific IgG antibodies. There is controversy whether such antibodies act by blocking allergen binding to IgE or initiation of active inhibitory signaling through low affinity IgG receptors (FcgammaRIIB) on mast cells and basophils. In this study, we addressed this question using peripheral blood from cat non-allergic, cat allergic, and immunotherapy-treated cat allergic subjects. Blood from subjects who received IT contain IgG antibodies that mediate inhibition of basophil activation by a mechanism that is blocked by antibodies specific for the inhibitory IgG receptor FcgammaRIIB. Surprisingly, inhibition was also blocked by aglycosylated, putatively non-FcR binding, antibodies that are specific for the FcgammaRIIA, suggesting a contribution of this receptor to the observed effect. Consistent with a cooperative effect, ex vivo basophils were found to express both IgG receptors. In other studies we found that basophils from subjects who were both chronically exposed to allergen and were producing both cat allergen specific IgE and IgG, are hyporesponsive to allergen. These studies confirm that IgG antibodies produced during IT act primarily by stimulation of inhibitory signaling, and suggest that FcgammaRIIA and FcgammaRIIB function cooperatively in activation of inhibitory signaling circuit. We suggest that under normal physiologic conditions in which only a small proportion of FcepsilonRI are occupied by IgE of a single allergen specificity, FcgammaRIIA co-aggregation may, by providing activated Lyn, be required to fuel activation of inhibitory FcgammaRIIB function.
Collapse
Affiliation(s)
- Carol T Cady
- Division of Allergy & Immunology, National Jewish Health, Denver, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cell contact-dependent inhibition and regulation of immune responses play an essential role in balancing the need for rapid and efficient responses to a wide variety of pathological challenges, while at the same time maintaining self-tolerance. Much attention has been given to immune synapses that lead to the activation of, for example, cell-mediated cytotoxicity, and here we compare the supramolecular dynamics of synapses that lead to inhibition or regulatory functions. We focus on natural killer cells where such different synapses have been best studied. An emergent principle is that inhibition or regulatory responses are commonly achieved by selective recruitment of signalling proteins to the synapse and exclusion of membrane-proximal intracellular proteins needed for activation. We also discuss evidence that an inhibitory synapse triggers or maintains effector cells in a migratory configuration, which serves to break the synapse before the steps needed for effector cell activation can be completed. This model implies that the concept of kinetic-proofreading, previously used to describe activation of individual T-cell receptors, can also apply in determining the outcome of intercellular conjugation.
Collapse
|
19
|
Cady CT, Rice JS, Ott VL, Cambier JC. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. Immunol Rev 2008; 224:44-57. [PMID: 18759919 DOI: 10.1111/j.1600-065x.2008.00663.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.
Collapse
Affiliation(s)
- Carol T Cady
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA
| | | | | | | |
Collapse
|
20
|
Binyamin L, Alpaugh RK, Hughes TL, Lutz CT, Campbell KS, Weiner LM. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. THE JOURNAL OF IMMUNOLOGY 2008; 180:6392-401. [PMID: 18424763 DOI: 10.4049/jimmunol.180.9.6392] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human NK cells lyse Ab-coated target cells through the process of Ab-dependent cellular cytotoxicity (ADCC). Improving ADCC responses is desirable because it is thought to be an important antitumor mechanism for some Abs. NK cell inhibitory receptors, such as killer cell Ig-like receptors, engage with MHC class I molecules on self-cells to block NK cell activation. Accordingly, we enhanced ADCC responses by blocking NK cell inhibitory receptors, thus perturbing induction of the self-recognition signal. In a cell line model of anti-lymphoma therapy, the combination of rituximab with an Ab that blocks inhibitory self-recognition yielded increased NK cell-mediated target cell lysis when compared with rituximab alone. To validate this proof-of-concept, we then used a more representative approach in which an individual's fresh primary NK cells encountered autologous, EBV-transformed B cells. In this system, rituximab and a combination of Abs that block NK cell inhibitory receptors yielded improved NK cell-mediated lysis over rituximab alone. The results show, for the first time, that disruption of inhibitory self-recognition can efficiently promote ADCC in a human model, applying an autologous system in which physiologic checkpoints are in place. This method provides an alternative approach to potentiate the therapeutic benefit of antitumor Abs that mediate ADCC.
Collapse
Affiliation(s)
- Liat Binyamin
- Department of Medical Oncology and Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
21
|
Held W, Mariuzza RA. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat Rev Immunol 2008; 8:269-78. [PMID: 18309314 DOI: 10.1038/nri2278] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The conventional wisdom is that cell-surface receptors interact with ligands expressed on other cells to mediate cell-to-cell communication (trans interactions). Unexpectedly, it has recently been found that two classes of receptors specific for MHC class I molecules not only interact with MHC class I molecules expressed on opposing cells, but also with those on the same cell. These cis interactions are a feature of immunoreceptors that inhibit, rather than activate, cellular functions. Here, we review situations in which cis interactions have been observed, the characteristics of receptors that bind in trans and cis, and the biological roles of cis recognition.
Collapse
Affiliation(s)
- Werner Held
- Ludwig Institute for Cancer Research, Lausanne Branch and University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | |
Collapse
|
22
|
Avril T, Freeman SD, Attrill H, Clarke RG, Crocker PR. Siglec-5 (CD170) Can Mediate Inhibitory Signaling in the Absence of Immunoreceptor Tyrosine-based Inhibitory Motif Phosphorylation. J Biol Chem 2005; 280:19843-51. [PMID: 15769739 DOI: 10.1074/jbc.m502041200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Siglec-5 (CD170) is a member of the recently described human CD33-related siglec subgroup of sialic acid binding Ig-like lectins and is expressed on myeloid cells of the hemopoietic system. Similar to other CD33-related siglecs, Siglec-5 contains two tyrosine-based motifs in its cytoplasmic tail implicated in signaling functions. To investigate the role of these motifs in Siglec-5-dependent signaling, we used transfected rat basophil leukemia cells as a model system. Tyrosine phosphorylation of Siglec-5 led to recruitment of the tyrosine phosphatases SHP-1 and SHP-2, as seen in both pull-down assays and microscopy. Siglec-5 could efficiently inhibit FcepsilonRI-mediated calcium fluxing and serotonin release after co-cross-linking. Surprisingly, a double tyrosine to alanine mutant of Siglec-5 could still mediate strong inhibition of serotonin release in the absence of detectable tyrosine phosphorylation, whereas a double tyrosine to phenylalanine mutant lost all inhibitory activity. In comparison, suppression of Siglec-5-dependent adhesion to red blood cells was reversed by either tyrosine to alanine or tyrosine to phenylalanine mutations of the membrane proximal tyrosine-based motif. Using an in vitro phosphatase assay with synthetic and recombinant forms of the cytoplasmic tail, it was shown that a double alanine mutant of Siglec-5 had weak, but significant SHP-1 activating properties similar to those of wild type, non-phosphorylated cytoplasmic tail, whereas a double phenylalanine mutant was inactive. These findings establish that Siglec-5 can be classified as an inhibitory receptor with the potential to mediate SHP-1 and/or SHP-2-dependent signaling in the absence of tyrosine phosphorylation.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Base Sequence
- Cell Adhesion/physiology
- Cell Line
- DNA/genetics
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins
- Lectins/chemistry
- Lectins/genetics
- Lectins/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Rats
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transfection
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Tony Avril
- Division of Cell Biology and Immunology, The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, UK
| | | | | | | | | |
Collapse
|
23
|
Chiesa S, Tomasello E, Vivier E, Vély F. Coordination of activating and inhibitory signals in natural killer cells. Mol Immunol 2005; 42:477-84. [PMID: 15607802 DOI: 10.1016/j.molimm.2004.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NK cells are equipped with multiple activating and inhibitory cell surface receptors whose engagement regulate NK cell effector function (i.e. cytotoxicity as well as chemokine and cytokine production). Several components (adaptors, effector molecules) that participate to NK cell signalling pathways have been described. Yet, the spatio-temporal organisation of these pathways is still poorly understood. In addition, the mechanisms that integrate several simultaneous input signals in NK cells remain to be elucidated.
Collapse
Affiliation(s)
- Sabrina Chiesa
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Université de la Méditerranée, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
24
|
Avril T, Floyd H, Lopez F, Vivier E, Crocker PR. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. THE JOURNAL OF IMMUNOLOGY 2005; 173:6841-9. [PMID: 15557178 DOI: 10.4049/jimmunol.173.11.6841] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Siglec-7 and Siglec-9 are two members of the recently characterized CD33-related Siglec family of sialic acid binding proteins and are both expressed on human monocytes and NK cells. In addition to their ability to recognize sialic acid residues, these Siglecs display two conserved tyrosine-based motifs in their cytoplasmic region similar to those found in inhibitory receptors of the immune system. In the present study, we use the rat basophilic leukemia (RBL) model to examine the potential of Siglecs-7 and -9 to function as inhibitory receptors and investigate the molecular basis for this. We first demonstrate that Siglecs-7 and -9 are able to inhibit the FcepsilonRI-mediated serotonin release from RBL cells following co-crosslinking. In addition, we show that under these conditions or after pervanadate treatment, Siglecs-7 and -9 associate with the Src homology region 2 domain-containing phosphatases (SHP), SHP-1 and SHP-2, both in immunoprecipitation and in fluorescence microscopy experiments using GFP fusion proteins. We then show by site-directed mutagenesis that the membrane-proximal tyrosine motif is essential for the inhibitory function of both Siglec-7 and -9, and is also required for tyrosine phosphorylation and recruitment of SHP-1 and SHP-2 phosphatases. Finally, mutation of the membrane-proximal motif increased the sialic acid binding activity of Siglecs-7 and -9, raising the possibility that "inside-out" signaling may occur to regulate ligand binding.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/physiology
- Cell Line, Tumor
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cross-Linking Reagents/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Humans
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins/biosynthesis
- Lectins/genetics
- Lectins/metabolism
- Lectins/physiology
- Molecular Sequence Data
- Monocytes/immunology
- Monocytes/metabolism
- Mutagenesis, Site-Directed
- Protein Transport
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Rats
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgE/physiology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Serotonin/metabolism
- Serotonin Antagonists/pharmacology
- Sialic Acid Binding Ig-like Lectin 3
- Sialic Acid Binding Immunoglobulin-like Lectins
- Sialic Acids/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Tony Avril
- Division of Cell Biology and Immunology, The Wellcome Trust Biocentre, University of Dundee, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in the early defenses against foreign cells, as well as autologous cells undergoing various forms of stress, such as microbial infection or tumor transformation. NK cell activation is controlled by a dynamic balance between complementary and antagonistic pathways that are initiated upon interaction with potential target cells. NK cells express an array of activating cell surface receptors that can trigger cytolytic programs, as well as cytokine or chemokine secretion. Some of these activating cell surface receptors initiate protein tyrosine kinase (PTK)-dependent pathways through noncovalent associations with transmembrane signaling adaptors that harbor intracytoplasmic ITAMs (immunoreceptor tyrosine-based activation motifs). Additional cell surface receptors that are not directly coupled to ITAMs also participate in NK cell activation. These include NKG2D, which is noncovalently associated to the DAP10 transmembrane signaling adaptor, as well as integrins and cytokine receptors. NK cells also express cell surface inhibitory receptors that antagonize activating pathways through protein tyrosine phosphatases (PTPs). These inhibitory cell surface receptors are characterized by intracytoplasmic ITIMs (immunoreceptor tyrosine-based inhibition motifs). The tyrosine-phosphorylation status of several signaling components that are substrates for both PTKs and PTPs is thus key to the propagation of the NK cell effector pathways. Understanding the integration of these multiple signals is central to the understanding and manipulation of NK cell effector signaling pathways.
Collapse
Affiliation(s)
- Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Univ. Méditerranée, Campus de Luminy, Case 906, 13288 Marseille cedex 09, France.
| | | | | |
Collapse
|
26
|
Epling-Burnette PK, Painter JS, Chaurasia P, Bai F, Wei S, Djeu JY, Loughran TP. Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood 2004; 103:3431-9. [PMID: 14726391 DOI: 10.1182/blood-2003-02-0400] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe natural killer (NK) type of lymphoproliferative disease of granular lymphocytes (LDGL) is associated with the expansion of CD3-, CD16+, and/or CD56+ lymphocytes. We have examined the repertoire of NK receptors expressed on these cells and delineated the functional activity. We found skewed NK receptor expression on patient NK cells. Reactivity to a single anti-killer cell immunoglobulin-like receptor (anti-KIR) antibody was noted in 7 of 13 patients. LDGL patients variably expressed NKp30, NKp44, and NKp46 RNA. In contrast, CD94 and its inhibitory heterodimerization partner NKG2A were homogenously expressed at high levels on these NK cells. Interestingly, these patients expressed a large number of activating KIR receptors by genotype analysis. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that lower than normal levels of RNA of the inhibitory KIR was present in some patients in contrast to normal NK cells. Consistent with a high level of activating receptors, we found the NK-LDGL cells have potent cytolytic function in both direct and redirected cytotoxicity assays. These results demonstrate that patients with NK-LDGL have an increased activating-to-inhibitory KIR ratio. This altered ratio might induce inappropriate lysis or cytokine production and impact the disease pathogenesis. (Blood. 2004;103:3431-3439)
Collapse
Affiliation(s)
- Pearlie Kay Epling-Burnette
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, and James A. Haley Veterans' Administration Hospital, Tampa, FL 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 2004; 4:190-8. [PMID: 15039756 DOI: 10.1038/nri1306] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Université de la Méditerranée, Campus de Luminy, case 906, 13288 Marseille cedex 09, France.
| | | |
Collapse
|
28
|
Faure M, Barber DF, Takahashi SM, Jin T, Long EO. Spontaneous clustering and tyrosine phosphorylation of NK cell inhibitory receptor induced by ligand binding. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6107-14. [PMID: 12794140 DOI: 10.4049/jimmunol.170.12.6107] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibition of NK cell cytotoxicity by killer cell Ig-like receptors (KIR) depends on phosphorylation of cytoplasmic tyrosines in KIR, which recruit tyrosine phosphatase Src homology protein tyrosine phosphatase 1. It is not clear how KIR, whose function lies downstream of a tyrosine kinase, succeeds in blocking proximal NK cell activation signals upon binding HLA class I on target cells. Here we show that mixing NK cells with insect cells expressing HLA-C was sufficient to induce clustering of KIR, and phosphorylation of KIR and SHP-1. Transient phosphorylation of KIR was detected in the presence of pervanadate, an inhibitor of protein tyrosine phosphatases, at suboptimal concentration. Phosphorylation of KIR was specifically induced by ligand binding because it was detected only when HLA-C was loaded with a peptide that permits KIR binding. KIR phosphorylation was not dependent on ICAM-1-mediated adhesion and was not blocked by inhibition of actin polymerization, but required Zn(2+). Fluorescence resonance energy transfer between HLA-C molecules revealed close molecular interactions induced by KIR binding. These results demonstrate tight clustering of KIR and rapid KIR phosphorylation induced simply by binding to HLA-C. The unique property of KIR to become phosphorylated in the absence of adhesion and of actin cytoskeleton rearrangement explains how KIR can efficiently block early activation signals during NK-target cell contacts.
Collapse
Affiliation(s)
- Mathias Faure
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | | | | | | | | |
Collapse
|
29
|
Snyder MR, Lucas M, Vivier E, Weyand CM, Goronzy JJ. Selective activation of the c-Jun NH2-terminal protein kinase signaling pathway by stimulatory KIR in the absence of KARAP/DAP12 in CD4+ T cells. J Exp Med 2003; 197:437-49. [PMID: 12591902 PMCID: PMC2193867 DOI: 10.1084/jem.20020383] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of CD4(+) T cells is governed by interplay between stimulatory and inhibitory receptors; predominance of stimulatory signals favors autoimmune reactions. In patients with rheumatoid arthritis, expression of the critical costimulatory molecule, CD28, is frequently lost. Instead, CD4(+)CD28(null) T cells express killer immunoglobulin-like receptors (KIRs) with a preferential expression of the stimulatory receptor, CD158j. The frequency of CD4(+)CD28(null) T cells in rheumatoid arthritis (RA) correlates with the risk for more severe disease. Moreover, the KIR2DS2 gene, which encodes for CD158j, is a genetic risk factor for rheumatoid vasculitis. CD158j signals through the adaptor molecule, KARAP/DAP12, to positively regulate cytotoxic activity in NK cells. However, the majority of CD4(+)CD28(null) T cell clones lacked the expression of KARAP/DAP12. Despite the absence of KARAP/DAP12, CD158j was functional and augmented interferon-gamma production after T cell receptor stimulation. Cross-linking of CD158j resulted in selective phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and its upstream kinase, MKK4 that led to the expression of ATF-2 and c-Jun, all in the absence of extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Mutation of the lysine residue within the transmembrane domain of CD158j abolished JNK activation, suggesting that an alternate adaptor molecule was being used. CD4(+)CD28(null) T cells expressed DAP10 and inhibition of phosphatidylinositol 3-kinase, which acts downstream of DAP10, inhibited JNK activation; however, no interaction of DAP10 with CD158j could be detected. Our data suggest that CD158j in T cells functions as a costimulatory molecule through the JNK pathway independent of KARAP/DAP12 and DAP10. Costimulation by CD158j may contribute to the autoreactivity of CD4(+)CD28(null) T cells in RA.
Collapse
Affiliation(s)
- Melissa R Snyder
- Department of Medicine/Rheumatology and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
30
|
Lin Chua H, Brahmi Z. Expression of p58.2 or CD94/NKG2A inhibitory receptors in an NK-like cell line, YTINDY, leads to HLA Class I-mediated inhibition of cytotoxicity in the p58.2- but not the CD94/NKG2A-expressing transfectant. Cell Immunol 2002; 219:57-70. [PMID: 12473268 DOI: 10.1016/s0008-8749(02)00578-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural killer cytotoxicity is down-regulated by HLA Class I-specific inhibitory receptors classified as killer inhibitory receptors (KIRs) or C-type lectins. The regulation of their inhibitory signaling pathways is not completely understood. The YTINDY NK-like cell line was transfected to express p58.2 KIR (YT/C143 transfectant) or CD94/NKG2A C-type lectin (YT/CD94 transfectant); and YT/C143, but not YT/CD94, cytotoxicity was down-regulated by Class I. YT/C143 and YT/CD94 expressed equally low p56(lck) levels, suggesting that p56(lck) is not absolutely required for p58.2 signaling but may be required for CD94/NKG2A signaling. Lower SHP-1 levels and activity were observed in YT/CD94 compared to YT/C143. However, increasing SHP-1 to equivalent levels in YT/C143 did not restore inhibition in YT/CD94. Our results suggest that the combination of low p56(lck) and SHP-1 levels may be responsible for the absent inhibitory signal in YT/CD94. In addition, the possible expression of CD94/NKG2C activating receptor may override inhibitory signals transduced through CD94/NKG2A.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Antigens, CD/biosynthesis
- Carrier Proteins/analysis
- Cell Line
- Cytotoxicity, Immunologic
- Down-Regulation
- Histocompatibility Antigens Class I/immunology
- Humans
- Immediate-Early Proteins/analysis
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/immunology
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/biosynthesis
- Membrane Glycoproteins/analysis
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/analysis
- Proteins
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, KIR
- Receptors, KIR2DL3
- Receptors, Mitogen/antagonists & inhibitors
- Receptors, Mitogen/immunology
- Receptors, Natural Killer Cell
- Sequestosome-1 Protein
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Family
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hui Lin Chua
- Department of Microbiology/Immunology, Indiana University School of Medicine, Riley Hospital, RM 0615, 702 Barnhill Drive, Indianapolis, IN 46202-5200, USA
| | | |
Collapse
|
31
|
Kabat J, Borrego F, Brooks A, Coligan JE. Role that each NKG2A immunoreceptor tyrosine-based inhibitory motif plays in mediating the human CD94/NKG2A inhibitory signal. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1948-58. [PMID: 12165520 DOI: 10.4049/jimmunol.169.4.1948] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human NKG2A chain of the CD94/NKG2A receptor contains two immunoreceptor Tyr-based inhibitory motifs (ITIMs) in its cytoplasmic tail. To determine the relative importance of membrane-distal (residues 6-11) and membrane-proximal (residues 38-43) ITIMs in mediating the inhibitory signal, we made site-directed mutants of NKG2A at the Y (Y8F, Y40F, Y8F/Y40F) and the residues two positions N-terminal (Y-2) of Y (V6A, I38A, V6A/I38A) in each motif. Wild-type (wt) and mutated NKG2A were then cotransfected with CD94 into rat basophilic leukemia 2H3 cells. Immunochemical analyses after pervanadate treatment showed that each of the mutant molecules could be phosphorylated to expected levels relative to wt NKG2A and that all the mutations significantly reduced the avidity of SH2 domain-bearing tyrosine phosphatase-1 for NKG2A. Confocal microscopy was used to determine whether SH2 domain-bearing tyrosine phosphatase-1 and CD94/NKG2A colocalized intracellularly after receptor ligation. Only the Y8F/Y40F and Y8F mutant NKG2A molecules failed to show a dramatic colocalization. In agreement with this result, the Y8F/Y40F mutant was unable to inhibit FcepsilonRI-mediated serotonin release and the Y8F mutant was relatively ineffective compared with wt NKG2A. In contrast, the Y40F mutant was 70% as effective as wt in mediating inhibition, and the Y-2 mutations did not remarkably affect inhibitory function. These results show that, like KIR, both NKG2A ITIMs are required for mediating the maximal inhibitory signal, but opposite to KIR, the membrane-distal ITIM is of primary importance rather than the membrane-proximal ITIM. This probably reflects the opposite orientation of the ITIMs in type II vs type I proteins.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Cell Degranulation
- Cell Line
- DNA, Complementary/genetics
- Humans
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Mast Cells/immunology
- Mast Cells/physiology
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Models, Immunological
- Mutation
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Phosphorylation
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Rats
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Serotonin/metabolism
- Signal Transduction
- Transfection
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Juraj Kabat
- National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
32
|
Vivier E, Tomasello E, Paul P. Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 2002; 14:306-11. [PMID: 11973127 DOI: 10.1016/s0952-7915(02)00337-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NKG2D is an activating cell surface receptor expressed on a wide range of immune effector cells including NK cells, NKT cells, gammadelta T cells as well as CD8(+) alphabeta T cells. Recent data indicate two major features: first, that human (MICA, MICB and ULBP) and mouse (Rae1 and H60) NKG2D ligands can be induced and/or upregulated upon cellular distress; and second, that on T cells NKG2D serves as a co-stimulation molecule for TCR triggering, whereas on NK cells NKG2D may act as a primary recognition structure.
Collapse
Affiliation(s)
- Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Université de la Méditerrannée, Parc Scientifique de Luminy, Case 906, 13288, Cedex 09, Marseille, France.
| | | | | |
Collapse
|
33
|
Husain Z, Levitan E, Larsen CE, Mirza NM, Younes S, Yunis EJ, Alper CA, Dubey DP. HLA-Cw7 zygosity affects the size of a subset of CD158b+ natural killer cells. J Clin Immunol 2002; 22:28-36. [PMID: 11958591 DOI: 10.1023/a:1014204519468] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Individuals with certain HLA class I genotypes are highly susceptible to disease after viral infection. Natural killer (NK) cells kill virus-infected cells through a mechanism involving HLA class I receptors. These facts may be connected if an individual's HLA genotype regulates the number and function of NK cells. We have observed that subjects homozygous for the HLA-B/C region of conserved major histocompatibility complex (MHC) extended haplotypes have lower NK cell activity and a significantly lower frequency of CD16+CD56+ NK cells than heterozygotes. The proportion of CD16-CD56+ NK cells was unaffected by zygosity for the HLA-B/C region. We show here that the frequency of CD16+CD158b+, but not CD16-CD158b+ NK cells, was significantly lower (p <0.026) in homozygotes for HLA-Cw7 (NKI ligand) haplotypes than in heterozygotes. The frequencies of CD16+CD158a+ and CD16-CD158a+ and CD16-CD158a+ or CD16+NKB1+ and CD16-NKB1+ NK cells were not different in these donor groups. These findings suggest that the proportion of NK cells coexpressing CD16 and CD158b, but not CD158a nor NKB1, is influenced by zygosity for the HLA-Cw7 (NK1 ligand) haplotype. Since NK cells are involved in protection from virus infection, a reduced size of a ligand-specific NK subset in individuals homozygous for some HLA-B/C haplotypes may help explain their increased susceptibility to virus-induced diseases.
Collapse
Affiliation(s)
- Zaheed Husain
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vyas YM, Mehta KM, Morgan M, Maniar H, Butros L, Jung S, Burkhardt JK, Dupont B. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4358-67. [PMID: 11591760 DOI: 10.4049/jimmunol.167.8.4358] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytolytic activity of NK cells is tightly regulated by inhibitory receptors specific for MHC class I Ags. We have investigated the composition of signal transduction molecules in the supramolecular activation clusters in the MHC class I-regulated cytolytic and noncytolytic NK cell immune synapses. KIR2DL3-positive NK clones that are specifically inhibited in their cytotoxicity by HLA-Cw*0304 and polyclonal human NK cells were used for conjugate formation with target cells that are either protected or are susceptible to NK cell-mediated cytotoxicity. Polarization of talin, microtubule-organizing center, and lysosomes occurred only during cytolytic interactions. The NK immune synapses were analyzed by three-dimensional immunofluorescence microscopy, which showed two distinctly different synaptic organizations in NK cells during cytolytic and noncytolytic interactions. The center of a cytolytic synapse with MHC class I-deficient target is comprised of a complex of signaling molecules including Src homology (SH)2-containing protein tyrosine phosphatase-1 (SHP-1). Closely related molecules with overlapping functions, such as the Syk kinases, SYK, and ZAP-70, and adaptor molecules, SH2 domain-containing leukocyte protein of 76 kDa and B cell linker protein, are expressed in activated NK cells and are all recruited to the center of the cytolytic synapse. In contrast, the noncytolytic synapse contains SHP-1, but is lacking other components of the central supramolecular activation cluster. These findings indicate a functional role for SHP-1 in both the cytolytic and noncytolytic interactions. We also demonstrate, in three-cell conjugates, that a single NK cell forms a cytolytic synapse with a susceptible target cell in the presence of both susceptible and nonsusceptible target cells.
Collapse
Affiliation(s)
- Y M Vyas
- Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19:197-223. [PMID: 11244035 DOI: 10.1146/annurev.immunol.19.1.197] [Citation(s) in RCA: 1348] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer cells can discriminate between normal cells and cells that do not express adequate amounts of major histocompatibility complex (MHC) class I molecules. The discovery, both in mouse and in human, of MHC-specific inhibitory receptors clarified the molecular basis of this important NK cell function. However, the triggering receptors responsible for positive NK cell stimulation remained elusive until recently. Some of these receptors have now been identified in humans, thus shedding some light on the molecular mechanisms involved in NK cell activation during the process of natural cytotoxicity. Three novel, NK-specific, triggering surface molecules (NKp46, NKp30, and NKp44) have been identified. They represent the first members of a novel emerging group of receptors collectively termed natural cytotoxicity receptors (NCR). Monoclonal antibodies (mAbs) to NCR block to differing extents the NK-mediated lysis of various tumors. Moreover, lysis of certain tumors can be virtually abrogated by the simultaneous masking of the three NCRs. There is a coordinated surface expression of the three NCRs, their surface density varying in different individuals and also in the NK cells isolated from a given individual. A direct correlation exists between the surface density of NCR and the ability of NK cells to kill various tumors. NKp46 is the only NCR involved in human NK-mediated killing of murine target cells. Accordingly, a homologue of NKp46 has been detected in mouse. Molecular cloning of NCR revealed novel members of the Ig superfamily displaying a low degree of similarity to each other and to known human molecules. NCRs are coupled to different signal transducing adaptor proteins, including CD3 zeta, Fc epsilon RI gamma, and KARAP/DAP12. Another triggering NK receptor is NKG2D. It appears to play either a complementary or a synergistic role with NCRs. Thus, the triggering of NK cells in the process of tumor cell lysis may often depend on the concerted action of NCR and NKG2D. In some instances, however, it may uniquely depend upon the activity of NCR or NKG2D only. Strict NKG2D-dependency can be appreciated using clones that, in spite of their NCR(dull) phenotype, efficiently lyse certain epithelial tumors or leukemic cell lines. Other triggering surface molecules including 2B4 and the novel NKp80 appear to function as coreceptors rather than as true receptors. Indeed, they can induce natural cytotoxicity only when co-engaged with a triggering receptor. While an altered expression or function of NCR or NKG2D is being explored as a possible cause of immunological disorders, 2B4 dysfunction has already been associated with a severe form of immunodeficiency. Indeed, in patients with the X-linked lymphoproliferative disease, the inability to control Epstein-Barr virus infections may be consequent to a major dysfunction of 2B4 that exerts inhibitory instead of activating functions.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD
- Carrier Proteins/immunology
- Cloning, Molecular
- Cytotoxicity, Immunologic/immunology
- Epstein-Barr Virus Infections/immunology
- Histocompatibility Antigens Class I/immunology
- Humans
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Lymphoproliferative Disorders/immunology
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/immunology
- Mice
- Multigene Family
- Natural Cytotoxicity Triggering Receptor 1
- Natural Cytotoxicity Triggering Receptor 2
- Natural Cytotoxicity Triggering Receptor 3
- Neoplasms/immunology
- Neoplasms, Experimental/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family
Collapse
Affiliation(s)
- A Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
McVicar DW, Burshtyn DN. Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752646 DOI: 10.1126/stke.2001.75.re1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Once thought to be promiscuous killers, it is now known that natural killer (NK) cells possess an elaborate array of receptors that regulate NK cytotoxic and secretory functions upon interaction with target cell MHC class I proteins. These receptors, known as killer cell immunoglobulin-like receptors (KIRs) in humans, and Ly49 receptors in the mouse, have become the focus of intense study in an effort to discern the underlying biology of these large receptor families. These receptor families include both inhibitory and activating receptors. Interrogation of a target expressing KIR ligands leads to coengagement of the inhibitory receptor with as-yet poorly defined activation receptors. Kinases activated during engagement mediate the phosphorylation of the KIR or Ly49 cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The phosphorylated ITIMs serve as efficient recruitment points for the cytosolic protein tyrosine phosphatases, SHP-1 and SHP-2, resulting in the dephosphorylation of substrates critical for cellular activation. In contrast, some KIRs and Ly49s lack the ITIM and possess a charged residue in their transmembrane domains that mediates interaction with the DAP12 signal transduction chain. DAP12 uses its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM) to mediate cellular activation. Engagement of a DAP12 coupled KIR or Ly49 results in phosphorylation of DAP12, and other key substrates, including the Syk tryosine kinase, phospholipase C, and c-Cbl. DAP12 activation then leads to the Mapk cascade and ultimately to enhanced degranulation, and production of cytokines and chemokines. Although the context in which inhibitory and activating KIR and Ly49s function is not yet known, the dissection of the activating and inhibitory signal transduction pathways should shed light on their method of integration into the activation sequela of NK cells. Ultimately, this work will lead to concrete understanding of the immunobiology of these seemingly antagonistic receptor systems.
Collapse
Affiliation(s)
- D W McVicar
- Laboratory of Experimental Immunology, Division of Basic Sciences, National Cancer Institute, NCI-FCRDC Building 560/Rm 31-93, Frederick, MD 21702, USA.
| | | |
Collapse
|
37
|
Lesourne R, Bruhns P, Fridman WH, Daëron M. Insufficient phosphorylation prevents fc gamma RIIB from recruiting the SH2 domain-containing protein-tyrosine phosphatase SHP-1. J Biol Chem 2001; 276:6327-36. [PMID: 11099496 DOI: 10.1074/jbc.m006537200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fc gamma RIIB are IgG receptors that inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. Inhibition depends on an immunoreceptor tyrosine-based inhibition motif (ITIM) that is phosphorylated upon Fc gamma RIIB coaggregation with ITAM-bearing receptors and recruits SH2 domain-containing phosphatases. Agarose bead-coated phosphorylated ITIM peptides (pITIMs) bind in vitro the single-SH2 inositol 5-phosphatases (SHIP1 and SHIP2) and the two-SH2 protein tyrosine phosphatases (SHP-1 and SHP-2). Phosphorylated Fc gamma RIIB, however, recruit selectively SHIP1/2 in vivo. We aimed here at explaining this discordance. We found that beads coated with low amounts of pITIM bound in vitro SHIP1, but not SHP-1, i.e. behaved as phosphorylated Fc gamma RIIB in vivo. The reason is that SHP-1 requires its two SH2 domains to bind on adjacent pITIMs. Consequently, the binding of SHP-1, but not of SHIP1, increased with pITIM density on beads. When trying to increase Fc gamma RIIB phosphorylation in B cells and mast cells, we found that concentrations of ligands optimal for Fc gamma RIIB phosphorylation failed to induce SHP-1 recruitment. SHP-1 was, however, recruited by Fc gamma RIIB when hyperphosphorylated following cell treatment with pervanadate. Our data suggest that Fc gamma RIIB phosphorylation may not be sufficient in vivo to enable the recruitment of SHP-1 but that (pathological?) conditions that would hyperphosphorylate Fc gamma RIIB might enable SHP-1 recruitment.
Collapse
Affiliation(s)
- R Lesourne
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U.255, Institut Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
38
|
Henshall TL, Jones KL, Wilkinson R, Jackson DE. Src homology 2 domain-containing protein-tyrosine phosphatases, SHP-1 and SHP-2, are required for platelet endothelial cell adhesion molecule-1/CD31-mediated inhibitory signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3098-106. [PMID: 11207261 DOI: 10.4049/jimmunol.166.5.3098] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.
Collapse
Affiliation(s)
- T L Henshall
- Division of Haematology, Hanson Centre for Cancer Research, IMVS, Adelaide, South Australia
| | | | | | | |
Collapse
|
39
|
Bruhns P, Vely F, Malbec O, Fridman WH, Vivier E, Daeron M. Molecular basis of the recruitment of the SH2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 by fcgamma RIIB. J Biol Chem 2000; 275:37357-64. [PMID: 11016922 DOI: 10.1074/jbc.m003518200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.
Collapse
Affiliation(s)
- P Bruhns
- Laboratoire d'Immunologie Cellulaire et Clinique, INSERM U255, Institut Curie, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Bottino C, Falco M, Sivori S, Moretta L, Moretta A, Biassoni R. Identification and molecular characterization of a natural mutant of the p50.2/KIR2DS2 activating NK receptor that fails to mediate NK cell triggering. Eur J Immunol 2000; 30:3569-74. [PMID: 11169398 DOI: 10.1002/1521-4141(200012)30:12<3569::aid-immu3569>3.0.co;2-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
P50/KIR2DS molecules represent the activating form of the HLA-C-specific inhibitory NK receptors. They are characterized, in the transmembrane portion, by a charged amino acid that is involved in coupling with signal-transducing adaptor polypeptides. In this study we identified a novel p50.2/KIR2DS2 surface molecule, isolated from NK cell clones derived from an otherwise normal donor, that was unable to transduce activating signals. Sequence analysis of the cDNA encoding this molecule revealed six non-conservative codon mutations in the exon coding for the putative transmembrane portion. Notably, one of such mutations involved the charged residue lysine thought to be important for the association with signal-transducing polypeptides. Indeed, co-transfection experiments revealed that this naturally occurring p50.2/KIR2DS2 mutant, termed Mp50.2, displayed a sharply reduced ability to associate with DAP12 polypeptides. These data provide the first in vivo demonstration of the crucial role played by the transmembrane region of p50.2 receptor molecules in the functional association with DAP12 adaptor molecules and in the process of activation of NK-mediated cytotoxicity.
Collapse
Affiliation(s)
- C Bottino
- Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Sancho D, Santis AG, Alonso-Lebrero JL, Viedma F, Tejedor R, Sánchez-Madrid F. Functional analysis of ligand-binding and signal transduction domains of CD69 and CD23 C-type lectin leukocyte receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3868-75. [PMID: 11034393 DOI: 10.4049/jimmunol.165.7.3868] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD69 and CD23 are leukocyte receptors with distinctive pattern of cell expression and functional features that belong to different C-type lectin receptor subfamilies. To assess the functional equivalence of different domains of these structurally related proteins, a series of CD69/CD23 chimeras exchanging the carbohydrate recognition domain, the neck region, and the transmembrane and cytoplasmic domains were generated. Biochemical analysis revealed the importance of the neck region (Cys68) in the dimerization of CD69. Functional analysis of these chimeras in RBL-2H3 mast cells and Jurkat T cell lines showed the interchangeability of structural domains of both proteins regarding Ca2+ fluxes, serotonin release, and TNF-alpha synthesis. The type of the signal transduced mainly relied on the cytoplasmic domain and was independent of receptor oligomerization. The cytoplasmic domain of CD69 transduced a Ca2+-mediated signaling that was dependent on the extracellular uptake of Ca2+. Furthermore, a significant production of TNF-alpha was induced through the cytoplasmic domain of CD69 in RBL-2H3 cells, which was additive to that promoted via FcepsilonRI, thus suggesting a role for CD69 in the late phase of reactions mediated by mast cells. Our results provide new important data on the functional equivalence of homologous domains of these two leukocyte receptors.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cytokines/biosynthesis
- Cytoplasm/genetics
- Cytoplasm/immunology
- Humans
- Inflammation/immunology
- Jurkat Cells
- Lectins/genetics
- Lectins/immunology
- Lectins/metabolism
- Lectins, C-Type
- Ligands
- Mast Cells/immunology
- Mast Cells/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Structure, Tertiary/genetics
- Rats
- Receptors, IgE/genetics
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemical synthesis
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Sancho
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Luque I, Reyburn H, Strominger JL. Expression of the CD80 and CD86 molecules enhances cytotoxicity by human natural killer cells. Hum Immunol 2000; 61:721-8. [PMID: 10980383 DOI: 10.1016/s0198-8859(00)00136-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In contrast to the inhibitory pathway of NK cell regulation, much less is known about stimulatory or activation signals in NK cells. Both CD80 and CD86 function as costimulatory molecules in T-cell cytotoxicity. Several previous reports, most of them in the murine system, have indirectly or directly indicated the possible role of B7 molecules (CD80 and CD86) triggering NK cell-mediated cytotoxicity in vitro. Nevertheless, only little is known about the role of these molecules on human target cells. Therefore, anti-CD80 and anti-CD86 mAbs were used in blocking experiments and both were shown to inhibit lysis by human NK cells. The degree of inhibition observed was variable. 64% of these NK clones were strongly inhibited by both anti-CD80 and anti-CD86 (Type 1). A small number (19%) were only moderately inhibited by both of these antibodies (Type 2), and 17% of these NK clones were inhibited strongly by anti-CD86 but weakly or not at all by anti-CD80 (Type 3). To further examine the importance of these proteins, B7.1 (CD80) and B7.2 (CD86) genes were transfected into the mouse mastocytoma P815 cell line that could not be killed by the human NK cells. These transfectant cell lines were then tested in cytotoxicity assays using a number of human NK lines. Expression of the CD80 and CD86 molecules resulted in enhanced lysis of P815 by most of the NK lines tested. Thus, both CD80 and CD86 molecules are involved in triggering of human NK cells.
Collapse
Affiliation(s)
- I Luque
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
43
|
Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 2000. [DOI: 10.1182/blood.v96.2.483.014k40_483_490] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD33 is a myeloid specific member of the sialic acid-binding receptor family and is expressed highly on myeloid progenitor cells but at much lower levels in differentiated cells. Human CD33 has two tyrosine residues in its cytoplasmic domain (Y340 and Y358). When phosphorylated, these tyrosines could function as docking sites for the phosphatases, SHP-1 and/or SHP-2, enabling CD33 to function as an inhibitory receptor. Here we demonstrate that CD33 is tyrosine phosphorylated in the presence of the phosphatase inhibitor, pervanadate, and recruits SHP-1 and SHP-2. Co-expression studies suggest that the Src-family kinase Lck is effective at phosphorylating Y340, but not Y358, suggesting that these residues may function in the selective recruitment of adapter molecules and have distinct functions. Further support for overlapping, but nonredundant, roles for Y340 and Y358 comes from peptide-binding studies that revealed the recruitment of both SHP-1 and SHP-2 to Y340 but only SHP-2 to Y358. Analysis using mutants of SHP-1 demonstrated that binding Y340 of CD33 was primarily to the amino Src homology-2 domain of SHP-1. The potential of CD33 to function as an inhibitory receptor was demonstrated by its ability to down-regulate CD64-induced calcium mobilization in U937. The dependence of this inhibition on SHP-1 was demonstrated by blocking CD33-mediated effects with dominant negative SHP-1. This result implies that CD33 is an inhibitory receptor and also that SHP-1 phosphatase has a significant role in mediating CD33 function. Further studies are essential to identify the receptor(s) that CD33 inhibits in vivo and its function in myeloid lineage development.
Collapse
|
44
|
Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 2000. [DOI: 10.1182/blood.v96.2.483] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCD33 is a myeloid specific member of the sialic acid-binding receptor family and is expressed highly on myeloid progenitor cells but at much lower levels in differentiated cells. Human CD33 has two tyrosine residues in its cytoplasmic domain (Y340 and Y358). When phosphorylated, these tyrosines could function as docking sites for the phosphatases, SHP-1 and/or SHP-2, enabling CD33 to function as an inhibitory receptor. Here we demonstrate that CD33 is tyrosine phosphorylated in the presence of the phosphatase inhibitor, pervanadate, and recruits SHP-1 and SHP-2. Co-expression studies suggest that the Src-family kinase Lck is effective at phosphorylating Y340, but not Y358, suggesting that these residues may function in the selective recruitment of adapter molecules and have distinct functions. Further support for overlapping, but nonredundant, roles for Y340 and Y358 comes from peptide-binding studies that revealed the recruitment of both SHP-1 and SHP-2 to Y340 but only SHP-2 to Y358. Analysis using mutants of SHP-1 demonstrated that binding Y340 of CD33 was primarily to the amino Src homology-2 domain of SHP-1. The potential of CD33 to function as an inhibitory receptor was demonstrated by its ability to down-regulate CD64-induced calcium mobilization in U937. The dependence of this inhibition on SHP-1 was demonstrated by blocking CD33-mediated effects with dominant negative SHP-1. This result implies that CD33 is an inhibitory receptor and also that SHP-1 phosphatase has a significant role in mediating CD33 function. Further studies are essential to identify the receptor(s) that CD33 inhibits in vivo and its function in myeloid lineage development.
Collapse
|
45
|
Motoda K, Takata M, Kiura K, Nakamura I, Harada M. SHP-1/immunoreceptor tyrosine-based inhibition motif-independent inhibitory signalling through murine natural killer cell receptor Ly-49A in a transfected B-cell line. Immunology 2000; 100:370-7. [PMID: 10929060 PMCID: PMC2327019 DOI: 10.1046/j.1365-2567.2000.00046.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 02/21/2000] [Accepted: 02/21/2000] [Indexed: 11/20/2022] Open
Abstract
Ly-49A is a member of the Ly-49 family of mouse natural killer cell receptors that inhibit cytotoxicity upon recognition of their ligands, the major histocompatibility complex (MHC) class I molecules, on the target cell surface. Although Ly-49A has an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic tail, relatively little is known about the mechanisms underlying its inhibitory function. We report here that antibody-mediated co-ligation of the B-cell receptor (BCR) with the transfected Ly-49A molecule results in abrogation of BCR-induced interleukin-2 (IL-2) secretion and mild reduction in activation of Erk1/2 and p38 mitogen-activated protein (MAP) kinases in the B-cell line A20. Surprisingly, BCR-induced calcium mobilization was unaffected by cross-linking of BCR with Ly-49A. Furthermore, substitution of the single tyrosine residue in ITIM with phenylalanine, did not result in a complete loss of inhibitory function, as measured by BCR-induced IL-2 secretion. Deletion of the N-terminal 37 amino acid peptide, which includes the ITIM, did abrogate the inhibitory activity. Co-immunoprecipitation experiments revealed that, upon induction of tyrosine phosphorylation, Ly-49A recruits tyrosine phosphatase src-homology 2 (SH2) containing tyrosine phosphatases-1 (SHP-1), but not inositol phosphatase src-homology 2 (SH2) containing inositol phosphatase (SHIP), and that the tyrosine residue in the ITIM is critical for this interaction. These results suggest that transfected Ly-49A utilizes two different inhibitory mechanisms in B-cell signalling: ITIM-dependent and ITIM-independent.
Collapse
Affiliation(s)
- K Motoda
- Second Department of Internal Medicine, Okayama University Medical School, Okayama, Japan
| | | | | | | | | |
Collapse
|
46
|
Poe JC, Fujimoto M, Jansen PJ, Miller AS, Tedder TF. CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem 2000; 275:17420-7. [PMID: 10748054 DOI: 10.1074/jbc.m001892200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD22 is a cell surface molecule that regulates signal transduction in B lymphocytes. Tyrosine-phosphorylated CD22 recruits numerous cytoplasmic effector molecules including SHP-1, a potent phosphotyrosine phosphatase that down-regulates B cell antigen receptor (BCR)- and CD19-generated signals. Paradoxically, B cells from CD22-deficient mice generate augmented intracellular calcium responses following BCR ligation, yet proliferation is decreased. To understand further the mechanisms through which CD22 regulates BCR-dependent calcium flux and proliferation, interactions between CD22 and effector molecules involved in these processes were assessed. The adapter proteins Grb2 and Shc were found to interact with distinct and specific regions of the CD22 cytoplasmic domain. Src homology-2 domain-containing inositol polyphosphate-5'-phosphatase (SHIP) also bound phosphorylated CD22, but binding required an intact CD22 cytoplasmic domain. All three molecules were bound to CD22 when isolated from BCR-stimulated splenic B cells, indicating the formation of a CD22.Grb2.Shc.SHIP quaternary complex. Therefore, SHIP associating with CD22 may be important for SHIP recruitment to the cell surface where it negatively regulates calcium influx. Although augmented calcium responses in CD22-deficient mice should facilitate enhanced c-Jun N-terminal kinase (JNK) activation, BCR ligation did not induce JNK activation in CD22-deficient B cells. These data demonstrate that CD22 functions as a molecular "scaffold" that specifically coordinates the docking of multiple effector molecules, in addition to SHP-1, in a context necessary for BCR-dependent SHIP activity and JNK stimulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocytes/physiology
- Binding Sites
- Calcium/metabolism
- Cell Adhesion Molecules
- GRB2 Adaptor Protein
- JNK Mitogen-Activated Protein Kinases
- Lectins
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/chemistry
- Phosphoric Monoester Hydrolases/metabolism
- Protein Structure, Quaternary
- Proteins/chemistry
- Proteins/metabolism
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Shc Signaling Adaptor Proteins
- Sialic Acid Binding Ig-like Lectin 2
- Src Homology 2 Domain-Containing, Transforming Protein 1
- src Homology Domains
Collapse
Affiliation(s)
- J C Poe
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
47
|
Tomasello E, Bléry M, Vély F, Vivier E. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 2000; 12:139-47. [PMID: 10764622 DOI: 10.1006/smim.2000.0216] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.
Collapse
Affiliation(s)
- E Tomasello
- Centre d'Immunologie INSERM/CNRS de Marseille-Luminy Case 906, Institut Universitaire de France, Campus de Luminy, Marseille cedex 09, 13288, France
| | | | | | | |
Collapse
|
48
|
Mason LH, Willette-Brown J, Mason AT, McVicar D, Ortaldo JR. Interaction of Ly-49D+ NK cells with H-2Dd target cells leads to Dap-12 phosphorylation and IFN-gamma secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:603-11. [PMID: 10623801 DOI: 10.4049/jimmunol.164.2.603] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine Ly-49D augments NK cell function upon recognition of target cells expressing H-2Dd. Ly-49D activation is mediated by the immunoreceptor tyrosine-based activation motif-containing signaling moiety Dap-12. In this report we demonstrate that Ly-49D receptor ligation can lead to the rapid and potent secretion of IFN-gamma. Cytokine secretion can be induced from Ly-49D+ NK cells after receptor ligation with Ab or after interaction with target cells expressing their H-2Dd ligand. Consistent with the dominant inhibitory function of Ly-49G, NK cells coexpressing Ly-49D and Ly-49G show a profound reduction in IFN-gamma secretion after interaction with targets expressing their common ligand, H-2Dd. Importantly, we are able to demonstrate for the first time that effector/target cell interactions using Ly-49D+ NK cells and H-2Dd targets result in the rapid phosphorylation of Dap-12. However, Dap-12 is not phosphorylated when Ly-49D+ NK cells coexpress the inhibitory receptor, Ly-49G. These studies are novel in describing Ly-49 activation vs inhibition, where two Ly-49 receptors recognize the same class I ligand, with the dominant inhibitory receptor down-regulating phosphorylation of Dap-12, cytokine secretion, and cytotoxicity in NK cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Ly
- Cell Line
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/pharmacology
- Histocompatibility Antigen H-2D
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Phosphoproteins/metabolism
- Phosphorylation
- Rats
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L H Mason
- Laboratory of Experimental Immunology, Division of Basic Sciences, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
This review focuses on recent findings on the structural features of inhibitory NK cell receptors containing immunoreceptor tyrosine-based inhibition motif (ITIM) and of NK cell activating receptors, both in human and mouse. First, the study of the inhibitory killer cell immunoglobulin-like receptors (KIR) unveiled the presence of intracytoplasmic ITIM and their capacity to recruit protein tyrosine phosphatases such as SHP-1 in vivo. A brief summary of the known SHP-1 targets may help us to understand the inhibition mediated by the KIR. The characterization of ITIM thus allowed the definition of a large group of inhibitory cell surface receptors. The second part of the review describes the known NK cell activating receptors. Most of them require association with ITAM-containing polypeptides in order to mediate cell activation.
Collapse
Affiliation(s)
- M Bléry
- Centre d'immunologie INSERM-CNRS de Marseille-Luminy, France.
| | | | | |
Collapse
|
50
|
Mingari MC, Ponte M, Vitale C, Bellomo R, Moretta L. Expression of HLA class I-specific inhibitory receptors in human cytolytic T lymphocytes: a regulated mechanism that controls T-cell activation and function. Hum Immunol 2000; 61:44-50. [PMID: 10658977 DOI: 10.1016/s0198-8859(99)00158-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Different families of major histocompatibility complex (MHC)-specific inhibitory receptors (NKRs) play a major role in natural killer (NK) cell function, allowing discrimination between normal cells and cells that do not express adequate amounts of MHC class I antigens. This occurs in most instances as a consequence of viral infection or tumor transformation. In T lymphocytes, expression of NKR is mostly confined to activated CD8+ cytolytic T lymphocytes (CTLs). While NKR expression by CTLs may be viewed as a mechanism preventing damages to normal cells by those CTLs that have acquired NK-like activity, it may also down regulate TCR-mediated T cell activation, thus, impairing CTL functions. The finding that certain cytokines can modulate killer inhibitory receptor expression in CTLs is of major interest and might be instrumental in novel therapeutic approaches aimed at the down regulation ofT-cell function in transplantation or autoimmunity.
Collapse
Affiliation(s)
- M C Mingari
- Istituto Nazionale per la Ricerca sul Cancro, Dipartimento di Oncologia, Biologia e Genetica, University of Genova, Italy
| | | | | | | | | |
Collapse
|