1
|
Yao Z, Cai L, Zhao A, Yang L, Chen Z, Zhang Y, Liang G, Luo M, Xu X, Zhou G. Electroacupuncture Alleviates Neuroinflammation by Regulating Microglia Polarization via STAT6/PPARγ in Ischemic Stroke Rats. Neuroscience 2023; 532:23-36. [PMID: 37741355 DOI: 10.1016/j.neuroscience.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Previous study showed that electroacupuncture (EA) produced a protective effect on cerebral ischemia-reperfusion injury (CIRI) in rats and may correlate with the anti-inflammatory effects of microglia. This study aimed to investigate further whether EA could modulate neuroinflammation by targeting the Signal Transducer and Activator of Transcription 6 (STAT6) and Peroxisome Proliferator-Activated Receptor γ (PPARγ) pathway, the key regulator of microglia. Middle cerebral artery occlusion (MCAO) rats were used, and 6 h after reperfusion, EA interventions were performed in Chize (LU 5), Hegu (LI 4), Sanyinjiao (SP 6), and Zusanli (ST 36) on the affected side of the rats, the group that received EA + STAT6 phosphorylation inhibitor AS1517499 was used as a parallel control. The degree of neurological impairment, infarct volume, microglia polarization, inflammation levels and activity of STAT6/PPARγ pathway were then assessed by neurological deficit score, triphenyl tetrazolium chloride (TTC) staining, immunofluorescence, western blotting (WB), quantitative real-time PCR (qPCR) and Enzyme linked immunosorbent assay (ELISA). The data showed that EA significantly alleviated nerve injury, reduced infarct volume, enhanced the expression and activity of STAT6/PPARγ pathway, inhibited NF-κB activity, increased M2 microglia numbers and anti-inflammatory factor release, and inhibited microglia M1-type polarization and pro-inflammatory factor expression. In contrast, inhibition of STAT6 phosphorylation exacerbated neural damage, inhibited STAT6/PPARγ pathway activity, promoted microglia M1-type polarization and exacerbated neuroinflammation, resulting in an attenuated positive effect of EA intervention. Therefore, we concluded that EA intervention could attenuate microglia-associated neuroinflammation by enhancing the expression and activity of STAT6/PPARγ pathway, thereby reducing CIRI in MCAO rats.
Collapse
Affiliation(s)
- Zengyu Yao
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aimei Zhao
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu Yang
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiyu Chen
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guiming Liang
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meng Luo
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuhong Xu
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Guoping Zhou
- Department of Acupuncture and Massage Rehabilitation, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Lee S, Park S, Park J, Lee JY. Implantable polypyrrole bioelectrodes inducing anti-inflammatory macrophage polarization for long-term in vivo signal recording. Acta Biomater 2023; 168:458-469. [PMID: 37414115 DOI: 10.1016/j.actbio.2023.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Bioelectrodes are critical components of implantable electronic devices that enable precise electrical signal transmission in close contact with living tissues. However, their in vivo performance is often compromised by inflammatory tissue reactions mainly induced by macrophages. Hence, we aimed to develop implantable bioelectrodes with high performance and high biocompatibility by actively modulating the inflammatory response of macrophages. Consequently, we fabricated heparin-doped polypyrrole electrodes (PPy/Hep) and immobilized anti-inflammatory cytokines (interleukin-4 [IL-4]) via non-covalent interactions. IL-4 immobilization did not alter the electrochemical performance of the original PPy/Hep electrodes. In vitro primary macrophage culture revealed that IL-4-immobilized PPy/Hep electrodes induced anti-inflammatory polarization of macrophages, similar to the soluble IL-4 control. In vivo subcutaneous implantation indicated that IL-4 immobilization on PPy/Hep promoted the anti-inflammatory polarization of host macrophages and significantly mitigated scarring around the implanted electrodes. In addition, high-sensitivity electrocardiogram signals were recorded from the implanted IL-4-immobilized PPy/Hep electrodes and compared to bare gold and PPy/Hep electrodes, which were maintained for up to 15 days post-implantation. This simple and effective surface modification strategy for developing immune-compatible bioelectrodes will facilitate the development of various electronic medical devices that require high sensitivities and long-term stabilities. STATEMENT OF SIGNIFICANCE: To fabricate highly immunocompatible conductive polymer-based implantable electrodes with high performance and stability in vivo, we introduced the anti-inflammatory activity to PPy/Hep electrodes by immobilizing IL-4 via non-covalent surface modification. IL-4-immobilized PPy/Hep could significantly mitigate inflammatory responses and scarring around implants by skewing macrophages to an anti-inflammatory phenotype. The IL-4-immobilized PPy/Hep electrodes could successfully record in vivo electrocardiogram signals for up to 15 days with no substantial sensitivity loss, retaining their superior sensitivity compared to bare gold and pristine PPy/Hep electrodes. Our simple and effective surface modification strategy for developing immune-compatible bioelectrodes will facilitate the development of various electronic medical devices that require high sensitivities and long-term stabilities, such as neural electrode arrays, biosensors, and cochlear electrodes.
Collapse
Affiliation(s)
- Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sehyeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
3
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Naz S, Ashraf S, Parvez MK, Al-Dosari MS, Ul-Haq Z. Structure and ligand-based drug discovery of IL-4 inhibitors via interaction-energy-based learning approaches. J Biomol Struct Dyn 2022; 40:6503-6521. [PMID: 33618633 DOI: 10.1080/07391102.2021.1886172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Interleukin-4 (IL-4), an anti-inflammatory cytokine plays significant in the development of various diseases especially asthmatic allergies. Previous structural and functional studies of IL-4 with its receptor bring forth different types of inhibitors to block their interaction but each of them failed in clinical trials. Since, no synthetic molecules have been identified against IL-4, so far. Therefore, 21 in-house tested IL-4 inhibitors were blindly docked over the entire surface of IL-4 to predict a suitable and druggable binding site as the crystal structure of IL-4 protein in complex with ligand has not been reported yet. After binding site prediction, both ligand-based and structure-based pharmacophore were generated to screen three ZINC libraries (24.5 M) i.e. purchasable, natural product and natural derivative. A total 5,800 top-scored compounds were further subjected towards score-based screening to find the potential leads. Following protein-ligand interaction fingerprints (PLIF) and molecular visualization of selected hits, six top-scored compounds (five from purchasable and one from natural product library) were further moved towards their stability dynamics, followed by their absolute binding free energy and residue-based energy decomposition calculation by MM-GBSA method. These efforts help us to reveal the key factors responsible for ligand binding that might help to improve the binding and stability of these newly discovered hits by structural modifications.Communicated by Freddie R. Salsbury.
Collapse
Affiliation(s)
- Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1191] [Impact Index Per Article: 297.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
6
|
Du Y, Jia C, Liu Y, Li Y, Wang J, Sun K. Isorhamnetin Enhances the Radiosensitivity of A549 Cells Through Interleukin-13 and the NF-κB Signaling Pathway. Front Pharmacol 2021; 11:610772. [PMID: 33569004 PMCID: PMC7868540 DOI: 10.3389/fphar.2020.610772] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Isorhamnetin (ISO), a naturally occurring plant flavonoid, is widely used as a phytomedicine. The major treatment modality for non-small-cell lung carcinoma (NSCLC) is radiotherapy. However, radiotherapy can induce radioresistance in cancer cells, thereby resulting in a poor response rate. Our results demonstrated that pretreatment with ISO induced radiosensitizing effect in A549 cells using colony formation, micronucleus, and γH2AX foci assays. In addition, ISO pretreatment significantly enhanced the radiation-induced incidence of apoptosis, the collapse of mitochondrial membrane potential, and the expressions of proteins associated with cellular apoptosis and suppressed the upregulation of NF-κBp65 induced by irradiation in A549 cells. Interestingly, the expression of interleukin-13 (IL-13), an anti-inflammatory cytokine, was positively correlated with the ISO-mediated radiosensitization of A549 cells. The knockdown of IL-13 expression by RNA interference decreased the IL-13 level and thus reduced ISO-mediated radiosensitivity in cells. We also found that the IR-induced NF-κB signaling activation was inhibited by ISO pretreatment, and it was abrogated in IL-13 silenced cells. We speculated that ISO may confer radiosensitivity on A549 cells via increasing the expression of IL-13 and inhibiting the activation of NF-κB. To our knowledge, this is the first report demonstrating the effects of ISO treatment on the responsiveness of lung cancer cells to irradiation through IL-13 and the NF-κB signaling pathway. In summary, ISO is a naturally occurring radiosensitizer with a potential application in adjuvant radiotherapy.
Collapse
Affiliation(s)
- Yarong Du
- College of Life Science, Northwest Normal University, Lanzhou, China.,Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cong Jia
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Yan Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Yehua Li
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
7
|
Lin TY, Lo CY, Tsao KC, Chang PJ, Kuo CHS, Lo YL, Lin SM, Hsieh MH, Wang TY, Hsu PC, Lin HC. Impaired interferon-α expression in plasmacytoid dendritic cells in asthma. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:183-195. [PMID: 33236850 PMCID: PMC7860612 DOI: 10.1002/iid3.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
Background Toll‐like receptor (TLR)‐7‐associated rhinovirus (RV) activation is involved in the pathogenesis of asthma. Plasmacytoid dendritic cells (pDCs) are the main interferon‐α‐producing cells against viruses. Objective To determine whether asthmatic patients and control subjects differ in terms of interferon‐α expression in pDCs under TLR‐7 or RV stimulation. Methods pDCs were identified in BDCA‐2+ and HLA‐DR+ peripheral blood mononuclear cells. Interferon‐α expression of pDCs was analyzed after TLR‐7 stimulation with or without interleukin 4 (IL‐4)/IL‐13 pretreatment. Interferon‐α expression was also analyzed after RV stimulation over periods of 24, 48, or 96 h with or without IL‐4 pretreatment. RV detection and molecular typing were assayed from throat swabs. Results Following TLR‐7 stimulation, the expression of intracellular interferon‐α was higher in the pDCs of normal subjects than those of asthmatic patients; however, pretreatment with IL‐4 was shown to reduce this effect. After 48‐ and 96‐h RV stimulation, we observed a notable increase in the production of interferon‐α of pDCs in normal subjects but not in asthmatic patients. Baseline interferon‐α expression in pDCs and the incidence of asthma exacerbation to emergency was higher among the 13% of patients identified as rhinovirus+ than among their RV counterparts. Conclusion Our study discovered the response to TLR‐7 stimulation in pDCs was compromised and the sustainability of interferon‐α expression to RV stimulation was reduced in pDCs of asthmatic patients, which provide further evidence of defective innate response and subspeciality to RV infection in asthma. The high exacerbation history founded in RV+ patients agrees with these findings. Further research is required for the modulatory effect of IL‐4 on TLR‐7 stimulated pDCs.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Lin-Kou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Chih-His Scott Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Meng-Heng Hsieh
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, Chang Gung University, Taipei, Taiwan
| |
Collapse
|
8
|
Platanitis E, Decker T. Regulatory Networks Involving STATs, IRFs, and NFκB in Inflammation. Front Immunol 2018; 9:2542. [PMID: 30483250 PMCID: PMC6242948 DOI: 10.3389/fimmu.2018.02542] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023] Open
Abstract
Cells engaging in inflammation undergo drastic changes of their transcriptomes. In order to tailor these alterations in gene expression to the requirements of the inflammatory process, tight and coordinate regulation of gene expression by environmental cues, microbial or danger-associated molecules or cytokines, are mandatory. The transcriptional response is set off by signal-regulated transcription factors (SRTFs) at the receiving end of pathways originating at pattern recognition- and cytokine receptors. These interact with a genome that has been set for an appropriate response by prior activity of pioneer or lineage determining transcription factors (LDTFs). The same types of transcription factors are also critical determinants of the changes in chromatin landscapes and transcriptomes that specify potential consequences of inflammation: tissue repair, training, and tolerance. Here we focus on the role of three families of SRTFs in inflammation and its sequels: signal transducers and activators of transcription (STATs), interferon regulatory factors (IRFs), and nuclear factor κB (NFκB). We describe recent findings about their interactions and about their networking with LDTFs. Our aim is to provide a snapshot of a highly dynamic research area.
Collapse
Affiliation(s)
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
IL-13 regulates IL-17C expression by suppressing NF-κB-mediated transcriptional activation in airway epithelial cells. Biochem Biophys Res Commun 2017; 495:1534-1540. [PMID: 29203240 DOI: 10.1016/j.bbrc.2017.11.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 01/06/2023]
Abstract
The cytokine interleukin (IL)-17C is highly expressed in epithelial tissues and involved in innate immune responses; however, the regulation of IL-17C expression in the airways remains poorly understood. Here, we show that IL-1β strongly induces both IL-17C mRNA and protein expression in primary normal human bronchial epithelial cells. Conversely, IL-13 significantly reduced the IL-1β-induced IL-17C expression. Attenuation of the nuclear factor (NF)-κB-signaling pathway using an NF-κB-subunit p65-specific small-interfering RNA (siRNA), reduced IL-1β-induced IL-17C expression, demonstrating the importance of NF-κB signaling in IL-17C regulation. The inhibitory effects of IL-13 on IL-17C expression were abolished when the Janus kinase (JAK)/signal transducer and activator of transcription 6 (STAT6)-signaling pathway was impaired, using either the JAK inhibitor ruxolitinib or a STAT6-specific siRNA. Western blot analysis demonstrated that IL-1β promoted both IκB-α phosphorylation and degradation, and p65 nuclear translocation. Although IL-13 induced STAT6 phosphorylation and nuclear translocation, it did not affect the activation of the IL-1β-mediated NF-κB-pathway. Using chromatin immunoprecipitation, we confirmed that IL-1β enhanced p65 binding to regions within the IL-17C promoter that flank putative NF-κB-binding sites (-130/-120 and -157/-147). Interestingly, IL-13 treatment reduced the IL-1β-mediated p65 binding to these regions. These findings demonstrate that NF-κB-mediated transcriptional mechanisms are critically involved in the IL-1β-mediated IL-17C induction, and that IL-13 negatively regulates this induction by suppressing NF-κB-based transcriptional activation.
Collapse
|
10
|
Zhang J, Zhao D, Na N, Li H, Miao B, Hong L, Huang Z. Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF-κB pathway in ischemia/reperfusion injury after renal transplantation. Int J Mol Med 2017; 41:25-32. [PMID: 29115389 PMCID: PMC5746301 DOI: 10.3892/ijmm.2017.3204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/02/2017] [Indexed: 12/23/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) commonly occurs in renal transplantation. Erythropoietin (EPO) exerts a protective effect in IRI. To investigate the underlying molecular mechanism, rat models of renal IRI were established and treated with EPO and/or lentivirus-mediated EPO-siRNA, the signal transducer and activator of transcription 6 (STAT6) inhibitor AS1517499, the JNK inhibitor SP600125, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nuclear factor (NF)-κB inhibitor lactacystin. Histological examination revealed that EPO protected the kidney from IRI, through decreasing the extent of tissue congestion and inflammatory cell infiltration; however, EPO siRNA did not exert the same protective effect. In addition, the EPO level was inversely associated with renal IRI. EPO downregulated the expression of interferon-γ, interleukin (IL)-4, creatinine and caspase-3, and upregulated the expression of IL-10, thymic stromal lymphopoietin, STAT6, p-JNK and p-p38, while the opposite effects were observed with the administration of EPO-siRNA and the specific respective inhibitors. Further results revealed that MAPK (p-JNK and p-p38) acted upstream of NF-κB, and that NF-κB signaling regulated the expression of caspase-1 and -3, which may be responsible for the cytotoxicity associated with IRI. Taken together, the results of the present study demonstrated that EPO exerted a protective effect in renal IRI via the STAT6/MAPK/NF-κB pathway. This protective effect of EPO may improve reperfusion tolerance in ischemic kidneys and benefit transplant recipients.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Daqiang Zhao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Heng Li
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Miao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangqing Hong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhengyu Huang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
11
|
Interleukin-4 receptor signaling and its binding mechanism: A therapeutic insight from inhibitors tool box. Cytokine Growth Factor Rev 2016; 32:3-15. [PMID: 27165851 DOI: 10.1016/j.cytogfr.2016.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.
Collapse
|
12
|
Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun 2015; 6:6285. [PMID: 25734337 PMCID: PMC4366489 DOI: 10.1038/ncomms7285] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-κB-induced IL-8 expression by sequestering NF-κB within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3–NF-κB–IL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance. STAT3 is an intracellular transducer of cytokine signals that cooperates with Ras in tumour formation and is often activated in lung cancer. Here the authors show that STAT3 acts as a tumour suppressor in a mouse model of Kras-driven lung adenocarcinoma.
Collapse
|
13
|
Expression of T-helper 17 cells and signal transducers in patients with psoriasis vulgaris of blood-heat syndrome and blood-stasis syndrome. Chin J Integr Med 2014; 21:10-6. [DOI: 10.1007/s11655-014-1769-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 10/24/2022]
|
14
|
Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability. Blood 2014; 123:1917-26. [PMID: 24429338 DOI: 10.1182/blood-2013-06-510180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms by which nitric oxide (NO) bioavailability modulates the clinical expression of sickle cell disease (SCD) remain elusive. We investigated the effect of hypoxia and NO bioavailability on sickle red blood cell (sRBC) adhesion using mice deficient for endothelial NO synthase (eNOS) because their NO metabolite levels are similar to those of SCD mice but without hypoxemia. Whereas sRBC adhesion to endothelial cells in eNOS-deficient mice was synergistically upregulated at the onset of hypoxia, leukocyte adhesion was unaffected. Restoring NO metabolite levels to physiological levels markedly reduced sRBC adhesion to levels seen under normoxia. These results indicate that sRBC adherence to endothelial cells increases in response to hypoxia prior to leukocyte adherence, and that low NO bioavailability synergistically upregulates sRBC adhesion under hypoxia. Although multiple adhesion molecules mediate sRBC adhesion, we found a central role for P-selectin in sRBC adhesion. Hypoxia and low NO bioavailability upregulated P-selectin expression in endothelial cells in an additive manner through p38 kinase pathways. These results demonstrate novel cellular and signaling mechanisms that regulate sRBC adhesion under hypoxia and low NO bioavailability. Importantly, these findings point us toward new molecular targets to inhibit cell adhesion in SCD.
Collapse
|
15
|
IL-4: an important cytokine in determining the fate of T cells. Biophys Rev 2014; 6:111-118. [PMID: 28509961 DOI: 10.1007/s12551-013-0133-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The pleiotropic effect of cytokines has been well documented, but the effects triggered by unique cytokines in different T cell types are still under investigation. The most relevant findings on the influence of interleukin-4 (IL-4) on T cell activation, differentiation, proliferation, and survival of different T cell types are discussed in this review. The main aim of our study was to correlate the observed effect with the corresponding molecular mechanism induced on IL-4/IL-4R interaction, in an effort to understand how the same extracellular stimuli can trigger a wide spectrum of signaling pathways leading to different responses in each T cell type.
Collapse
|
16
|
Minami T. Genome- and epigenome-wide analysis of endothelial cell activation and inflammation. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Walford HH, Doherty TA. STAT6 and lung inflammation. JAKSTAT 2013; 2:e25301. [PMID: 24416647 PMCID: PMC3876430 DOI: 10.4161/jkst.25301] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/18/2022] Open
Abstract
Lung inflammation has many etiologies, including diseases of Th2-type immunity, such as asthma and anti-parasitic responses. Inflammatory diseases of the lung involve complex interactions among structural cells (airway epithelium, smooth muscle, and fibroblasts) and immune cells (B and T cells, macrophages, dendritic cells, and innate lymphoid cells). Signal transducer and activator of transcription 6 (STAT6) has been demonstrated to regulate many pathologic features of lung inflammatory responses in animal models including airway eosinophilia, epithelial mucus production, smooth muscle changes, Th2 cell differentiation, and IgE production from B cells. Cytokines IL-4 and IL-13 that are upstream of STAT6 are found elevated in human asthma and clinical trials are underway to therapeutically target the IL-4/IL-13/STAT6 pathway. Additionally, recent work suggests that STAT6 may also regulate lung anti-viral responses and contribute to pulmonary fibrosis. This review will focus on the role of STAT6 in lung diseases and mechanisms by which STAT6 controls immune and structural lung cell function.
Collapse
Affiliation(s)
- Hannah H Walford
- Department of Medicine; University of California, San Diego; La Jolla, CA USA ; Department of Pediatrics; University of California, San Diego; La Jolla, CA USA
| | - Taylor A Doherty
- Department of Medicine; University of California, San Diego; La Jolla, CA USA
| |
Collapse
|
18
|
Maier E, Duschl A, Horejs-Hoeck J. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur J Immunol 2012; 42:2827-33. [PMID: 23041833 PMCID: PMC3557721 DOI: 10.1002/eji.201242433] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023]
Abstract
Th2 cells play a key role in directing immune responses against helminths. Additionally, Th2 cells are crucial for many types of allergic reactions. Whereas the molecular mechanisms underlying the differentiation of other types of Th cells are well understood, Th2 differentiation is still a controversial topic. IL-4 and its downstream transcription factor signal transducer and activator of transcription (STAT)6 are well-known key mediators in Th2 differentiation. The fact that Th2 cells themselves are the most potent source of IL-4 suggests that additional mechanisms promoting the initiation of Th2 differentiation exist. This article gives an overview on STAT6-dependent and -independent mechanisms involved in the process of Th2 polarization, including Notch, mTORC2, IL-2/STAT5, and Wnt. Furthermore, we emphasize the role of STAT6 not only as a transcriptional activator promoting Th2 development, but also in fine-tuning alternative signaling pathways which are involved in the initiation of Th2 polarization.
Collapse
Affiliation(s)
- Elisabeth Maier
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
19
|
Yu M, Qi X, Moreno JL, Farber DL, Keegan AD. NF-κB signaling participates in both RANKL- and IL-4-induced macrophage fusion: receptor cross-talk leads to alterations in NF-κB pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1797-806. [PMID: 21734075 PMCID: PMC3150418 DOI: 10.4049/jimmunol.1002628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NF-κB activation is essential for receptor activator for NF-κB ligand (RANKL)-induced osteoclast formation. IL-4 is known to inhibit the RANKL-induced osteoclast differentiation while at the same time promoting macrophage fusion to form multinucleated giant cells (MNG). Several groups have proposed that IL-4 inhibition of osteoclastogenesis is mediated by suppressing the RANKL-induced activation of NF-κB. However, we found that IL-4 did not block proximal, canonical NF-κB signaling. Instead, we found that IL-4 inhibited alternative NF-κB signaling and induced p105/50 expression. Interestingly, in nfκb1(-/-) bone marrow-derived macrophages (BMM), the formation of both multinucleated osteoclast and MNG induced by RANKL or IL-4, respectively, was impaired. This suggests that NF-κB signaling also plays an important role in IL-4-induced macrophage fusion. Indeed, we found that the RANKL-induced and IL-4-induced macrophage fusion were both inhibited by the NF-κB inhibitors IκB kinase 2 inhibitor and NF-κB essential modulator inhibitory peptide. Furthermore, overexpression of p50, p65, p52, and RelB individually in nfκb1(-/-) or nfκb1(+/+) BMM enhanced both giant osteoclast and MNG formation. Interestingly, knockdown of nfκb2 in wild-type BMM dramatically enhanced both osteoclast and MNG formation. In addition, both RANKL- and IL-4-induced macrophage fusion were impaired in NF-κB-inducing kinase(-/-) BMM. These results suggest IL-4 influences NF-κB pathways by increasing p105/p50 and suppressing RANKL-induced p52 translocation and that NF-κB pathways participate in both RANKL- and IL-4-induced giant cell formation.
Collapse
Affiliation(s)
- Minjun Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Columbia Center for Translational Immunology, Columbia University, New York, NY 10032
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jose L. Moreno
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Food and Drug Administration, Besthesda, MD, 20014
| | - Donna L. Farber
- Columbia Center for Translational Immunology, Columbia University, New York, NY 10032
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
20
|
Interleukin(IL)-4 promotion of CXCL-8 gene transcription is mediated by ERK1/2 pathway in human pulmonary artery endothelial cells. Mol Immunol 2011; 48:1784-92. [PMID: 21645924 DOI: 10.1016/j.molimm.2011.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 01/07/2023]
Abstract
Interleukin-4 is central to allergic pulmonary inflammatory responses, but its contribution to airway neutrophilia remains controversial. The endothelium plays a critical role in regulating leukocyte recruitment and migration during inflammation. However, its response to IL-4 is reported to either increase or decrease the production of neutrophil chemotactic factors. We hypothesized that these conflicting findings may be due to the tissue and the size of the vessels from which endothelial cells have been derived. The expression of CXCL-8 by human primary culture umbilical veins endothelial cells (HUVECs), human pulmonary artery endothelial cells (HPAECs), and human pulmonary microvascular endothelial cells (HPMECs) when stimulated with recombinant human IL-4 (rhIL-4) was studied. The chemoattractant property of the cells' supernatants for neutrophils was evaluated using Boyden chambers. The role of the nuclear factor-κB (NF-κB), and mitogen-activated protein kinases (MAPK) in IL-4-induced HPAECs was studied using Western blotting and electrophoretic mobility shift assay (EMSA). We demonstrated that IL-4 increased the mRNA expression and the protein production of CXCL-8 in HPAECs, but not in HUVECs and HPMECs. The supernatants of HAPECs stimulated by IL-4 significantly promoted neutrophils migration in a dose-dependent manner, and was significantly attenuated by an inhibitor of CXCL-8. We also found that extracellular-regulated protein kinase1/2 (ERK1/2) is activated by IL-4 in HPAECs, but not JUN-N-terminal protein kinase (JNK) or p38 MAPK pathway. Furthermore, NF-κB-DNA binding activity, phosphorylation of IκBα and p65 levels were not affected by rhIL-4 in HAPECs. These findings indicate marked functional differences in the response of micro and macro-ECs to IL-4. ERK1/2, rather than NF-κB, JNK and p38 MAPK signaling, plays a role in IL-4 induced chemokine activation. Our results suggest that inhibition of ERK1/2 may be a possible target for airway neutrophilia in allergic lung diseases.
Collapse
|
21
|
Genome-wide approaches reveal functional interleukin-4-inducible STAT6 binding to the vascular cell adhesion molecule 1 promoter. Mol Cell Biol 2011; 31:2196-209. [PMID: 21464207 DOI: 10.1128/mcb.01430-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelial cell activation and dysfunction underlie many vascular disorders, including atherosclerosis and inflammation. Here, we show that interleukin-4 (IL-4) markedly induced vascular cell adhesion molecule 1 (VCAM-1), both in cultured endothelial cells and in the intact endothelium in mice. Combined treatment with IL-4 and tumor necrosis factor alpha (TNF-α) resulted in further, sustained induction of VCAM-1 expression. IL-4-mediated induction of VCAM-1 and secondary monocyte adhesion was predominantly regulated by the transcription factor STAT6. Genome-wide survey of IL-4-mediated STAT6 binding from sequential chromatin-immunoprecipitation with deep sequencing (chromatin immunoprecipitation sequencing [ChIP-seq]) in endothelial cells revealed regions of transient and sustained transcription factor binding. Through the combination of DNA microarrays and ChIP-seq at the same time points, the majority of IL-4-responsive genes were shown to be STAT6 dependent and associated with direct STAT6 binding to their promoter. IL-4-mediated stable binding of STAT6 led to sustained target gene expression. Moreover, our strategy led to the identification of a novel functionally important STAT6 binding site within 16 kb upstream of the VCAM-1 gene. Taken together, these findings support a critical role for STAT6 in mediating IL-4 signal transduction in endothelial cells. Identification of a novel IL-4-mediated VCAM-1 enhancer may provide a foundation for targeted therapy in vascular disease.
Collapse
|
22
|
Maier E, Hebenstreit D, Posselt G, Hammerl P, Duschl A, Horejs-Hoeck J. Inhibition of suppressive T cell factor 1 (TCF-1) isoforms in naive CD4+ T cells is mediated by IL-4/STAT6 signaling. J Biol Chem 2010; 286:919-28. [PMID: 20980261 DOI: 10.1074/jbc.m110.144949] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Wnt pathway transcription factor T cell factor 1 (TCF-1) plays essential roles in the control of several developmental processes, including T cell development in the thymus. Although previously regarded as being required only during early T cell development, recent studies demonstrate an important role for TCF-1 in T helper 2 (Th2) cell polarization. TCF-1 was shown to activate expression of the Th2 transcription factor GATA-binding protein 3 (GATA3) and thus to promote the development of IL-4-producing Th2 cells independent of STAT6 signaling. In this study, we show that TCF-1 is down-regulated in human naive CD4(+) T cells cultured under Th2-polarizing conditions. The down-regulation is largely due to the polarizing cytokine IL-4 because IL-4 alone is sufficient to substantially inhibit TCF-1 expression. The IL-4-induced suppression of TCF-1 is mediated by STAT6, as shown by electrophoretic mobility shift assays, chromatin immunoprecipitation, and STAT6 knockdown experiments. Moreover, we found that IL-4/STAT6 predominantly inhibits the shorter, dominant-negative TCF-1 isoforms, which were reported to inhibit IL-4 transcription. Thus, this study provides a model for an IL-4/STAT6-dependent fine tuning mechanism of TCF-1-driven T helper cell polarization.
Collapse
Affiliation(s)
- Elisabeth Maier
- Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Woodward EA, Prêle CM, Nicholson SE, Kolesnik TB, Hart PH. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 2010; 131:118-27. [PMID: 20406299 DOI: 10.1111/j.1365-2567.2010.03281.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-alpha production by IL-4. IL-4 suppressed LPS-induced TNF-alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-alpha production by bone-marrow derived macrophages from wild-type mice, Ifngamma(-/-) mice and mice lacking SOCS1 (Socs1(-/-)Ifngamma(-/-)). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-alpha production by IL-4.
Collapse
Affiliation(s)
- Eleanor A Woodward
- Inflammation Laboratory, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
24
|
Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm Res 2010; 59:755-65. [PMID: 20349326 DOI: 10.1007/s00011-010-0187-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/12/2010] [Accepted: 03/05/2010] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE AND DESIGN The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the development of atherosclerosis. In the present study, we investigated effect of interleukin-4 (IL-4) on monocyte chemoattractant protein-1 (MCP-1) expression in vascular endothelium and examined the role of distinct sources of reactive oxygen species (ROS) in this process. METHODS AND RESULTS Real-time reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay showed that IL-4 significantly up-regulated mRNA and protein expression of MCP-1 in human aortic endothelial cells (HAEC) and C57BL/6 mice. A significant and dose-dependent inhibition of IL-4-induced MCP-1 expression was observed in HAEC pre-treated with antioxidants, such as pyrrolidine dithiocarbamate and epigallocatechin gallate, indicating that IL-4-induced MCP-1 expression is mediated via a ROS-dependent mechanism. Additionally, pharmacological inhibitors of NADPH oxidase (NOX) significantly attenuated IL-4-induced MCP-1 expression in HAEC. Furthermore, the disruption of the NOX gene dramatically reduced IL-4-induced MCP-1 expression in NOX knockout mice (B6.129S6-Cybb(tm1Din)/J). In contrast, overexpression of MCP-1 in IL-4-stimulated HAEC was not affected by inhibiting other ROS generating pathways, such as xanthine oxidase and the mitochondrial electron transport chain. CONCLUSIONS These results demonstrate that IL-4 up-regulates MCP-1 expression in vascular endothelium through NOX-mediated ROS generation.
Collapse
|
25
|
Moraes-Vieira PMM, Silva HM, Takenaka MCS, Monteiro SM, Lemos F, Saitovitch D, Kalil J, Coelho V. Differential monocyte STAT6 activation and CD4(+)CD25(+)Foxp3(+) T cells in kidney operational tolerance transplanted individuals. Hum Immunol 2010; 71:442-50. [PMID: 20122976 DOI: 10.1016/j.humimm.2010.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 12/28/2022]
Abstract
In organ transplantation, the immunosuppression withdrawal leads, in most cases, to rejection. Nonetheless, a special group of patients maintain stable graft function after complete withdrawal of immunosuppression, achieving a state called "operational tolerance." The study of such patients may be important to understand the mechanisms involved in human transplantation tolerance. We compared the profile of CD4(+)CD25(+)Foxp3(+) T cells and the signaling pathways IL-6/STAT3 (signal transducers and activators of transcription) and IL-4/STAT6 in peripheral blood mononuclear cells of four kidney transplant groups: (i) operational tolerance (OT), (ii) chronic allograft nephropathy (CR), (iii) stable graft function under standard immunosuppression (Sta), (iv) stable graft function under low immunosuppression, and (v) healthy individuals. Both CR and Sta displayed lower numbers and percentages of CD4(+)CD25(+)Foxp3(+) T cells compared with all other groups (p < 0.05). The OT patients displayed a reduced activation of the IL-4/STAT6 pathway in monocytes, compared with all other groups (p < 0.05). The lower numbers of CD4(+)CD25(+)Foxp3(+) T cells observed in CR individuals may be a feature of chronic allograft nephropathy. The differential OT signaling profile, with reduced phosphorylation of STAT6, in monocytes' region, suggests that some altered function of STAT6 signaling may be important for the operational tolerance state.
Collapse
|
26
|
Yu M, Moreno JL, Stains JP, Keegan AD. Complex regulation of tartrate-resistant acid phosphatase (TRAP) expression by interleukin 4 (IL-4): IL-4 indirectly suppresses receptor activator of NF-kappaB ligand (RANKL)-mediated TRAP expression but modestly induces its expression directly. J Biol Chem 2009; 284:32968-79. [PMID: 19801646 DOI: 10.1074/jbc.m109.001016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin 4 (IL-4) inhibits receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast formation and functional activity in a STAT6-dependent manner. IL-4 down-regulates expression of tartrate-resistant acid phosphatase (TRAP) in mature osteoclasts. To determine whether IL-4 regulates TRAP promoter activity, RAW264.7 cells were transfected with a TRAP promoter-luciferase reporter. Treatment with IL-4 alone modestly enhanced TRAP luciferase activity. However, IL-4 suppressed the ability of RANKL to up-regulate TRAP-luciferase activity, suggesting that IL-4 has multiple effects on TRAP transcription. IL-4 also reduced the RANKL-induced association of RNA polymerase II with the TRAP gene in osteoclasts. The TRAP promoter contains a STAT6-binding motif, and STAT6 bound to the endogenous TRAP promoter after IL-4 treatment. To determine the impact of STAT6 binding, we transfected cells with STAT6VT, a constitutively active STAT6 mutant. STAT6VT alone up-regulated TRAP-luciferase activity; this effect was abrogated by mutating the STAT6 binding site in the minimal TRAP promoter. STAT6VT did not inhibit the potent up-regulation of TRAP promoter activity caused by overexpression of NFATc1, PU.1, and microphthalmia transcription factor, downstream targets of macrophage colony-stimulating factor and RANKL. IL-4 down-regulated the expression of c-Fos and NFATc1 in mature osteoclasts. Knockdown of NFATc1 by short interfering RNA caused TRAP expression to be down-regulated, and ectopic expression of NFATc1 abrogated the IL-4-induced down-regulation of TRAP. These results suggest that STAT6 plays two distinct roles in TRAP expression. The IL-4-induced activation of STAT6 mediates suppression of the RANKL-induced TRAP promoter activity indirectly by inhibiting NFATc1 expression. However, in the absence of RANKL and osteoclast differentiation, STAT6 binds the TRAP promoter after IL-4 treatment and directly enhances TRAP expression.
Collapse
Affiliation(s)
- Minjun Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
27
|
Ford AQ, Heller NM, Stephenson L, Boothby MR, Keegan AD. An atopy-associated polymorphism in the ectodomain of the IL-4R(alpha) chain (V50) regulates the persistence of STAT6 phosphorylation. THE JOURNAL OF IMMUNOLOGY 2009; 183:1607-16. [PMID: 19592641 DOI: 10.4049/jimmunol.0803266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several commonly occurring polymorphisms in the IL-4R(alpha) have been associated with atopy in humans; the Q576R and the S503P polymorphisms reside in the cytoplasmic domain, whereas the I50 to V50 polymorphism resides in the extracellular domain of the IL-4R(alpha). The effects of these polymorphisms on signaling remain controversial. To determine the effect of the polymorphisms on IL-4 signaling in human cells, we stably transfected the human monocytic cell line U937 with murine IL-4R(alpha) cDNA bearing the I or V at position 50 and the P503/R576 double mutant. Each form of the murine IL-4R(alpha) mediated tyrosine phosphorylation of STAT6 in response to murine IL-4 treatment similar to the induction of tyrosine phosphorylation by human IL-4 signaling through the endogenous human IL-4R(alpha). After IL-4 removal, tyrosine-phosphorylated STAT6 rapidly decayed in cells expressing I50 or P503R576 murine IL-4Ralpha. In contrast, STAT6 remained significantly phosphorylated for several hours after murine IL-4 withdrawal in cells expressing the V50 polymorphism. This persistence in tyrosine-phosphorylated STAT6 was associated with persistence in CIS mRNA expression. Blocking IL-4 signaling during the decay phase using the JAK inhibitor AG490 or the anti-IL-4R(alpha) Ab M1 abrogated the persistence of phosphorylated STAT6 observed in the V50-IL-4R(alpha)-expressing cells. These results indicate that the V50 polymorphism promotes sustained STAT6 phosphorylation and that this process is mediated by continued engagement of IL-4R(alpha), suggesting enhanced responses of V50 IL-4R when IL-4 is limiting.
Collapse
Affiliation(s)
- Andrew Q Ford
- Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
28
|
Morris KR, Lutz RD, Bai X, McGibney MT, Cook D, Ordway D, Chan ED. Suppression of IFNgamma+mycobacterial lipoarabinomannan-induced NO by IL-4 is due to decreased IRF-1 expression. Tuberculosis (Edinb) 2009; 89:294-303. [PMID: 19556165 DOI: 10.1016/j.tube.2009.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 02/07/2023]
Abstract
In mice, and possibly in humans, nitric oxide (NO) is an important host-defense molecule against Mycobacterium tuberculosis. Inducible nitric oxide synthase (iNOS) and NO are upregulated in murine macrophages stimulated with interferon-gamma (IFNgamma) and mannose-capped lipoarabinomannan (ManLAM), a major lipoglycan in the cell wall of M. tuberculosis. Interleukin-4 (IL-4) can inhibit NO expression and may impair host immune response to M. tuberculosis. Therefore, we sought to determine the mechanism by which IL-4 inhibits IFNgamma+ManLAM-induced NO production. Since l-arginine is the substrate for both iNOS and arginase, and IL-4 increases arginase activity by inducing its production, a plausible mechanism of IL-4 inhibition of NO expression is via depletion of l-arginine through increased arginase activity. Herein, we show that IL-4 inhibited iNOS gene expression at the transcriptional level, suggesting an inhibitory mechanism that is independent of the competition for l-arginine between iNOS and arginase. Furthermore, pharmacologic inhibition of IL-4-induced arginase activity did not abrogate IL-4 inhibition of IFNgamma+ManLAM-induced NO expression. Instead, inhibition by IL-4 was mediated principally by the ability of IL-4 to inhibit the production of IFNgamma-induced interferon-gamma response factor-1 (IRF-1) protein, a critically important transcriptional element that enhances expression of IFNgamma-inducible genes such as iNOS.
Collapse
Affiliation(s)
- Kristin R Morris
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Nishimura Y, Nitto T, Inoue T, Node K. STAT6 mediates apoptosis of human coronary arterial endothelial cells by interleukin-13. Hypertens Res 2008; 31:535-41. [PMID: 18497474 DOI: 10.1291/hypres.31.535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interleukin (IL)-13 is a cytokine produced by type 2 helper T cells that has pathophysiological roles in allergic inflammation and fibrosis formation. IL-13 shares many functional properties with IL-4, which promotes apoptosis of endothelial cells (ECs). We here investigated the effects of IL-13 on apoptosis using human coronary artery endothelial cells (HCAECs). Assessment by WST-1 assay demonstrated that IL-13 as well as IL-4 significantly inhibited cell growth. IL-13 significantly attenuated the cell viability and induced apoptosis of HCAECs as well. Expression of mRNA for vascular endothelial cell growth factor, which maintains survival of ECs, was significantly diminished by IL-13. The effects of IL-13 and IL-4 were abolished by depletion of STAT6 using RNA interference. These results suggest that IL-13 attenuates EC viability by inducing apoptosis, and that STAT6 plays pivotal roles on IL-13- and IL-4-induced apoptosis in ECs.
Collapse
Affiliation(s)
- Yuki Nishimura
- Department of Cardiovascular and Renal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | | | | | | |
Collapse
|
30
|
Takaki H, Ichiyama K, Koga K, Chinen T, Takaesu G, Sugiyama Y, Kato S, Yoshimura A, Kobayashi T. STAT6 Inhibits TGF-beta1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J Biol Chem 2008; 283:14955-62. [PMID: 18400747 PMCID: PMC3258871 DOI: 10.1074/jbc.m801123200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/28/2008] [Indexed: 11/06/2022] Open
Abstract
It has been shown that transforming growth factor beta1 (TGF-beta1) is critical in the generation of CD4(+)CD25(+)Foxp3(+)-inducible regulatory T cells (iTregs) from naïve CD4(+)T cells. However, in contrast to natural Tregs, TGF-beta1-induced iTregs rapidly lose both Foxp3 expression and suppression activity. We found that TGF-beta1-induced Foxp3 levels were maintained by the addition of the anti-interleukin 4 (IL-4) antibody or by STAT6 gene deletion. Thus, IL-4 is an important suppressor of Foxp3 induction, and T helper 2 development is a major cause for the disappearance of iTreg during long culture. Using promoter analysis in EL4 cells and primary T cells, we identified a silencer region containing a STAT6 binding site. STAT6 binding to this site reduced TGF-beta1-mediated Foxp3 promoter activation and chromatin modification. Retinoic acid has also been shown to suppress loss of Foxp3 induced by TGF-beta1. Retinoic acid in the presence of TGF-beta1 reduced STAT6 binding to the Foxp3 promoter and enhanced histone acetylation, thereby reverting the effect of IL-4. We propose that antagonistic agents for neutralizing IL-4 could be a novel strategy to facilitate inducible Treg cell generation and the promotion of tolerance in Th2-dominated diseases such as allergy.
Collapse
Affiliation(s)
- Hiromi Takaki
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kenji Ichiyama
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keiko Koga
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takatoshi Chinen
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Giichi Takaesu
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Sugiyama
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shigeaki Kato
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akihiko Yoshimura
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Kobayashi
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, and Insitute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1 Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
31
|
Wu Q, Martin RJ, Lafasto S, Efaw BJ, Rino JG, Harbeck RJ, Chu HW. Toll-like receptor 2 down-regulation in established mouse allergic lungs contributes to decreased mycoplasma clearance. Am J Respir Crit Care Med 2008; 177:720-9. [PMID: 18202345 DOI: 10.1164/rccm.200709-1387oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Respiratory Mycoplasma pneumoniae (Mp) infection is involved in asthma pathobiology, but whether the established allergic airway inflammation compromises lung innate immunity and subsequently predisposes patients with asthma to Mp infection remains unknown. OBJECTIVES To test whether the established allergic airway inflammation compromises host innate immunity (e.g., Toll-like receptor 2 [TLR2]) to hinder the elimination of Mp from the lungs. METHODS We used mouse models of ovalbumin (OVA)-induced allergic airway inflammation with an ensuing Mp infection, and cultures of mouse primary lung dendritic cells (DCs) and bone marrow-derived DCs. MEASUREMENTS AND MAIN RESULTS Lung Mp clearance in allergic mice and TLR2 and IL-6 levels in lung cells, including DCs as well as cultured primary lung DCs and bone marrow-derived DCs, were assessed. The established OVA-induced allergic airway inflammation, or the prominent Th2 cytokines IL-4 and IL-13, inhibited TLR2 expression and IL-6 production in lung cells, including lung DCs, and eventually led to impaired host defense against Mp. Studies in IL-6 knockout mice indicated that IL-6 directly promoted Mp clearance from the lungs. IL-4- and IL-13-induced suppression of TLR2 was mediated by inhibiting nuclear factor-kappaB activation through signal transducer and activator of transcription 6 (STAT6) signaling pathway. CONCLUSIONS The established OVA-induced allergic airway inflammation impairs TLR2 expression and host defense cytokine (e.g., IL-6) production, and subsequently delays lung bacterial clearance. This could offer novel therapeutic strategies to reinstate TLR2 activation by using TLR2 ligands and/or blocking IL-4 and IL-13 to ameliorate persisting respiratory bacterial infections in allergic lungs.
Collapse
Affiliation(s)
- Qun Wu
- National Jewish Medical and Research Center, 1400 Jackson Street, Room A639, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bock D, Philipp S, Wolff G. Therapeutic potential of selectin antagonists in psoriasis. Expert Opin Investig Drugs 2007; 15:963-79. [PMID: 16859397 DOI: 10.1517/13543784.15.8.963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Psoriasis is a systemic chronic inflammatory disorder. One of the major characteristics is an excess of infiltration of inflammatory cells, mainly lymphocytes, into the skin. Because the adhesion family of selectins is suggested to play a relevant role in this process, selectins have emerged as an interesting target for drug discovery and development in psoriasis. Different strategies targeting selectins have been described. This review discusses these approaches and summarises the current development of selectin antagonists for the treatment of psoriasis. An expert opinion will give the authors' personal opinion about selectin antagonism in psoriasis and which approach might be preferable.
Collapse
Affiliation(s)
- Daniel Bock
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, 16761 Hennigsdorf, Germany.
| | | | | |
Collapse
|
33
|
Huang H, Lavoie-Lamoureux A, Moran K, Lavoie JP. IL-4 stimulates the expression of CXCL-8, E-selectin, VEGF, and inducible nitric oxide synthase mRNA by equine pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1147-54. [PMID: 17494951 DOI: 10.1152/ajplung.00294.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known concerning the possible contribution of T helper 2 (Th2)-type cytokines to the recruitment of neutrophils into the lung tissue. In the present study, endothelial cells from equine pulmonary arteries were cultured in the presence of recombinant equine (re) IL-4 and reIL-5, and the cytokine mRNA expression of molecules implicated in the chemotaxis and migration of neutrophils was studied using real-time RT-PCR. The functional response of reIL-4-induced endothelial cell stimulation on neutrophil migration was also studied using a chemotaxis chamber. ReIL-4 either increased the expression of CXCL-8, E-selectin, vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS), or potentiated the coeffects of lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) on CXCL-8. Supernatants collected from cultured endothelial cells stimulated with reIL-4 significantly promoted neutrophil migration in a dose-dependent manner. Dexamethasone (DXM) decreased the expression of CXCL-8, VEGF, and iNOS induced by reIL-4, while 1400W dihydrochloride (1400W), a selective inhibitor of iNOS, decreased the expression of E-selectin, VEGF, and iNOS. DXM and 1400W attenuated the mRNA expression of E-selectin and iNOS induced by the costimulation of reIL-4, reTNF-alpha, and LPS. Neither equine nor human recombinant IL-5 influenced the mRNA expression of CXCL-8, E-selectin, or VEGF. These findings suggest that Th2-type cytokines may contribute to pulmonary neutrophilia during allergic inflammation by the increased expression of neutrophil chemokines and adhesion molecules by endothelial cells. DXM and the iNOS inhibitors may decrease pulmonary neutrophilia due, in part, to a direct inhibition of some of these factors.
Collapse
Affiliation(s)
- Hong Huang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Lotz M, König T, Ménard S, Gütle D, Bogdan C, Hornef MW. Cytokine-mediated control of lipopolysaccharide-induced activation of small intestinal epithelial cells. Immunology 2007; 122:306-15. [PMID: 17511808 PMCID: PMC2266023 DOI: 10.1111/j.1365-2567.2007.02639.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytokines with anti-inflammatory properties have been implicated in the prevention of inappropriate immune activation by commensal bacteria in the intestinal tract. Here, we analysed receptor expression, cellular signalling, and the inhibitory activity of interleukin (IL)-4, -10, -11, and -13 as well as of transforming growth factor-beta on lipopolysaccharide-mediated small intestinal epithelial cell activation. Only IL-4 and IL-13 had a significant inhibitory effect on chemokine secretion and nitric oxide (NO) production in differentiated and polarized cells. Reverse transcription-polymerase chain reaction of primary intestinal epithelial cells obtained by laser-microdissection confirmed expression of the type II IL-4 receptor consisting of the IL-4 receptor alpha and the IL-13 receptor alpha1. Also, IL-4 or IL-13 led to rapid signal transducer and activator of transcription 6 phosphorylation, diminished inducible NO synthase expression, and enhanced the antagonistic arginase 1 activity. In conclusion, cytokines such as IL-4 and IL-13 affect intestinal epithelial cells and exhibit a modulating activity on Toll-like receptor-4-mediated epithelial cell activation.
Collapse
Affiliation(s)
- Michael Lotz
- Department of Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University Clinic of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Miyazaki Y, Satoh T, Nishioka K, Yokozeki H. STAT-6-mediated control of P-selectin by substance P and interleukin-4 in human dermal endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:697-707. [PMID: 16877367 PMCID: PMC1698799 DOI: 10.2353/ajpath.2006.051211] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
P-Selectin expressed on endothelial cells contributes to acute and chronic inflammation by promoting leukocyte tethering/rolling. Despite increasing evidence of P-selectin expression on human umbilical vein endothelial cells in vitro, the regulatory mechanisms of P-selectin expression on dermal endothelial cells in skin diseases are not fully understood. Here, we demonstrate increased expression of P-selectin in dermal vessels of regional skin in urticaria and atopic dermatitis. The present in vitro analyses with human dermal microvascular endothelial cells (HDMECs) revealed that histamine rapidly induced P-selectin expression. Interleukin (IL)-4 and IL-13 induced prolonged expression of surface P-selectin by HDMECs. A combination of tumor necrosis factor-alpha and IL-4 inhibited P-selectin expression. Pretreatment of HDMECs with tumor necrosis factor-alpha followed by incubation with IL-4 markedly increased P-selectin expression. Notably, incubation with substance P alone induced prolonged P-selectin expression. Activation of STAT6 appears to be a key factor in P-selectin expression induced by substance P and IL-4 because treatment with STAT6 decoy oligodeoxynucleotides significantly inhibited P-selectin expression. The present results indicate that novel, complex mechanisms are involved in endothelial P-selectin expression in the skin. STAT6 in dermal endothelial cells appears to be a potent target for controlling cellular infiltrate in allergic and/or neuroinflammatory skin diseases.
Collapse
Affiliation(s)
- Yasuhiro Miyazaki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Japan
| | | | | | | |
Collapse
|
36
|
Paintlia AS, Paintlia MK, Singh I, Singh AK. IL-4-induced peroxisome proliferator-activated receptor gamma activation inhibits NF-kappaB trans activation in central nervous system (CNS) glial cells and protects oligodendrocyte progenitors under neuroinflammatory disease conditions: implication for CNS-demyelinating diseases. THE JOURNAL OF IMMUNOLOGY 2006; 176:4385-98. [PMID: 16547277 DOI: 10.4049/jimmunol.176.7.4385] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th2 phenotype cytokine, IL-4, plays an important role in the regulation of Th1 cell responses and spontaneous remission of inflammatory CNS demyelinating diseases such as multiple sclerosis (MS). In this study we demonstrate IL-4-induced down-regulation of inducible NO synthase (iNOS) expression and survival of differentiating oligodendrocyte progenitors (OPs) in proinflammatory cytokine (Cyt-Mix)-treated CNS glial cells, which is a condition similar to that observed in the brain of a patient with MS. IL-4 treatment of Cyt-Mix-treated CNS glial cells significantly decreased iNOS expression/NO release with a parallel increase in survival of differentiating OPs. IL-4 effects were concentration-dependent and could be reversed by anti-IL-4R Abs. The use of inhibitors for Akt, p38 MAPK, and peroxisome proliferator-activated receptor gamma (PPAR-gamma) antagonist revealed that inhibition of Cyt-Mix-induced iNOS expression and survival of differentiating OPs by IL-4 is via PPAR-gamma activation. There was a coordinate increase in the expression of both PPAR-gamma and its natural ligand-producing enzyme 12/15-lipoxygenase (12/15-LOX) in IL-4-treated cells. Next, EMSA, immunoblots, and transient cotransfection studies with reporter plasmids (pNF-kappaB-Luc and pTK-PPREx3-Luc) and 12/15-LOX small interfering RNA revealed that IL-4-induced PPAR-gamma activation antagonizes NF-kappaB transactivation in Cyt-Mix-treated astrocytes. In support of this finding, similarly treated 12/15-LOX(-/-) CNS glial cells further corroborated the result. Furthermore, there was reversal of IL-4 inductive effects in the brain of LPS-challenged 12/15-LOX(-/-) mice when compared with LPS-challenged wild-type mice. Together, these data for the first time demonstrate the inhibition of Cyt-Mix-induced NF-kappaB transactivation in CNS glial cells by IL-4 via PPAR-gamma activation, hence its implication for the protection of differentiating OPs during MS and other CNS demyelinating diseases.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Department of Pediatrics, Medical University of South Carolina and Ralph H. Johnson Veterans Administration Medical Center, Charleston, 29425, USA
| | | | | | | |
Collapse
|
37
|
Fiset PO, Tulic MK, Skrablin PSA, Grover SM, Létuvé S, Mazer BD, Hamid Q. Signal transducer and activator of transcription 6 down-regulates toll-like receptor-4 expression of a monocytic cell line. Clin Exp Allergy 2006; 36:158-65. [PMID: 16433852 DOI: 10.1111/j.1365-2222.2006.02370.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4), part of the bacterial lipopolysaccharide (LPS) receptor, is an important bridge between innate and adaptive immunity. Our previous studies have indicated reduced expression of TLR4 and reduced responsiveness to LPS in nasal mucosa of atopic adults compared with non-atopic adults. IL-4 and signal transducer and activator of transcription 6 (STAT6), which are increased in atopic patients, may have a role in modulating TLR4. OBJECTIVE To examine direct effects of IL-4 and STAT6 on TLR4 expression of U-937 monocytic cells. METHODS LPS responsiveness, under different conditions of U-937 cells was measured by nuclear factor (NF)-kappaB activation of transcription. TLR4 mRNA was quantified by real-time PCR and TLR4 surface expression was measured by flow cytometry. The promoter and 4.3 kb of the upstream region of TLR4 were cloned into a plasmid vector and transiently transfected into U-937 cells. Transfected cells were incubated with IL-4 and transcriptional activity was assayed by the luciferase assay. STAT6 was transfected to evaluate overexpression of this transcription factor. Cells were also incubated with Tyrphostin AG490 to inhibit tyrosine kinases. RESULTS NF-kappaB activation by LPS was inhibited by IL-4 pre-incubation but not when IL-4 was added at the same time as LPS. TLR4 mRNA expression was inhibited by IL-4 as early as 6 h but the effect was lost by 24 h. Surface expression of TLR4 was inhibited by IL-4 at 12 and 24 h, but returned to baseline at 48 h. IL-4 inhibited activity of the TLR4 promoter as early as 6 h, but, like the mRNA, these effects were transient. STAT6 overexpression enhanced the inhibition of the TLR4 promoter and prolonged it. Inhibition of TLR4 by IL-4 was abolished by pre-incubation with the tyrosine kinase inhibitor Tyrphostin AG490. CONCLUSION Our findings demonstrate that IL-4, through STAT6, can modulate TLR4 expression and suggests that Th2 cytokines can impact on the LPS responsiveness of cells.
Collapse
Affiliation(s)
- P O Fiset
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Vascular endothelial cell injury or dysfunction has been implicated in the onset and progression of cardiovascular diseases including atherosclerosis. A number of previous studies have demonstrated that the pro-oxidative and pro-inflammatory pathways within vascular endothelium play an important role in the initiation and progression of atherosclerosis. Recent evidence has provided compelling evidence to indicate that interleukin-4 (IL-4) can induce pro-inflammatory environment via oxidative stress-mediated up-regulation of inflammatory mediators such as cytokine, chemokine, and adhesion molecules in vascular endothelial cells. In addition, apoptotic cell death within vascular endothelium has been hypothesized to be involved in the development of atherosclerosis. Emerging evidence has demonstrated that IL-4 can induce apoptosis of human vascular endothelial cells through the caspase-3-dependent pathway, suggesting that IL-4 can increase endothelial cell turnover by accelerated apoptosis, the event which may cause the dysfunction of the vascular endothelium. These studies will have a high probability of revealing new directions that lead to the development of clinical strategies toward the prevention and/or treatment for individuals with inflammatory vascular diseases including atherosclerosis.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
39
|
Lee YW, Eum SY, Chen KC, Hennig B, Toborek M. Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 2005; 10:19-27. [PMID: 15502879 PMCID: PMC1431351 DOI: 10.2119/2004-00024.lee] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-4 (IL-4)-mediated pro-oxidative and pro-inflammatory vascular environments have been implicated in the pathogenesis of atherosclerosis. The cellular and molecular regulatory mechanisms underlying this process, however, are not fully understood. In the present study, we employed GeneChip microarray analysis to investigate global gene expression patterns in human vascular endothelial cells after treatment with IL-4. Our results showed that mRNA levels of a total of 106 genes were significantly up-regulated and 41 genes significantly down-regulated with more than a 2-fold change. The majority of these genes are critically involved in the regulation of inflammatory responses, apoptosis, signal transduction, transcription factors, and metabolism; functions of the remaining genes are unknown. The changes in gene expression of selected genes related to inflammatory reactions, such as vascular cell adhesion molecule-1 (VCAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6), were verified by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. IL-4 treatment also significantly increased the adherence of inflammatory cells to endothelial cell monolayers in a dose-dependent manner. These results may help determine the molecular mechanisms of action of IL-4 in human vascular endothelium. In addition, a better understanding of IL-4-induced vascular injury at the level of gene expression could lead to the identification of new therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Surgery/Division of Neurosurgery, University of Kentucky College of Medicine, 800 Rose Street, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
40
|
Raingeaud J, Pierre J. Interleukin-4 downregulates TNFalpha-induced IL-8 production in keratinocytes. FEBS Lett 2005; 579:3953-9. [PMID: 16004996 DOI: 10.1016/j.febslet.2005.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/25/2005] [Accepted: 06/09/2005] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-8 is a CXC chemokine induced by pro-inflammatory cytokines such as TNFalpha, IL-1beta and IL-6 in different cell types including keratinocytes. IL-4 regulation of TNFalpha-induced IL-8 expression is cell-type specific. In this study, we show that in the keratinocyte cell line HaCaT, IL-4 decreases TNFalpha-induced IL-8 mRNA expression. We then investigated the mechanism of IL-4 effect and showed that IL-4 downregulates TNFalpha-induced IL-8 promoter activity in luciferase reporter assays. Moreover, overexpression of either the endogenous JAK inhibitor SOCS-1 or a dominant negative form of the STAT6 transcription factor (STAT6DeltaC) interferes with the IL-4 inhibitory effect on IL-8 promoter. Finally we demonstrate, using a NF-kappaB-dependent promoter luciferase construct that IL-4 interferes, at least in part, with NF-kappaB transcriptional activity. Overall our results suggest that IL-4 regulates TNFalpha-induced IL-8 expression at a transcriptional level and this mechanism involves STAT6 and NF-kappaB transcription factors.
Collapse
Affiliation(s)
- Joel Raingeaud
- INSERM U461, Faculté de Pharmacie, 5 Rue JB Clément, 92296 Chatenay-Malabry, France.
| | | |
Collapse
|
41
|
Lorentz A, Wilke M, Sellge G, Worthmann H, Klempnauer J, Manns MP, Bischoff SC. IL-4-induced priming of human intestinal mast cells for enhanced survival and Th2 cytokine generation is reversible and associated with increased activity of ERK1/2 and c-Fos. THE JOURNAL OF IMMUNOLOGY 2005; 174:6751-6. [PMID: 15905515 DOI: 10.4049/jimmunol.174.11.6751] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In synergy with stem cell factor (SCF), IL-4 strongly enhances mast cell proliferation and shifts IgE-dependent cytokine production in mature human mast cells toward an increased release of Th2 cytokines such as IL-3, IL-5, and IL-13 and a decreased IL-6 expression. In this study we analyzed the kinetics and the mechanisms of these IL-4 effects on mast cells purified from intestinal tissue. If the cells were first cultured with IL-4 for 14 days and then without IL-4 for another 14 days, mast cells lost the capacity of producing higher amounts of Th2 cytokines and regained the capacity of producing IL-6. The IL-4-induced up-regulation of mast cell proliferation and FcepsilonRI expression was also reversible if IL-4 was withdrawn for 14 days. Interestingly, in contrast to IL-4, proliferation and phenotype of human intestinal mast cells were not affected by IL-13 although both cytokines were capable of inducing STAT6 activation. Instead, IL-4 treatment (but not IL-13 treatment) was associated with an increased activity of ERK1/2 and c-Fos, the downstream target of ERK1/2 and component of the transcription factor AP-1. Consistently, mast cell proliferation and cytokine expression in response to IL-4 was blocked by the MEK inhibitor PD98059. In summary, our data show that the IL-4 effects on human intestinal mast cell functions are reversible and accompanied by an increased activity of ERK1/2 and c-Fos.
Collapse
Affiliation(s)
- Axel Lorentz
- Department of Gastroenterology, Hepatology, and Endocrinology, Medical School of Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Manning AM, Mercurio F. Transcription inhibitors in inflammation. Expert Opin Investig Drugs 2005; 6:555-67. [PMID: 15989620 DOI: 10.1517/13543784.6.5.555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Advances in molecular medicine have revealed a key role for altered gene expression in the aetiology of many inflammatory diseases, including asthma, rheumatoid arthritis, inflammatory bowel disease and sepsis. Until recently, however, modulation of gene transcription has not been the subject of directed pharmaceutical research efforts. Notwithstanding, it is clear that the efficacy of several well-established anti-inflammatory therapeutics is mediated through their ability to modulate gene transcription. Understanding the mechanisms of action of these therapeutics and defining new gene regulatory pathways has stimulated a new wave of anti-inflammatory drug discovery. This update aims to cover our current understanding of transcription inhibitors in inflammation, including the mechanism of action of established therapeutics and the properties of new chemical entities recently described in the literature.
Collapse
Affiliation(s)
- A M Manning
- Signal Pharmaceuticals, Inc., 5555 Oberlin Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
43
|
Gao C, Guo H, Mi Z, Wai PY, Kuo PC. Transcriptional Regulatory Functions of Heterogeneous Nuclear Ribonucleoprotein-U and -A/B in Endotoxin-Mediated Macrophage Expression of Osteopontin. THE JOURNAL OF IMMUNOLOGY 2005; 175:523-30. [PMID: 15972688 DOI: 10.4049/jimmunol.175.1.523] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteopontin (OPN) is a highly hydrophilic and negatively charged sialoprotein of approximately 298 amino acids with diverse regulatory functions, including cell adhesion and migration, tumor growth and metastasis, atherosclerosis, aortic valve calcification, and repair of myocardial injury. OPN is unique as an endogenous negative feedback inhibitor of NO expression. However, the specific cis- and trans-regulatory elements that determine the extent of endotoxin (LPS)- and NO-mediated induction of OPN synthesis are unknown. We have previously shown that LPS-induced S-nitrosylation of heterogeneous nuclear ribonucleoprotein (hnRNP)-A/B inhibits its activity as a constitutive trans-repressor of the OPN transcription by significantly decreasing its DNA binding activity. hnRNPs were originally described as chromatin-associated RNA-binding proteins that form complexes with RNA polymerase II transcripts. The hnRNP family is comprised of >20 proteins that contribute to the complex around nascent pre-mRNA and are thus able to modulate RNA processing. In this subsequent study, again using RAW 264.7 murine macrophages and COS-1 cells, we demonstrate that hnRNP-A/B and hnRNP-U proteins serve antagonistic transcriptional regulatory functions for OPN expression in the setting of LPS-stimulated NO synthesis. In the presence of NO, hnRNP-A/B dissociates from its OPN promoter site with subsequent derepression of OPN promoter activity. Subsequently, hnRNP-U binds to the same site to further augment OPN promoter activation. This has not been previously described for the hnRNP proteins. Our results represent a unique transcriptional regulatory mechanism which involves interplay between members of the hnRNP protein family.
Collapse
Affiliation(s)
- Chengjiang Gao
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
44
|
Galka E, Thompson JL, Zhang WJ, Poritz LS, Koltun WA. Stat6null phenotype human lymphocytes exhibit increased apoptosis. J Surg Res 2004; 122:14-20. [PMID: 15522309 DOI: 10.1016/j.jss.2004.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with altered apoptosis and increased levels of Th1 cytokines (IL-12, TNF-alpha, and IFN-gamma). These proinflammatory events may result from dysfunctional IL-4/Stat6 signal transduction that normally promotes Th2 lymphocyte differentiation and consequential down-regulation of the immune response. The goal of the present study was to measure apoptosis, levels of relevant cytokines, and the effects of cytokine manipulation on apoptosis in cell lines derived from IBD patients that express dysfunctional Stat6 (Stat6(null phenotype)) and wild-type Stat6 (Stat6(high phenotype)). MATERIALS AND METHODS Lymphocytes with Stat6(null phenotype) (n = 5) or wild-type (n = 5) status were cultured with and without the addition of exogenous cytokines or neutralizing antibodies (IL-12, TNF-alpha, and IFN-gamma). Apoptosis was determined by flow cytometry using Annexin V-PE dual staining. Cytokine levels were determined by ELISA. RESULTS Stat6(null phenotype) cells exhibited increased apoptosis compared with wild-type cell lines (13.3% +/- 2.9 versus 4.5% +/- 0.4, P < 0.0001). Four of five Stat6(null phenotype) cell lines expressed 5- to 10-fold elevations in IL-12 and IFN-gamma. Addition of exogenous cytokines or neutralizing antibodies had no effect on apoptosis. CONCLUSIONS Apoptotic cell death is elevated in Stat6(null phenotype) cell lines suggesting a role for Stat6 in apoptosis regulation, a previously unrecognized observation. Increased levels of IL-12 and IFN-gamma were found in the Stat6(null phenotype) cell lines; however, the apoptosis observed is not the consequence of increased IL-12, IFN-gamma, or TNF-alpha. Stat6(null phenotype) cell lines exhibit variably increased levels of these Th1 cytokines, consistent with their human source, and may be a valid source for investigations into IBD pathophysiology.
Collapse
Affiliation(s)
- Eva Galka
- Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Section of Colon and Rectal Surgery, MCH137, Hershey, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
45
|
Kohyama T, Liu X, Wen FQ, Kobayashi T, Abe S, Rennard SI. IL-4 and IL-13 induce chemotaxis of human foreskin fibroblasts, but not human fetal lung fibroblasts. Inflammation 2004; 28:33-7. [PMID: 15072228 DOI: 10.1023/b:ifla.0000014709.47056.a9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Through shared receptors, IL-4 and IL-13 have been suggested to regulate not only inflammatory cells, but also to play a role in stimulating fibroblasts during fibrotic processes. Previous studies have shown that IL-4 is a chemoattractant for foreskin fibroblasts. The current study was designed to determine the effect of IL-4 and IL-13 on the migration of two types of fibroblasts: foreskin and human fetal lung fibroblasts (HFL-1). Using the Boyden blindwell chamber method, human foreskin or fetal lung fibroblasts (both 10(6)/mL) were placed in upper wells with various concentrations of IL-4 or IL-13 in the lower wells as chemoattractants. Both IL-4 (1 pg/mL) and IL-13 (100 pg/mL) induced foreskin fibroblast chemotaxis, up to 50 +/- 8 and 24 +/- 7 cells/5 high-power fields, respectively (both p < 0.05). In contrast, neither cytokine induced migration of the lung fibroblasts although both type of cells express IL-4 receptor and IL-13alpha1 receptor. These results suggest that fibroblasts are heterogeneous with regard to their ability to respond to cytokine-driven chemotaxis. Therefore, the role of specific cytokines in mediating fibrotic responses might vary depending on local mesenchymal cell responses.
Collapse
Affiliation(s)
- Tadashi Kohyama
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Travagli J, Letourneur M, Bertoglio J, Pierre J. STAT6 and Ets-1 Form a Stable Complex That Modulates Socs-1 Expression by Interleukin-4 in Keratinocytes. J Biol Chem 2004; 279:35183-92. [PMID: 15199062 DOI: 10.1074/jbc.m403223200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Supressor of cytokine signaling (SOCS)-1 is selectively and rapidly induced by appropriate agonists and modulates cytokine responses by interfering with the Janus kinase/signal transducer and activator of transcription (Jak/STAT) pathway. On the basis of the observation that interleukin (IL)-4 up-regulates Socs-1 in the keratinocyte HaCaT cell line, we investigated which sequences of the 5'-Socs-1 gene are responsive to IL-4. We therefore have cloned the 5'-flanking region of this gene, and by promoter analysis we identified a functional IL-4-responsive element located at nucleotide (-684/-570) upstream from the transcription initiation site, whose presence and integrity are necessary to ensure IL-4 responsiveness. This element contains three STAT6 and one Ets consensus binding sequences of which specific mutations abolished IL-4 responsiveness either partially or totally. We also report that Ets-1 physically interacted with STAT6. Exogenous expression of Ets-1 in conjunction with STAT6 activation strongly inhibited expression of a Socs-1 promoter-luciferase reporter. Collectively, our data demonstrated the involvement of STAT6 and Ets, via a composite DNA element, in the IL-4 regulation of Socs-1 gene expression in keratinocytes.
Collapse
Affiliation(s)
- Julia Travagli
- INSERM U461, Faculté de pharmacie, 5 Rue J. B. Clément, 92296-Chatenay-Malabry, France
| | | | | | | |
Collapse
|
47
|
Inoue Y, Otsuka T, Niiro H, Nagano S, Arinobu Y, Ogami E, Akahoshi M, Miyake K, Ninomiya I, Shimizu S, Nakashima H, Harada M. Novel regulatory mechanisms of CD40-induced prostanoid synthesis by IL-4 and IL-10 in human monocytes. THE JOURNAL OF IMMUNOLOGY 2004; 172:2147-54. [PMID: 14764680 DOI: 10.4049/jimmunol.172.4.2147] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interleukins IL-4 and IL-10 are considered to be central regulators for the limitation and eventual termination of inflammatory responses in vivo, based on their potent anti-inflammatory effects toward LPS-stimulated monocytes/macrophages and neutrophils. However, their role in T cell-dependent inflammatory responses has not been fully elucidated. In this study, we investigated the effects of both cytokines on the production of PGE(2), a key molecule of various inflammatory conditions, in CD40-stimulated human peripheral blood monocytes. CD40 ligation of monocytes induced the synthesis of a significant amount of PGE(2) via inducible expression of the cyclooxygenase (COX)-2 gene. Both IL-10 and IL-4 significantly inhibited PGE(2) production and COX-2 expression in CD40-stimulated monocytes. Using specific inhibitors for extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), we found that both kinase pathways are involved in CD40-induced COX-2 expression. CD40 ligation also resulted in the activation of NF-kappaB. Additional experiments exhibited that CD40 clearly induced the activation of the upstream kinases MAPK/ERK kinase 1/2, MAPK kinase 3/6, and I-kappaB in monocytes. IL-10 significantly inhibited CD40-induced activation of the ERK, p38 MAPK, and NF-kappaB pathways; however, inhibition by IL-4 was limited to the ERK pathway in monocytes. Neither IL-10 nor IL-4 affected the recruitment of TNFR-associated factors 2 and 3 to CD40 in monocytes. Collectively, IL-10 and IL-4 use novel regulatory mechanisms for CD40-induced prostanoid synthesis in monocytes, thus suggesting a potential role for these cytokines in regulating T cell-induced inflammatory responses, including autoimmune diseases.
Collapse
Affiliation(s)
- Yasushi Inoue
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Torpey N, Maher SE, Bothwell ALM, Pober JS. Interferon α but Not Interleukin 12 Activates STAT4 Signaling in Human Vascular Endothelial Cells. J Biol Chem 2004; 279:26789-96. [PMID: 15087447 DOI: 10.1074/jbc.m401517200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT4 signaling, activated by either interleukin 12 (IL12) or interferon alpha (IFNalpha), promotes T(H)1 responses in CD4(+) T cells. Vascular endothelial cells (EC) may also become polarized in response to various cytokines, favoring recruitment and activation of T(H)1 or T(H)2 effector cells. Here we have investigated the role of the STAT4 pathway in EC. Cultured human umbilical vein EC (HUVEC) express low levels of STAT4, which may be tyrosine-phosphorylated by treatment with IFNalpha but not IL12. This is because HUVEC lack both subunits of the IL12 receptor (IL12Rbeta1 and IL12Rbeta2), even following treatment with various cytokines. IL12 phosphorylation of STAT4 can be observed in HUVEC that have been transduced to express the IL12R. To identify STAT4-induced genes we pursued three approaches: analysis by DNA microarray and quantitative RT-PCR (Q-PCR) of the IL12 responses in IL12R-transduced EC; analysis by Q-PCR of IFNalpha responses in STAT4-overexpressing EC; and analysis of IFNalpha responses in U3A neuroblastoma cell lines that express either STAT1 or STAT4, but not both. In all three instances we observe STAT4-mediated induction of the chemokine monocyte chemoattractant protein 1 (MCP1) and suppressor of cytokine signaling 3 (SOCS3) mRNA, and we confirm the production of each protein in both IL12R-transduced EC and STAT4-transduced U3A cells. These observations reveal that there is a STAT4 response of EC, activated by IFNalpha but not IL12, and that it may modulate the pro-inflammatory behavior of EC.
Collapse
Affiliation(s)
- Nicholas Torpey
- Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
49
|
Takeuchi D, Yoshidome H, Kato A, Ito H, Kimura F, Shimizu H, Ohtsuka M, Morita Y, Miyazaki M. Interleukin 18 causes hepatic ischemia/reperfusion injury by suppressing anti-inflammatory cytokine expression in mice. Hepatology 2004; 39:699-710. [PMID: 14999688 DOI: 10.1002/hep.20117] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatic ischemia/reperfusion injury is a clinically important problem. While the mechanisms of the initial event and subsequent neutrophil-dependent injury are somewhat understood, little is known about the regulation of endogenous hepatoprotective effects on this injury. Interleukin 12 (IL-12) plays a role in the induction of this injury, but involvement of interleukin 18 (IL-18) has not been clarified. Using a murine model of partial hepatic ischemia and subsequent reperfusion, the aim of the current study was to determine whether IL-18 is up-regulated during hepatic ischemia/reperfusion and to determine the role of endogenous IL-18 in the development and regulation of inflammatory hepatic ischemia/reperfusion injury. Hepatic IL-18 expression was up-regulated from 1 to 8 hours after reperfusion. Hepatic ischemia/reperfusion induced nuclear factor-kappaB (NF-kappaB) and activator protein 1 (AP-1) activation, as defined by electrophoretic mobility shift assay, and caused significant increases in liver neutrophil recruitment, apoptosis, hepatocellular injury, and liver edema as defined by liver myeloperoxidase content, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end-labeling (TUNEL) staining, serum aminotransferase levels, and liver wet-to-dry weight ratios. In mice treated with neutralizing antibody to IL-18, ischemia/reperfusion-induced increases in CXC chemokine expression, activation of NF-kappaB and AP-1, and apoptosis were greatly reduced. Furthermore, under blockade of IL-18, anti-inflammatory cytokines such as IL-4 and IL-10 were greatly up-regulated. Signal transducer and activator of transcription 6 (STAT6) was significantly activated under blockade of IL-18. These conditions also caused significant reduction in liver neutrophil sequestration and liver injury. In conclusion, the data suggest that IL-18 is required for facilitating neutrophil-dependent hepatic ischemia/reperfusion injury through suppressing anti-inflammatory cytokine expression.
Collapse
Affiliation(s)
- Dan Takeuchi
- Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba 260-0856, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamamoto T, Imoto S, Sekine Y, Sugiyama K, Akimoto T, Muraguchi A, Matsuda T. Involvement of NF-kappaB in TGF-beta-mediated suppression of IL-4 signaling. Biochem Biophys Res Commun 2004; 313:627-34. [PMID: 14697238 DOI: 10.1016/j.bbrc.2003.11.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Control of immune response requires the coordinated integration of both stimulatory and inhibitory factors. Therefore, the cross-talk of different signaling pathways is critical in providing an integrated cellular response to multiple external signals. Both interleukin-4 (IL-4) and transforming growth factor (TGF-beta) are pleiotropic cytokines and play critical roles in controlling immune responses. For example, IL-4 mediates important pro-inflammatory functions in asthma including induction of the IgE isotype switch and expression of vascular cell adhesion molecules. Whereas, TGF-beta is secreted from B, T, and dendritic cells as well as macrophages, and negatively regulates their proliferation, differentiation, and activation by other cytokines. In this study, we examined the effect of TGF-beta on IL-4 signaling using B cells as well as embryonic kidney cells. TGF-beta inhibited IL-4-induced IgG1 production and gene expression of germline epsilon transcripts in B cells. In embryonic kidney cells, TGF-beta signals suppressed IL-4-induced transcription, when we monitored using germline epsilon promoter DNA. Furthermore, activation of NF-kappaB resulted in a resistance to TGF-beta-mediated suppression of IL-4 signaling. These results indicate that TGF-beta-mediated regulation of IL-4 signaling may act by targeting NF-kappaB signaling.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|