1
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
2
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Zamboni M, Strimpakos G, Poggiogalle E, Donini LM, Civitareale D. Adipocyte signaling affects thyroid-specific gene expression via down-regulation of TTF-2/FOXE1. J Mol Endocrinol 2023; 70:e220129. [PMID: 36347053 DOI: 10.1530/jme-22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Obesity affects thyroid gland function. Hypothyroidism, thyroid nodules, goiter, and thyroid cancer are more frequent in patients with higher BMI values. Although these data are supported by many clinical and epidemiological studies, our knowledge is very scarce at the molecular level. In this study, we present the first experimental evidence that adipocyte signaling downregulates the expression of thyroid-specific transcription factor 2 (TTF-2/FoxE1). It plays a crucial role in thyroid development and thyroid homeostasis and it is strictly connected to thyroid cancer as well. We provide in vivo and in vitro evidence that inhibition of TTF-2/FoxE1 gene expression is mediated by adipocyte signaling.
Collapse
Affiliation(s)
- Michela Zamboni
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| | - Eleonora Poggiogalle
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Donato Civitareale
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| |
Collapse
|
4
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Abstract
The insulin-like growth factor (IGF) pathway comprises two activating ligands (IGF-I and IGF-II), two cell-surface receptors (IGF-IR and IGF-IIR), six IGF binding proteins (IGFBP) and nine IGFBP related proteins. IGF-I and the IGF-IR share substantial structural and functional similarities to those of insulin and its receptor. IGF-I plays important regulatory roles in the development, growth, and function of many human tissues. Its pathway intersects with those mediating the actions of many cytokines, growth factors and hormones. Among these, IGFs impact the thyroid and the hormones that it generates. Further, thyroid hormones and thyrotropin (TSH) can influence the biological effects of growth hormone and IGF-I on target tissues. The consequences of this two-way interplay can be far-reaching on many metabolic and immunologic processes. Specifically, IGF-I supports normal function, volume and hormone synthesis of the thyroid gland. Some of these effects are mediated through enhancement of sensitivity to the actions of TSH while others may be independent of pituitary function. IGF-I also participates in pathological conditions of the thyroid, including benign enlargement and tumorigenesis, such as those occurring in acromegaly. With regard to Graves' disease (GD) and the periocular process frequently associated with it, namely thyroid-associated ophthalmopathy (TAO), IGF-IR has been found overexpressed in orbital connective tissues, T and B cells in GD and TAO. Autoantibodies of the IgG class are generated in patients with GD that bind to IGF-IR and initiate the signaling from the TSHR/IGF-IR physical and functional protein complex. Further, inhibition of IGF-IR with monoclonal antibody inhibitors can attenuate signaling from either TSHR or IGF-IR. Based on those findings, the development of teprotumumab, a β-arrestin biased agonist as a therapeutic has resulted in the first medication approved by the US FDA for the treatment of TAO. Teprotumumab is now in wide clinical use in North America.
Collapse
|
6
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
7
|
Jang D, Marcus-Samuels B, Morgan SJ, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. Thyrotropin regulation of differentiated gene transcription in adult human thyrocytes in primary culture. Mol Cell Endocrinol 2020; 518:111032. [PMID: 32941925 PMCID: PMC7606794 DOI: 10.1016/j.mce.2020.111032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023]
Abstract
Thyroid transcription factors (TTFs) - NKX2-1, FOXE1, PAX8 and HHEX - regulate multiple genes involved in thyroid development in mice but little is known about TTF regulation of thyroid-specific genes - thyroglobulin (TG), thyroid peroxidase (TPO), deiodinase type 2 (DIO2), sodium/iodide symporter (NIS) and TSH receptor (TSHR) - in adult, human thyrocytes. Thyrotropin (thyroid-stimulating hormone, TSH) regulation of thyroid-specific gene expression in primary cultures of human thyrocytes is biphasic yielding an inverted U-shaped dose-response curve (IUDRC) with upregulation at low doses and decreases at high doses. Herein we show that NKX2-1, FOXE1 and PAX8 are required for TSH-induced upregulation of the mRNA levels of TG, TPO, DIO2, NIS, and TSHR whereas HHEX has little effect on the levels of these thyroid-specific gene mRNAs. We show that TSH-induced upregulation is mediated by changes in their transcription and not by changes in the degradation of their mRNAs. In contrast to the IUDRC of thyroid-specific genes, TSH effects on the levels of the mRNAs for NKX2-1, FOXE1 and PAX8 exhibit monophasic decreases at high doses of TSH whereas TSH regulation of HHEX mRNA levels exhibits an IUDRC that overlaps the IUDRC of thyroid-specific genes. In contrast to findings during mouse development, TTFs do not have major effects on the levels of other TTF mRNAs in adult, human thyrocytes. Thus, we found similarities and important differences in the regulation of thyroid-specific genes in mouse development and TSH regulation of these genes in adult, human thyrocytes.
Collapse
Affiliation(s)
- Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Wang Y, Chen J, Wang X, Wang K. miR-140-3p inhibits bladder cancer cell proliferation and invasion by targeting FOXQ1. Aging (Albany NY) 2020; 12:20366-20379. [PMID: 33098639 PMCID: PMC7655201 DOI: 10.18632/aging.103828] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Upregulation of the forkhead box protein Q1 (FOXQ1) promotes bladder cancer (BCa) cell growth and metastasis. Factors affecting FOXQ1 expression at the post-transcriptional level have not yet been identified. We performed cell proliferation, cell invasion, and tumorigenesis experiments to characterize the relationship between FOXQ1 and miR-140-3p. We found that FOXQ1 was significantly upregulated and miR-140-3p was significantly downregulated in BCa tissues. We also identified an inverse correlation between miR-140-3p and FOXQ1 expression in BCa tissues. Overexpression of miR-140-3p reduced FOXQ1 expression, suppressing BCa cell proliferation and invasion. A luciferase assay confirmed that miR-140-3p bound to the 3’-UTR of FOXQ1 mRNA and decreased its expression. In addition, we used a mouse xenograft model to demonstrate that miR-140-3p suppressed tumor cell growth in vivo. Our findings suggest that miR-140-3p suppresses BCa cell proliferation and invasion by directly decreasing FOXQ1 expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
9
|
Gogoi P, Kalita JC. Effects of butylparaben exposure on thyroid peroxidase (TPO) and type 1 iodothyronine deiodinase (D1) in female Wistar rats. Toxicology 2020; 443:152562. [DOI: 10.1016/j.tox.2020.152562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
10
|
Morillo-Bernal J, Fernández LP, Santisteban P. FOXE1 regulates migration and invasion in thyroid cancer cells and targets ZEB1. Endocr Relat Cancer 2020; 27:137-151. [PMID: 31846430 PMCID: PMC6993207 DOI: 10.1530/erc-19-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lara P Fernández
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM-CSIC, Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Correspondence should be addressed to P Santisteban:
| |
Collapse
|
11
|
Rehman S, Dhatariya KK. METASTATIC HÜRTHLE CELL CARCINOMA PRESENTING WITH LOW FREE THYROXINE, SEVERE HYPERCALCEMIA AND SPURIOUS GROWTH HORMONE PRODUCTION. AACE Clin Case Rep 2020; 5:e204-e209. [PMID: 31967035 DOI: 10.4158/accr-2018-0440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
Objective Hürthle cell tumors constitute about 5% of thyroid neoplasms. They have malignant potential, behaving very aggressively compared to other differentiated thyroid cancers. The objective of this case report is to describe a case of a Hürthle cell carcinoma with a single large metastasis in the liver presenting almost 17 years after hemithyroidectomy. We highlight the difficulties in making a histologic diagnosis and the unpredictable nature of this cancer. Methods The patient history and biochemistry were detailed. Thyroid function tests analyzed on multiple platforms (single-photon emission computed tomography, dynamic magnetic resonance imaging, technetium-99m bone scan, and radioactive iodine) were used to aid biochemical and radiologic diagnosis. Results The patient's thyroid function test showed persistently low free thyroxine concentrations with normal thyroid stimulating hormone and free triiodothyronine, suggesting rapid deiodination in the context of a large liver lesion. Radiologic and morphologic appearances of the liver lesion led to an initial misdiagnosis of primary hepato-cellular carcinoma, revised to metastatic Hürthle cell carcinoma after positive immunochemistry. Nonparathyroid hormone-related intractable hypercalcemia of malignancy with an unusual pattern of elevated 1,25-dihydroxyvitamin D and raised fibroblast growth factor 23 concentrations culminated in his demise. Conclusions In Hürthle cell carcinomas treated with partial thyroidectomy, subsequent abnormal thyroid functions tests may herald a more sinister underlying diagnosis. The management of Hürthle cell carcinoma relies heavily on the initial histology results. Histologic diagnosis should be sought earlier in abnormal and suspicious distant masses. Malignant hypercalcemia poses a great challenge in delayed presentations and can prove resistant to conventional treatments.
Collapse
|
12
|
López-Márquez A, Fernández-Méndez C, Recacha P, Santisteban P. Regulation of Foxe1 by Thyrotropin and Transforming Growth Factor Beta Depends on the Interplay Between Thyroid-Specific, CREB and SMAD Transcription Factors. Thyroid 2019; 29:714-725. [PMID: 30652527 DOI: 10.1089/thy.2018.0136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Thyroid follicular cells are characterized by the expression of a specific set of genes necessary for the synthesis and secretion of thyroid hormones, which are in turn regulated by the transcription factors Nkx2-1, Pax8, and Foxe1. Thyroid differentiation is finely tuned by the balance between positive regulatory signals, including thyrotropin (TSH), and by negative regulatory signals, such as transforming growth factor beta (TGF-β), which counteracts the action of TSH. A role for Foxe1 as a mediator of hormonal and growth-factor control of thyroid differentiation has been previously suggested. Therefore, the aim of this work was to study the mechanisms governing Foxe1 expression to define the ligands and signals that regulate one of the important factors in thyroid differentiation. Methods: Expression of Foxe1 was evaluated in rat PCCl3 thyroid follicular cells under different treatments. The mouse Foxe1 promoter was cloned, and site-directed mutagenesis was undertaken to study its transcriptional regulation and to identify response elements. Protein/DNA binding assays were performed to evaluate the binding of different transcription factors, and gene-silencing approaches were used to elucidate their functional roles. Results:In silico analysis of the Foxe1 promoter identified binding sites for Nkx2-1, Pax8, Foxe1, and Smad proteins, as well as cAMP-response element (CRE) sites. It was found that both CRE-binding protein and CRE modulator were necessary for the TSH-mediated induction of Foxe1 expression via the cAMP/PKA signaling pathway. Moreover, transcription of Foxe1 was regulated by Nkx2-1 and Pax8 and by itself, suggesting an autoregulatory mechanism of activation and an important role for thyroid transcription factors. Finally, TGF-β, through Smad proteins, inhibited the TSH-induced Foxe1 expression. Conclusions: This study shows that Foxe1 is the final target of TSH/cAMP and TGF-β regulation that mediates expression of thyroid differentiation genes, and provides evidence of an interplay between CRE-binding proteins, thyroid transcription factors, and Smad proteins in its regulation. Thus, Foxe1 plays an important role in the complex transcriptional network that regulates thyroid follicular cell differentiation.
Collapse
Affiliation(s)
- Arístides López-Márquez
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia Fernández-Méndez
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pablo Recacha
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- 2 CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Ock S, Ahn J, Lee SH, Kim HM, Kang H, Kim YK, Kook H, Park WJ, Kim S, Kimura S, Jung CK, Shong M, Holzenberger M, Abel ED, Lee TJ, Cho BY, Kim HS, Kim J. Thyrocyte-specific deletion of insulin and IGF-1 receptors induces papillary thyroid carcinoma-like lesions through EGFR pathway activation. Int J Cancer 2018; 143:2458-2469. [PMID: 30070361 DOI: 10.1002/ijc.31779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023]
Abstract
Insulin and insulin-like growth factor (IGF)-1 signaling in the thyroid are thought to be permissive for the coordinated regulation by thyroid-stimulating hormone (TSH) of thyrocyte proliferation and hormone production. However, the integrated role of insulin receptor (IR) and IGF-1 receptor (IGF-1R) in thyroid development and function has not been explored. Here, we generated thyrocyte-specific IR and IGF-1R double knockout (DTIRKO) mice to precisely evaluate the coordinated functions of these receptors in the thyroid of neonates and adults. Neonatal DTIRKO mice displayed smaller thyroids, paralleling defective folliculogenesis associated with repression of the thyroid-specific transcription factor Foxe1. By contrast, at postnatal day 14, absence of IR and IGF-1R paradoxically induced thyrocyte proliferation, which was mediated by mTOR-dependent signaling pathways. Furthermore, we found elevated production of TSH during the development of follicular hyperplasia at 8 weeks of age. By 50 weeks, all DTIRKO mice developed papillary thyroid carcinoma (PTC)-like lesions that correlated with induction of the ErbB pathway. Taken together, these data define a critical role for IR and IGF-1R in neonatal thyroid folliculogenesis. They also reveal an important reciprocal relationship between IR/IGF-1R and TSH/ErbB signaling in the pathogenesis of thyroid follicular hyperplasia and, possibly, of papillary carcinoma.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jihyun Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seok Hong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| | - Woo Jin Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Korea
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University, Daejeon, Korea
| | - Martin Holzenberger
- INSERM and Sorbonne University, Saint-Antoine Research Center, Paris, France
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tae Jin Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bo Youn Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
14
|
Malaguarnera R, Vella V, Nicolosi ML, Belfiore A. Insulin Resistance: Any Role in the Changing Epidemiology of Thyroid Cancer? Front Endocrinol (Lausanne) 2017; 8:314. [PMID: 29184536 PMCID: PMC5694441 DOI: 10.3389/fendo.2017.00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, the incidence of thyroid cancer (TC), namely of its papillary hystotype (PTC), has shown a steady increase worldwide, which has been attributed at least in part to the increasing diagnosis of early stage tumors. However, some evidence suggests that environmental and lifestyle factors can also play a role. Among the potential risk factors involved in the changing epidemiology of TC, particular attention has been drawn to insulin-resistance and related metabolic disorders, such as obesity, type 2 diabetes, and metabolic syndrome, which have been also rapidly increasing worldwide due to widespread dietary and lifestyle changes. In accordance with this possibility, various epidemiological studies have indeed gathered substantial evidence that insulin resistance-related metabolic disorders might be associated with an increased TC risk either through hyperinsulinemia or by affecting other TC risk factors including iodine deficiency, elevated thyroid stimulating hormone, estrogen-dependent signaling, chronic autoimmune thyroiditis, and others. This review summarizes the current literature evaluating the relationship between metabolic disorders characterized by insulin resistance and the risk for TC as well as the possible underlying mechanisms. The potential implications of such association in TC prevention and therapy are discussed.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, “Kore” University of Enna, Enna, Italy
- *Correspondence: Veronica Vella, ; Antonino Belfiore,
| | - Maria Luisa Nicolosi
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Veronica Vella, ; Antonino Belfiore,
| |
Collapse
|
15
|
Wen G, Eder K, Ringseis R. Sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:994-1003. [PMID: 27321819 DOI: 10.1016/j.bbagrm.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The genes encoding sodium/iodide symporter (NIS) and thyroid peroxidase (TPO), both of which are essential for thyroid hormone (TH) synthesis, were shown to be regulated by sterol regulatory element-binding proteins (SREBP)-1c and -2. In the present study we tested the hypothesis that transcription of a further gene essential for TH synthesis, the thyroglobulin (TG) gene, is under the control of SREBP. To test this hypothesis, we studied the influence of inhibition of SREBP maturation and SREBP knockdown on TG expression in FRTL-5 thyrocytes and explored transcriptional regulation of the TG promoter by reporter gene experiments in FRTL-5 and HepG2 cells, gel shift assays and chromatin immunoprecipitation. Inhibition of SREBP maturation by 25-hydroxycholesterol and siRNA-mediated knockdown of either SREBP-1c or SREBP-2 decreased mRNA and protein levels of TG in FRTL-5 thyrocytes. Reporter gene assays with wild-type and mutated TG promoter reporter truncation constructs revealed that the rat TG promoter is transcriptionally activated by nSREBP-1c and nSREBP-2. DNA-binding assays and chromatin immunoprecipitation assays showed that both nSREBP-1c and nSREBP-2 bind to a SREBP binding motif with characteristics of an E-box SRE at position -63 in the rat TG promoter. In connection with recent findings that NIS and TPO are regulated by SREBP in thyrocytes the present findings support the view that SREBP are regulators of essential steps of TH synthesis in the thyroid gland such as iodide uptake, iodide oxidation and iodination of tyrosyl residues of TG. This moreover suggests that SREBP may be molecular targets for pharmacological modulation of TH synthesis.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, 35392 Gießen, Germany.
| |
Collapse
|
16
|
Montesinos MDM, Nicola JP, Nazar M, Peyret V, Lucero AM, Pellizas CG, Masini-Repiso AM. Nitric oxide-repressed Forkhead factor FoxE1 expression is involved in the inhibition of TSH-induced thyroid peroxidase levels. Mol Cell Endocrinol 2016; 420:105-15. [PMID: 26610751 DOI: 10.1016/j.mce.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023]
Abstract
Thyroid peroxidase (TPO) is essential for thyroid hormone synthesis mediating the covalent incorporation of iodine into tyrosine residues of thyroglobulin process known as organification. Thyroid-stimulating hormone (TSH) via cAMP signaling is the main hormonal regulator of TPO gene expression. In thyroid cells, TSH-stimulated nitric oxide (NO) production inhibits TSH-induced thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Indeed, NO donors downregulate TSH-induced iodide accumulation and organification in thyroid cells. Here, using FRTL-5 thyroid cells as model, we obtained insights into the molecular mechanism underlying the inhibitory effects of NO on iodide organification. We demonstrated that NO donors inhibited TSH-stimulated TPO expression by inducing a cyclic guanosine monophosphate-dependent protein kinase-mediated transcriptional repression of the TPO gene. Moreover, we characterized the FoxE1 binding site Z as mediator of the NO-inhibited TPO expression. Mechanistically, we demonstrated that NO decreases TSH-induced FoxE1 expression, thus repressing the transcripcional activation of TPO gene. Taken together, we provide novel evidence reinforcing the inhibitory role of NO on thyroid cell function, an observation of potential pathophysiological relevance associated with human thyroid pathologies that come along with changes in the NO production.
Collapse
Affiliation(s)
- María del Mar Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Magalí Nazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Peyret
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ariel Maximiliano Lucero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Gabriela Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana María Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
17
|
Mond M, Bullock M, Yao Y, Clifton-Bligh RJ, Gilfillan C, Fuller PJ. Somatic Mutations of FOXE1 in Papillary Thyroid Cancer. Thyroid 2015; 25:904-10. [PMID: 25950909 DOI: 10.1089/thy.2015.0030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Population-based studies have demonstrated an association of single nucleotide polymorphisms close to the thyroid transcription factor forkhead box E1 (FOXE1) gene with thyroid cancer. The dysregulation of forkhead proteins is increasingly recognized to play a role in the development and progression of cancer. The objective of the study was to seek to identify novel mutations in FOXE1 in papillary thyroid cancer (PTC) and to assess the effect of these mutations on protein expression and transcriptional function on FOXE1 responsive promoters. METHODS The study was conducted at two tertiary referral hospitals. The coding region of FOXE1 was sequenced in tissue-derived DNA or RNA from 120 patients with PTC and 110 patients with multinodular goiter (MNG). In vitro studies were performed to examine the protein expression and transcriptional function of FOXE1 mutants. A molecular model of the forkhead domain (FHD) of FOXE1 was generated using the SWISS-MODEL online server with the three-dimensional structure of FOXD3 as a template. RESULTS Three somatic missense mutations were detected in PTC resulting in the amino acid substitutions P54Q, K95Q, and L112F. One additional mutation was detected in a MNG (G140R). In vitro studies demonstrated marked impairment in transcriptional activation by all four FOXE1 mutants, which was not explained by differences in protein expression. Molecular modeling localized three of the mutations to highly conserved regions of the FHD. CONCLUSIONS We have identified novel somatic mutations of FOXE1 in PTC. Mutational inactivation of FOXE1 is an uncommon event in thyroid tumors but may contribute to thyroid carcinogenesis and dedifferentiation in concert with other oncogenic drivers.
Collapse
Affiliation(s)
- Michael Mond
- 1 MIMR-PHI Institute of Medical Research , Clayton, Victoria, Australia
- 2 Eastern Clinical School and Eastern Clinical Research Unit, Monash University , Box Hill Hospital, Box Hill, Victoria, Australia
| | - Martyn Bullock
- 3 Cancer Genetics Unit, Hormones and Cancer Group, Kolling Institute of Medical Research , Royal North Shore Hospital, Sydney, Australia
| | - Yizhou Yao
- 1 MIMR-PHI Institute of Medical Research , Clayton, Victoria, Australia
| | - Roderick J Clifton-Bligh
- 3 Cancer Genetics Unit, Hormones and Cancer Group, Kolling Institute of Medical Research , Royal North Shore Hospital, Sydney, Australia
| | - Christopher Gilfillan
- 2 Eastern Clinical School and Eastern Clinical Research Unit, Monash University , Box Hill Hospital, Box Hill, Victoria, Australia
| | - Peter J Fuller
- 1 MIMR-PHI Institute of Medical Research , Clayton, Victoria, Australia
| |
Collapse
|
18
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
19
|
Abstract
Context
Accurate classification of follicular-patterned thyroid lesions is not always an easy task on routine surgical hematoxylin-eosin–stained or cytologic fine-needle aspiration specimens. The diagnostic challenges are partially due to differential diagnostic criteria that are often subtle and subjective. In the past decades, tremendous advances have been made in molecular gene profiling of tumors and diagnostic immunohistochemistry, aiding in diagnostic accuracy and proper patient management.
Objective
To evaluate the diagnostic utility of the most commonly studied immunomarkers in the field of thyroid pathology by review of the literature, using the database of indexed articles in PubMed (US National Library of Medicine) from 1976–2013.
Data Sources
Literature review, authors' research data, and personal practice experience.
Conclusions
The appropriate use of immunohistochemistry by applying a panel of immunomarkers and using a standardized technical and interpretational method may complement the morphologic assessment and aid in the accurate classification of difficult thyroid lesions.
Collapse
Affiliation(s)
- Haiyan Liu
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
20
|
He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri RV, Nagy R, de la Chapelle A. Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J Clin Endocrinol Metab 2015; 100:E164-72. [PMID: 25303483 PMCID: PMC4283026 DOI: 10.1210/jc.2014-2147] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT By genome-wide association studies, the risk allele [A] of SNP rs965513 predisposes strongly to papillary thyroid carcinoma (PTC). It is located in a gene-poor region of 9q22, some 60 kb from the FOXE1 gene. The underlying mechanisms remain to be discovered. OBJECTIVE Our objective was to identify novel transcripts in the 9q22 locus and correlate gene expression levels with the genotypes of rs965513. DESIGN We performed 3' and 5' rapid amplification of cDNA ends and RT-PCR to detect novel transcripts. One novel transcript was forcibly expressed in a cell line followed by gene expression array analysis. We genotyped rs965513 from PTC patients and measured gene expression levels by real-time RT-PCR in unaffected thyroid tissue and matched tumor. SETTING This was a laboratory-based study using cells from clinical tissue samples and a cancer cell line. MAIN OUTCOME MEASURES We detected previously uncharacterized transcripts and evaluated the gene expression levels and the correlation with the risk allele of rs965513, age, gender, chronic lymphocyte thyroiditis (CLT), and TSH levels. RESULTS We found a novel long intergenic noncoding RNA gene and named it papillary thyroid cancer susceptibility candidate 2 (PTCSC2). Transcripts of PTCSC2 are down-regulated in PTC tumors. The risk allele [A] of rs965513 was significantly associated with low expression of unspliced PTCSC2, FOXE1, and TSHR in unaffected thyroid tissue. We also observed a significant association of age and CLT with PTCSC2 unspliced transcript levels. The correlation between the rs965513 genotype and the PTCSC2 unspliced transcript levels remained significant after adjusting for age, gender, and CLT. Forced expression of PTCSC2 in the BCPAP cell line affected the expression of a subset of noncoding and coding transcripts with enrichment of genes functionally involved in cell cycle and cancer. CONCLUSIONS Our data suggest a role for PTCSC2, FOXE1, and TSHR in the predisposition to PTC.
Collapse
Affiliation(s)
- Huiling He
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology, and Medical Genetics (H.H., W.L., S.L., J.J., M.S., R.N., A.d.l.C), and Department of Internal Medicine (R.N.), Ohio State University Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio 43210; and Division of Health and Biomedical Informatics, Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center (R.V.D.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. SUMMARY Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. CONCLUSIONS Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes.
Collapse
Affiliation(s)
- Donald F. Sellitti
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Bychkov A, Saenko V, Nakashima M, Mitsutake N, Rogounovitch T, Nikitski A, Orim F, Yamashita S. Patterns of FOXE1 expression in papillary thyroid carcinoma by immunohistochemistry. Thyroid 2013; 23:817-28. [PMID: 23327367 PMCID: PMC3704107 DOI: 10.1089/thy.2012.0466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND FOXE1, a thyroid-specific transcription factor also known as TTF-2, was recently identified as a major genetic risk factor for papillary thyroid carcinoma (PTC). Its role in thyroid carcinogenesis, however, remains unknown. The purpose of the present study was to assess the relationship between the FOXE1 immunohistochemical features and the clinical and genetic characteristics of PTC. METHODS Immunohistochemical staining of FOXE1 was performed in 48 PTC cases. Two single nucleotide polymorphisms immediately inside (rs1867277) or in the vicinity (rs965513) of the FOXE1 gene were genotyped by direct sequencing. Histopathological, clinical, and genetic data were included in statistical analyses. RESULTS FOXE1 exhibited cytoplasmic overexpression in tumor tissue compared to the normal counterpart (p<0.001). Both cancer and normal thyroid cells demonstrated the highest FOXE1 scores in the areas closest to the tumor border (<300 μm) compared with more distant areas (p<0.001). No differences in FOXE1 staining distributions were found between microcarcinomas and PTC of larger size, between different histopathological variants of PTC, and encapsulated and nonencapsulated tumors. Multivariate regression analysis revealed that nuclear FOXE1 expression in neoplastic cells in the vicinity of the tumor border independently associated with the genotype at rs1867277 (the dominant model of inheritance, p=0.037) and tumor multifocality (p=0.032), and with marginal significance with capsular invasion (p=0.051). CONCLUSIONS FOXE1 overexpression and translocation to the cytoplasm are phenotypic hallmarks of tumor cells suggesting that FOXE1 is involved in the pathogenesis of PTC. Nuclear FOXE1 expression in tumor cells in the vicinity of the PTC border is associated with the presence of a risk allele of rs1867277 (c.-238G>A) in the 5' untranslated region of the FOXE1 gene, as well as with pathological characteristics of PTC, suggesting possible FOXE1 involvement in the facilitation of tumor development beginning at an early stage.
Collapse
Affiliation(s)
- Andrey Bychkov
- Department of Radiation Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Vladimir Saenko
- Department of Health Risk Control, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Nagasaki University Research Center for Genomic Instability and Carcinogenesis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatiana Rogounovitch
- Department of Radiation Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Alyaksandr Nikitski
- Department of Radiation Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Florence Orim
- Department of Radiation Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Health Risk Control, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
23
|
Fernández LP, López-Márquez A, Martínez ÁM, Gómez-López G, Santisteban P. New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS One 2013; 8:e62849. [PMID: 23675434 PMCID: PMC3652843 DOI: 10.1371/journal.pone.0062849] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND FoxE1 is a thyroid-specific forkhead transcription factor essential for thyroid gland development, as well as for the maintenance of the thyroid differentiated state in adults. FoxE1 recognizes and binds to a short DNA sequence present in thyroglobulin (Tg) and thyroperoxidase (Tpo) promoters, but FoxE1 binding to regulatory regions other than Tg and Tpo promoters remains almost unexplored. Improving knowledge of the regulatory functions of FoxE1 is necessary to clarify its role in endocrine syndromes and cancer susceptibility. METHODOLOGY/PRINCIPAL FINDING In order to further investigate downstream FoxE1 targets, we performed a genome-wide expression screening after knocking-down FoxE1 and obtained new insights into FoxE1 transcriptional networks in thyroid follicular cells. After validation, we confirmed Adamts9, Cdh1, Duox2 and S100a4 as upregulated genes and Casp4, Creld2, Dusp5, Etv5, Hsp5a, Nr4a2 and Tm4sf1 as downregulated genes when FoxE1 was silenced. In promoter regions of putative FoxE1-regulated genes and also in the promoters of the classical thyroid genes Nis, Pax8 and Titf1, we performed an in silico search of the FoxE1 binding motif that was in close proximity to the NF1/CTF binding sequence, as previously described for other forkhead factors. Using chromatin immunoprecipitation we detected specific in vivo FoxE1 binding to novel regulatory regions in two relevant thyroid genes, Nis and Duox2. Moreover, we demonstrated simultaneous binding of FoxE1 and NF1/CTF to the Nis upstream enhancer region, as well as a clear functional activation of the Nis promoter by both transcription factors. CONCLUSIONS/SIGNIFICANCE In search for potential downstream mediators of FoxE1 function in thyroid cells, we identified two novel direct FoxE1 target genes. To our knowledge, this is the first evidence regarding the implication of Nis and Duox2 in executing the transcriptional program triggered by FoxE1. Furthermore, this study points out the important role of FoxE1 in the regulation of a large number of genes in thyroid cells.
Collapse
Affiliation(s)
- Lara P. Fernández
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Ángel M. Martínez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
The insulin and igf-I pathway in endocrine glands carcinogenesis. JOURNAL OF ONCOLOGY 2012; 2012:635614. [PMID: 22927847 PMCID: PMC3423951 DOI: 10.1155/2012/635614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/20/2012] [Indexed: 12/26/2022]
Abstract
Endocrine cancers are a heterogeneous group of diseases that may arise from endocrine cells in any gland of the endocrine system. These malignancies may show an aggressive behavior and resistance to the common anticancer therapies. The etiopathogenesis of these tumors remains mostly unknown. The normal embryological development and differentiation of several endocrine glands are regulated by specific pituitary tropins, which, in adult life, control the function and trophism of the endocrine gland. Pituitary tropins act in concert with peptide growth factors, including the insulin-like growth factors (IGFs), which are considered key regulators of cell growth, proliferation, and apoptosis. While pituitary TSH is regarded as tumor-promoting factor for metastatic thyroid cancer, the role of other pituitary hormones in endocrine cancers is uncertain. However, multiple molecular abnormalities of the IGF system frequently occur in endocrine cancers and may have a role in tumorigenesis as well as in tumor progression and resistance to therapies. Herein, we will review studies indicating a role of IGF system dysregulation in endocrine cancers and will discuss the possible implications of these findings for tumor prevention and treatment, with a major focus on cancers from the thyroid, adrenal, and ovary, which are the most extensively studied.
Collapse
|
25
|
Venza I, Visalli M, Parrillo L, De Felice M, Teti D, Venza M. MSX1 and TGF-beta3 are novel target genes functionally regulated by FOXE1. Hum Mol Genet 2010; 20:1016-25. [PMID: 21177256 DOI: 10.1093/hmg/ddq547] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
FOXE1 mutations cause the Bamforth-Lazarus syndrome characterized by thyroid and craniofacial defects. Although a pioneer activity of FOXE1 in thyroid development has been reported, FOXE1 regulation in other contexts remains unexplored. We pointed to: (i) a role of FOXE1 in controlling the expression of MSX1 and TGF-β3 relevant in craniofacial development and (ii) a causative part of FOXE1 mutations or mice Foxe1(-/-) genotype in the pathogenesis of cleft palate in the Bamforth-Lazarus syndrome. The MSX1 and TGF-β3 up-regulation in response to FOXE1 at both transcriptional and translational levels and the recruitment of FOXE1 to specific binding motifs, together with the transactivation of the promoters of these genes, indicate that MSX1 and TGF-β3 are direct FOXE1 targets. Moreover, we showed that all the known forkhead-domain mutations, but not the polyalanine-stretch polymorphisms, affect the FOXE1 ability to bind to and transactivate MSX1 and TGF-β3 promoters. In 14-day Foxe1(-/-) mice embryos, Tgf-β3 and Msx1 mRNAs were almost absent in palatal shelves compared with Foxe1(+/-) embryos. Our findings give new insights into the genetic mechanisms underlying the Bamforth-Lazarus syndrome-associated facial defects.
Collapse
Affiliation(s)
- Isabella Venza
- Department of Surgical Specialities, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Thomasz L, Oglio R, Dagrosa MA, Krawiec L, Pisarev MA, Juvenal GJ. 6 Iodo-delta-lactone reproduces many but not all the effects of iodide. Mol Cell Endocrinol 2010; 323:161-6. [PMID: 20302908 DOI: 10.1016/j.mce.2010.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Iodide has direct effects on thyroid function. Several iodinated lipids are biosynthesized by the thyroid and they were postulated as intermediaries in the action of iodide. Among them 6 iodo-delta-lactone (IL-delta) has been identified and proposed to play a role in thyroid autoregulation. The aim of this study was to compare the effect of iodide and IL-delta on several thyroid parameters. METHODS Thyroid bovine follicles were incubated with the different compounds during three days. RESULTS KI and IL-delta inhibited iodide uptake, total protein and Tg synthesis but only KI had an effect on NIS and Tg mRNAs levels. Both compounds inhibited Na+/K+ ATPase and deoxy-glucose uptake. As PAX 8, FOXE 1 and TITF1 are involved in the regulation of thyroid specific genes their mRNA levels were measured. While iodide inhibited the expression of the first two, the expression of TITF1 was stimulated by iodide and IL-delta had no effect on these parameters. CONCLUSION These findings indicate that IL-delta reproduces some but not all the effects of excess iodide. These observations apply for higher micromolar concentrations of iodide while no such effects could be demonstrated at nanomolar iodide concentrations.
Collapse
Affiliation(s)
- Lisa Thomasz
- Nuclear Biochemistry Division, CNEA, Av. Del Libertador 8250, Argentine National Atomic Energy Commission, Buenos Aires 1429, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F, Leskelä S, Pita G, Milne R, Maravall J, Ramos I, Andía V, Rodríguez-Poyo P, Jara-Albarrán A, Meoro A, del Peso C, Arribas L, Iglesias P, Caballero J, Serrano J, Picó A, Pomares F, Giménez G, López-Mondéjar P, Castello R, Merante-Boschin I, Pelizzo MR, Mauricio D, Opocher G, Rodríguez-Antona C, González-Neira A, Matías-Guiu X, Santisteban P, Robledo M. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 2009; 5:e1000637. [PMID: 19730683 PMCID: PMC2727793 DOI: 10.1371/journal.pgen.1000637] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/07/2009] [Indexed: 01/18/2023] Open
Abstract
In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. Although follicular cell-derived thyroid cancer has an important genetic component, efforts in identifying major susceptibility genes have not been successful. Probably this is due to the complex nature of this disease that involves both genetic and environmental factors, as well as the interaction between them, which could be ultimately modulating the individual susceptibility. In this study, focused on genes carefully selected by their biological relation with the disease, and using more than 1,000 cases and 1,000 representative controls from two independent Caucasian populations, we demonstrate that FOXE1 is associated with Papillary Thyroid Cancer susceptibility. Functional assays prove that rs1867277 behaves as a genetic causal variant that regulates FOXE1 expression through a complex transcription factor network. This approach constitutes a successful approximation to define thyroid cancer risk genes related to individual susceptibility, and identifies FOXE1 as a key factor for its development.
Collapse
Affiliation(s)
- Iñigo Landa
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Ruiz-Llorente
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Francesca Schiavi
- Familial Cancer Clinic, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Susanna Leskelä
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Pita
- Genotyping Unit-CEGEN, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Roger Milne
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Maravall
- Hospital Universitario Arnau de Vilanova-IRB Lleida, Lleida, Spain
| | | | - Víctor Andía
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Amparo Meoro
- Hospital Universitario Reina Sofía, Murcia, Spain
| | | | | | | | | | | | - Antonio Picó
- Hospital General Universitario de Alicante, Alicante, Spain
| | | | | | | | | | - Isabella Merante-Boschin
- Surgical Pathology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Maria-Rosa Pelizzo
- Surgical Pathology, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Didac Mauricio
- Hospital Universitario Arnau de Vilanova-IRB Lleida, Lleida, Spain
| | - Giuseppe Opocher
- Familial Cancer Clinic, Veneto Institute of Oncology IRCCS, Padova, Italy
- Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Anna González-Neira
- Genotyping Unit-CEGEN, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- * E-mail: (PS); (MR)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- ISCIII Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
- * E-mail: (PS); (MR)
| |
Collapse
|
29
|
Baratta MG, Porreca I, Di Lauro R. Oncogenic ras blocks the cAMP pathway and dedifferentiates thyroid cells via an impairment of pax8 transcriptional activity. Mol Endocrinol 2009; 23:838-48. [PMID: 19282367 DOI: 10.1210/me.2008-0353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A deranged differentiation is often a landmark of transformed cells. We used a thyroid cell line expressing an inducible Ras oncoprotein in order to study the hierarchy of molecular events leading to suppression of thyroid-specific gene expression. We find that, upon Ras activation, there is an immediate global down-regulation of thyroid differentiation, which is associated with an inhibition of the cAMP signaling pathway. We demonstrate that an unusual negative cross talk between Ras oncogene and the cAMP pathway induces inactivation of the transcription factor Pax8 that we propose as a crucial event in Ras-induced dedifferentiation.
Collapse
|
30
|
Zaballos MA, Garcia B, Santisteban P. Gbetagamma dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells. Mol Endocrinol 2008; 22:1183-99. [PMID: 18202153 DOI: 10.1210/me.2007-0093] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signaling by TSH through its receptor leads to the dissociation of trimeric G proteins into Galpha and Gbetagamma. Galphas activates adenylyl cyclase, which increases cAMP levels that induce several effects in the thyroid cell, including transcription of the sodium-iodide symporter (NIS) gene through a mechanism involving Pax8 binding to the NIS promoter. Much less is known about the function of Gbetagamma in thyroid differentiation, and therefore we studied their role in TSH signaling. Gbetagamma overexpression inhibits NIS promoter activation and reduces NIS protein accumulation in response to TSH and forskolin. Conversely, inhibition of Gbetagamma-dependent pathways increases NIS promoter activity elicited by TSH but does not modify forskolin-induced activation. Gbetagamma dimers are being released from the Gs subfamily of proteins, because cholera toxin mimics the effects elicited by TSH, whereas pertussis toxin has no effect on NIS promoter activity. We also found that TSH stimulates Akt phosphorylation in a phosphoinositide 3-kinase (PI3K)-dependent and cAMP-independent manner. This is mediated by Gbetagamma, because its overexpression or specific sequestration, respectively, increased or reduced phosphorylated Akt levels upon TSH stimulation. Gbetagamma sequestration increases NIS protein levels induced by TSH and Pax8 binding to the NIS promoter, which is also increased by PI3K inhibition. This is, at least in part, caused by Gbetagamma-mediated Pax8 exclusion from the nucleus that is attenuated when PI3K activity is blocked. These data unequivocally demonstrate that Gbetagamma released by TSH action stimulate PI3K, inhibiting NIS gene expression in a cAMP-independent manner due to a decrease in Pax8 binding to the NIS promoter.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | |
Collapse
|
31
|
Cuesta I, Zaret KS, Santisteban P. The forkhead factor FoxE1 binds to the thyroperoxidase promoter during thyroid cell differentiation and modifies compacted chromatin structure. Mol Cell Biol 2007; 27:7302-14. [PMID: 17709379 PMCID: PMC2168900 DOI: 10.1128/mcb.00758-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Forkhead box (Fox) transcription factors play diverse roles in differentiation, development, hormone responsiveness, and aging. A pioneer activity of the Forkhead factors in developmental processes has been reported, but how this may apply to other contexts of Forkhead factor regulation remains unexplored. In this study, we address the pioneer activity of the thyroid-specific factor FoxE1 during thyroid differentiation. In response to hormone induction, FoxE1 binds to the compacted chromatin of the inactive thyroperoxidase (TPO) promoter, which coincides with the appearance of strong DNase I hypersensitivity at the FoxE1 binding site. In vitro, FoxE1 can bind to its site even when this is protected by a nucleosome, and it creates a local exposed domain specifically on H1-compacted TPO promoter-containing nucleosome arrays. Furthermore, nuclear factor 1 binds to the TPO promoter simultaneously with FoxE1, and this binding has an additive effect on FoxE1-mediated chromatin structure alteration. On the basis of our findings, we propose that FoxE1 is a pioneer factor whose primary mechanistic role in mediating the hormonal regulation of the TPO gene is to enable other regulatory factors to access the chromatin. The presented model extends the reported pioneer activity of the Forkhead factors to processes involved in hormone-induced differentiation.
Collapse
Affiliation(s)
- Isabel Cuesta
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28029, Spain
| | | | | |
Collapse
|
32
|
Nordén MM, Larsson F, Tedelind S, Carlsson T, Lundh C, Forssell-Aronsson E, Nilsson M. Down-regulation of the Sodium/Iodide Symporter Explains 131I-Induced Thyroid Stunning. Cancer Res 2007; 67:7512-7. [PMID: 17671222 DOI: 10.1158/0008-5472.can-07-0823] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(131)I radiation therapy of differentiated thyroid cancer may be compromised by thyroid stunning (i.e., a paradoxical inhibition of radioiodine uptake caused by radiation from a pretherapeutic diagnostic examination). The stunning mechanism is yet uncharacterized at the molecular level. We therefore investigated whether the expression of the sodium/iodide symporter (NIS) gene is changed by irradiation using (131)I. Confluent porcine thyroid cells on filter were stimulated with thyroid-stimulating hormone (TSH; 1 milliunit/mL) or insulin-like growth factor-I (IGF-I; 10 ng/mL) and simultaneously exposed to (131)I in the culture medium for 48 h, porcine NIS mRNA was quantified by real-time reverse transcription-PCR using 18S as reference, and transepithelial iodide transport was monitored using (125)I(-) as tracer. TSH increased the NIS expression >100-fold after 48 h and 5- to 20-fold after prolonged stimulation. IGF-I enhanced the NIS transcription at most 15-fold but not until 5 to 7 days. (131)I irradiation (7.5 Gy) decreased both TSH-stimulated and IGF-I-stimulated NIS transcription by 60% to 90% at all investigated time points. TSH and IGF-I stimulated NIS synergistically 15- to 60-fold after 5 days. NIS expression was reduced by (131)I also in costimulated cells, but the transcription level remained higher than in nonirradiated cells stimulated with TSH alone. Changes in NIS mRNA always correlated with altered (125)I(-) transport in cultures with corresponding treatments. It is concluded that down-regulation of NIS is the likely explanation of (131)I-induced thyroid stunning. Enhanced NIS expression by synergistically acting agents (TSH and IGF-I) partly prevents the loss of iodide transport expected from a given absorbed dose, suggesting that thyroid stunning might be pharmacologically treatable.
Collapse
Affiliation(s)
- Madeleine M Nordén
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at Göteborg University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Scouten WT, Francis GL. Thyroid cancer and the immune system: a model for effective immune surveillance. Expert Rev Endocrinol Metab 2006; 1:353-366. [PMID: 30764074 DOI: 10.1586/17446651.1.3.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Differentiated thyroid cancers, including papillary and follicular variants, are a useful model with which to examine interactions between cancer and the immune system. Differentiated thyroid cancers are detected in only 20,000 individuals annually in the USA, but thyroid microcarcinomas (< 1 cm in diameter) are far more common. This suggests that the immune system might restrain the growth of these microcarcinomas. On the clinical level, patients with lymphocytes that infiltrate into papillary thyroid cancer have improved survival, supporting the notion that immune system activation might improve this. Together, these observations suggest that the growth and distant spread of thyroid carcinoma are suppressed by mechanisms of immune surveillance, possibly involving lymphocytes, macrophages and their secreted products. In this review, we examine the general hypothesis of immune surveillance and the data pertaining to the roles of lymphocytes, dendritic cells and cytokines in the immune response against thyroid cancers.
Collapse
Affiliation(s)
- William T Scouten
- a Division of Pediatric Endocrinology, Portsmouth Naval Medical Center, 620 John Paul Jones Circle, Portsmouth, VA 23708, USA.
| | - Gary L Francis
- b Division of Pediatric Endocrinology, Virginia Commonwealth University, Medical College of Virginia, PO Box 980140, Richmond, VA 23298, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Pilar Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Arturo Duperier no 4, 28029, Madrid, Spain
| | | |
Collapse
|
35
|
García-Jiménez C, Zaballos MA, Santisteban P. DARPP-32 (dopamine and 3',5'-cyclic adenosine monophosphate-regulated neuronal phosphoprotein) is essential for the maintenance of thyroid differentiation. Mol Endocrinol 2005; 19:3060-72. [PMID: 16020482 DOI: 10.1210/me.2005-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coordination of events leading to differentiation is mediated by the concerted action of multiple signal transduction pathways. In general, the uncoupling of mechanisms linking differentiation to cell cycle exit is a hallmark of cancer, yet the identity and regulation of molecules integrating signal transduction pathways remains largely unknown. One notable exception is DARPP-32 (dopamine and cAMP-regulated neuronal phosphoprotein, molecular mass, 32 kDa), a third messenger that integrates multiple signaling pathways in the brain. Thyroid cells represent an excellent model for understanding the coupling of signal transduction pathways leading to both proliferation and differentiation. The cooperative action of IGF-I and TSH together, but not alone, enable thyroid cells to proliferate while maintaining their differentiated state. How signaling downstream from these molecules is integrated is not known. Here we show that DARPP-32 expression is targeted by TSH and IGF-I in thyrocytes. Significantly, dedifferentiated, tumoral, or Ras-transformed thyrocytes fail to express DARPP-32 whereas short interfering RNA-mediated silencing of DARPP-32 expression in normally differentiated thyroid cells results in loss of differentiation markers such as thyroid transcription factor 1, Pax8, thyroglobulin, and the Na/I symporter. Consistently, DARPP-32 reexpression in ras-transformed cells results in reactivation of the otherwise silent thyroglobulin and thyroperoxidase promoter. Thus, DARPP-32 is critical for the maintenance of thyroid differentiation by TSH and IGF-I, and loss of DARPP-32 expression may be a characteristic of thyroid cancer. Our results also raise the possibility that DARPP-32 may play a similar role in the maintenance of differentiation of a range of other cell types.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, C/Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | |
Collapse
|
36
|
De Felice M, Postiglione MP, Di Lauro R. Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: insights from mouse models and human diseases. Endocrinology 2004; 145:4062-7. [PMID: 15231702 DOI: 10.1210/en.2004-0501] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Novials A, Mato E, Lucas M, Franco C, Rivas M, Santisteban P, Gomis R. Mutation at position -132 in the islet amyloid polypeptide ( IAPP) gene promoter enhances basal transcriptional activity through a new CRE-like binding site. Diabetologia 2004; 47:1167-1174. [PMID: 15243700 DOI: 10.1007/s00125-004-1439-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 04/17/2004] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Mutations in the islet amyloid polypeptide ( IAPP) gene may play a potential role in the abnormal regulation or expression of the peptide. The aim of this study was to determine the functional role of the -132 G/A mutation reported in the promoter region of the IAPP gene in a population of Spanish Type 2 diabetic patients. METHODS We investigated the transcriptional activity using MIN6 cells and luciferase reporter plasmids in several culture conditions. Key regulatory elements of the IAPP promoter region were also analysed by electrophoretic mobility shift assays (EMSA). RESULTS The mutant construct doubled IAPP transcriptional activity ( p<0.001). Both constructs showed severely reduced promoter activity (four-fold decrease) in the presence of verapamil and diazoxide. In contrast, IAPP promoter activity was doubled after incubation with forskolin or dexamethasone, regardless of the glucose concentrations in the culture media. EMSA revealed that the -132 G/A mutation increased the binding affinity through two DNA-protein complexes. In addition, a cAMP-responsive element binding protein (CREB) was identified by super-shift EMSA. CONCLUSIONS/INTERPRETATION Our studies show that the wild-type and the mutant constructs are regulated in a similar pattern under all conditions, strongly indicating that the -132 G/A mutation increases basal but not inducible transcription. These results may be explained by new binding to the mutant region through CREB and other transcription factors not yet identified.
Collapse
Affiliation(s)
- A Novials
- Diabetes Institute Sarda Farriol Foundation, Barcelona, Spain
| | - E Mato
- Diabetes Institute Sarda Farriol Foundation, Barcelona, Spain
- Endocrinology and Diabetes Unit, Department of Medicine, Hospital Clinic, Biomedical Research Institute August Pi Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - M Lucas
- Diabetes Institute Sarda Farriol Foundation, Barcelona, Spain
- Endocrinology and Diabetes Unit, Department of Medicine, Hospital Clinic, Biomedical Research Institute August Pi Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - C Franco
- Endocrinology and Diabetes Unit, Department of Medicine, Hospital Clinic, Biomedical Research Institute August Pi Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - M Rivas
- Biomedical Research Institute Alberto Sols (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - P Santisteban
- Biomedical Research Institute Alberto Sols (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - R Gomis
- Endocrinology and Diabetes Unit, Department of Medicine, Hospital Clinic, Biomedical Research Institute August Pi Sunyer (IDIBAPS), University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
38
|
Bachurski CJ, Yang GH, Currier TA, Gronostajski RM, Hong D. Nuclear factor I/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. Mol Cell Biol 2004; 23:9014-24. [PMID: 14645514 PMCID: PMC309647 DOI: 10.1128/mcb.23.24.9014-9024.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surfactant protein C (SP-C; Sftpc) gene expression is restricted to pulmonary type II epithelial cells. The proximal SP-C promoter region contains critical binding sites for nuclear factor I (NFI) and thyroid transcription factor 1 (TTF-1; also called Nkx2.1). To test the hypothesis that NFI isoforms interact with TTF-1 to differentially regulate SP-C transcription, we performed transient transfection assays in JEG-3 cells, a choriocarcinoma cell line with negligible endogenous NFI or TTF-1 activity. Cotransfection of NFI family members with TTF-1 induced synergistic activation of the SP-C promoter that was further enhanced by p300. TTF-1 directly interacts with the conserved DNA binding and dimerization domain of all NFI family members in coimmunoprecipitation and mammalian two-hybrid experiments. To determine whether SP-C expression is regulated by NFI in vivo, a chimeric fusion protein containing the DNA binding and dimerization domain of NFI-A and the Drosophila engrailed transcriptional repression domain (NFIen) was conditionally expressed in mice under control of a doxycycline-inducible transgene. Induction of NFIen in a subset of type II cells inhibited SP-C gene expression without affecting expression of TTF-1 in doxycycline-treated double-transgenic mice. Taken together, these findings support the hypothesis that NFI family members interact with TTF-1 to regulate type II cell function.
Collapse
Affiliation(s)
- Cindy J Bachurski
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | |
Collapse
|
39
|
Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 2002; 99:15462-7. [PMID: 12432093 PMCID: PMC137739 DOI: 10.1073/pnas.242328999] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Indexed: 11/18/2022] Open
Abstract
The thyroid-stimulating hormone/thyrotropin (TSH) is the most relevant hormone in the control of thyroid gland physiology in adulthood. TSH effects on the thyroid gland are mediated by the interaction with a specific TSH receptor (TSHR). We studied the role of TSHTSHR signaling on gland morphogenesis and differentiation in the mouse embryo using mouse lines deprived either of TSH (pit(dw)pit(dw)) or of a functional TSHR (tshr(hyt)tshr(hyt) and TSHR-knockout lines). The results reported here show that in the absence of either TSH or a functional TSHR, the thyroid gland develops to a normal size, whereas the expression of thyroperoxidase and the sodium/iodide symporter are reduced greatly. Conversely, no relevant changes are detected in the amounts of thyroglobulin and the thyroid-enriched transcription factors TTF-1, TTF-2, and Pax8. These data suggest that the major role of the TSH/TSHR pathway is in controlling genes involved in iodide metabolism such as sodium/iodide symporter and thyroperoxidase. Furthermore, our data indicate that in embryonic life TSH does not play an equivalent role in controlling gland growth as in the adult thyroid.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Cell Differentiation
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Forkhead Transcription Factors
- Gene Expression Regulation, Developmental/physiology
- Gestational Age
- Humans
- Hypothyroidism/embryology
- Hypothyroidism/genetics
- Iodide Peroxidase/biosynthesis
- Iodide Peroxidase/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Organ Size
- PAX8 Transcription Factor
- Paired Box Transcription Factors
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Thyrotropin/deficiency
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/physiology
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Signal Transduction/physiology
- Symporters/biosynthesis
- Symporters/genetics
- Thyroglobulin/biosynthesis
- Thyroglobulin/genetics
- Thyroid Gland/embryology
- Thyroid Gland/growth & development
- Thyroid Gland/pathology
- Thyroid Nuclear Factor 1
- Thyrotropin/deficiency
- Thyrotropin/genetics
- Thyrotropin/physiology
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- M P Postiglione
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica A. Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ayala JE, Streeper RS, Svitek CA, Goldman JK, Oeser JK, O'Brien RM. Accessory elements, flanking DNA sequence, and promoter context play key roles in determining the efficacy of insulin and phorbol ester signaling through the malic enzyme and collagenase-1 AP-1 motifs. J Biol Chem 2002; 277:27935-44. [PMID: 12032154 DOI: 10.1074/jbc.m203682200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin stimulates malic enzyme (ME)-chloramphenicol acetyltransferase (CAT) and collagenase-1-CAT fusion gene expression in H4IIE cells through identical activator protein-1 (AP-1) motifs. In contrast, insulin and phorbol esters only stimulate collagenase-1-CAT and not ME-CAT fusion gene expression in HeLa cells. The experiments in this article were designed to explore the molecular basis for this differential cell type- and gene-specific regulation. The results highlight the influence of three variables, namely promoter context, AP-1 flanking sequence, and accessory elements that modulate insulin and phorbol ester signaling through the AP-1 motif. Thus, fusion gene transfection and proteolytic clipping gel retardation assays suggest that the AP-1 flanking sequence affects the conformation of AP-1 binding to the collagenase-1 and ME AP-1 motifs such that it selectively binds the latter in a fully activated state. However, this influence of ME AP-1 flanking sequence is dependent on promoter context. Thus, the ME AP-1 motif will mediate both an insulin and phorbol ester response in HeLa cells when introduced into either the collagenase-1 promoter or a specific heterologous promoter. But even in the context of the collagenase-1 promoter, the effects of both insulin and phorbol esters, mediated through the ME AP-1 motif are dependent on accessory factors.
Collapse
Affiliation(s)
- Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
41
|
Bieller A, Pasche B, Frank S, Gläser B, Kunz J, Witt K, Zoll B. Isolation and characterization of the human forkhead gene FOXQ1. DNA Cell Biol 2001; 20:555-61. [PMID: 11747606 DOI: 10.1089/104454901317094963] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have isolated a human genomic and cDNA clone that encodes a protein of 403 amino acids and belongs to the family of the FOX transcription factors (previously called HNF-3/forkhead transcription factors). The 2.7-kb transcript of the human FOXQ1 gene is expressed predominantly in the stomach, trachea, bladder and salivary gland. Additionally, overexpression of human FOXQ1 was shown in colorectal adenocarcinoma and lung carcinoma cell lines. The FOXQ1 gene is located on chromosome 6p23-25. Databank analysis shows 82% homology with the mouse Foxq1 gene (formerly Hfh-1L) and with a revised sequence of the rat FoxQ1 gene (formerly HFH-1). The DNA-binding motif, named HNF-3/forkhead domain, is well conserved, showing 100% identity in human, mouse, and rat. The human protein sequence contains two putative transcriptional activation domains, which share a high amino acid identity with the corresponding mouse and rat domains.
Collapse
Affiliation(s)
- A Bieller
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Damante G, Tell G, Di Lauro R. A unique combination of transcription factors controls differentiation of thyroid cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:307-56. [PMID: 11051768 DOI: 10.1016/s0079-6603(00)66033-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thyroid follicular cell type is devoted to the synthesis of thyroid hormones. Several genes, whose protein products are essential for efficient hormone biosynthesis, are uniquely expressed in this cell type. A set of transcriptional regulators, unique to the thyroid follicular cell type, has been identified as responsible for thyroid specific gene expression; it comprises three transcription factors, named TTF-1, TTF-2, and Pax8, each of which is expressed also in cell types different from the thyroid follicular cells. However, the combination of these factors is unique to the thyroid hormone producing cells, strongly suggesting that they play an important role in differentiation of these cells. An overview of the molecular and biological features of these transcription factors is presented here. Data demonstrating that all three play also an important role in early thyroid development, at stages preceding expression of the differentiated phenotype, are also reviewed. The wide temporal expression, from the beginning of thyroid organogenesis to the adult state, is suggestive of a recycling of the thyroid-specific transcription factors, that is, the control of different sets of target genes at diverse developmental stages. The identification of molecular mechanisms leading to specific gene expression in thyroid cells renders this cell type an interesting model in which to address several aspects of cell differentiation and organogenesis.
Collapse
Affiliation(s)
- G Damante
- Dipartimento di Scienze e Tecnologie Biomediche Università di Udine
| | | | | |
Collapse
|
43
|
Kohn LD, Suzuki K, Nakazato M, Royaux I, Green ED. Effects of thyroglobulin and pendrin on iodide flux through the thyrocyte. Trends Endocrinol Metab 2001; 12:10-6. [PMID: 11137035 DOI: 10.1016/s1043-2760(00)00337-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iodide transport by thyrocytes involves porters on the apical and basal surfaces of the cell facing the follicular lumen and bloodstream, respectively. Recent work identifies pendrin as an apical porter and shows that follicular thyroglobulin is a transcriptional regulator of the gene encoding pendrin and other thyroid-restricted genes. For example, whereas follicular thyroglobulin suppresses the gene expression and activity of the sodium iodide symporter (NIS), it increases pendrin gene expression. A potential new dynamic for iodide flux and thyroid hormone formation in thyrocytes has thus emerged and is supported by in vivo data.
Collapse
Affiliation(s)
- L D Kohn
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
44
|
Pérez-Sánchez C, Arias-de-la-Fuente C, Gómez-Ferrería MA, Granadino B, Rey-Campos J. FHX.L and FHX.S, two isoforms of the human fork-head factor FHX (FOXJ2) with differential activity. J Mol Biol 2000; 301:795-806. [PMID: 10966786 DOI: 10.1006/jmbi.2000.3999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many biological phenomena are dependent on mechanisms that fine-tune the expression levels of particular genes. This can be achieved by altering the relative activity of a single transcription factor, by post-translational modifications or by interaction with regulatory molecules. An alternative mechanism is based on competition between two or more differently active isoforms of the same transcription factor. We found that FHX, a recently characterized human fork-head transcriptional activator, may show such a mechanism for balancing its activity by expressing two differently sized isoforms, FHX.S and FHX.L, encoded by a single gene located on human chromosome 12. FHX. L and FHX.S showed different transcriptional capacities, the larger form, FHX.L, behaving as the more potent transactivator. A transactivation domain of the acidic type present only in FHX.L would account for this functional difference. The relative concentrations of these two FHX isoforms appear to vary in a number of cell types, a circumstance that may regulate the final activity of this transcription factor.
Collapse
Affiliation(s)
- C Pérez-Sánchez
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, Madrid, 28006, Spain
| | | | | | | | | |
Collapse
|
45
|
De La Vieja A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev 2000; 80:1083-105. [PMID: 10893432 DOI: 10.1152/physrev.2000.80.3.1083] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na(+)/I(-) symporter (NIS) is an intrinsic membrane protein that mediates the active transport of iodide into the thyroid and other tissues, such as salivary glands, gastric mucosa, and lactating mammary gland. NIS plays key roles in thyroid pathophysiology as the route by which iodide reaches the gland for thyroid hormone biosynthesis and as a means for diagnostic scintigraphic imaging and for radioiodide therapy in hyperthyroidism and thyroid cancer. The molecular characterization of NIS started with the 1996 isolation of a cDNA encoding rat NIS and has since continued at a rapid pace. Anti-NIS antibodies have been prepared and used to study NIS topology and its secondary structure. The biogenesis and posttranslational modifications of NIS have been examined, a thorough electrophysiological analysis of NIS has been conducted, the cDNA encoding human NIS (hNIS) has been isolated, the genomic organization of hNIS has been elucidated, the regulation of NIS by thyrotropin and I(-) has been analyzed, the regulation of NIS transcription has been studied, spontaneous NIS mutations have been identified as causes of congenital iodide transport defect resulting in hypothyroidism, the roles of NIS in thyroid cancer and thyroid autoimmune disease have been examined, and the expression and regulation of NIS in extrathyroidal tissues have been investigated. In gene therapy experiments, the rat NIS gene has been transduced into various types of human cells, which then exhibited active iodide transport and became susceptible to destruction with radioiodide. The continued molecular analysis of NIS clearly holds the potential of an even greater impact on a wide spectrum of fields, ranging from structure/function of transport proteins to the diagnosis and treatment of cancer, both in the thyroid and beyond.
Collapse
Affiliation(s)
- A De La Vieja
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
46
|
Pérez-Sánchez C, Gómez-Ferrería MA, de La Fuente CA, Granadino B, Velasco G, Esteban-Gamboa A, Rey-Campos J. FHX, a novel fork head factor with a dual DNA binding specificity. J Biol Chem 2000; 275:12909-16. [PMID: 10777590 DOI: 10.1074/jbc.275.17.12909] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The HNF3/fork head family includes a large number of transcription factors that share a structurally related DNA binding domain. Fork head factors have been shown to play important roles both during development and in the adult. We now describe the cloning of a novel mammalian fork head factor that we have named FHX (fork head homologous X (FHX), which is expressed in many adult tissues. In the embryo, FHX expression showed a very early onset during the cleavage stages of preimplantation development. Polymerase chain reaction-assisted site selection experiments showed that FHX bound DNA with a dual sequence specificity. Sites recognized by FHX could be classified into two different types according to their sequences. Binding of FHX to sequences of each type appeared to occur independently. Our data suggest that either different regions of the fork head domain or different molecular forms of this domain could be involved in binding of FHX to each type of site. In transfection assays, FHX was capable of activating transcription from promoters containing FHX sites of either type.
Collapse
Affiliation(s)
- C Pérez-Sánchez
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Medina DL, Suzuki K, Pietrarelli M, Okajima F, Kohn LD, Santisteban P. Role of insulin and serum on thyrotropin regulation of thyroid transcription factor-1 and pax-8 genes expression in FRTL-5 thyroid cells. Thyroid 2000; 10:295-303. [PMID: 10807057 DOI: 10.1089/thy.2000.10.295] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thyrotropin (TSH), via its cyclic adenosine monophosphate (cAMP) signal, decreases thyrotropin receptor (TSHR) gene expression in FRTL-5 thyroid cells, whereas it increases expression of the thyroglobulin (Tg) gene. Despite the opposite effects of TSH on TSHR and Tg expression, both genes are positively controlled by thyroid transcription factor-1 (TTF-1) and evidence has accumulated that TSH can decrease TTF-1 mRNA levels. In this report, we further characterize the action of TSH on TTF-1 in order to understand its different activities on the TSHR and Tg genes better. The effect of TSH on the TSHR requires the presence of insulin and serum and we show here that also both factors are necessary for the TSH effect to decrease TTF-1 mRNA levels. The decrease is paralleled by a downregulation of TTF-1 protein levels as well as by a decrease in TTF-1/DNA complex when the TTF-1 site of the TSHR promoter was used as probe. Again, the decrease requires insulin and serum. The TSH downregulation of TTF-1 mRNA levels is due to a decrease in its transcription rate. Using a luciferase-linked chimera construct spanning 5.18 kb of the TTF-1 5'-flanking region, we show that TSH decreases TTF-1 promoter activity and that this effect depends on insulin and serum. These data contrast with the action of TSH on Tg and Pax-8 gene expression. TSH increases Pax-8 mRNA levels and the increase is evident whether insulin and serum are present or not. Moreover, this increase is paralleled by an increase in Pax-8 protein binding to an oligonucleotide derived from the C site of the Tg promoter, which can bind both TTF-1 and Pax-8. The present data thus show that TTF-1 gene expression is interdependently regulated by TSH and serum growth factors including insulin. They also show this interdependent-regulation is not duplicated in the case of Pax-8. We suggest that these differences may contribute to the distinct ability of TSH to regulate TSHR versus Tg gene expression in FRLT-5 thyroid cells.
Collapse
Affiliation(s)
- D L Medina
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Suzuki K, Nakazato M, Ulianich L, Mori-Aoki A, Moriyama E, Chung HK, Pietrarelli M, Grassadonia A, Matoba H, Kohn LD. Thyroglobulin autoregulation of thyroid-specific gene expression and follicular function. Rev Endocr Metab Disord 2000; 1:217-24. [PMID: 11705006 DOI: 10.1023/a:1010035200212] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- K Suzuki
- Cell Regulation Section, Metabolic Diseases Branch, NIDDK, Bldg 10, Room 9C101B, NIH, Bethesda, MD 20892-1800, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ulianich L, Suzuki K, Mori A, Nakazato M, Pietrarelli M, Goldsmith P, Pacifico F, Consiglio E, Formisano S, Kohn LD. Follicular thyroglobulin (TG) suppression of thyroid-restricted genes involves the apical membrane asialoglycoprotein receptor and TG phosphorylation. J Biol Chem 1999; 274:25099-107. [PMID: 10455190 DOI: 10.1074/jbc.274.35.25099] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Follicular thyroglobulin (TG) decreases expression of the thyroid-restricted transcription factors, thyroid transcription factor (TTF)-1, TTF-2, and Pax-8, thereby suppressing expression of the sodium iodide symporter, thyroid peroxidase, TG, and thyrotropin receptor genes (Suzuki, K., Lavaroni, S., Mori, A., Ohta, M., Saito, J., Pietrarelli, M., Singer, D. S., Kimura, S., Katoh, R., Kawaoi, A. , and Kohn, L. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 95, 8251-8256). The ability of highly purified 27, 19, or 12 S follicular TG to suppress thyroid-restricted gene expression correlates with their ability to bind to FRTL-5 thyrocytes and is inhibited by a specific antibody to the thyroid apical membrane asialoglycoprotein receptor (ASGPR), which is related to the ASGPR of liver cells. Phosphorylating serine/threonine residues of TG, by autophosphorylation or protein kinase A, eliminates TG suppression and enhances transcript levels of the thyroid-restricted genes 2-fold in the absence of a change in TG binding to the ASGPR. Follicular TG suppression of thyroid-restricted genes is thus mediated by the ASPGR on the thyrocyte apical membrane and regulated by a signal system wherein phosphorylation of serine/threonine residues on the bound ligand is an important component. These data provide a hitherto unsuspected role for the ASGPR in transcriptional signaling, aside from its role in endocytosis. They establish a functional role for phosphorylated serine/threonine residues on the TG molecule.
Collapse
Affiliation(s)
- L Ulianich
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Durham SK, Suwanichkul A, Scheimann AO, Yee D, Jackson JG, Barr FG, Powell DR. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999; 140:3140-6. [PMID: 10385407 DOI: 10.1210/endo.140.7.6856] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin response element (IRE) in the IGFBP-1 promoter, and in other gene promoters, contains a T(A/G)TTT motif essential for insulin inhibition of transcription. Studies presented here test whether FKHR may be the transcription factor that confers insulin inhibition through this IRE motif. Immunoblots using antiserum to the synthetic peptide FKHR413-430, RNase protection, and Northerns blots show that FKHR is expressed in HEP G2 human hepatoma cells. Southwestern blots, electromobility shift assays, and DNase I protection assays show that Escherichia coli-expressed GST-FKHR binds specifically to IREs from the IGFBP-1, PEPCK and TAT genes; however, unlike HNF3beta, another protein proposed to be the insulin regulated factor, GST-FKHR does not bind the insulin unresponsive G/C-A/C mutation of the IGFBP-1 IRE. When HEP G2 cells were cotransfected with FKHR expression vectors and with IGFBP-1 promoter plasmids containing either native or mutant IREs, FKHR expression induced a 5-fold increase in activity of the native IGFBP-1 promoter but no increase in activity of promoter constructs containing insulin unresponsive IRE mutants. These data suggest that FKHR, and/or a related family member, is the important T(G/A)TTT binding protein that confers the inhibitory effect of insulin on gene transcription.
Collapse
Affiliation(s)
- S K Durham
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|