1
|
Umeki N, Kabashima Y, Sako Y. Evaluation of information flows in the RAS-MAPK system using transfer entropy measurements. eLife 2025; 14:e104432. [PMID: 40047537 PMCID: PMC11884788 DOI: 10.7554/elife.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.
Collapse
Affiliation(s)
- Nobuhisa Umeki
- Cellular Informatics Laboratory, RIKEN, Cluster for Pioneering ResearchWakoJapan
| | - Yoshiyuki Kabashima
- Institute for Physics of Intelligence, The University of TokyoBunkyo-kuJapan
- Trans-Scale Quantum Science Institute, The University of TokyoBunkyo-kuJapan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
2
|
Arekatla G, Trenzinger C, Reimann A, Loeffler D, Kull T, Schroeder T. Optogenetic manipulation identifies the roles of ERK and AKT dynamics in controlling mouse embryonic stem cell exit from pluripotency. Dev Cell 2023:S1534-5807(23)00183-1. [PMID: 37207652 DOI: 10.1016/j.devcel.2023.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
ERK and AKT signaling control pluripotent cell self-renewal versus differentiation. ERK pathway activity over time (i.e., dynamics) is heterogeneous between individual pluripotent cells, even in response to the same stimuli. To analyze potential functions of ERK and AKT dynamics in controlling mouse embryonic stem cell (ESC) fates, we developed ESC lines and experimental pipelines for the simultaneous long-term manipulation and quantification of ERK or AKT dynamics and cell fates. We show that ERK activity duration or amplitude or the type of ERK dynamics (e.g., transient, sustained, or oscillatory) alone does not influence exit from pluripotency, but the sum of activity over time does. Interestingly, cells retain memory of previous ERK pulses, with duration of memory retention dependent on duration of previous pulse length. FGF receptor/AKT dynamics counteract ERK-induced pluripotency exit. These findings improve our understanding of how cells integrate dynamics from multiple signaling pathways and translate them into cell fate cues.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
4
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Zou J, Lei T, Guo P, Yu J, Xu Q, Luo Y, Ke R, Huang D. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol Med Rep 2018; 19:759-770. [PMID: 30535440 PMCID: PMC6323238 DOI: 10.3892/mmr.2018.9712] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023] Open
Abstract
Senescence is a result of cellular stress and is a potential mechanism for regulating cancer. As a member of the mitogen-activated protein kinase family, ERK1/2 (extracellular signal-regulated protein kinase) has an important role in delivering extracellular signals to the nucleus, and these signals regulate the cell cycle, cell proliferation and cell development. Previous studies demonstrated that ERK1/2 is closely associated with cell aging; however other previous studies suggested that ERK1/2 exerts an opposite effect on aging models and target proteins, even within the same cell model. Recent studies demonstrated that the effect of ERK1/2 on aging is likely associated with its target proteins and regulators, negative feedback loops, phosphorylated ERK1/2 factors and ERK1/2 translocation from the cytoplasm to the nucleus. The present review aims to examine the mechanism of ERK1/2 and discuss its role in cellular outcomes and novel drug development.
Collapse
Affiliation(s)
- Junrong Zou
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingting Lei
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518110, P.R. China
| | - Jason Yu
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Qichao Xu
- Department of Pharmacology, The People's Hospital of Xinyu City, Xinyu, Jiangxi 338025, P.R. China
| | - Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Ke
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Deqiang Huang
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Lake D, Corrêa SAL, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 2016; 73:4397-4413. [PMID: 27342992 PMCID: PMC5075022 DOI: 10.1007/s00018-016-2297-8] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry, UK.
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
7
|
Nrf2 pathway activation contributes to anti-fibrosis effects of ginsenoside Rg1 in a rat model of alcohol- and CCl4-induced hepatic fibrosis. Acta Pharmacol Sin 2014; 35:1031-44. [PMID: 24976156 DOI: 10.1038/aps.2014.41] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
AIM To investigate the anti-fibrosis effects of ginsenoside Rg1 on alcohol- and CCl4-induced hepatic fibrosis in rats and to explore the mechanisms of the effects. METHODS Rats were given 6% alcohol in water and injected with CCl4 (2 mL/kg, sc) twice a week for 8 weeks. Rg1 (10, 20 and 40 mg/kg per day, po) was administered in the last 2 weeks. Hepatic fibrosis was determined by measuring serum biochemical parameters, HE staining, Masson's trichromic staining, and hydroxyproline and α-SMA immunohistochemical staining of liver tissues. The activities of antioxidant enzymes, lipid peroxidation, and Nrf2 signaling pathway-related proteins (Nrf2, Ho-1 and Nqo1) in liver tissues were analyzed. Cultured hepatic stellate cells (HSCs) of rats were prepared for in vitro studies. RESULTS In the alcohol- and CCl4-treated rats, Rg1 administration dose-dependently suppressed the marked increases of serum ALT, AST, LDH and ALP levels, inhibited liver inflammation and HSC activation and reduced liver fibrosis scores. Rg1 significantly increased the activities of antioxidant enzymes (SOD, GSH-Px and CAT) and reduced MDA levels in liver tissues. Furthermore, Rg1 significantly increased the expression and nuclear translocation of Nrf2 that regulated the expression of many antioxidant enzymes. Treatment of the cultured HSCs with Rg1 (1 μmol/L) induced Nrf2 translocation, and suppressed CCl4-induced cell proliferation, reversed CCl4- induced changes in MDA, GPX, PCIII and HA contents in the supernatant fluid and α-SMA expression in the cells. Knockdown of Nrf2 gene diminished these actions of Rg1 in CCl4-treated HSCs in vitro. CONCLUSION Rg1 exerts protective effects in a rat model of alcohol- and CCl4-induced hepatic fibrosis via promoting the nuclear translocation of Nrf2 and expression of antioxidant enzymes.
Collapse
|
8
|
Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 2011; 7:489. [PMID: 21613978 PMCID: PMC3130559 DOI: 10.1038/msb.2011.27] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/14/2011] [Indexed: 12/23/2022] Open
Abstract
This study shows that MAPK signalling is robust against protein level changes due to a strong negative feedback from Erk to Raf. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days. MAPK signalling is robust against variation in protein level. Robustness is mediated by a negative feedback to Raf. Loss of negative feedback due to mutation in B-Raf opens the door for targeted intervention.
Protein levels within signal transduction pathways vary strongly from cell to cell. For example, it has been reported that concentrations of the last kinase within the MAPK signalling module, Erk, varies about four-fold between clonal cells under the same conditions. In the present study, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. Mathematical analysis of isolated phosphorylation–dephosphorylation cycles predicts that phosphorylation of a signalling molecule is proportional to the protein concentration. We systematically perturbed the protein levels of Erk in human cell lines by siRNA. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level, suggesting that there are mechanisms that provide robustness to the pathway against protein fluctuations. Using mathematical modelling, we identified three potential mechanisms that may provide robustness against fluctuating protein levels: 1. Kinetic effects (saturation of the activating kinase Mek), 2. Transcriptional negative feedbacks, 3. Negative feedbacks on the post-translational level. By experimental analysis of the systems, which included analysis of Erk phosphorylation under Mek overexpression, measuring transcript levels of negative feedback regulators, and application of generic inhibitors of transcription and translation, we could exclude kinetic effects and transcriptional negative feedback as mechanisms of robustness. By analysing a panel of cell lines, we found that cells are robust as long as the signal passes through Raf-1. In contrast, cells where the pathway is activated by a mutation in B-Raf lose robustness. Detailed molecular analysis of the system shows that a single post-translational feedback to Raf mediates robustness. Thus, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days. Protein levels within signal transduction pathways vary strongly from cell to cell. Here, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. We systematically perturbed the protein levels of Erk, the terminal kinase in the MAPK signalling pathway in a panel of human cell lines. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level. Although a multitude of mechanisms exist that may provide robustness against fluctuating protein levels, we found that one single feedback from Erk to Raf-1 accounts for the observed robustness. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days.
Collapse
|
9
|
Baljuls A, Mahr R, Schwarzenau I, Müller T, Polzien L, Hekman M, Rapp UR. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase. J Biol Chem 2011; 286:16491-503. [PMID: 21454547 DOI: 10.1074/jbc.m110.194167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.
Collapse
Affiliation(s)
- Angela Baljuls
- Theodor-Boveri Institute of Bioscience, Department of Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cirit M, Wang CC, Haugh JM. Systematic quantification of negative feedback mechanisms in the extracellular signal-regulated kinase (ERK) signaling network. J Biol Chem 2010; 285:36736-44. [PMID: 20847054 PMCID: PMC2978602 DOI: 10.1074/jbc.m110.148759] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/20/2010] [Indexed: 12/28/2022] Open
Abstract
Cell responses are actuated by tightly controlled signal transduction pathways. Although the concept of an integrated signaling network replete with interpathway cross-talk and feedback regulation is broadly appreciated, kinetic data of the type needed to characterize such interactions in conjunction with mathematical models are lacking. In mammalian cells, the Ras/ERK pathway controls cell proliferation and other responses stimulated by growth factors, and several cross-talk and feedback mechanisms affecting its activation have been identified. In this work, we take a systematic approach to parse the magnitudes of multiple regulatory mechanisms that attenuate ERK activation through canonical (Ras-dependent) and non-canonical (PI3K-dependent) pathways. In addition to regulation of receptor and ligand levels, we consider three layers of ERK-dependent feedback: desensitization of Ras activation, negative regulation of MEK kinase (e.g. Raf) activities, and up-regulation of dual-specificity ERK phosphatases. Our results establish the second of these as the dominant mode of ERK self-regulation in mouse fibroblasts. We further demonstrate that kinetic models of signaling networks, trained on a sufficient diversity of quantitative data, can be reasonably comprehensive, accurate, and predictive in the dynamical sense.
Collapse
Affiliation(s)
- Murat Cirit
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Chun-Chao Wang
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | - Jason M. Haugh
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
11
|
Baljuls A, Schmitz W, Mueller T, Zahedi RP, Sickmann A, Hekman M, Rapp UR. Positive regulation of A-RAF by phosphorylation of isoform-specific hinge segment and identification of novel phosphorylation sites. J Biol Chem 2008; 283:27239-54. [PMID: 18662992 DOI: 10.1074/jbc.m801782200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals the RAF family of serine/threonine kinases consists of three members, A-, B-, and C-RAF. Activation of RAF kinases involves a complex series of phosphorylations. Although the most prominent phosphorylation sites of B- and C-RAF are well characterized, little is known about regulatory phosphorylation of A-RAF. Using mass spectrometry, we identified here a number of novel in vivo phosphorylation sites in A-RAF. In particular, we found that Ser-432 participates in MEK binding and is indispensable for A-RAF signaling. On the other hand, phosphorylation within the activation segment does not contribute to epidermal growth factor-mediated activation. Furthermore, we show that the potential 14-3-3 binding domains in A-RAF are phosphorylated independently of its activation status. Of importance, we identified a novel regulatory domain in A-RAF (referred to as IH-segment) positioned between amino acids 248 and 267 that contains seven putative phosphorylation sites. Three of these sites, serines 257, 262, and 264, regulate A-RAF activation in a stimulatory manner. The spatial model of the A-RAF fragment, including residues between Ser-246 and Glu-277, revealed a switch of charge at the molecular surface of the IH-region upon phosphorylation, suggesting a mechanism in which the high accumulation of negative charges may lead to an electrostatic destabilization of protein-membrane interaction resulting in depletion of A-RAF from the plasma membrane. Together, we provide here for the first time a detailed analysis of in vivo A-RAF phosphorylation status and demonstrate that regulation of A-RAF by phosphorylation exhibits unique features compared with B- and C-RAF.
Collapse
Affiliation(s)
- Angela Baljuls
- Institute for Medical Radiation and Cell Research, University of Wuerzburg, 97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Rauh-Adelmann C, Moskow JM, Graham JR, Yen LG, Boucher JI, Murphy CE, Nadler TK, Gordon NF, Radding JA. Quantitative measurement of epidermal growth factor receptor–mitogen-activated protein kinase signal transduction using a nine-plex, peptide-based immunoassay. Anal Biochem 2008; 375:255-64. [DOI: 10.1016/j.ab.2007.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/28/2007] [Accepted: 12/30/2007] [Indexed: 01/07/2023]
|
13
|
Tephly LA, Carter AB. Asbestos-induced MKP-3 expression augments TNF-alpha gene expression in human monocytes. Am J Respir Cell Mol Biol 2008; 39:113-23. [PMID: 18314537 DOI: 10.1165/rcmb.2007-0356oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TNF-alpha is associated with the development of interstitial fibrosis. We have demonstrated that the p38 mitogen-activated protein (MAP) kinase regulates TNF-alpha expression in monocytes exposed to asbestos. In this report, we asked if extracellular signal-regulated kinase (ERK) was also involved in TNF-alpha expression in monocytes exposed to asbestos. We found that p38 and ERK were differentially activated in alveolar macrophages obtained from patients with asbestosis compared with normal subjects. More specifically, p38 was constitutively active and ERK activation was suppressed. Since the upstream pathway leading to ERK was intact, we hypothesized that an ERK-specific phosphatase was, in part, responsible for the decreased ERK activity. We evaluated whether the dual specificity phosphatase MAP kinase phosphatase (MKP)-3, which is highly expressed in the lung and specifically dephosphorylates ERK, was increased after exposure to asbestos. We found that MKP-3 increased after exposure to asbestos, and its expression was regulated by p38. We found that p38 and ERK negatively regulated one another, and MKP-3 had a role in this differential activation. We also found that p38 was a positive regulator and ERK was a negative regulator of TNF-alpha gene expression. Cells overexpressing MKP-3 had a significant increase in TNF-alpha gene expression, suggesting than an environment favoring p38 MAP kinase activation is necessary for TNF-alpha production in monocytes exposed to asbestos. Taken together, these data demonstrate that the p38 MAP kinase down-regulates ERK via activation of MKP-3 in human monocytes exposed to asbestos to enhance TNF-alpha gene expression.
Collapse
Affiliation(s)
- Linda A Tephly
- Division of Pulmonary and Critical Care Medicine, C33 GH, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | |
Collapse
|
14
|
Li Y, Clough N, Sun X, Yu W, Abbott BL, Hogan CJ, Dai Z. Bcr-Abl induces abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell adhesion to fibronectin through the Abl interactor 1 pathway. J Cell Sci 2007; 120:1436-1446. [PMID: 17389688 PMCID: PMC1950936 DOI: 10.1242/jcs.03430] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.
Collapse
Affiliation(s)
- Yingzhu Li
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Nancy Clough
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Xiaolin Sun
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Weidong Yu
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Brian L. Abbott
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Christopher J. Hogan
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- University of Colorado Cancer Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| | - Zonghan Dai
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- University of Colorado Cancer Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
15
|
Schachter KA, Du Y, Lin A, Gallo KA. Dynamic positive feedback phosphorylation of mixed lineage kinase 3 by JNK reversibly regulates its distribution to Triton-soluble domains. J Biol Chem 2006; 281:19134-44. [PMID: 16687404 DOI: 10.1074/jbc.m603324200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MLK3 (mixed lineage kinase 3) is a widely expressed, mammalian serine/threonine protein kinase that activates multiple MAPK pathways. Previously our laboratory used in vivo labeling/mass spectrometry to identify phosphorylation sites of activated MLK3. Seven of 11 identified sites correspond to the consensus motif for phosphorylation by proline-directed kinases. Based on these results, we hypothesized that JNK, or another proline-directed kinase, phosphorylates MLK3 as part of a feedback loop. Herein we provide evidence that MLK3 can be phosphorylated by JNK in vitro and in vivo. Blockade of JNK results in dephosphorylation of MLK3. The hypophosphorylated form of MLK3 is inactive and redistributes to a Triton-insoluble fraction. Recovery from JNK inhibition restores MLK3 solubility and activity, indicating that the redistribution process is reversible. This work describes a novel mode of regulation of MLK3, by which JNK-mediated feedback phosphorylation of MLK3 regulates its activation and deactivation states by cycling between Triton-soluble and Triton-insoluble forms.
Collapse
Affiliation(s)
- Karen A Schachter
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
16
|
Nakada N, Kuroda K, Kawahara E. Protein Phosphatase 2A Regulatory Subunit Bβ Promotes MAP Kinase-mediated Migration of A431 Cells. Cell Physiol Biochem 2005; 15:19-28. [PMID: 15665512 DOI: 10.1159/000083635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Phosphatases are involved in regulation of MAP kinase (MAPK). A431 cells migrate on collagen after EGF stimulation using MAPK. To clarify the involvement of PP2A in this MAPK-dependent migration, the expression of an isoform of the B regulatory subunit was inhibited. METHODS An antisense sequence corresponding to Bbeta cDNA was transfected into A431 cells. Their migratory activity on collagen was examined using Transwell, and MAPK phosphorylation and phosphatase activity were measured, and the results were compared with those obtained with mock-transfected cells. RESULTS Antisense-transfected cells showed less Bbeta protein and phosphatase activity than mock-transfected controls. Migration of antisense-transfected cells showed a low response to EGF. The response of MAPK phosphorylation of antisense-transfected cells to EGF stimulation and adhesion to collagen in the presence or absence of EGF were markedly decreased. Phosphatase activity of PP2A-Bbeta also did not respond to EGF, collagen or EGF plus collagen, and remained at low levels. CONCLUSION These results suggested that PP2A-Bbeta promotes cell migration through the MAPK cascade.
Collapse
Affiliation(s)
- Natsuko Nakada
- Department of Laboratory Sciences, School of Health Sciences, Kanazawa University Faculty of Medicine, Japan
| | | | | |
Collapse
|
17
|
Mullen P, McPhillips F, MacLeod K, Monia B, Smyth JF, Langdon SP. Antisense oligonucleotide targeting of Raf-1: importance of raf-1 mRNA expression levels and raf-1-dependent signaling in determining growth response in ovarian cancer. Clin Cancer Res 2004; 10:2100-8. [PMID: 15041731 DOI: 10.1158/1078-0432.ccr-03-0154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We sought to identify determinants of growth response to the Raf-1-targeted antisense oligonucleotide (ASO; ISIS 5132) using a large panel of ovarian cancer cell lines. EXPERIMENTAL DESIGN First-(ISIS 5132) and second-generation (ISIS 13650) anti-Raf 1 ASOs were compared with control oligonucleotides. Growth was assessed by cell counts; apoptosis was assessed by poly(ADP-ribose) polymerase cleavage; and cell cycle analysis was assessed by flow cytometry. Protein expression was detected by Western blot analysis, and mRNA expression was detected by quantitative reverse transcription-PCR. Raf-1 kinase activity was detected by anti-Raf-1 immunoprecipitation, followed by myelin basic protein phosphorylation. RESULTS A panel of 15 ovarian cancer cell lines was used to model a range of growth responses to ASOs targeting Raf-1 mRNA. Growth inhibition varied from 10% to >90% inhibition. Growth inhibition was associated with increased apoptosis and accumulation of cells in the G(2)-M and S phases of the cell cycle. Growth response was not related to level of Raf-1 protein expression, Raf-1 kinase activity, intracellular ASO uptake, or degree of Raf-1 protein inhibition. However, ASO growth response was associated with a high proportion of Raf-1 mRNA [relative to total (i.e., Raf-1 + A-Raf + B-Raf) Raf mRNA] and significantly higher Raf-1 kinase activity induction following growth factor (transforming growth factor alpha) stimulation in the cell lines consistent with dependency of these cell lines on Raf-1. CONCLUSIONS These data indicate that ovarian cancers demonstrate differential sensitivity to ASOs targeted against Raf-1, and target expression levels and degree of utilization of Raf-1 signaling are implicated. Clinically sensitive tumors could feasibly be identified.
Collapse
Affiliation(s)
- Peter Mullen
- Cancer Research UK, Edinburgh Oncology Unit, Western General Hospital, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Nandan MO, Yoon HS, Zhao W, Ouko LA, Chanchevalap S, Yang VW. Krüppel-like factor 5 mediates the transforming activity of oncogenic H-Ras. Oncogene 2004; 23:3404-13. [PMID: 15077182 PMCID: PMC1351030 DOI: 10.1038/sj.onc.1207397] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies indicate that Krüppel-like factor 5 (KLF5), also known as intestinal-enriched Krüppel-like factor (IKLF), is a positive regulator of cell proliferation and gives rise to a transformed phenotype when overexpressed. Here we demonstrate that levels of KLF5 transcript and protein are significantly elevated in oncogenic H-Ras-transformed NIH3T3 cells. These cells display an accelerated rate of proliferation in both serum-containing and serum-deprived media and form anchorage-independent colonies in soft agar assays. H-Ras-transformed cells also contain elevated mitogen-activated protein kinase (MAPK) activity. When treated with inhibitors of MEK (MAPK kinase), H-Ras-transformed cells lose their growth advantage and no longer form colonies. Significantly, levels of KLF5 transcript and protein are substantially reduced in H-Ras-transformed cells treated with MEK inhibitors. Moreover, inhibition of KLF5 expression in H-Ras-transformed cells with KLF5-specific small interfering RNA (siRNA) leads to a decreased rate of proliferation and a significant reduction in colony formation. H-Ras-transformed cells also contain elevated levels of Egr1 that are diminished by MEK inhibitors. Inhibition of Egr1 by siRNA results in a reduced level of KLF5, indicating that Egr1 mediates the inductive action of MAPK on KLF5. Lastly, KLF5 activates expression of cyclin D1. These findings indicate that the increased expression of KLF5 in H-Ras-transformed cells is secondary to increased MAPK activity from H-Ras overexpression and that the elevated level of KLF5 is in part responsible for the proproliferative and transforming activities of oncogenic H-Ras.
Collapse
Affiliation(s)
- Mandayam O Nandan
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Hong S Yoon
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Weidong Zhao
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Lillian A Ouko
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Sengthong Chanchevalap
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Vincent W Yang
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- *Correspondence: VW Yang, Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, 201 Whitehead Research Building, 615 Michael Street, Atlanta, GA 30322, USA; E-mail:
| |
Collapse
|
19
|
Affiliation(s)
- Michael Reth
- Department of Molecular Immunology, Institute for Biology III, Albert-Ludwigs-University of Freiburg and Max-Planck-Institut for Immunobiology, 79108 Freiburg, Germany.
| | | |
Collapse
|
20
|
Abstract
Stimulation of the erythropoietin (EPO) receptor triggers a cascade of signaling events. We reported that EPO upregulates c-myc expression through 2 pathways in BaF3-EpoR cells--a phosphatidylinositol 3-kinase (PI3K) pathway operating on transcriptional initiation and a Raf-1-mitogen-activated protein kinase (MAPK) pathway affecting elongation. We now show that EPO induces phosphorylation of Raf-1 at serine 338 and within the carboxy-terminal domain, resulting in an electrophoretic mobility change (hyperphosphorylation). Importantly, MEK 1 inhibitor PD98059 blocked only the hyperphosphorylation of Raf-1 but not the phosphorylation at serine 338. This inhibition of Raf-1 hyperphosphorylation resulted in increased kinase activity of Raf-1 and increased phosphorylation of MEK, suggesting that the hyperphosphorylation of Raf-1 inhibits its MEK kinase activity. Deletion of the first 184 amino acids of Raf-1, which are involved in its interaction with Ras, had no effect on EPO-induced phosphorylation. Introducing the dominant-negative N17Ras or GAP had no effect on EPO-induced kinase activity of Raf-1 and ELK activation. N17Ras failed to inhibit ELK activation in another cell line-Rauscher murine erythroleukemia- which expresses the EPO receptor endogenously and differentiates in response to the hormone. These results indicate the presence of a Ras-independent mechanism for Raf-1 and MEK activation in these cells.
Collapse
Affiliation(s)
- Changmin Chen
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
21
|
Abstract
More than a half a century ago, interferons (IFN) were identified as antiviral cytokines. Since that discovery, IFN have been in the forefront of basic and clinical cytokine research. The pleiotropic nature of these cytokines continues to engage a large number of investigators to define their actions further. IFN paved the way for discovery of Janus tyrosine kinase (JAK)-signal transducing activators of transcription (STAT) pathways. A number of important tumor suppressive pathways are controlled by IFN. Several infectious pathogens counteract IFN-induced signaling pathways. Recent studies indicate that IFN activate several new protein kinases, including the MAP kinase family, and downstream transcription factors. This review not only details the established IFN signaling paradigms but also provides insights into emerging alternate signaling pathways and mechanisms of pathogen-induced signaling interference.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cellular Biology Graduate Program, Greenebaum Cancer Center, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2004; 22:8823-34. [PMID: 14654779 DOI: 10.1038/sj.onc.1207185] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway plays an important role during the development and activation of B lymphocytes. We have recently shown that B-Raf is a dominant ERK activator in B-cell antigen receptor signalling. We now show that B-Raf is hyperphosphorylated upon BCR engagement and undergoes a prominent electrophoretic mobility shift. This shift correlates with ERK activation and is prevented by the MEK inhibitor U0126. Syk-deficient DT40 B cells display neither dual ERK phosphorylation nor a mobility shift of B-Raf upon BCR engagement. The inducible expression of a constitutively active B-Raf in this mutant line restores dual ERK phosphorylation and the mobility shift of endogenous B-Raf, indicating that these two events are connected to each other. By site-directed mutagenesis studies, we demonstrate that the shift is due to an ERK2-mediated feedback phosphorylation of serine/threonine residues within an evolutionary conserved SPKTP motif at the C-terminus of B-Raf. Replacement of these residues by negatively charged amino acids causes a constitutive mobility shift and a reduction of PC12 cell differentiation. We discuss a model in which ERK-mediated phosphorylation of the SPKTP motif is involved in negative feedback regulation of B-Raf.
Collapse
Affiliation(s)
- Tilman Brummer
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, Freiburg 79108, Germany
| | | | | | | |
Collapse
|
23
|
Lee M, Petrovics G, Anderson WB. The synergistic activation of Raf-1 kinase by phorbol myristate acetate and hydrogen peroxide in NIH3T3 cells. Biochem Biophys Res Commun 2003; 311:1026-33. [PMID: 14623285 DOI: 10.1016/j.bbrc.2003.10.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that a 33kDa C-terminal fragment of c-Raf-1 underwent a mobility shift in response to hydrogen peroxide (H(2)O(2)) and phorbol myristate acetate (PMA), respectively. In this study, we have demonstrated that H(2)O(2) induced the activation of N-terminal deletion mutant as well as full length Raf-1 kinase. The pharmacological PKC activator PMA also induced a weak increase in Raf-1 kinase activity through PKC-epsilon activation as determined by the transient expression of dominant negative mutants of PKC-epsilon-K436R. Interestingly, H(2)O(2) produced synergistic increase of PMA-stimulated Raf-1 kinase activation after simultaneous treatment of PMA and H(2)O(2). This synergistic activation of Raf-1 kinase was further enhanced by cypermethrin (an inhibitor of protein phosphatase 2B) and dephostatin (tyrosine kinase inhibitor) implying an inhibitory role for these phosphatases in the Raf-1 signaling pathway. Taken together, our data suggest that the synergistic activation of Raf-1 kinase in response to PMA and H(2)O(2) occurs via mechanisms that involve an interaction of Raf-1 kinase and PKC-epsilon, along with a transient phosphorylation of both Raf-1 kinase and PKC.
Collapse
Affiliation(s)
- Michael Lee
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, P.O. Box 123, Yusong, 305-600, Daejeon, Republic of Korea.
| | | | | |
Collapse
|
24
|
Lee M, Koh WS, Han SS. Down-regulation of Raf-1 kinase is associated with paclitaxel resistance in human breast cancer MCF-7/Adr cells. Cancer Lett 2003; 193:57-64. [PMID: 12691824 DOI: 10.1016/s0304-3835(02)00722-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance and apoptosis induced by paclitaxel. In the present study, paclitaxel sensitivity, Raf-1 activity and mitogen-activated protein kinases activation were compared in two cell lines: parental human breast cancer cells and its drug resistant variant (MCF-7/Adr) cells. Paclitaxel treatment of parental MCF-7 cells caused a marked inhibition of Raf-1 kinase activity, concomitant with its mobility shift after 18 h exposure. In addition, paclitaxel greatly increased c-Jun N-terminal protein kinase (JNK) activity whereas showing a small enhancing effect on extracellular-regulated kinases (ERK) activity. Interestingly, MCF-7/Adr cells have lower basal Raf-1 activity, yet have much higher basal ERK activity than parental cells. However, it appeared that PD 98059, which turns off ERK through mitogen-activated protein kinase kinase (MEK) inhibition, enhanced basal Raf-1 kinase activity in MCF-7/Adr cells. Thus, the findings suggest that paclitaxel-induced apoptosis is mediated by JNK and occurs in parallel with suppression of the Raf-1 kinase activity in parental MCF-7 cells. In addition, down-regulation of Raf-1 kinase, which can be induced through the sustained ERK activation, may contribute to the development of acquired resistance in MCF-7/Adr cells.
Collapse
Affiliation(s)
- Michael Lee
- Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, P.O. Box 107,Yusong, Daejeon 305-600, South Korea.
| | | | | |
Collapse
|
25
|
Chen DB, Davis JS. Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Mol Cell Endocrinol 2003; 200:141-54. [PMID: 12644307 DOI: 10.1016/s0303-7207(02)00379-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermal growth factor (EGF) modulates the actions of gonadotropins in the corpus luteum. The membrane-associated EGF receptors undergo rapid tyrosine phosphorylation and internalization upon ligand binding in ovarian cells, including luteal cells. However, little is known about the post-receptor signaling events induced by EGF that lead to the transcriptional regulation of EGF-responsive genes in the ovary. The present study was designed to examine in bovine luteal cells (1) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling cascade (Raf/MEK/ERK) by EGF; (2) mRNA expression of AP-1 transcription factors, i.e. c-fos and c-jun, in response to EGF; and (3) the role of ERK in EGF-induced expression of c-fos and c-jun mRNA. Raf-1 and B-Raf, but not A-Raf, were activated by EGF (10 ng/ml) and the pharmacological protein kinase C (PKC) activator phorbol myristate acetate (PMA, 20 nM). Activation of Raf resulted in the phosphorylation and activation of MAPK kinase (MEK1) which subsequently activated ERKs. Treatment with EGF-induced the phosphorylation of both ERK2 and ERK1 in a time and concentration dependent manner. Additionally, activated ERK was found in the nucleus of the cells following treatment with EGF (10 ng/ml) and PMA (PMA, 20 nM) for 5 min. Depletion of PKC by chronic PMA treatment (2.5 microM, 24 h) only partially inhibited the stimulatory effects of EGF on Raf-1, ERK2 and ERK1. These data demonstrate that PKC-dependent and independent-mechanisms are involved in EGF activation of the Raf/MEK/ERK signaling cascade in bovine luteal cells. EGF rapidly and transiently stimulated the expression of c-fos and c-jun mRNA in bovine luteal cells. Maximal induction of c-fos and c-jun mRNA by EGF occurred within 30 min of treatment with 10 ng/ml EGF. Treatment with the MEK1 inhibitor PD098059 (50 microM) abolished EGF-induced ERK activation. However, blocking EGF-induced ERK activation by pretreatment with PD098059 only partially attenuated EGF-induced c-fos and c-jun mRNA expression. Thus, additional pathways are implicated in the regulation of c-fos and c-jun mRNA expression by EGF in bovine luteal cells.
Collapse
Affiliation(s)
- Dong-bao Chen
- The Women's Research Institute, Department of Obstetrics and Gynecology, University of Kansas School of Medicine-Wichita, 1010 North Kansas, Wichita 67214, USA.
| | | |
Collapse
|
26
|
Brummer T, Shaw PE, Reth M, Misawa Y. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. EMBO J 2002; 21:5611-22. [PMID: 12411479 PMCID: PMC131085 DOI: 10.1093/emboj/cdf588] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Engagement of the B-cell antigen receptor (BCR) leads to activation of the Raf-MEK-ERK pathway and Raf kinases play an important role in the modulation of ERK activity. B lymphocytes express two Raf isoforms, Raf-1 and B-Raf. Using an inducible deletion system in DT40 cells, the contribution of Raf-1 and B-Raf to BCR signalling was dissected. Loss of Raf-1 has no effect on BCR-mediated ERK activation, whereas B-Raf-deficient DT40 cells display a reduced basal ERK activity as well as a shortened BCR-mediated ERK activation. The Raf-1/B-Raf double deficient DT40 cells show an almost complete block both in ERK activation and in the induction of the immediate early gene products c-Fos and Egr-1. In contrast, BCR-mediated activation of nuclear factor of activated T cells (NFAT) relies predominantly on B-Raf. Furthermore, complementation of Raf-1/B-Raf double deficient cells with various Raf mutants demonstrates a requirement for Ras-GTP binding in BCR-mediated activation of both Raf isoforms and also reveals the important role of the S259 residue for the regulation of Raf-1. Our study shows that BCR-mediated ERK activation involves a cooperation of both B-Raf and Raf-1, which are activated specifically in a temporally distinct manner.
Collapse
Affiliation(s)
| | - Peter E. Shaw
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany and
School of Biomedical Science and Institute of Cell Signalling, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | | | - Yukiko Misawa
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany and
School of Biomedical Science and Institute of Cell Signalling, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| |
Collapse
|
27
|
Ward IM, Wu X, Chen J. Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J Biol Chem 2001; 276:47755-8. [PMID: 11668173 DOI: 10.1074/jbc.c100587200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase Chk2 has been implicated in signaling DNA damage to cell cycle checkpoints. In response to ionizing radiation, Chk2 becomes rapidly phosphorylated at threonine 68 by ataxia-telangiectasia mutated (ATM). Here we show that the Thr(68)-phosphorylated form of Chk2 forms distinct nuclear foci in response to ionizing radiation. Only this activated form of Chk2 localizes at sites of DNA strand breaks. The kinase activity of Chk2 and the number of Chk2 foci formed depend on the severity of DNA damage and gradually decline correlating with the predicted value of slowly re-joining double strand breaks. These results suggest that Chk2 is regulated at the sites of DNA strand breaks in response to ionizing radiation.
Collapse
Affiliation(s)
- I M Ward
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
28
|
Lo LW, Cheng JJ, Chiu JJ, Wung BS, Liu YC, Wang DL. Endothelial exposure to hypoxia induces Egr-1 expression involving PKCalpha-mediated Ras/Raf-1/ERK1/2 pathway. J Cell Physiol 2001; 188:304-12. [PMID: 11473356 DOI: 10.1002/jcp.1124] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia induces endothelial dysfunction that results in a series of cardiovascular injuries. Early growth response-1 (Egr-1) has been indicated as a common theme in vascular injury. Here we demonstrates that in bovine aortic endothelial cells (ECs) subjected to hypoxia (PO(2) approximately 23 mmHg), rapidly increased Egr-1 mRNA expression which peaked within 30 min and decreased afterwards. Treatment of ECs with PD98059, a specific inhibitor to mitogen-activated protein kinase (MAPK/ERK), inhibited this hypoxia-induced Egr-1 expression. The involvement of ERK pathway was further substantiated by the inhibition of Egr-1 promoter activities when ECs were co-transfected with a dominant negative mutant of Ras (RasN17), Raf-1 (Raf 301), or a catalytically inactive mutant of ERK2 (mERK). In addition, the hypoxia-induced transcriptional activity of Elk-1, an ERK substrate, was abolished by administration of PD98059. Addition of calphostin C, a protein kinase C (PKC) inhibitor, completely blocked the hypoxia-augmented Egr-1 expression. The likewise occurred while exposing ECs to D609 to inhibit phospholipase C and BAPTA/AM to chelate intracellular calcium. Hypoxia to ECs increased ERK phosphorylation within 10 min and which was abolished by administration of PD98095, calphostin C, and BAPTA/AM. Hypoxia triggered a transient translocation of PKCalpha from cytosol to membrane fraction concurrent with the association of PKCalpha to Raf-1. Involvement of PKCalpha in mediating ERK activation was further confirmed by the inhibition of ERK and the subsequent Egr-1 gene induction with antisense oligonucleotides to PKCalpha. These results indicate that ECs under hypoxia induce Egr-1 expression and this induction requires calcium, phospholipase C activation, and PKCalpha-mediated Ras/Raf-1/ERK1/2 signaling pathway. Our finding support the importance of specific PKC isozyme linked to MAPK pathway in the regulation of endothelial responses to hypoxia.
Collapse
Affiliation(s)
- L W Lo
- Departmant of Applied Chemistry, National Chi Nan University, Nantou, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
29
|
Fan M, Chambers TC. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat 2001; 4:253-67. [PMID: 11991680 DOI: 10.1054/drup.2001.0214] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antitumor agents, despite having diverse primary mechanisms of action, mediate their effects by inducing apoptosis in tumor cells. Cellular commitment to apoptosis, or the ability to evade apoptosis in response to damage, involves the integration of a complex network of survival and death pathways. Among the best-characterized pathways regulating cell survival and cell death are those mediated by the mitogen-activated protein kinase (MAPK) family. Not surprisingly, MAPK signaling pathways have been implicated in the response of tumor cells to chemotherapeutic drugs. Indeed, literature in this area has grown enormously in recent years, and the present review attempts to provide an overview and perspective of these advances. While the activities of the major MAPK subgroups are subject to modulation upon exposure of different types of cancer cell lines to diverse classes of antitumor agents, the response tend to be context-dependent, and can differ depending on the system and conditions. Despite these complexities, some important trends have surfaced, and molecular connections between MAPK signaling pathways and the apoptotic regulatory machinery are beginning to emerge. With increased evidence supporting a role for MAPK signaling in antitumor drug action, MAPK modulators may have potential as chemotherapeutic drugs themselves or as chemosensitizing agents. The ability of MAPK/ERK kinase (MEK) inhibitors to block survival signaling in specific contexts and promote drug cytotoxicity represents an example, and recent knowledge of the pro-apoptotic functions of JNK and p38 suggests possible new approaches to targeted therapy. However, it will be important first to extrapolate the knowledge gained from these laboratory findings, and begin to address the role of MAPKs in the clinical response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- M Fan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
30
|
Pru JK, Rueda BR, Austin KJ, Thatcher WW, Guzeloglu A, Hansen TR. Interferon-tau suppresses prostaglandin F2alpha secretion independently of the mitogen-activated protein kinase and nuclear factor kappa B pathways. Biol Reprod 2001; 64:965-73. [PMID: 11207214 DOI: 10.1095/biolreprod64.3.965] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pregnancy is established in ruminants through inhibitory actions of interferon (IFN)-tau on the release of prostaglandin F2alpha (PGF), which allows the corpus luteum to survive and continue to produce progesterone. Experiments were designed to 1) delineate the signal transduction pathway coordinating the synthesis of PGF, 2) determine how rapidly recombinant bovine (rb) IFN-tau attenuated phorbol ester (PDBu)-induced secretion of PGF, and 3) establish the site at which rbIFN-tau attenuates the secretion of PGF in cultured bovine endometrial (BEND) cells. BEND cells were untreated (control) or treated for 5, 10, 60, 180, or 300 min with PDBu (100 ng/ml), rbIFN-tau (50 or 500 ng/ml), PDBu + rbIFN-tau, or PDBu + PD98059 (MEK-1 inhibitor; 50 microM). Secretion of PGF was induced (P < 0.0001) by PDBu within 180 min, but induction was inhibited 74% by the addition of rbIFN-tau (P < 0.0001) and was ablated completely by PD98059. Parallel results were obtained for cyclooxygenase (COX)-2 protein expression. PDBu induced (P < 0.05) activation of the Raf-1/MEK-1/ERK-1/2 pathway, which was obligatory for the expression of COX-2 and secretion of PGF but was not altered by cotreatment with rbIFN-tau. PDBu induced (P < 0.05) transcription of c-jun and c-fos mRNAs within 30 min; induction was inhibited (P < 0.05) by cotreatment with PD98059 but not by cotreatment with rbIFN-tau. Treatment of BEND cells with rbIFN-tau also did not attenuate PDBu-induced degradation of IkappaBalpha, suggesting that the IkappaBalpha/NFkappaB pathway is not a site of IFN-tau inhibition of PGF. However, rbIFN-tau did block transcription of the COX-2 gene induced by PDBu within 30 min. In conclusion, COX-2 expression and PGF secretion induced by PDBu is mediated through the Raf-1/MEK-1/ERK-1/2 pathway, but this pathway is not disrupted by rbIFN-tau. Because rbIFN-tau inhibits COX-2 mRNA within 30 min, we hypothesized that transcription factors activated by rbIFN-tau rapidly and directly attenuate COX-2 gene expression, thereby suppressing secretion of PGF.
Collapse
Affiliation(s)
- J K Pru
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684, USA
| | | | | | | | | | | |
Collapse
|
31
|
Asthagiri AR, Lauffenburger DA. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 2001; 17:227-39. [PMID: 11312698 DOI: 10.1021/bp010009k] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploiting signaling pathways for the purpose of controlling cell function entails identifying and manipulating the information content of intracellular signals. As in the case of the ubiquitously expressed, eukaryotic mitogen-activated protein kinase (MAPK) signaling pathway, this information content partly resides in the signals' dynamical properties. Here, we utilize a mathematical model to examine mechanisms that govern MAPK pathway dynamics, particularly the role of putative negative feedback mechanisms in generating complete signal adaptation, a term referring to the reset of a signal to prestimulation levels. In addition to yielding adaptation of its direct target, feedback mechanisms implemented in our model also indirectly assist in the adaptation of signaling components downstream of the target under certain conditions. In fact, model predictions identify conditions yielding ultra-desensitization of signals in which complete adaptation of target and downstream signals culminates even while stimulus recognition (i.e., receptor-ligand binding) continues to increase. Moreover, the rate at which signal decays can follow first-order kinetics with respect to signal intensity, so that signal adaptation is achieved in the same amount of time regardless of signal intensity or ligand dose. All of these features are consistent with experimental findings recently obtained for the Chinese hamster ovary (CHO) cell lines (Asthagiri et al., J. Biol. Chem. 1999, 274, 27119-27127). Our model further predicts that although downstream effects are independent of whether an enzyme or adaptor protein is targeted by negative feedback, adaptor-targeted feedback can "back-propagate" effects upstream of the target, specifically resulting in increased steady-state upstream signal. Consequently, where these upstream components serve as nodes within a signaling network, feedback can transfer signaling through these nodes into alternate pathways, thereby promoting the sort of signaling cross-talk that is becoming more widely appreciated.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
32
|
Hu J, Roy SK, Shapiro PS, Rodig SR, Reddy SP, Platanias LC, Schreiber RD, Kalvakolanu DV. ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma. J Biol Chem 2001; 276:287-97. [PMID: 10995751 DOI: 10.1074/jbc.m004885200] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferons (IFNs) regulate the expression of a number of cellular genes by activating the JAK-STAT pathway. We have recently discovered that CCAAAT/enhancer-binding protein-beta (C/EBP-beta) induces gene transcription through a novel IFN response element called the gamma-IFN-activated transcriptional element (Roy, S. K., Wachira, S. J., Weihua, X., Hu, J., and Kalvakolanu, D. V. (2000) J. Biol. Chem. 275, 12626-12632. Here, we describe a new IFN-gamma-stimulated pathway that operates C/EBP-beta-regulated gene expression independent of JAK1. We show that ERKs are activated by IFN-gamma to stimulate C/EBP-beta-dependent expression. Sustained ERK activation directly correlated with C/EBP-beta-dependent gene expression in response to IFN-gamma. Mutant MKK1, its inhibitors, and mutant ERK suppressed IFN-gamma-stimulated gene induction through the gamma-IFN-activated transcriptional element. Ras and Raf activation was not required for this process. Furthermore, Raf-1 phosphorylation negatively correlated with its activity. Interestingly, C/EBP-beta-induced gene expression required STAT1, but not JAK1. A C/EBP-beta mutant lacking the ERK phosphorylation site failed to promote IFN-stimulated gene expression. Thus, our data link C/EBP-beta to IFN-gamma signaling through ERKs.
Collapse
Affiliation(s)
- J Hu
- Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular and Cellular Biology Program, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Alahari SK, Lee JW, Juliano RL. Nischarin, a novel protein that interacts with the integrin alpha5 subunit and inhibits cell migration. J Cell Biol 2000; 151:1141-54. [PMID: 11121431 PMCID: PMC2190593 DOI: 10.1083/jcb.151.6.1141] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Integrins have been implicated in key cellular functions, including cytoskeletal organization, motility, growth, survival, and control of gene expression. The plethora of integrin alpha and beta subunits suggests that individual integrins have unique biological roles, implying specific molecular connections between integrins and intracellular signaling or regulatory pathways. Here, we have used a yeast two-hybrid screen to identify a novel protein, termed Nischarin, that binds preferentially to the cytoplasmic domain of the integrin alpha5 subunit, inhibits cell motility, and alters actin filament organization. Nischarin is primarily a cytosolic protein, but clearly associates with alpha5beta1, as demonstrated by coimmunoprecipitation. Overexpression of Nischarin markedly reduces alpha5beta1-dependent cell migration in several cell types. Rat embryo fibroblasts transfected with Nischarin constructs have "basket-like" networks of peripheral actin filaments, rather than typical stress fibers. These observations suggest that Nischarin might affect signaling to the cytoskeleton regulated by Rho-family GTPases. In support of this, Nischarin expression reverses the effect of Rac on lamellipodia formation and selectively inhibits Rac-mediated activation of the c-fos promoter. Thus, Nischarin may play a negative role in cell migration by antagonizing the actions of Rac on cytoskeletal organization and cell movement.
Collapse
Affiliation(s)
- S K Alahari
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
34
|
Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA, Chambers TC. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem 2000; 275:29980-5. [PMID: 10913135 DOI: 10.1074/jbc.m003776200] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule-damaging agents arrest cells at G(2)/M and induce apoptosis in association with phosphorylation of the anti-apoptotic proteins Bcl-2 and Bcl-X(L). Because microtubule inhibitors activate JNK, we sought to determine whether JNK was responsible for Bcl-2/Bcl-X(L) phosphorylation in KB-3 cells treated with vinblastine. Two major endogenous forms of JNK, p46(JNK1) and p54(JNK2), were present in KB-3 cells, and both isoforms were activated by vinblastine as determined by Mono Q chromatography. We used antisense oligonucleotides (AS) to specifically inhibit their expression. A combination of AS-JNK1 with AS-JNK2 inhibited by 80% vinblastine-induced phosphorylation of two known JNK substrates, c-Jun and ATF-2. In addition, AS-JNK1/2 inhibited vinblastine-induced phosphorylation of Bcl-2 by 85% and that of Bcl-X(L) by 65%. Stable expression of the JNK scaffold protein JIP-1 blocked vinblastine-induced phosphorylation of c-Jun and ATF-2, but did not affect Bcl-2/Bcl-X(L) phosphorylation, confirming a bifurcation in JNK signaling involving both nuclear and non-nuclear substrates. Vinblastine-induced phosphorylation of Raf-1 was unaffected by AS-JNK1/2 and was associated with loss of activity for MEK substrate in vitro and inactivation of ERK in vivo. These results provide evidence for a direct role of the JNK pathway in apoptotic regulation through Bcl-2/Bcl-X(L) phosphorylation.
Collapse
Affiliation(s)
- M Fan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
35
|
Singh AT, Radeff JM, Kunnel JG, Stern PH. Phosphatidylcholine-specific phospholipase C inhibitor, tricyclodecan-9-yl xanthogenate (D609), increases phospholipase D-mediated phosphatidylcholine hydrolysis in UMR-106 osteoblastic osteosarcoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:201-8. [PMID: 11018472 DOI: 10.1016/s1388-1981(00)00096-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our previous studies have shown that parathyroid hormone (PTH) stimulates phosphatidylcholine (PC) hydrolysis by phospholipase D (PLD) and transphosphatidylation in UMR-106 osteoblastic cells. To determine whether phospholipase C (PLC) is also involved in the PTH-mediated PC hydrolysis, we used the inhibitor, tricyclodecan-9-yl xanthogenate (D609), a putatively selective antagonist of this pathway. Consistent with this proposed mechanism, D609 decreased (3)H-phosphocholine in extracts from UMR-106 cells prelabeled with (3)H-choline. Unexpectedly, D609 enhanced PC hydrolysis and transphosphatidylation, suggesting that either there was a compensatory increase in PLD activity when PLC was inhibited, or that D609 directly increased PLD activity. The D609-stimulated increase in PC hydrolysis was rapid, being seen as early as 2 min. The effect of D609 was temperature-sensitive, consistent with an enzymatic mechanism. The D609-stimulated increase in PC hydrolysis was PKC-independent, based upon the lack of effect of down-regulation of PKC by phorbol 12,13-dibutyrate on the response. The studies reveal a novel action of this inhibitor on signaling in osteoblastic cells which might influence downstream responses.
Collapse
Affiliation(s)
- A T Singh
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611-3008, USA.
| | | | | | | |
Collapse
|
36
|
Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA, Dilworth SM, Mischak H, Kolch W, Baccarini M. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 2000; 275:22300-4. [PMID: 10801873 DOI: 10.1074/jbc.m003259200] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Raf-1 kinase plays a key role in relaying proliferation signals elicited by mitogens or oncogenes. Raf-1 is regulated by complex and incompletely understood mechanisms including phosphorylation. A number of studies have indicated that phosphorylation of serines 259 and 621 can inhibit the Raf-1 kinase. We show that both serines are hypophosphorylated during early mitogenic stimulation and that hypophosphorylation correlates with peak Raf-1 activation. Concentrations of okadaic acid that selectively inhibit protein phosphatase 2A (PP2A) induce phosphorylation of these residues and prevent maximal activation of the Raf-1 kinase. This effect is mediated via phosphorylation of serine 259. The PP2A core heterodimer forms complexes with Raf-1 in vivo and in vitro. These data identify PP2A as a positive regulator of Raf-1 activation and are the first indication that PP2A may support the activation of an associated kinase.
Collapse
Affiliation(s)
- D Abraham
- Vienna Biocenter, Institute of Microbiology and Genetics, Dr. Bohr Gasse 9, A 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nguyen DH, Webb DJ, Catling AD, Song Q, Dhakephalkar A, Weber MJ, Ravichandran KS, Gonias SL. Urokinase-type plasminogen activator stimulates the Ras/Extracellular signal-regulated kinase (ERK) signaling pathway and MCF-7 cell migration by a mechanism that requires focal adhesion kinase, Src, and Shc. Rapid dissociation of GRB2/Sps-Shc complex is associated with the transient phosphorylation of ERK in urokinase-treated cells. J Biol Chem 2000; 275:19382-8. [PMID: 10777511 DOI: 10.1074/jbc.m909575199] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) stimulates MCF-7 cell migration by binding to the UPA receptor and activating the Ras-extracellular signal-regulated kinase (Ras-ERK) signaling pathway. Studies presented here show that soluble uPA receptor and a peptide derived from the linker region between domains 1 and 2 of the uPA receptor also stimulate cellular migration via a mitogen-activated protein kinase/ERK kinase (MEK)-dependent pathway. Signaling proteins that function upstream of Ras in uPA- stimulated cells remain undefined. To address this problem, we transfected MCF-7 cells to express the noncatalytic carboxylterminal domain of focal adhesion kinase (FAK), FAK(Y397F), kinase-defective c-Src, or Shc FFF, all of which express dominant-negative activity. In each case, ERK phosphorylation and cellular migration in response to uPA were blocked. Both activities were rescued by co-transfecting the cells to express constitutively active MEK1, indicating that FAK, c-Src, and Shc are upstream of MEK. Shc was tyrosine-phosphorylated in uPA-treated cells. The level of phosphorylated Shc was increased within 1 min and remained increased for at least 30 min. Sos co-immunoprecipitated with Shc in cells that were treated with uPA for 1-2.5 min, probably reflecting the formation of Shc-Grb2/Sos complex; however, by 10 min, co-immunoprecipitation of Sos with Shc was no longer observed. Rapid dissociation of Sos from Shc represents a possible mechanism for the transient phosphorylation of ERK in uPA-treated MCF-7 cells.
Collapse
Affiliation(s)
- D H Nguyen
- Departments of Biochemistry and Molecular Biology, Pathology, and Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pombo CM, Zalvide J, Gaylinn BD, Diéguez C. Growth hormone-releasing hormone stimulates mitogen-activated protein kinase. Endocrinology 2000; 141:2113-9. [PMID: 10830298 DOI: 10.1210/endo.141.6.7513] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH-releasing hormone (GHRH) can induce proliferation of somatotroph cells. The pathway involving adenylyl cyclase/cAMP/protein kinase A pathway in its target cells seems to be important for this action, or at least it is deregulated in some somatotroph pituitary adenomas. We studied in this work whether GHRH can also stimulate mitogen-activated protein (MAP) kinase. GHRH can activate MAP kinase both in pituitary cells and in a cell line overexpressing the GHRH receptor. Although both protein kinase A and protein kinase C could activate MAP kinase in the CHO cell line studied, neither protein kinase A nor protein kinase C appears to be required for GHRH activation of MAP kinase in this system. However, sequestration of the betagamma-subunits of the G protein coupled to the receptor inhibits MAP kinase activation mediated by GHRH. This pathway also involves p21ras and a phosphatidylinositol 3-kinase, probably phosphatidylinositol 3-kinase-gamma. Despite the involvement of p21ras, the protein kinase Raf-1 is not hyperphosphorylated in response to GHRH, contrary to what usually occurs when the Ras-Raf-MAP kinase pathway is activated. In summary, this work describes for the first time the activation of MAP kinase by GHRH and outlines a path for this activation that is different from the cAMP-dependent mechanism that has been traditionally described as mediating the mitogenic actions of GHRH.
Collapse
Affiliation(s)
- C M Pombo
- Department of Physiology, University of Santiago de Compostela School of Medicine, Spain.
| | | | | | | |
Collapse
|
39
|
Mihály A, Endrész V. Neuronal expression of Raf protooncogene in the brain stem of adult guinea pig. Acta Histochem 2000; 102:203-17. [PMID: 10824613 DOI: 10.1078/s0065-1281(04)70029-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Raf protooncogenes encode for cytoplasmic serine/threonine-specific protein kinases which can be activated via growth factor receptors by phosphorylation. Immunohistochemical and Western blotting studies have proven the existence of Raf protein kinases in neurons of the cerebral cortex of rats and guinea pigs. The aim of the present study was to map the immunohistochemical distribution of Raf kinase-like staining in the brain stem of guinea pig. Polyclonal antibodies were used that were raised against a recombinant viral protein in combination with the avidin-biotin-peroxidase system for detection of immunoreactivity. Specificity of the antibodies was tested in Western blotting experiments. Cytoplasmic immunostaining was observed in motor nuclei of hypoglossal, accessory, vagus, facial, trigeminal, abducent, oculomotor and trochlear nerves, and in the nucleus ambiguus, nucleus retroambigualis, lateral vestibular nucleus, mesencephalic nucleus of the trigeminal nerve, the red nucleus, raphe nuclei and reticular formation. Scattered neurons were stained in other sensory nuclei, such as solitary tract nuclei, medial, dorsal and ventral vestibular nuclei and cochlear nuclei. The spinal trigeminal nucleus and the main sensory nucleus of the trigeminal nerve contained few medium-sized immunoreactive cells. In general, staining was mainly somatodendritic; the axonal plexus was not positive. It is concluded, that the widespread neuronal appearance of cytoplasmic Raf kinase suggests an important role in transmission of trophic and growth factor signals in these neurons.
Collapse
Affiliation(s)
- A Mihály
- Department of Anatomy, Albert Szent-Györgyi Health Science Center, Faculty of Medicine, University of Szeged, Hungary.
| | | |
Collapse
|
40
|
Stone AA, Chambers TC. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp Cell Res 2000; 254:110-9. [PMID: 10623471 DOI: 10.1006/excr.1999.4731] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microtubule inhibitors are widely used in cancer chemotherapy, but the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. Because members of the mitogen-activated protein kinase (MAPK) family have been implicated in regulation of cell survival and cell death, we examined the extent and kinetics of activation of JNK, ERK, and p38 MAPKs in response to treatment of KB-3 carcinoma cells with several microtubule inhibitors. All four agents tested (vinblastine, vincristine, Taxol, and colchicine) caused significant (6- to 13-fold) activation of JNK, concomitant inactivation of ERK, and a reduction in basal p38 MAPK activity. JNK activation and ERK inactivation occurred prior to caspase 3 activation. The microtubule inhibitors also induced phosphorylation of Raf-1 kinase. SEK-1, upstream of JNK, was also activated and phosphorylated in response to the microtubule inhibitors, and sustained phosphorylation of three endogenous JNK substrates (c-Jun, ATF-2, and JunD) was observed. By comparison, the antitumor agent doxorubicin induced activation of JNK and p38 but had no effect on ERK activity or Raf-1. These data demonstrate that microtubule inhibitors elicit distinct and specific effects on MAPK-mediated signaling pathways and suggest in particular that coordinate and reciprocal alterations in JNK and ERK activities are important facets of the cellular response to microtubule disruption.
Collapse
Affiliation(s)
- A A Stone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205-7199, USA
| | | |
Collapse
|
41
|
Asthagiri AR, Nelson CM, Horwitz AF, Lauffenburger DA. Quantitative relationship among integrin-ligand binding, adhesion, and signaling via focal adhesion kinase and extracellular signal-regulated kinase 2. J Biol Chem 1999; 274:27119-27. [PMID: 10480927 DOI: 10.1074/jbc.274.38.27119] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Because integrin-mediated signals are transferred through a physical architecture and synergistic biochemical network whose properties are not well defined, quantitative relationships between extracellular integrin-ligand binding events and key intracellular responses are poorly understood. We begin to address this by quantifying integrin-mediated FAK and ERK2 responses in CHO cells for varied alpha(5)beta(1) expression level and substratum fibronectin density. Plating cells on fibronectin-coated surfaces initiated a transient, biphasic ERK2 response, the magnitude and kinetics of which depended on integrin-ligand binding properties. Whereas ERK2 activity initially increased with a rate proportional to integrin-ligand bond number for low fibronectin density, the desensitization rate was independent of integrin and fibronectin amount but proportional to the ERK2 activity level with an exponential decay constant of 0.3 (+/- 0.08) min(-1). Unlike the ERK2 activation time course, FAK phosphorylation followed a superficially disparate time course. However, analysis of the early kinetics of the two signals revealed them to be correlated. The initial rates of FAK and ERK2 signal generation exhibited similar dependence on fibronectin surface density, with both rates monotonically increasing with fibronectin amount until saturating at high fibronectin density. Because of this similar initial rate dependence on integrin-ligand bond formation, the disparity in their time courses is attributed to differences in feedback regulation of these signals. Whereas FAK phosphorylation increased to a steady-state level as new integrin-ligand bond formation continued during cell spreading, ERK2 activity was decoupled from the integrin-ligand stimulus and decayed back to a basal level. Accordingly, we propose different functional metrics for representing these two disparate dynamic signals: the steady-state tyrosine phosphorylation level for FAK and the integral of the pulse response for ERK2. These measures of FAK and ERK2 activity were found to correlate with short term cell-substratum adhesivity, indicating that signaling via FAK and ERK2 is proportional to the number of integrin-fibronectin bonds.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Division of Bioengineering and Environmental Health, and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
42
|
Slack JK, Catling AD, Eblen ST, Weber MJ, Parsons JT. c-Raf-mediated inhibition of epidermal growth factor-stimulated cell migration. J Biol Chem 1999; 274:27177-84. [PMID: 10480934 DOI: 10.1074/jbc.274.38.27177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor stimulates migration of a number of cell types, yet the signaling pathways that regulate epidermal growth factor-stimulated migration are poorly defined. In this report, we employ a transient transfection migration assay to assess the role of components of the Ras-mitogen-activated protein (MAP) kinase signaling pathway in epidermal growth factor-stimulated chemotaxis of rat embryo fibroblasts. Expression of dominant negative Ras blocks epidermal growth factor-mediated chemotaxis, while constitutively active Ras has no effect on chemokinesis or chemotaxis. PD98059 and U0126, inhibitors of MAP kinase kinase (MEK) activity, decreased epidermal growth factor-stimulated migration, while kinase-defective MEK1, an inhibitor of MAP kinase activation, enhanced migration. To understand the paradoxical effects of these molecules on epidermal growth factor-induced migration, we examined the role of c-Raf on migration. Expression of either wild type c-Raf or the catalytic domain of c-Raf effectively inhibited epidermal growth factor-stimulated cell migration. We suggest that, whereas Ras activity is necessary to promote epidermal growth factor-stimulated migration, sustained activation of c-Raf may be important in down-regulating migratory signaling pathways triggered by epidermal growth factor receptor activation. Further, activation of c-Raf upon inhibition of the MEK-MAP kinase pathway may contribute to the inhibition of cell migration observed with pharmacological MEK inhibitors.
Collapse
Affiliation(s)
- J K Slack
- Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
43
|
Weiss RH, Ramirez A, Joo A. Short-term pravastatin mediates growth inhibition and apoptosis, independently of Ras, via the signaling proteins p27Kip1 and P13 kinase. J Am Soc Nephrol 1999; 10:1880-90. [PMID: 10477139 DOI: 10.1681/asn.v1091880] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Growth factor-stimulated DNA synthesis in a variety of cell lines has been shown to be decreased after overnight (or longer) treatment with the 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, the statins. Although this anti-mitogenic effect had been presumed to be the result of the impairment of Ras lipidation, a stable modification (T1/2 approximately 20 h), this study provides new data demonstrating that brief (approximately 1 h) pretreatment of rat vascular smooth muscle cells with 100 microM pravastatin before platelet-derived growth factor-BB (PDGF-BB) stimulation results in attenuation of DNA synthesis through a Ras-independent mechanism. PDGF-BB-stimulated PDGF-beta receptor tyrosine phosphorylation, Ras activity, and mitogen-activated protein/extracellular signal-regulated kinase activity are unaffected by from 10 min to 1 h of pravastatin incubation, while Raf activity is markedly increased after 1 h of pravastatin. Phosphatidylinositol-3 kinase activity and phosphorylation of its downstream effector Akt are decreased after 1 h pravastatin incubation. Rho is stabilized by pravastatin, and ADP-ribosylation of Rho by C3 exoenzyme decreases PDGF-stimulated phosphatidylinositol-3 kinase activity, mimicking the effect of pravastatin on this signaling protein. Levels of the cyclin-dependent kinase inhibitor p27Kip1 are increased when cells were preincubated with pravastatin for 1 h and then exposed to PDGF, and apoptosis is induced by pravastatin incubation times as short as 1 to 4 h. Thus, short-term, high-dose pravastatin inhibits vascular smooth muscle cell growth and induces apoptosis independently of Ras, likely by means of the drug's effect on p27Kip1, mediated by Rho and/or phosphatidylinositol-3 kinase. This work demonstrates for the first time that the statins may be therapeutically useful when applied for short periods of time such that potential toxicity of long-term statin use (such as chronic Ras inhibition) may be avoided, suggesting future therapeutic directions for statin research.
Collapse
Affiliation(s)
- R H Weiss
- Department of Internal Medicine, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
44
|
Boeshans KM, Resing KA, Hunt JB, Ahn NG, Shabb JB. Structural characterization of the membrane-associated regulatory subunit of type I cAMP-dependent protein kinase by mass spectrometry: identification of Ser81 as the in vivo phosphorylation site of RIalpha. Protein Sci 1999; 8:1515-22. [PMID: 10422841 PMCID: PMC2144381 DOI: 10.1110/ps.8.7.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mechanism by which the type Ialpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase is localized to cell membranes is unknown. To determine if structural modification of RIalpha is important for membrane association, both beef skeletal muscle cytosolic RI and beef heart membrane-associated RI were characterized by electrospray ionization mass spectrometry. Total sequence coverage was 98% for both the membrane-associated and cytosolic forms of RI after digestion with AspN protease or trypsin. Sequence data indicated that membrane-associated and cytosolic forms of RI were the same RIalpha gene product. A single RIalpha phosphorylation site was identified at Ser81 located near the autoinhibitory domain of both membrane-associated and cytosolic RIalpha. Because both R subunit preparations were 30-40% phosphorylated, this post-translational modification could not be responsible for the membrane compartmentation of the majority of RIalpha. Mass spectrometry also indicated that membrane-associated RIalpha had a higher extent of disulfide bond formation in the amino-terminal dimerization domain. No other structural differences between cytosolic and membrane-associated RIalpha were detected. Consistent with these data, masses of the intact proteins were identical by LCQ mass spectrometry. Lack of detectable structural differences between membrane-associated and cytosolic RIalpha strongly suggests an interaction between RIalpha and anchoring proteins or membrane lipids as more likely mechanisms for explaining RIalpha membrane association in the heart.
Collapse
Affiliation(s)
- K M Boeshans
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks 58202-9037, USA
| | | | | | | | | |
Collapse
|
45
|
Kaufman M, Andris F, Leo O. A logical analysis of T cell activation and anergy. Proc Natl Acad Sci U S A 1999; 96:3894-9. [PMID: 10097134 PMCID: PMC22391 DOI: 10.1073/pnas.96.7.3894] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Accepted: 12/17/1998] [Indexed: 11/18/2022] Open
Abstract
Interaction of the antigen-specific receptor of T lymphocytes with its antigenic ligand can lead either to cell activation or to a state of profound unresponsiveness (anergy). Although subtle changes in the nature of the ligand or of the antigen-presenting cell have been shown to affect the outcome of T cell receptor ligation, the mechanism by which the same receptor can induce alternative cellular responses is not completely understood. A model for explaining both positive (cell proliferation and cytokine production) and negative (anergy induction) signaling of T lymphocytes is described herein. This model relies on the autophosphorylative properties of the tyrosine kinases associated with the T cell receptor. One of its basic assumptions is that the kinase activity of these receptor-associated enzymes remains above background level after ligand removal and is responsible for cellular unresponsiveness. Using a simple Boolean formalism, we show how the timing of the binding and intracellular signal-transduction events can affect the properties of receptor signaling and determine the type of cellular response. The present approach integrates into a common framework a large body of experimental observations and allows specification of conditions leading to cellular activation or to anergy.
Collapse
Affiliation(s)
- M Kaufman
- Université Libre de Bruxelles, Centre for Nonlinear Phenomena and Complex Systems, Campus Plaine CP 231, 1050 Brussels, Belgium.
| | | | | |
Collapse
|
46
|
Abstract
We have used site-directed mutagenesis to explore the mechanisms underlying Raf-1 activation in mitosis, and we have excluded most previously characterized activating interactions. Our results indicate that the primary locus of activation lies in the carboxyl-half of the molecule, although the extent of activation can be influenced by the amino-proximal region, particularly by the Raf-1 zinc finger. We also found that Raf-1 is hyperphosphorylated in mitosis at multiple sites within residues 283-302 and that these hyperphosphorylations are not required for activation. In addition, neither Mek1 nor Mek2 are stably activated in coordination with Raf-1 in nocodazole-arrested cells. Overall, the data suggest that the mechanism(s) responsible for activating Raf-1 during mitosis, and the subsequent downstream effects, are distinct from those involved in growth factor stimulation.
Collapse
Affiliation(s)
- A D Laird
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
47
|
Shahrestanifar M, Fan X, Manning DR. Lysophosphatidic acid activates NF-kappaB in fibroblasts. A requirement for multiple inputs. J Biol Chem 1999; 274:3828-33. [PMID: 9920937 DOI: 10.1074/jbc.274.6.3828] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a growth factor that exerts a number of well characterized biological actions on fibroblasts and other cells. In the present study, we investigated the possibility that LPA activates the transcription factor NF-kappaB. NF-kappaB is a target of cytokines, but its activation by other classes of agonists has raised considerable interest in the control of processes such as inflammation and wound healing through varied mechanisms. We find that LPA causes a marked activation of NF-kappaB in Swiss 3T3 fibroblasts as determined by the degradation of IkappaB-alpha in the cytosol and the emergence of kappaB binding activity in nuclear extracts. The EC50 for activation of NF-kappaB is 1-5 microM, a range similar to that reported for reinitiation of DNA synthesis and activation of the serum response element. Activation of NF-kappaB is attenuated by pertussis toxin and inhibitors of protein kinase C, and it is completely blocked by the Ca2+ chelator BAPTA-AM. The combination of phorbol ester and thapsigargin promotes an activation comparable with that of LPA. Activation by LPA is additionally inhibited by tyrphostin A25 but not genistein or AG1478, indicating a selective utilization of protein-tyrosine kinases, and by certain antioxidants, implying a role for reactive oxygen species. The activation is also inhibited by tricyclodecan-9-yl-xanthogenate (D609), implying a requirement for hydrolysis of phosphatidylcholine. The data demonstrate the utilization of multiple pathways in the activation of NF-kappaB by LPA, not inconsistent with the relevance of several families of GTP-binding regulatory proteins.
Collapse
Affiliation(s)
- M Shahrestanifar
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | |
Collapse
|
48
|
Sánchez C, Galve-Roperh I, Rueda D, Guzmán M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 1998; 54:834-43. [PMID: 9804618 DOI: 10.1124/mol.54.5.834] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of cannabinoids on metabolic pathways and signal transduction systems were studied in primary cultures of rat astrocytes. Delta9-Tetrahydrocannabinol (THC), the major active component of marijuana, increased the rate of glucose oxidation to CO2 as well as the rate of glucose incorporation into phospholipids and glycogen. These effects of THC were mimicked by the synthetic cannabinoid HU-210, and prevented by forskolin, pertussis toxin, and the CB1 receptor antagonist SR 141716. THC did not affect basal cAMP levels but partially antagonized the forskolin-induced elevation of intracellular cAMP concentration. THC stimulated p42/p44 mitogen-activated protein kinase (MAPK) activity, Raf-1 phosphorylation, and Raf-1 translocation to the particulate cell fraction. In addition, the MAPK inhibitor PD 098095 and the phosphoinositide 3-kinase inhibitors wortmannin and LY 294002 were able to antagonize the THC-induced stimulation of glucose oxidation to CO2, phospholipid synthesis and glycogen synthesis. The possible involvement of sphingomyelin breakdown in the metabolic effects of THC was studied subsequently. THC produced a rapid stimulation of sphingomyelin hydrolysis that was concomitant to an elevation of intracellular ceramide levels. This effect was prevented by SR 141716. Moreover, the cell-permeable ceramide analog D-erythro-N-octanoylsphingosine, as well as exogenous sphingomyelinase, were able in turn to stimulate MAPK activity, to increase the amount of Raf-1 bound to the particulate cell fraction, and to stimulate glucose metabolism. The latter effect was prevented by PD 098059 and was not additive to that exerted by THC. Results thus indicate that THC produces a cannabinoid receptor-mediated stimulation of astrocyte metabolism that seems to rely on sphingomyelin hydrolysis and MAPK stimulation.
Collapse
Affiliation(s)
- C Sánchez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Abstract
Casein kinase 2 is present in the brain, including the hippocampus. It is associated with long-term potentiation and is known to be involved in phosphorylation of proteins potentially important for neuroplasticity, but regulation of its activity in neuronal cells is not yet known. In the present work, it was found that brain-derived neurotrophic factor and neurotrophin-4 control the activity of casein kinase 2 in hippocampal slices of adult rat. It is shown that: (i) treatment of slices for 4 h with the neurotrophins results in a five-fold increase in the activity of cytosolic casein kinase 2; (ii) this effect does not require protein synthesis. In addition, using calcium chelators, phospholipase inhibitors and protein kinase inhibitors, evidence is provided that: (i) neurotrophin-induced activation of casein kinase 2 is dependent on the availability of intracellular calcium due to stimulation of phospholipase C; (ii) both a tyrosine kinase(s) and a serine/threonine kinase(s) convey the signal of calcium. Since there is now accumulating evidence for involvement of brain-derived neurotrophic factor, intracellular calcium, tyrosine kinases and serine/threonine kinases in the regulation of synaptic plasticity, it is suggested that the signalling cascade detected here might contribute to control of synaptic strength in the hippocampus.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France
| |
Collapse
|
50
|
Ziogas A, Lorenz IC, Moelling K, Radziwill G. Mitotic Raf-1 is stimulated independently of Ras and is active in the cytoplasm. J Biol Chem 1998; 273:24108-14. [PMID: 9727031 DOI: 10.1074/jbc.273.37.24108] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Raf-1 is a Ser/Thr protein kinase that is involved in regulation of proliferation, differentiation, and apoptosis. Recently, we and others showed that Raf-1 is not only activated in mitogenic pathways leading to cell cycle entry but also during mitosis. Transient expression studies in COS cells now demonstrate that, in contrast to growth factor-dependent activation of Raf-1, mitotic activation of Raf-1 is Ras-independent. Dominant negative RasS17N does not interfere with mitotic activation of Raf-1, whereas epidermal growth factor-dependent stimulation of Raf-1 is inhibited. In addition, the Raf-1 mutant RafR89L, which cannot bind to activated Ras, is still stimulated in mitotic cells. Mitotic activation of Raf-1 seems to be partially dependent on tyrosine phosphorylation since the kinase activity of the Raf mutant RafYY340/341FF, which can no longer be activated by Src, is reduced in mitotic cells. Surprisingly, cell fractionation experiments showed that mitotic-activated Raf-1 is predominantly located in the cytoplasm in contrast to the mitogen-activated Raf-1 that is bound to the plasma membrane. In addition, mitotic activation of Raf-1 does not lead to stimulation of the mitogen-activated protein kinase kinase (MAPKK or MEK) and the extracellular signal-regulated protein kinase (ERK). These data demonstrate that in mitotic cells a Ras-independent mechanism results in a cytoplasmic active Raf-1 kinase which does not signal via the MEK/ERK pathway. These data demonstrate that in mitotic cells a Ras-independent mechanism results in a cytoplasmic active Raf-1 kinase which does not signal via the MEK/ERK pathway.
Collapse
Affiliation(s)
- A Ziogas
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8028 Zurich, Switzerland
| | | | | | | |
Collapse
|