1
|
Roka-Moiia Y, Ammann KR, Miller-Gutierrez S, Sheriff J, Bluestein D, Italiano JE, Flaumenhaft RC, Slepian MJ. Shear-Mediated Platelet Microparticles Demonstrate Phenotypic Heterogeneity as to Morphology, Receptor Distribution, and Hemostatic Function. Int J Mol Sci 2023; 24:7386. [PMID: 37108551 PMCID: PMC10138836 DOI: 10.3390/ijms24087386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Implantable Cardiovascular Therapeutic Devices (CTD), while lifesaving, impart supraphysiologic shear stress to platelets, resulting in thrombotic and bleeding coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbβ3 receptors via generation of Platelet-Derived MicroParticles (PDMPs). Here, we test the hypothesis that sheared PDMPs manifest phenotypical heterogeneity of morphology and receptor surface expression and modulate platelet hemostatic function. Human gel-filtered platelets were exposed to continuous shear stress. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation was measured by optical aggregometry. Shear stress promotes notable alterations in platelet morphology and ejection of distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the remodeling of platelet receptors, with PDMPs expressing significantly higher levels of adhesion receptors (αIIbβ3, GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist receptors (P2Y12 and PAR1). Sheared PDMPs promote thrombin generation and inhibit platelet aggregation induced by collagen and ADP. Sheared PDMPs demonstrate phenotypic heterogeneity as to morphology and defined patterns of surface receptors and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Sarver Heart Center, Departments of Medicine and Biomedical Engineering, University of Arizona, 1501 N Campbell Ave, Building 201E, Room 6139, Tucson, AZ 85724, USA; (Y.R.-M.)
| | - Kaitlyn R. Ammann
- Sarver Heart Center, Departments of Medicine and Biomedical Engineering, University of Arizona, 1501 N Campbell Ave, Building 201E, Room 6139, Tucson, AZ 85724, USA; (Y.R.-M.)
| | - Samuel Miller-Gutierrez
- Sarver Heart Center, Departments of Medicine and Biomedical Engineering, University of Arizona, 1501 N Campbell Ave, Building 201E, Room 6139, Tucson, AZ 85724, USA; (Y.R.-M.)
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph E. Italiano
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert C. Flaumenhaft
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Marvin J. Slepian
- Sarver Heart Center, Departments of Medicine and Biomedical Engineering, University of Arizona, 1501 N Campbell Ave, Building 201E, Room 6139, Tucson, AZ 85724, USA; (Y.R.-M.)
| |
Collapse
|
2
|
Roka-Moiia Y, Ammann K, Miller-Gutierrez S, Sheriff J, Bluestein D, Italiano JE, Flaumenhaft RC, Slepian MJ. Shear-Mediated Platelet Microparticles Demonstrate Phenotypic Heterogeneity as to Morphology, Receptor Distribution, and Hemostatic Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527675. [PMID: 36798322 PMCID: PMC9934663 DOI: 10.1101/2023.02.08.527675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Objective Implantable cardiovascular therapeutic devices (CTD) including stents, percutaneous heart valves and ventricular assist devices, while lifesaving, impart supraphysiologic shear stress to platelets resulting in thrombotic and bleeding device-related coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbβ3 receptors via generation of platelet-derived microparticles (PDMPs). Here, we test the hypothesis that shear-generated PDMPs manifest phenotypical heterogeneity of their morphology and surface expression of platelet receptors, and modulate platelet hemostatic function. Approach and Results Human gel-filtered platelets were exposed to continuous shear stress and sonication. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation in plasma was measured by optical aggregometry. We demonstrate that platelet exposure to shear stress promotes notable alterations in platelet morphology and ejection of several distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the differential remodeling of platelet receptors with PDMPs expressing significantly higher levels of both adhesion (α IIb β 3 , GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist-evoked receptors (P 2 Y 12 & PAR1). Shear-mediated PDMPs have a bidirectional effect on platelet hemostatic function, promoting thrombin generation and inhibiting platelet aggregation induced by collagen and ADP. Conclusions Shear-generated PDMPs demonstrate phenotypic heterogeneity as to morphologic features and defined patterns of surface receptor alteration, and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.
Collapse
|
3
|
GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Adv 2021; 4:76-86. [PMID: 31899801 DOI: 10.1182/bloodadvances.2019000467] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.
Collapse
|
4
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
5
|
Chaudhary PK, Kim S, Jee Y, Lee SH, Park KM, Kim S. Role of GRK6 in the Regulation of Platelet Activation through Selective G Protein-Coupled Receptor (GPCR) Desensitization. Int J Mol Sci 2020; 21:ijms21113932. [PMID: 32486261 PMCID: PMC7312169 DOI: 10.3390/ijms21113932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022] Open
Abstract
Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.); (K.-M.P.)
| | - Sanggu Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.); (K.-M.P.)
| | - Youngheun Jee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Seung-Hun Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.); (K.-M.P.)
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.); (K.-M.P.)
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.); (K.-M.P.)
- Correspondence: ; Tel.: +82-43-249-1846
| |
Collapse
|
6
|
Yadav VK, Singh PK, Agarwal V, Singh SK. Crosstalk between Platelet and Bacteria: A Therapeutic Prospect. Curr Pharm Des 2019; 25:4041-4052. [PMID: 31553286 DOI: 10.2174/1381612825666190925163347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Platelets are typically recognized for their roles in the maintenance of hemostasis and vascular wall repair to reduce blood loss. Beyond hemostasis, platelets also play a critical role in pathophysiological conditions like atherosclerosis, stroke, thrombosis, and infections. During infection, platelets interact directly and indirectly with bacteria through a wide range of cellular and molecular mechanisms. Platelet surface receptors such as GPIbα, FcγRIIA, GPIIbIIIa, and TLRs, etc. facilitate direct interaction with bacterial cells. Besides, the indirect interaction between platelet and bacteria involves host plasma proteins such as von Willebrand Factor (vWF), fibronectin, IgG, and fibrinogen. Bacterial cells induce platelet activation, aggregation, and thrombus formation in the microvasculature. The activated platelets induce the Neutrophil Extracellular Traps (NETs) formation, which further contribute to thrombosis. Thus, platelets are extensively anticipated as vital immune modulator cells during infection, which may further lead to cardiovascular complications. In this review, we cover the interaction mechanisms between platelets and bacteria that may lead to the development of thrombotic disorders. Platelet receptors and other host molecules involved in such interactions can be used to develop new therapeutic strategies to combat against infection-induced cardiovascular complications. In addition, we highlight other receptor and enzyme targets that may further reduce infection-induced platelet activation and various pathological conditions.
Collapse
Affiliation(s)
- Vivek K Yadav
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Pradeep K Singh
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Vishnu Agarwal
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sunil K Singh
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Miyazawa B, Trivedi A, Togarrati PP, Potter D, Baimukanova G, Vivona L, Lin M, Lopez E, Callcut R, Srivastava AK, Kornblith LZ, Fields AT, Schreiber MA, Wade CE, Holcomb JB, Pati S. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg 2019; 86:931-942. [PMID: 31124890 PMCID: PMC7381393 DOI: 10.1097/ta.0000000000002230] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet (Plt)-derived extracellular vesicles (Plt-EVs) have hemostatic properties similar to Plts. In addition to hemostasis, Plts also function to stabilize the vasculature and maintain endothelial cell (EC) barrier integrity. We hypothesized that Plt-EVs would inhibit vascular EC permeability, similar to fresh Plts. To investigate this hypothesis, we used in vitro and in vivo models of vascular endothelial compromise and bleeding. METHODS In the vitro model, Plt-EVs were isolated by ultracentrifugation and characterized for Plt markers and particle size distribution. Effects of Plts and Plt-EVs on endothelial barrier function were assessed by transendothelial electrical resistance measurements and histological analysis of endothelial junction proteins. Hemostatic potential of Plt-EVs and Plts was assessed by multiple electrode Plt aggregometry. Using an in vivo model, the effects of Plts and Plt-EVs on vascular permeability and bleeding were assessed in non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice by an established Miles assay of vascular permeability and a tail snip bleeding assay. RESULTS In the in vitro model, Plt-EVs displayed exosomal size distribution and expressed Plt-specific surface markers. Platelets and Plt-EVs decreased EC permeability and restored EC junctions after thrombin challenge. Multiplate aggregometry revealed that Plt-EVs enhanced thrombin receptor-activating peptide-mediated aggregation of whole blood, whereas Plts enhanced thrombin receptor-activating peptide-, arachidonic acid-, collagen-, and adenosine diphosphate-mediated aggregation. In the in vivo model, Plt-EVs are equivalent to Plts in attenuating vascular endothelial growth factor (VEGF)-A-induced vascular permeability and uncontrolled blood loss in a tail snip hemorrhage model. CONCLUSION Our study is the first to report that Plt-EVs might provide a feasible product for transfusion in trauma patients to attenuate bleeding, inhibit vascular permeability, and mitigate the endotheliopathy of trauma.
Collapse
Affiliation(s)
- Byron Miyazawa
- From the Department of Laboratory Medicine (B.M., A.T., D.P., L.V., M.L., S.P.), University of California; Blood Systems Research Institute (P.P.T., G.B.), San Francisco, California; Department of Surgery (EL., C.E.W.), University of Texas Health Science Center at Houston; Department of Pediatric Surgery (A.K.S., J.B.H.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Surgery (R.C., L.Z.K., A.T.F.), University of California San Francisco, San Francisco, California; Department of Surgery (M.A.S.), Oregon Health Science and University, Portland, Oregon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Pourtau L, Sellal JM, Lacroix R, Poncelet P, Bernus O, Clofent-Sanchez G, Hocini M, Haïssaguerre M, Dignat-George F, Sacher F, Nurden P. Platelet function and microparticle levels in atrial fibrillation: Changes during the acute episode. Int J Cardiol 2018; 243:216-222. [PMID: 28747025 DOI: 10.1016/j.ijcard.2017.03.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Thrombotic risk constitutes a major complication of atrial fibrillation (AF). Platelets and microparticles (MPs) are important for hemostasis and thrombosis, however their participation during AF is not well known. The aim of this study was to characterize platelet function and MPs procoagulant and fibrinolytic activity in AF patients and to determine the effects of an acute-AF episode. METHODS Blood was collected from paroxysmal (21) and persistent (16) AF patients referred for AF catheter ablation. Ten patients in sinus rhythm for 10days were induced in AF allowing comparisons of left atrium samples before and after induction. Platelet aggregation with ADP, TRAP, collagen, and ristocetin was studied. Platelet surface expression of PAR-1, αIIbβ3, GPIb and P-selectin were evaluated by flow cytometry, and MPs-associated procoagulant and fibrinolytic activity levels were determined by functional assays. RESULTS A specific reduction in platelet aggregation to TRAP, activating the thrombin receptor PAR-1, was found in all AF patients. No differences in platelet receptor expression were found. Yet, after acute-induced AF, the platelet response was improved. Furthermore, a significant decrease of left atrium tissue factor-dependent procoagulant activity of MPs was observed. CONCLUSION Acute episodes of AF results in a decrease in MPs-associated tissue factor activity, possibly corresponding to consumption, which in turn favors coagulation and the local production of thrombin. A decreased platelet basal aggregation to TRAP may result from PAR1 desensitization, whereas the improved response after an induced episode of AF suggests activation of coagulation and PAR1 re-sensitization.
Collapse
Affiliation(s)
- Line Pourtau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France.
| | - Jean Marc Sellal
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France; Centre Hospitalier Régional Universitaire (CHRU) de Nancy, département de cardiologie, 54500 Vandœuvre-lès-Nancy, France.
| | - Romaric Lacroix
- VRCM, UMR-S1076, Aix -Marseille Université, INSERM, UFR de Pharmacie, 13385 Marseille, France; Department of Haematology and Vascular Biology, CHU Conception, AP-HM, 13385 Marseille, France.
| | - Philippe Poncelet
- Research & Technology Department, BioCytex, 13010 Marseille, France.
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France.
| | - Gisèle Clofent-Sanchez
- Univ Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, U5536, 33076 Bordeaux, France.
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France.
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France.
| | - Françoise Dignat-George
- VRCM, UMR-S1076, Aix -Marseille Université, INSERM, UFR de Pharmacie, 13385 Marseille, France; Department of Haematology and Vascular Biology, CHU Conception, AP-HM, 13385 Marseille, France.
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France.
| | - Paquita Nurden
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France.
| |
Collapse
|
10
|
Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost 2016; 14:918-30. [PMID: 26929147 PMCID: PMC4879507 DOI: 10.1111/jth.13302] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/11/2016] [Indexed: 01/22/2023]
Abstract
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology, and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation, or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators.
Collapse
Affiliation(s)
- A P Bye
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - A J Unsworth
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - J M Gibbins
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
11
|
TRAP-induced platelet aggregation is enhanced in cardiovascular patients receiving dabigatran. Thromb Res 2016; 138:63-68. [DOI: 10.1016/j.thromres.2015.10.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022]
|
12
|
Schaff M, Gachet C, Mangin PH. [Anti-platelets without a bleeding risk: novel targets and strategies]. Biol Aujourdhui 2016; 209:211-28. [PMID: 26820829 DOI: 10.1051/jbio/2015023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/29/2023]
Abstract
Anti-platelet agents such as aspirin, clopidogrel and antagonists of integrin αIIbβ3 allowed to efficiently reduce morbidity and mortality associated with arterial thrombosis. A major limit of these drugs is that they increase the risk of bleeding. During the last few years, several innovative anti-thrombotic strategies with a potentially low bleeding risk were proposed. These approaches target the collagen receptor glycoprotein (GP) VI, the GPIb/von Willebrand factor axis, the thrombin receptor PAR-1, the activated form of integrin αIIbβ3 or the ADP receptor P2Y1. While an antagonist of PAR-1 was recently marketed, the clinical proofs of the efficiency and safety of the other agents remain to be established. This review evaluates these new anti-platelet approaches toward safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Mathieu Schaff
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australie
| | - Christian Gachet
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Larocca LM, Heller PG, Podda G, Pujol-Moix N, Glembotsky AC, Pecci A, Alberelli MA, Balduini CL, Landolfi R, Cattaneo M, De Candia E. Megakaryocytic emperipolesis and platelet function abnormalities in five patients with gray platelet syndrome. Platelets 2015; 26:751-7. [PMID: 25806575 DOI: 10.3109/09537104.2014.994093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The gray platelet syndrome (GPS) is a rare congenital platelet disorder characterized by mild to moderate bleeding diathesis, macrothrombocytopenia and lack of azurophilic α-granules in platelets. Some platelet and megakaryocyte (MK) abnormalities have been described, but confirmative studies of the defects in larger patient cohorts have not been undertaken. We studied platelet function and bone marrow (BM) features in five GPS patients with NBEAL2 autosomal recessive mutations from four unrelated families. In 3/3 patients, we observed a defect in platelet responses to protease-activated receptor (PAR)1-activating peptide as the most consistent finding, either isolated or combined to defective responses to other agonists. A reduction of PAR1 receptors with normal expression of major glycoproteins on the platelet surface was also found. Thrombin-induced fibrinogen binding to platelets was severely impaired in 2/2 patients. In 4/4 patients, the BM biopsy showed fibrosis (grade 2-3) and extensive emperipolesis, with many (36-65%) MKs containing 2-4 leukocytes engulfed within the cytoplasm. Reduced immunolabeling for platelet factor 4 together with normal immunolabeling for CD63 in MKs of two patients demonstrated that GPS MKs display an alpha granule-specific defect. Increased immunolabeling for P-selectin and decreased immunolabeling for PAR1, PAR4 and c-MPL were also observed in MKs of two patients. Marked emperipolesis, specific defect of MK alpha-granule content and defect of PAR1-mediated platelet responses are present in all GPS patients that we could study in detail. These results help to further characterize the disease.
Collapse
Affiliation(s)
- Luigi M Larocca
- a Department of Pathology , Policlinico A. Gemelli, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Paula G Heller
- b Department of Hematology Research , Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET , Buenos Aires , Argentina
| | - Gianmarco Podda
- c Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute , Università degli Studi di Milano , Milano , Italy
| | - Nuria Pujol-Moix
- d Hemostasis and Thrombosis Unit, Department of Medicine , Institut de Recerca Sant Pau, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Ana C Glembotsky
- b Department of Hematology Research , Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET , Buenos Aires , Argentina
| | - Alessandro Pecci
- e Department of Internal Medicine , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pava , Italy , and
| | - Maria Adele Alberelli
- f Department of Internal Medicine , Policlinico A. Gemelli, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Carlo L Balduini
- e Department of Internal Medicine , IRCCS Policlinico San Matteo Foundation, University of Pavia , Pava , Italy , and
| | - Raffaele Landolfi
- f Department of Internal Medicine , Policlinico A. Gemelli, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Marco Cattaneo
- c Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute , Università degli Studi di Milano , Milano , Italy
| | - Erica De Candia
- f Department of Internal Medicine , Policlinico A. Gemelli, Università Cattolica del Sacro Cuore , Roma , Italy
| |
Collapse
|
14
|
Novel Anti-platelet Agents: Focus on Thrombin Receptor Antagonists. J Cardiovasc Transl Res 2013; 6:415-24. [DOI: 10.1007/s12265-013-9454-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/05/2013] [Indexed: 11/25/2022]
|
15
|
Hurley A, Smith M, Karpova T, Hasley RB, Belkina N, Shaw S, Balenga N, Druey KM, Nickel E, Packard B, Imamichi H, Hu Z, Follmann D, McNally J, Higgins J, Sneller M, Lane HC, Catalfamo M. Enhanced effector function of CD8(+) T cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1. J Infect Dis 2013; 207:638-50. [PMID: 23204166 PMCID: PMC3549602 DOI: 10.1093/infdis/jis730] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
Disruption of vascular integrity by trauma and other tissue insults leads to inflammation and activation of the coagulation cascade. The serine protease thrombin links these 2 processes. The proinflammatory function of thrombin is mediated by activation of protease-activated receptor 1 (PAR-1). We found that peripheral blood effector memory CD4(+) and CD8(+) T lymphocytes expressed PAR-1 and that expression was increased in CD8(+) T cells from human immunodeficiency virus (HIV)-infected patients. Thrombin enhanced cytokine secretion in CD8(+) T cells from healthy controls and HIV-infected patients. In addition, thrombin induced chemokinesis, but not chemotaxis, of CD8(+) T cells, which led to structural changes, including cell polarization and formation of a structure rich in F-actin and phosphorylated ezrin-radexin-moesin proteins. These findings suggest that thrombin mediates cross-talk between the coagulation system and the adaptive immune system at sites of vascular injury through increased T-cell motility and production of proinflammatory cytokines.
Collapse
Affiliation(s)
| | | | | | | | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda
| | - Stephen Shaw
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda
| | | | | | | | | | | | - Zonghui Hu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | |
Collapse
|
16
|
Berlacher MD, Vieth JA, Heflin BC, Gay SR, Antczak AJ, Tasma BE, Boardman HJ, Singh N, Montel AH, Kahaleh MB, Worth RG. FcγRIIa Ligation Induces Platelet Hypersensitivity to Thrombotic Stimuli. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:244-54. [DOI: 10.1016/j.ajpath.2012.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 01/18/2023]
|
17
|
|
18
|
Lee H, Hamilton JR. Physiology, pharmacology, and therapeutic potential of protease-activated receptors in vascular disease. Pharmacol Ther 2012; 134:246-59. [DOI: 10.1016/j.pharmthera.2012.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/09/2023]
|
19
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
20
|
Protease-activated receptor 1 (PAR1) signalling desensitization is counteracted via PAR4 signalling in human platelets. Biochem J 2011; 436:469-80. [PMID: 21391917 DOI: 10.1042/bj20101360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both G(α12/13) and G(αq) signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca²⁺ mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y₁₂ receptor-induced G(αi) signalling accounted for the loss of the aggregation response, as mimicking G(αi/z) signalling with 2-MeS-ADP (2-methylthioadenosine-5'-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.
Collapse
|
21
|
Getz TM, Dangelmaier CA, Jin J, Daniel JL, Kunapuli SP. Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets. J Thromb Haemost 2010; 8:2283-93. [PMID: 20670370 PMCID: PMC2965805 DOI: 10.1111/j.1538-7836.2010.04000.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Myosin IIA is an essential platelet contractile protein that is regulated by phosphorylation of its regulatory light chain (MLC) on residues (Thr)18 and (Ser)19 via the myosin light chain kinase (MLCK). OBJECTIVE The present study was carried out to elucidate the mechanisms regulating MLC (Ser)19 and (Thr)18 phosphorylation and the functional consequence of each phosphorylation event in platelets. RESULTS Induction of 2MeSADP-induced shape change occurs within 5s along with robust phosphorylation of MLC (Ser)19 with minimal phosphorylation of MLC (Thr)18. Selective activation of G(12/13) produces both slow shape change and comparably slow MLC (Thr)18 and (Ser)19 phosphorylation. Stimulation with agonists that trigger ATP secretion caused rapid MLC (Ser)19 phosphorylation while MLC (Thr)18 phosphorylation was coincident with secretion. Platelets treated with p160(ROCK) inhibitor Y-27632 exhibited a partial inhibition in secretion and had a substantial inhibition in MLC (Thr)18 phosphorylation without effecting MLC (Ser)19 phosphorylation. These data suggest that phosphorylation of MLC (Ser)19 is downstream of Gq/Ca(2+) -dependent mechanisms and sufficient for shape change, whereas MLC (Thr)18 phosphorylation is substantially downstream of G(12/13) -regulated Rho kinase pathways and necessary, probably in concert with MLC (Ser)19 phosphorylation, for full contractile activity leading to dense granule secretion. Overall, we suggest that the amplitude of the platelet contractile response is differentially regulated by a least two different signaling pathways, which lead to different phosphorylation patterns of the myosin light chain, and this mechanism results in a graded response rather than a simple on/off switch.
Collapse
Affiliation(s)
- Todd M. Getz
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Carol A. Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Jianguo Jin
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - James L. Daniel
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Satya P. Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
22
|
Soh UJK, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol 2010; 160:191-203. [PMID: 20423334 PMCID: PMC2874842 DOI: 10.1111/j.1476-5381.2010.00705.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/25/2010] [Accepted: 02/02/2010] [Indexed: 12/11/2022] Open
Abstract
The family of G protein-coupled receptors (GPCRs) constitutes the largest class of signalling receptors in the human genome, controlling vast physiological responses and are the target of many drugs. After activation, GPCRs are rapidly desensitized by phosphorylation and beta-arrestin binding. Most classic GPCRs are internalized through a clathrin, dynamin and beta-arrestin-dependent pathway and then recycled back to the cell surface or sorted to lysosomes for degradation. Given the vast number and diversity of GPCRs, different mechanisms are likely to exist to precisely regulate the magnitude, duration and spatial aspects of receptor signalling. The G protein-coupled protease-activated receptors (PARs) provide elegant examples of GPCRs that are regulated by distinct desensitization and endocytic sorting mechanisms, processes that are critically important for the spatial and temporal fidelity of PAR signalling. PARs are irreversibly activated through proteolytic cleavage and transmit cellular responses to extracellular proteases. Activated PAR(1) internalizes through a clathrin- and dynamin-dependent pathway independent of beta-arrestins. Interestingly, PAR(1) is basally ubiquitinated and deubiquitinated after activation and traffics from endosomes to lysosomes independent of ubiquitination. In contrast, beta-arrestins mediate activated PAR(2) internalization and function as scaffolds that promote signalling from endocytic vesicles. Moreover, activated PAR(2) is modified with ubiquitin, which facilitates lysosomal degradation. Activated PARs also adopt distinct active conformations that signal to diverse effectors and are likely regulated by different mechanisms. Thus, the identification of the molecular machinery important for PAR signal regulation will enable the development of new strategies to manipulate receptor signalling and will provide novel targets for the development of drugs.
Collapse
Affiliation(s)
- Unice J K Soh
- Department of Pharmacology, University of California, San Diego, 92093-0636, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Stroke is the third leading cause of death in the USA. Antithrombotic therapy targeting platelet activation is one of the treatments for ischemic stroke. Here we investigate the role of one of the thrombin receptors, protease-activated receptor 4 (PAR4), in a mouse transient middle cerebral artery occlusion (MCAO) model. After a 60 min MCAO and 23 h reperfusion, leukocyte and platelet rolling and adhesion on cerebral venules, blood-brain barrier (BBB) permeability, and cerebral edema were compared in PAR4-deficient mice and wild-type mice. Cerebral infarction volume and neuronal death were also measured. PAR4-/- mice had more than an 80% reduction of infarct volume and significantly improved neurologic and motor function compared with wild-type mice after MCAO. Furthermore, deficiency of PAR4 significantly inhibits the rolling and adhesion of both platelets and leukocytes after MCAO. BBB disruption and cerebral edema were also attenuated in PAR4-/- mice compared with wild-type animals. The results of this investigation indicate that deficiency of PAR4 protects mice from cerebral ischemia/reperfusion (I/R) injury, partially through inhibition of platelet activation and attenuation of microvascular inflammation.
Collapse
|
24
|
Jin J, Mao Y, Thomas D, Kim S, Daniel JL, Kunapuli SP. RhoA downstream of G(q) and G(12/13) pathways regulates protease-activated receptor-mediated dense granule release in platelets. Biochem Pharmacol 2009; 77:835-44. [PMID: 19073150 PMCID: PMC2745276 DOI: 10.1016/j.bcp.2008.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/17/2022]
Abstract
Platelet secretion is an important physiological event in hemostasis. The protease-activated receptors, PAR 1 and PAR 4, and the thromboxane receptor activate the G(12/13) pathways, in addition to the G(q) pathways. Here, we investigated the contribution of G(12/13) pathways to platelet dense granule release. 2MeSADP, which does not activate G(12/13) pathways, does not cause dense granule release in aspirin-treated platelets. However, supplementing 2MeSADP with YFLLRNP (60muM), as selective activator of G(12/13) pathways, resulted in dense granule release. Similarly, supplementing PLC activation with G(12/13) stimulation also leads to dense granule release. These results demonstrate that supplemental signaling from G(12/13) is required for G(q)-mediated dense granule release and that ADP fails to cause dense granule release because the platelet P2Y receptors, although activate PLC, do not activate G(12/13) pathways. When RhoA, downstream signaling molecule in G(12/13) pathways, is blocked, PAR-mediated dense granule release is inhibited. Furthermore, ADP activated RhoA downstream of G(q) and upstream of PLC. Finally, RhoA regulated PKCdelta T505 phosphorylation, suggesting that RhoA pathways contribute to platelet secretion through PKCdelta activation. We conclude that G(12/13) pathways, through RhoA, regulate dense granule release and fibrinogen receptor activation in platelets.
Collapse
Affiliation(s)
- Jianguo Jin
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Yingying Mao
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA
| | - Dafydd Thomas
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
| | - Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
| | - James L. Daniel
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Satya P. Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Grenegård M, Vretenbrant-Oberg K, Nylander M, Désilets S, Lindström EG, Larsson A, Ramström I, Ramström S, Lindahl TL. The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine. J Biol Chem 2008; 283:18493-504. [PMID: 18480058 DOI: 10.1074/jbc.m800358200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human platelets express protease-activated receptor 1 (PAR1) and PAR4 but limited data indicate for differences in signal transduction. We studied the involvement of PAR1 and PAR4 in the cross-talk between thrombin and epinephrine. The results show that epinephrine acted via alpha(2A)-adrenergic receptors to provoke aggregation, secretion, and Ca(2+) mobilization in aspirin-treated platelets pre-stimulated with subthreshold concentrations of thrombin. Incubating platelets with antibodies against PAR4 or the PAR4-specific inhibitor pepducin P4pal-i1 abolished the aggregation. Furthermore, platelets pre-exposed to the PAR4-activating peptide AYPGKF, but not to the PAR1-activating peptide SFLLRN, were aggregated by epinephrine, whereas both AYPGKF and SFLLRN synergized with epinephrine in the absence of aspirin. The roles of released ATP and ADP were elucidated by using antagonists of the purinergic receptors P2X(1), P2Y(1), and P2Y(12) (i.e. NF449, MRS2159, MRS2179, and cangrelor). Intriguingly, ATP, but not ADP, was required for the epinephrine/thrombin-induced aggregation. In Western blot analysis, a low concentration of AYPGKF, but not SFLLRN, stimulated phosphorylation of Akt on serine 473. Moreover, the phosphatidyl inositide 3-kinase inhibitor LY294002 antagonized the effect of epinephrine combined with thrombin or AYPGKF. Thus, in aspirin-treated platelets, PAR4, but not PAR1, interacts synergistically with alpha(2A)-adrenergic receptors, and the PI3-kinase/Akt pathway is involved in this cross-talk. Furthermore, in PAR4-pretreated platelets, epinephrine caused dense granule secretion, and subsequent signaling from the ATP-gated P2X(1)-receptor and the alpha(2A)-adrenergic receptor induced aggregation. These results suggest a new mechanism that has ATP as a key element and circumvents the action of aspirin on epinephrine-facilitated PAR4-mediated platelet activation.
Collapse
Affiliation(s)
- Magnus Grenegård
- Department of Medicine and Health, Division of Drug Research, Division of Clinical Chemistry, Cardiovascular Inflammation Research Center, Linköping University, Linköping SE-581 85 Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Thrombin-activated thrombelastography for evaluation of thrombin interaction with thrombin inhibitors. Blood Coagul Fibrinolysis 2008; 18:761-7. [PMID: 17982317 DOI: 10.1097/mbc.0b013e3282f102c6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For intravenous anticoagulation, heparin has been the mainstay drug, but its use may be contraindicated in heparin-induced thrombocytopenia and thrombosis. Heparin alternatives including direct thrombin inhibitors are available, but clotting assays (e.g. partial thromboplastin time) measure the time required to form fibrin gel when only a small amount of thrombin is generated. It was hypothesized that the extent of thrombin inhibition varies among inhibitors, and thrombin-activated thrombelastography would provide useful data on therapeutic responses to thrombin inhibitors. Thrombin was added (0-100 nmol/l final concentration) to nonrecalcified whole blood to evaluate clot formation on thrombelastography. Effects of direct thrombin inhibitors (argatroban 3.75 microg/ml, bivalirudin 15 microg/ml, and lepirudin 3.0 microg/ml), and heparin cofactor II activator and dermatan disulfate (20 microg/ml) were evaluated in the presence of 100 nmol/l thrombin. The interactions of thrombin and respective inhibitors were also compared by fluorogenic thrombin substrate cleavage. Increasing concentrations of thrombin progressively shortened the lag time and increased viscoelasticity on thrombelastography. Only 20 nmol/l thrombin caused instantaneous clotting, but maximal viscoelastic force was obtained at 50-100 nmol/l thrombin. All thrombin inhibitors prolonged the lag time (lepirudin > bivalirudin > argatroban = dermatan disulfate), but full recovery of thrombelastography viscoelasticity was observed with argatroban and bivalirudin. Lepirudin abrogated clotting, and dermatan disulfate suppressed clot development on thrombelastography. Thrombin substrate cleavage was observed only for bivalirudin, and heparin cofactor II without dermatan disulfate. The modified thrombelastography technique using nonrecalcified whole blood may be useful in evaluating the extent and reversibility of thrombin blockade with direct or indirect thrombin inhibitors.
Collapse
|
27
|
Jin YR, Han XH, Zhang YH, Lee JJ, Lim Y, Chung JH, Yun YP. Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-γ2 phosphorylation and cyclooxygenase-1 activity. Atherosclerosis 2007; 194:144-52. [PMID: 17092506 DOI: 10.1016/j.atherosclerosis.2006.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/27/2006] [Accepted: 10/06/2006] [Indexed: 10/23/2022]
Abstract
Diet can be one of the most important factors that influence risks for atherothrombotic diseases. Hesperetin included in grapefruits and oranges is one candidate that may benefit the cardiovascular system. Here, we investigated antiplatelet activity of hesperetin in vitro. In addition, possible antiplatelet mechanism was also investigated. Hesperetin concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen and arachidonic acid, with IC50 of 20.5+/-3.5 and 69.2+/-5.1 microM, respectively, while has little effect on thrombin- or U46619-, a thromboxane (TX) A2 mimic, mediated platelet aggregation, suggesting that hesperetin may selectively inhibit collagen- and arachidonic acid-mediated signal transduction. In accordance with these findings, hesperetin revealed blocking of the collagen-mediated phospholipase (PL) C-gamma2 phosphorylation, and caused concentration-dependent decreases of cytosolic calcium mobilization, arachidonic acid liberation and serotonin secretion. In addition, hesperetin inhibited arachidonic acid-mediated platelet aggregation by interfering with cyclooxygenase-1 activity as established by the measurement of arachidonic acid-mediated TXA2 and prostaglandin D2 formations as well as cyclooxygenase-1 and TXA2 synthase activity assays. Taken together, the present results provide a cellular mechanism for the antiplatelet activity of hesperetin through inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity, which may contribute to the beneficial effects of grapefruits and oranges on cardiovascular system.
Collapse
Affiliation(s)
- Yong-Ri Jin
- Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Ramström S, Oberg KV, Akerström F, Enström C, Lindahl TL. Platelet PAR1 receptor density--correlation to platelet activation response and changes in exposure after platelet activation. Thromb Res 2007; 121:681-8. [PMID: 17675219 DOI: 10.1016/j.thromres.2007.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 03/29/2007] [Accepted: 06/12/2007] [Indexed: 11/30/2022]
Abstract
INTRODUCTION A polymorphism (-14 A/T) affecting PAR1 expression on the platelet surface has recently been identified. A two-fold variation in receptor density, which correlated with the platelet response to PAR1-activating peptide (PAR1-AP), has been reported. MATERIALS AND METHODS We used flow cytometry to measure the correlation between the number of PAR1 receptors and platelet activation. We also measured the changes in receptor exposure after platelet activation with PAR1-AP, ADP, PAR4-AP or a collagen-related peptide (CRP). RESULTS In our study, the PAR1 receptor number varied almost four-fold, from 547 to 2063 copies/platelet (mean+/-S.D. 1276+/-320, n=70). The number of PAR1 receptors on resting platelets correlated to platelet fibrinogen binding and P-selectin expression following platelet activation with PAR1-AP (r(2)=0.30, p<0.01 and r(2)=0.15, p<0.05, respectively, n=36). The correlation was not improved by exclusion of the ADP-component from the PAR1-AP-induced response. We found a trend, but no statistically significant differences in PAR1 receptor number and platelet reactivity between A/A individuals and T/A or T/T individuals. Ex vivo activation with PAR1-AP decreased PAR1 surface exposure to 71+/-19% of the exposure on resting platelets (mean+/-S.D., p<0.01, n=19), while activation by ADP, PAR4-AP or CRP significantly increased the exposure, to 151+/-27%, 120+/-21% and 138+/-25%, respectively (n=11, 11 and 10). CONCLUSIONS This study shows a large variation in PAR1 receptor number in healthy individuals, a variation correlated to the platelet activation response. We found a significant reduction in PAR1 surface exposure after adding PAR1-AP, while activation with ADP, PAR4-AP or CRP increased the exposure.
Collapse
Affiliation(s)
- Sofia Ramström
- Department of Biomedicine and Surgery, Division of Clinical Chemistry, University Hospital, SE-581 85 Linköping, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Protease-activated receptors are G-protein-coupled receptors that transmit cellular responses to coagulant proteases in a variety of cell types in the vasculature and other tissues. Several other proteases can activate protease-activated receptors in vitro and may affect their function in vivo. While a role for these receptors in hemostasis and thrombosis has been established, their functions in inflammatory and other responses have yet to be fully elucidated. In addition, the mechanisms responsible for protease and cell type-specific signaling mediated by these receptors are largely undefined. Here, we highlight recent advances in understanding the roles and regulation of protease-activated receptor signaling. RECENT FINDINGS Recent studies have increased our knowledge of the function of protease-activated receptor signaling in platelets and its contribution to thrombosis. In other cell types, recent work has revealed new connections between these receptors and signaling effectors important for vascular development and inflammatory responses. Other studies have advanced our understanding of protease and cell type-specific responses as well as novel regulatory mechanisms for control of protease-activated receptor signaling. SUMMARY Thus, elucidating the signaling and regulatory mechanisms of protease-activated receptors in various tissues and cell types is important for understanding their biological function as well as for designing therapeutic strategies to control their function.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | | |
Collapse
|
30
|
|
31
|
Bahou WF. Thrombin Receptors. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Ramachandran R, Sadofsky LR, Xiao Y, Botham A, Cowen M, Morice AH, Compton SJ. Inflammatory mediators modulate thrombin and cathepsin-G signaling in human bronchial fibroblasts by inducing expression of proteinase-activated receptor-4. Am J Physiol Lung Cell Mol Physiol 2006; 292:L788-98. [PMID: 17142351 DOI: 10.1152/ajplung.00226.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human lung fibroblasts express proteinase-activated receptor-1 (PAR1), PAR2 and PAR3, but not PAR4. Because PAR2 has inflammatory effects on human primary bronchial fibroblasts (HPBF), we asked 1) whether the inflammatory mediators TNF-alpha and LPS could modify HPBF PAR expression and 2) whether modified PAR expression altered HPBF responsiveness to PAR agonists in terms of calcium signaling and cell growth. TNF-alpha and LPS induced PAR4 mRNA expression (RT-PCR) at 6 h and 24 h, respectively. TNF-alpha and LPS also upregulated PAR2 mRNA expression with similar kinetics but had negligible effect on PAR1 and PAR3. Flow cytometry for PAR1, PAR2, and PAR3 also demonstrated selective PAR2 upregulation in response to TNF-alpha and LPS. Intracellular calcium signaling to SLIGKV-NH2 (a selective PAR2-activating peptide; PAR2-AP) and AYPGQV-NH2 (PAR4-AP) revealed that TNF-alpha and LPS induced maximal responses to these PAR agonists at 24 h and 48 h, respectively. Upregulation of PAR2 by TNF-alpha heightened HPBF responses to trypsin, while PAR4 induction enabled cathepsin-G-mediated calcium signaling. Cathepsin-G also disarmed PAR1 and PAR2 in HPBF, while tryptase disarmed PAR2. Induction of PAR4 also enabled thrombin to elicit a calcium signal through both PAR1 and PAR4, as determined by a desensitization assay. In cell growth assays the PAR4 agonists cathepsin-G and AYPGQV-NH2 reduced HPBF cell number only in TNF-alpha-treated HPBF. Moreover, the mitogenic effect of thrombin (a PAR1/PAR4 agonist) but not the PAR1-AP TFLLR-NH2, was ablated in TNF-alpha-treated HPBF. These findings point to an important mechanism, whereby cellular responses to thrombin and cathepsin-G can be modified during an inflammatory response.
Collapse
MESH Headings
- Bronchi/cytology
- Bronchi/metabolism
- Cathepsin G
- Cathepsins/metabolism
- Cells, Cultured
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Lipopolysaccharides/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, PAR-1/agonists
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/agonists
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Receptors, Thrombin/agonists
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Endopeptidases/metabolism
- Signal Transduction
- Thrombin/metabolism
- Thrombin Time
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Division of Cardiovascular and Respiratory Studies, Postgraduate Medical Institute of the University of Hull, Hull York Medical Schoo, East Yorkshire, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Nishikawa H. [Roles of protease-activated receptor-2 (PAR-2), a G protein-coupled receptor, in modulation of exocrine gland functions]. YAKUGAKU ZASSHI 2006; 126:481-8. [PMID: 16819269 DOI: 10.1248/yakushi.126.481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease-activated receptor-2 (PAR-2), a G protein-coupled receptor, is activated by proteolytic unmasking of the N-terminal extracellular tethered ligand that presumably binds to the extracellular loop 2 of the receptor itself. PAR-2 is widely distributed in the mammalian body and plays various roles in biological events in the cardiovascular, respiratory, alimentary, and central neurons systems. PAR-2-activating peptides administered systemically to mice and rats trigger prompt salivation in vivo. In an in vitro study, PAR-2 agonists including the endogenous PAR-2 activator trypsin induce secretion of amylase and mucin from isolated rat parotid glands and sublingual glands, respectively. PAR-2-activating peptides administered systemically also modulate pancreatic exocrine secretion in vivo as well as in vitro. In the gastric mucosa, PAR-2 stimulation enhances secretion of mucus and pepsinogen and suppresses acid secretion. Tear secretion can also be caused by PAR-2-related peptides in PAR-2-dependent and -independent manners. PAR-2 thus plays a general or key role in the regulation of exocrine secretion. This review focuses on the physiologic and/or pathophysiologic roles of PAR-2 in glandular exocrine secretion. The possibility of PAR-2 as a target for drug development is also discussed.
Collapse
Affiliation(s)
- Hiroyuki Nishikawa
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Morinomiya, Osaka, Japan.
| |
Collapse
|
34
|
Paing MM, Johnston CA, Siderovski DP, Trejo J. Clathrin adaptor AP2 regulates thrombin receptor constitutive internalization and endothelial cell resensitization. Mol Cell Biol 2006; 26:3231-42. [PMID: 16581796 PMCID: PMC1446942 DOI: 10.1128/mcb.26.8.3231-3242.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for the coagulant protease thrombin, is irreversibly activated by proteolysis. Unactivated PAR1 cycles constitutively between the plasma membrane and intracellular stores, thereby providing a protected receptor pool that replenishes the cell surface after thrombin exposure and leads to rapid resensitization to thrombin signaling independent of de novo receptor synthesis. Here, we show that AP2, a clathrin adaptor, binds directly to a tyrosine-based motif in the cytoplasmic tail of PAR1 and is essential for constitutive receptor internalization and cellular recovery of thrombin signaling. Expression of a PAR1 tyrosine mutant or depletion of AP2 by RNA interference leads to significant inhibition of PAR1 constitutive internalization, loss of intracellular uncleaved PAR1, and failure of endothelial cells and other cell types to regain thrombin responsiveness. Our findings establish a novel role for AP2 in direct regulation of PAR1 trafficking, a process critically important to the temporal and spatial aspects of thrombin signaling.
Collapse
Affiliation(s)
- May M Paing
- Department of Pharmacology, University of North Carolina at Chapel Hill, 1106 Mary Ellen Jones Bldg., Chapel Hill, NC 27599-7365. USA
| | | | | | | |
Collapse
|
35
|
Giandomenico G, Dellas C, Czekay RP, Koschnick S, Loskutoff DJ. The leptin receptor system of human platelets. J Thromb Haemost 2005; 3:1042-9. [PMID: 15869602 DOI: 10.1111/j.1538-7836.2005.01327.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity is associated with elevated levels of leptin in the blood. Elevated leptin is a risk factor for thrombosis in humans, and leptin administration promotes platelet activation and thrombosis in the mouse. The current study examines the effect of leptin on human platelets, and provides initial insights into the nature of the leptin receptor on these platelets. Leptin potentiated the aggregation of human platelets induced by low concentrations of ADP, collagen and epinephrine. However, the response varied significantly between donors, with platelets from some donors (approximately 40%) consistently responding to leptin (responders) and those from other donors (approximately 60%) never responding (non-responders). Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR) experiments showed that platelets from both groups only express the signaling form of the leptin receptor, and that responder platelets express higher levels of this receptor than non-responders. Ligand-binding assays demonstrate specific, saturable binding of leptin to platelets from both groups with apparent K(d) values of 76 +/- 20 nM for responders and 158 +/- 46 nM for non-responders. Thus, the decreased sensitivity of non-responder platelets to leptin does not result from the absence of the signaling form of this receptor, but may reflect differences in its level of expression and/or affinity for leptin. These preliminary studies demonstrate that platelets are a major source of leptin receptor in the circulation, and suggest that leptin-responsive individuals may have a higher risk for obesity-associated thrombosis than non-responsive individuals.
Collapse
Affiliation(s)
- G Giandomenico
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Nishikawa H, Kawai K, Tanaka M, Ohtani H, Tanaka S, Kitagawa C, Nishida M, Abe T, Araki H, Kawabata A. Protease-activated receptor-2 (PAR-2)-related peptides induce tear secretion in rats: involvement of PAR-2 and non-PAR-2 mechanisms. J Pharmacol Exp Ther 2005; 312:324-31. [PMID: 15331653 DOI: 10.1124/jpet.104.072074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protease-activated receptor-2 (PAR-2) plays an extensive role in the regulation of digestive exocrine secretion. The present study examined whether PAR-2-related peptides could modulate tear secretion in rats and analyzed the underlying mechanisms. SLIGRL-NH(2), a PAR-2-activating peptide (PAR-2-AP) derived from mouse/rat PAR-2, when administered i.v. in combination with amastatin, an aminopeptidase inhibitor, evoked tear secretion, whereas LRGILS-NH(2), a PAR-2-inactive reversed peptide, had no such effect. In contrast, LSIGRL-NH(2), a partially reversed peptide known to be inactive with PAR-2, caused tear secretion equivalent to the effect of SLIGRL-NH(2). SLIGKV-NH(2), a human-derived PAR-2-AP, also induced significant tear secretion though to a lesser extent, whereas neither VKGILS-NH(2), a reversed peptide, nor LSIGKV-NH(2), a partially reversed peptide, produced any secretion. In desensitization experiments, after the first dose of SLIGRL-NH(2), the second dose of SLIGRL-NH(2) produced no tear secretion, whereas the response to LSIGRL-NH(2) was only partially inhibited by preadministration of SLIGRL-NH(2). Preadministration of LSIGRL-NH(2) abolished the response to subsequently administered LSIGRL-NH(2) but not SLIGRL-NH(2). The tear secretion induced by LSIGRL-NH(2) but not by PAR-2-APs was blocked by atropine or hexamethonium. Mast cell depletion due to repeated doses of compound 48/80 did not alter the effect of SLIGRL-NH(2) or LSIGRL-NH(2). Finally, IGRL-NH(2), a possible core structure of LSIGRL-NH(2), triggered tear secretion in an atropine-reversible manner. Our findings suggest that the PAR-2-APs SLIGRL-NH(2) and SLIGKV-NH(2) cause tear secretion, most likely via PAR-2 and that LSIGRL-NH(2), a PAR-2-inactive peptide, and IGRL-NH(2), its key structure, trigger tear secretion by stimulating parasympathetic nerves via an unidentified target molecule.
Collapse
Affiliation(s)
- Hiroyuki Nishikawa
- Research and Development Center, Fuso Pharmaceutical Industries Ltd., Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee YCG, Knight DA, Lane KB, Cheng DS, Koay MA, Teixeira LR, Nesbitt JC, Chambers RC, Thompson PJ, Light RW. Activation of proteinase-activated receptor-2 in mesothelial cells induces pleural inflammation. Am J Physiol Lung Cell Mol Physiol 2004; 288:L734-40. [PMID: 15591415 DOI: 10.1152/ajplung.00173.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pleural inflammation underlies many pleural diseases, but its pathogenesis remains unclear. Proteinase-activated receptor-2 (PAR(2)) is a novel seven-transmembrane receptor with immunoregulatory roles. We hypothesized that PAR(2) is present on mesothelial cells and can induce pleural inflammation. PAR(2) was detected by immunohistochemistry in all (19 parietal and 11 visceral) human pleural biopsies examined. In cultured murine mesothelial cells, a specific PAR(2)-activating peptide (SLIGRL-NH(2)) at 10, 100, and 1,000 muM stimulated a 3-, 42-, and 1,330-fold increase of macrophage inflammatory protein (MIP)-2 release relative to medium control, respectively (P < 0.05 all) and a 2-, 32-, and 75-fold rise over the control peptide (LSIGRL-NH(2), P < 0.05 all). A similar pattern was seen for TNF-alpha release. Known physiological activators of PAR(2), tryptase, trypsin, and coagulation factor Xa, also stimulated dose-dependent MIP-2 release from mesothelial cells in vitro. Dexamethasone inhibited the PAR(2)-mediated MIP-2 release in a dose-dependent manner. In vivo, pleural fluid MIP-2 levels in C57BL/6 mice injected intrapleurally with SLIGRL-NH(2) (10 mg/kg) were significantly higher than in mice injected with LSIGRL-NH(2) or PBS (2,710 +/- 165 vs. 880 +/- 357 vs. 88 +/- 46 pg/ml, respectively; P < 0.001). Pleural fluid neutrophil counts were higher in SLIGRL-NH(2) group than in the LSIGRL-NH(2) and PBS groups (by 40- and 26-fold, respectively; P < 0.05). This study establishes that activation of mesothelial cell PAR(2) potently induces the release of inflammatory cytokines in vitro and neutrophil recruitment into the pleural cavity in vivo.
Collapse
Affiliation(s)
- Y C Gary Lee
- Centre for Respiratory Research, Rayne Institute, University College London, 5 University St., London WC1E 6JJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Han Y, Nurden A, Combrié R, Pasquet JM. Redistribution of glycoprotein Ib within platelets in response to protease-activated receptors 1 and 4: roles of cytoskeleton and calcium. J Thromb Haemost 2003; 1:2206-15. [PMID: 14521606 DOI: 10.1046/j.1538-7836.2003.00436.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombin activates human platelets by hydrolyzing the protease-activated receptors PAR-1 and PAR-4, exposing new N-terminal sequences which act as tethered ligands, and binding to glycoprotein (GP) Ib, whose surface accessibility transiently decreases when platelets are stimulated by the enzyme. In an attempt to better understand this latter process, we used the peptides SFLLRNPNDKYEPF (PAR-1-AP or TRAP) and AYPGKF (PAR-4-AP) to study whether hydrolysis of both PAR receptors leads to GPIb redistribution. Both peptides induced surface clearance of GPIb with a maximum at 2 min and 5 min for PAR-1-AP and PAR-4-AP, respectively, followed by a slow return to the surface with levels normalizing between 30 and 60 min. Translocation was associated with the formation of clusters of GPIb as revealed by fluorescence microscopy. This transient redistribution of GPIb was blocked by cytochalasin D and in large part by the membrane permeable Ca2+ chelator, BAPTA. The inhibitor of phosphatidylinositol 3-kinase and myosin light chain kinase, wortmannin, did not significantly modify internalization of GPIb, although its return to the surface was delayed for PAR-1-AP. PAR receptor-mediated association of GPIb to the insoluble cytoskeleton was blocked by cytochalasin D, while BAPTA alone increased and stabilized the presence of GPIb. Globally, immunoprecipitation experiments and analysis of the cytoskeleton confirmed that GPIb translocation is powered by a contractile mechanism involving Ca2+ mobilization, actin polymerization, and myosin incorporation into the cytoskeleton and that both PAR-1 and PAR-4 can activate this process.
Collapse
Affiliation(s)
- Y Han
- UMR 5533 CNRS, Hôpital Cardiologique du Haut-Lévêque, Avenue Magellan, Pessac, France
| | | | | | | |
Collapse
|
39
|
Brodsky SV. Coagulation, fibrinolysis and angiogenesis: new insights from knockout mice. EXPERIMENTAL NEPHROLOGY 2003; 10:299-306. [PMID: 12381913 DOI: 10.1159/000065305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiogenesis plays a key role in a broad array of physiologic and pathologic processes. Two major systems--coagulation and fibrinolysis--maintaining hemostasis, have recently been implicated in angiogenesis. Generation of mice deficient in components of coagulation and plasminogen systems has provided an extraordinary opportunity to define the role of each of these systems in vivo and to elucidate molecular mechanisms involved in angiogenesis. It appears that several factors of the coagulation system, such as the tissue factor, the factor V and the thrombin receptor, play an important role in embryonic vessel formation, most probably in the formation of the primitive vascular wall. In addition, the plasminogen system appears to play a significant role in angiogenesis in adulthood, regulating the migration of endothelial and smooth muscle cells, the degradation of the extracellular matrix and activity of the metalloproteinase system. These new revelations open a possibility for future therapeutic strategies to specifically control angiogenesis in different pathological processes where abnormalities of tissue vascularization are pathogenetically prominent.
Collapse
Affiliation(s)
- Sergey V Brodsky
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
40
|
Dupont A, Fontana P, Bachelot-Loza C, Reny JL, Biéche I, Desvard F, Aiach M, Gaussem P. An intronic polymorphism in the PAR-1 gene is associated with platelet receptor density and the response to SFLLRN. Blood 2003; 101:1833-40. [PMID: 12406873 DOI: 10.1182/blood-2002-07-2149] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protease-activated receptor 1 (PAR-1), the main thrombin receptor on vascular cells, plays a key role in platelet activation. We examined the range of PAR-1 expression on platelets, obtained twice, 1 week apart, from 100 healthy subjects and found a 2-fold interindividual variation in receptor numbers (95% CI = 858-1700). Because PAR-1 density was stable with time (r(2) = 76%, P <.001), we sought a genetic explanation for the observed variability. To validate this approach, we also analyzed the alpha(2)beta(1) genotype according to receptor density and platelet mRNA expression data. We found that the number of PAR-1 receptors on the platelet surface is associated with the intervening sequence IVSn-14 A/T intronic variation. The number of receptors was also found to govern the platelet response to the SFLLRN agonist, in terms of aggregation and P-selectin expression. The T allele (allelic frequency, 0.14) can be considered as an allele with decreased expression, because it was associated with lower PAR-1 expression on the platelet surface and with a lower response to SFLLRN. The IVSn-14 A/T intronic variation may therefore be clinically relevant.
Collapse
Affiliation(s)
- Annabelle Dupont
- Service d'Hématologie Biologique and INSERM Unité 428, Hôpital Européen Georges Pompidou, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris V, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nurden P, Poujol C, Winckler J, Combrié R, Pousseau N, Conley PB, Levy-Toledano S, Habib A, Nurden AT. Immunolocalization of P2Y1 and TPalpha receptors in platelets showed a major pool associated with the membranes of alpha -granules and the open canalicular system. Blood 2003; 101:1400-8. [PMID: 12393588 DOI: 10.1182/blood-2002-02-0642] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P2Y(1) and thromboxane-prostanoid-alpha (TPalpha) receptors on platelets belong to the G-protein-coupled 7-transmembrane domain family. They transmit signals for shape change, mobilization of calcium, and platelet aggregation. Immunogold labeling with a monoclonal antibody (MoAb) to the amino-terminal domain of P2Y(1) and a polyclonal antibody to the C-terminal domain of TPalpha revealed that while present at the platelet surface, both receptors were abundantly represented inside the platelet. Specifically, receptors were found in membranes of alpha-granules and elements of the open-canalicular system. A similar organization was found in mature megakaryocytes. Activation of platelets by adenosine diphosphate (ADP) and the thromboxane A(2) (TXA(2)) analog, I-BOP [1S-(1 alpha,2 beta(5Z),3 alpha-(1E,3S)4 alpha)-7-(3-(3- hydroxy-4-(p-iodophenoxy)-1-butenyl)-7-oxabicyclo(2.2.1)hept-2-yl)-5-heptenoic acid], increased the labeling of both P2Y(1) and TPalpha at the surface and in intracellular pools, suggesting that activation resulted in greater antibody accessibility to the receptor. A return to a platelet discoid shape and to basal values of labeling accompanied receptor desensitization. Platelets lacking the P2Y(12) ADP receptor normally expressed P2Y(1) and TPalpha, both before and after activation. Studies with the anti-ligand-induced binding site (anti-LIBS) MoAb, AP-6, confirmed that stored fibrinogen associated with internal pools of alpha(IIb)beta(3) at the start of secretion in a microenvironment containing agonist receptors. Pharmacologic antagonism of ADP or TXA(2) receptors in antithrombotic therapy may need to take into account blockade of internal receptor pools.
Collapse
Affiliation(s)
- Paquita Nurden
- Centre National de la Recherche Scientifique (CNRS), Hôpital Cardiologique, Pessac, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nylander S, Mattsson C. Thrombin-induced platelet activation and its inhibition by anticoagulants with different modes of action. Blood Coagul Fibrinolysis 2003; 14:159-67. [PMID: 12632026 DOI: 10.1097/00001721-200302000-00007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thrombin-induced platelet activation involves cleavage of protease-activated receptors (PARs) 1 and 4, and interaction, via glycoprotein (Gp)Ibalpha, with the platelet GpIb/IX/V complex. This study investigated inhibition of platelet activation by thrombin inhibitors with different modes of action: two reversible direct thrombin inhibitors, melagatran and inogatran; hirudin, a tightly binding direct thrombin inhibitor; and two indirect thrombin inhibitors, heparin and dalteparin. Up-regulation of P-selectin (CD62P) and PAR-1 cleavage was measured in human whole blood, by flow cytometry. The thrombin concentration that induced 50% of maximum (EC50 ) PAR-1 cleavage was 0.028 nmol/l, while that of platelet activation (CD62P) was over two-fold higher (0.64 nmol/l). The EC50 of a PAR-1-independent component, defined as a further activating effect of thrombin on top of the maximum PAR-1-activating peptide (AP) effect, was 3.2 nmol/l. All anticoagulants were concentration-dependent inhibitors of thrombin-induced platelet activation and PAR-1 cleavage, but none inhibited PAR-1-AP or PAR-4-AP induced activation. Melagatran and inogatran were more potent inhibitors of CD62P up-regulation than of PAR-1 cleavage; conversely, hirudin, heparin and dalteparin were more potent inhibitors of PAR-1 cleavage.Thus, reversible direct thrombin inhibitors, such as melagatran, are potent inhibitors of thrombin-induced platelet activation, acting mainly by inhibition of a PAR-1-independent component.
Collapse
Affiliation(s)
- Sven Nylander
- Cell Biology and Biochemistry, Preclinical R&D, AstraZeneca R&D Mölndal, Sweden.
| | | |
Collapse
|
43
|
Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Thompson PJ, Stewart GA. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3577-85. [PMID: 11907122 DOI: 10.4049/jimmunol.168.7.3577] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epithelia from many tissues express protease-activated receptors (PARs) that play a major role in several different physiological processes. In this study, we examined their capacity to modulate IL-6, IL-8, and PGE(2) production in both the A459 and BEAS-2B cell lines and primary human bronchial epithelial cells (HBECs). All three cell types expressed PAR-1, PAR-2, PAR-3, and PAR-4, as judged by RT-PCR and immunocytochemistry. Agonist peptides corresponding to the nascent N termini of PAR-1, PAR-2, and PAR-4 induced the release of cytokines from A549, BEAS-2B, and HBECs with a rank order of potency of PAR-2 > PAR-4 > PAR-1 at 400 microM. PAR-1, PAR-2, and PAR-4 also caused the release of PGE(2) from A549 and HBECs. The PAR-3 agonist peptide was inactive in all systems tested. PAR-1, PAR-2, or PAR-4, in combination, caused additive IL-6 release, but only the PAR-1 and PAR-2 combination resulted in an additive IL-8 response. PAR peptide-induced responses were accompanied by changes in intracellular calcium ion concentrations. However, Ca(2+) ion shutoff was approximately 2-fold slower with PAR-4 than with PAR-1 or PAR-2, suggesting differential G protein coupling. Combined, these data suggest an important role for PAR in the modulation of inflammation in the lung.
Collapse
MESH Headings
- Animals
- Anura
- Bronchi/immunology
- Bronchi/metabolism
- Calcium/metabolism
- Cell Line, Transformed/drug effects
- Cell Line, Transformed/immunology
- Cell Line, Transformed/metabolism
- Dinoprostone/metabolism
- Drug Combinations
- Humans
- Interleukin-6/metabolism
- Interleukin-8/metabolism
- Intracellular Fluid/metabolism
- Peptide Hydrolases/pharmacology
- Peptides/agonists
- Peptides/pharmacology
- Receptor, PAR-1
- Receptor, PAR-2
- Receptors, Thrombin/agonists
- Receptors, Thrombin/biosynthesis
- Receptors, Thrombin/metabolism
- Receptors, Thrombin/physiology
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Thrombin/pharmacology
- Trypsin/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Nithiananthan Asokananthan
- Division of Inflammation and Infectious Diseases, Department of Microbiology, Asthma & Allergy Research Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Boncler MA, Koziolkiewicz M, Watala C. Aptamer inhibits degradation of platelet proteolytically activatable receptor, PAR-1, by thrombin. Thromb Res 2001; 104:215-22. [PMID: 11672764 DOI: 10.1016/s0049-3848(01)00357-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the in vitro effects of the site-directed thrombin inhibitor-a single-stranded oligonucleotide aptamer (GGTTGGTGTGGTTGG)-on thrombin proteolytic activity towards its two natural substrates: fibrinogen and platelet thrombin receptor (PAR-1). The thrombin aptamer was shown to strongly affect thrombin clotting activity at nanomolar concentrations and thrombin-dependent degradation of proteolytically activatable receptor, PAR-1, exposed on platelet surface membrane at micromolar concentrations. The incubation of PPP with thrombin in the presence of 100-1000 nM aptamer resulted in the significant concentration-dependent prolongation of thrombin time (up to fourfold, P<.0001). Aptamer significantly reduced the thrombin-induced platelet degranulation (46+/-20% inhibition at 0.15 U/ml thrombin, P<.001), as well as thrombin-mediated platelet aggregation in PRP (7+/-10% inhibition at 1 U/ml thrombin, P<.05). Furthermore, aptamer inhibited the thrombin-catalysed cleavage of PAR-1 in a dose-dependent manner, i.e., by 17%, 27% and 70%, respectively, for the concentrations of 100, 500 and 1000 nM (P<.025 by randomised block analysis; P(regression slope)<.0001). We conclude that aptamer is able to considerably attenuate thrombin proteolytic activity regardless of the molecular size of thrombin substrates. Our observations directly proved that aptamer may be successfully used for the inhibition of thrombin activity towards various physiological targets: one related to fibrin generation in the final stage of coagulation cascade, and another concerning the interaction of thrombin with its surface membrane receptor, PAR-1, in blood platelets.
Collapse
Affiliation(s)
- M A Boncler
- Laboratory of Haemostasis and Haemostatic Disorders, Medical University of Lodz, ul. Narutowicza 96, Lodz 90-141, Poland
| | | | | |
Collapse
|
45
|
Koziak K, Kaczmarek E, Park SY, Fu Y, Avraham S, Avraham H. RAFTK/Pyk2 involvement in platelet activation is mediated by phosphoinositide 3-kinase. Br J Haematol 2001; 114:134-40. [PMID: 11472358 DOI: 10.1046/j.1365-2141.2001.02894.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by different agonists initiates a signalling cascade involving the phosphorylation of several protein kinases, which control key regulatory events. Previously, we demonstrated that the related adhesion focal tyrosine kinase (RAFTK, Pyk2) was involved in an early phase of platelet activation, independent of integrin and glycoprotein IIb-IIIa activation. In this study, we demonstrate that RAFTK is co-immunoprecipitated with phosphoinositide 3-kinase (PI3K) upon platelet activation, and that thrombin, ADP and collagen induced the phosphorylation of both PI3K and RAFTK. A low dose of thrombin (0.015 U/ml) induced RAFTK phosphorylation and platelet aggregation in a PI3K activity-dependent manner, whereas a high dose of thrombin (0.1 U/ml) induced these events in a PI3K activity-independent manner. ADP and collagen also induced RAFTK phosphorylation and platelet aggregation in a PI3K activity-dependent manner, similar to that of the low-dose thrombin. Furthermore, protein tyrosine phosphatase activity was associated with RAFTK in response to platelet activation, and was found to be that of protein tyrosine phosphatase-2 (SHP-2). The association of SHP-2 with RAFTK was PI3K-dependent and was increased upon RAFTK phosphorylation. Taken together, our results strongly suggest that the involvement of RAFTK in platelet activation is mediated via the PI3K pathway.
Collapse
Affiliation(s)
- K Koziak
- Division of Experimental Medicine Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The four PAR family members are G protein coupled receptors that are normally activated by proteolytic exposure of an occult tethered ligand. Three of the family members are thrombin receptors. The fourth (PAR2) is not activated by thrombin, but can be activated by other proteases, including trypsin, tryptase and Factor Xa. This review focuses on recent information about the manner in which signaling through these receptors is initiated and terminated, including evidence for inter- as well as intramolecular modes of activation, and continuing efforts to identify additional, biologically-relevant proteases that can activate PAR family members.
Collapse
Affiliation(s)
- P J O'Brien
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
47
|
De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 2001; 276:4692-8. [PMID: 11084032 DOI: 10.1074/jbc.m008160200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of human platelets by alpha-thrombin is mediated at least in part by cleavage of protease-activated G-protein-coupled receptors, PAR-1 and PAR-4. Platelet glycoprotein Ibalpha also has a high affinity binding site for alpha-thrombin, and this interaction contributes to platelet activation through a still unknown mechanism. In the present study the hypothesis that GpIbalpha may contribute to platelet activation by modulating the hydrolysis of PAR-1 on the platelet membrane was investigated. Gel-filtered platelets from normal individuals were stimulated by alpha-thrombin, and the kinetics of PAR-1 hydrolysis by enzyme was followed with flow cytometry using an anti-PAR-1 monoclonal antibody (SPAN 12) that recognizes only intact PAR-1 molecules. This strategy allowed measurement of the apparent k(cat)/K(m) value for thrombin hydrolysis of PAR-1 on intact platelets, which was equal to 1.5 +/- 0.1 x 10(7) m(-1) sec(-1). The hydrolysis rate of PAR-1 by thrombin was measured under conditions in which thrombin binding to GpIb was inhibited by different strategies, with the following results. 1) Elimination of GpIbalpha on platelet membranes by mocarhagin treatment reduced the k(cat)/K(m) value by about 6-fold. 2) A monoclonal anti-GpIb antibody reduced the apparent k(cat)/K(m) value by about 5-fold. 3) An oligonucleotide DNA aptamer, HD22, which binds to the thrombin heparin-binding site (HBS) and inhibits thrombin interaction with GpIbalpha, reduced the apparent k(cat)/K(m) value by about 5-fold. 4) Displacement of alpha-thrombin from the binding site on GpIb using PPACK-thrombin reduced the apparent k(cat)/K(m) value by about 5-fold, and 5) mutation at the HBS of thrombin (R98A) caused a 5-fold reduction of the apparent k(cat)/K(m) value of PAR-1 hydrolysis. Altogether these results show that thrombin interaction with GpIb enhances the specificity of thrombin cleavage of PAR-1 on intact platelets, suggesting that GpIb may function as a "cofactor" for PAR-1 activation by thrombin.
Collapse
Affiliation(s)
- E De Candia
- Institute of Medical Semeiotics, Haemostasis Research Center and Department of Hematology, Catholic University School of Medicine, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Pakala R, Liang CT, Benedict CR. Inhibition of arterial thrombosis by a peptide ligand of the thrombin receptor. Thromb Res 2000; 100:89-96. [PMID: 11053621 DOI: 10.1016/s0049-3848(00)00307-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thrombin plays an important role in promoting arterial thrombosis by platelet activation and by catalyzing fibrin formation. Use of thrombin inhibitors that block both the platelet-activating and fibrin formation properties of thrombin are associated with hemostasis. This problem might be overcome by developing agents that block only the platelet-activating property of thrombin. Because the platelet-activating property of thrombin is mediated by the thrombin receptor, antagonists of the thrombin receptor might be efficacious and potentially safer with regard to bleeding complications. We investigated whether a peptide ligand (AFLARAA) of the thrombin receptor that blocked alpha-thrombin and thrombin receptor activating peptide-induced platelet aggregation could inhibit thrombosis. A partially occlusive thrombus was generated by application of electric current in rabbit carotid artery. In control animals, the artery was completely occluded within 42+/-12 min after the current was discontinued. When the thrombin receptor activating peptide antagonist was given (100 micromol/kg as an IV bolus followed by 900 micromol/kg infusion for a period of 180 min) starting at the time the current was stopped, blood flow remained patent throughout the infusion period and for an additional 60 min after the infusion was stopped. The antithrombotic effect of the antagonist peptide was not associated with increased bleeding tendency, as judged by the amount of blood adsorbed by a gauze pad placed in a surgical incision extending to the muscle tissue and by a standard template bleeding time. These results indicate that thrombin receptor antagonist peptides can be used as antithrombotic agents.
Collapse
Affiliation(s)
- R Pakala
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center-Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
49
|
Waugh JM, Li-Hawkins J, Yuksel E, Kuo MD, Cifra PN, Hilfiker PR, Geske R, Chawla M, Thomas J, Shenaq SM, Dake MD, Woo SL. Thrombomodulin overexpression to limit neointima formation. Circulation 2000; 102:332-7. [PMID: 10899098 DOI: 10.1161/01.cir.102.3.332] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND-These studies were initiated to confirm that high-level thrombomodulin overexpression is sufficient to limit neointima formation after mechanical overdilation injury. METHODS AND RESULTS-An adenoviral construct expressing thrombomodulin (Adv/RSV-THM) was created and functionally characterized in vitro and in vivo. The impact of local overexpression of thrombomodulin on neointima formation 28 days after mechanical overdilation injury was evaluated. New Zealand White rabbit common femoral arteries were treated with buffer, viral control, or Adv/RSV-THM and subjected to mechanical overdilation injury. The treated vessels (n=4 per treatment) were harvested after 28 days and evaluated to determine intima-to-media (I/M) ratios. Additional experiments were performed to determine early (7-day) changes in extracellular elastin and collagen content; local macrophage, T-cell, and neutrophil infiltration; and local thrombus formation as potential contributors to the observed impact on 28-day neointima formation. The construct significantly decreased neointima formation after mechanical dilation injury in this model. By histological analysis, buffer controls exhibited mean I/M ratios of 0.76+/-0.06%, whereas viral controls reached 0.77+/-0.08%; in contrast, Adv/RSV-THM reduced I/M ratios to 0.47+/-0.06%. Local inflammatory infiltrate decreased in the Adv/RSV-THM group relative to controls, whereas matrix remained relatively preserved. Rates of early thrombus formation also decreased in Adv/RSV-THM animals. CONCLUSIONS-This construct thus offers a viable technique for promoting a locally neointima-resistant small-caliber artery via decreased thrombus bulk, normal matrix preservation, and decreased local inflammation without the inflammatory damage that has limited many other adenoviral applications.
Collapse
Affiliation(s)
- J M Waugh
- Department of Cell Biology, Baylor College of Medicine, Houston, Tex
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Streptokinase-induced platelet activation involves antistreptokinase antibodies and cleavage of protease-activated receptor-1. Blood 2000. [DOI: 10.1182/blood.v95.4.1301.004k24_1301_1308] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptokinase activates platelets, limiting its effectiveness as a thrombolytic agent. The role of antistreptokinase antibodies and proteases in streptokinase-induced platelet activation was investigated. Streptokinase induced localization of human IgG to the platelet surface, platelet aggregation, and thromboxane A2production. These effects were inhibited by a monoclonal antibody to the platelet Fc receptor, IV.3. The platelet response to streptokinase was also blocked by an antibody directed against the cleavage site of the platelet thrombin receptor, protease-activated receptor-1 (PAR-1), but not by hirudin or an active site thrombin inhibitor, Ro46-6240. In plasma depleted of plasminogen, exogenous wild-type plasminogen, but not an inactive mutant protein, S741A plasminogen, supported platelet aggregation, suggesting that the protease cleaving PAR-1 was streptokinase-plasminogen. Streptokinase-plasminogen cleaved a synthetic peptide corresponding to PAR-1, resulting in generation of PAR-1 tethered ligand sequence and selectively reduced binding of a cleavage-sensitive PAR-1 antibody in intact cells. A combination of streptokinase, plasminogen, and antistreptokinase antibodies activated human erythroleukemic cells and was inhibited by pretreatment with IV.3 or pretreating the cells with the PAR-1 agonist SFLLRN, suggesting Fc receptor and PAR-1 interactions are necessary for cell activation in this system also. Streptokinase-induced platelet activation is dependent on both antistreptokinase-Fc receptor interactions and cleavage of PAR-1.
Collapse
|