1
|
Bati K, Kwape TE, Chaturvedi P. Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action: - Anti-diabetic Properties of Cassia abbreviata. J Pharmacopuncture 2017; 20:45-51. [PMID: 28392962 PMCID: PMC5374338 DOI: 10.3831/kpi.2017.20.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. METHODS ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for α-glucosidase and glucose uptake studies against the extract. RESULTS Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited α-glucosidase activity and promoted glucose uptake in the rats' hemi-diaphragms. CONCLUSION This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of α-glucosidase, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.
Collapse
Affiliation(s)
- Keagile Bati
- Department of Biological Sciences, University of Botswana Private Bag UB0022, Gaborone, Botswana
| | - Tebogo Elvis Kwape
- Department of Biological Sciences, University of Botswana Private Bag UB0022, Gaborone, Botswana
| | - Padmaja Chaturvedi
- Department of Biological Sciences, University of Botswana Private Bag UB0022, Gaborone, Botswana
| |
Collapse
|
2
|
Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, Bottoni G, Emionite L, Pastorino F, Monteverde E, Garaboldi L, Martella R, Salani B, Maggi D, Ponzoni M, Fais F, Raffaghello L, Sambuceti G. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep 2016; 6:25092. [PMID: 27121192 PMCID: PMC4848551 DOI: 10.1038/srep25092] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022] Open
Abstract
Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Section of Genoa, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Anna Maria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Elena Monteverde
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lucia Garaboldi
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Barbara Salani
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Mirco Ponzoni
- Laboratorio di Oncologia, IRCCS G. Gaslini, Genoa, Italy
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Molecular Pathology, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
3
|
Bruzual De Abreu M, Temraz A, Malafronte N, Gonzalez-Mujica F, Duque S, Braca A. Phenolic Derivatives from Ruprechtia polystachya and Their Inhibitory Activities on the Glucose-6-phosphatase System. Chem Biodivers 2011; 8:2126-34. [DOI: 10.1002/cbdv.201000334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RSDSF, de Souza HM. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 2008; 26:320-8. [DOI: 10.1002/cbf.1444] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Bräuer S, Almstetter M, Antuch W, Behnke D, Taube R, Furer P, Hess S. Evolutionary Chemistry Approach toward Finding Novel Inhibitors of the Type 2 Diabetes Target Glucose-6-phosphate Translocase. ACTA ACUST UNITED AC 2005; 7:218-26. [PMID: 15762749 DOI: 10.1021/cc049867+] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A genetic algorithm (GA), driven by experimentally determined biological activities as a feedback fitness function, was used to propose novel small molecules as inhibitors of glucose-6-phosphate translocase (G6PT) in iterative rounds of evolutionary optimization. A straightforward polymer-supported synthetic sequence was implemented to synthesize molecules proposed by the GA, and the biological activities of the compounds were determined by a microsomal assay. Additional compound design strategies were integrated, such as Tanimoto similarity-based selection of starting materials and transfer of favored structure elements into a new chemical scaffold to identify more active and selective inhibitors.
Collapse
Affiliation(s)
- Silke Bräuer
- Morphochem AG, Gmunder Strasse 37-37a, 81379 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Gonzalez-Mujica F, Motta N, Estrada O, Perdomo E, Méndez J, Hasegawa M. Inhibition of hepatic neoglucogenesis and glucose-6-phosphatase by quercetin 3-O-α(2″-galloyl)rhamnoside isolated fromBauhinia megalandra leaves. Phytother Res 2005; 19:624-7. [PMID: 16161025 DOI: 10.1002/ptr.1704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In intact microsomes, quercetin 3-O-alpha-(2''-galloyl)rhamnoside (QGR) inhibits glucose-6-phosphatase (G-6-Pase) in a concentration-dependent manner. QGR increased the G-6-Pase K(m) for glucose-6-phosphate without change in the V(max). The flavonol did not change the kinetic parameters of disrupted microsomal G-6-Pase or intact or disrupted microsomal G-6-Pase pyrophosphatase (PPase) activity. This result allowed the conclusion that QGR competitively inhibits the glucose-6-phosphate (G-6-P) transporter (T1) without affecting the catalytic subunit or the phosphate/pyrophosphate transporter (T2) of the G-6-Pase system.QGR strongly inhibits the neoglucogenic capacity of rat liver slices incubated in a Krebs-Ringer bicarbonate buffer, supplemented with lactate and oleate saturated albumin. The QGR G-6-Pase inhibition might explain the decrease in the liver slice neoglucogenic capacity and, in turn, could reduce glucose levels in diabetic patients.
Collapse
Affiliation(s)
- Freddy Gonzalez-Mujica
- Sección de Bioquímica Médica, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | | | |
Collapse
|
7
|
Estrada O, Hasegawa M, Gonzalez-Mujíca F, Motta N, Perdomo E, Solorzano A, Méndez J, Méndez B, Zea EG. Evaluation of flavonoids fromBauhinia megalandra leaves as inhibitors of glucose-6-phosphatase system. Phytother Res 2005; 19:859-63. [PMID: 16261515 DOI: 10.1002/ptr.1703] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
From the methanol extract of Bauhinia megalandra fresh leaves, eight flavonoids were isolated and evaluated by rat liver microsomal glucose-6-phosphatase (G-6-Pase) bioassay, which might be a useful methodology for screening antihyperglycaemic substances. All the flavonoids assayed showed an inhibitory effect on the intact microsomal G-6-Pase: quercetin and kaempferol exhibited the lowest effect; astilbin, quercetin 3-O-alpha-rhamnoside, kaempferol 3-O-alpha-rhamnoside and quercetin 3-O-alpha-arabinoside an intermediate effect. The highest inhibitory activity was shown by quercetin 3-O-alpha-(2''-galloyl)rhamnoside and kaempferol 3-O-alpha-(2''galloyl)rhamnoside. None of the flavonoids mentioned above showed an inhibitory effect on the disrupted microsomal G-6-Pase. Quercetin 3-O-alpha-(2''-galloyl)rhamnoside and kaempferol 3-O-alpha-(2''-galloyl)rhamnoside exhibited the lowest IC50 of all the flavonoids assayed. Also, the phlorizin IC50 is reported.
Collapse
Affiliation(s)
- Omar Estrada
- Centro de Química Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Apartado postal 47102, Caracas, Venezuela.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shearer J, Farah A, de Paulis T, Bracy DP, Pencek RR, Graham TE, Wasserman DH. Quinides of roasted coffee enhance insulin action in conscious rats. J Nutr 2004; 133:3529-32. [PMID: 14608069 DOI: 10.1093/jn/133.11.3529] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Consumption of large amounts of coffee has been shown to decrease the incidence of type 2 diabetes. However, the specific compounds and mechanisms responsible for this effect are not known. The aim of this study was to determine the effects of a decaffeinated coffee extract and a synthetic quinide, representative of those found in roasted coffee, 3,4-diferuloyl-1,5-quinolactone, on insulin-stimulated glucose disposal and muscle glucose uptake. Experiments were performed on conscious rats during hyperinsulinemic, euglycemic clamps receiving gastric infusions of saline, a decaffeinated coffee extract (DECAF) (220 mg/kg), or 3,4-diferuloyl-1,5-quinide (DIFEQ) (110 mg/kg). Following treatment, rats received an intravenous bolus of deoxy-[2-3H] glucose to assess muscle glucose uptake (Rg, micromol x 100 g(-1) x min(-1)). Glucose infusions [mg/(kg x min)] required to maintain euglycemia during the tracer period were higher with DIFEQ (14.6 +/- 0.7) than with saline (10.8 +/- 0.7) and DECAF (11.5 +/- 1.1). Despite increased glucose requirements, Rg in skeletal (soleus, gastrocnemius, superficial vastus lateralis) and cardiac muscle were unchanged. DECAF or DIFEQ did not affect heart rate, blood pressure, plasma nonesterified fatty acids or liver aminotransferase activity. These results demonstrate that DIFEQ increases whole-body glucose disposal independently of skeletal muscle Rg.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GPA. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 2002. [PMID: 12373567 DOI: 10.1007/bf02679990] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Glycogen storage disease type I (GSD I) is a relatively rare metabolic disease and therefore, no metabolic centre has experience of large numbers of patients. To document outcome, to develop guidelines about (long-term) management and follow-up, and to develop therapeutic strategies, the collaborative European Study on GSD I (ESGSD I) was initiated. This paper is a descriptive analysis of data obtained from the retrospective part of the ESGSD I. Included were 231 GSD Ia and 57 GSD Ib patients. Median age of data collection was 10.4 years (range 0.4-45.4 years) for Ia and 7.1 years (0.4-30.6 years) for Ib patients. Data on dietary treatment, pharmacological treatment, and outcome including mental development, hyperlipidaemia and its complications, hyperuricaemia and its complications, bleeding tendency, anaemia, osteopenia, hepatomegaly, liver adenomas and carcinomas, progressive renal disease, height and adult height, pubertal development and bone maturation, school type, employment, and pregnancies are presented. Data on neutropenia, neutrophil dysfunction, infections, inflammatory bowel disease, and the use of granulocyte colony-stimulating factor are presented elsewhere (Visser et al. 2000, J Pediatr 137:187-191; Visser et al. 2002, Eur J Pediatr DOI 10.1007/s00431-002-1010-0). CONCLUSION there is still wide variation in methods of dietary and pharmacological treatment of glycogen storage disease type I. Intensive dietary treatment will improve, but not correct completely, clinical and biochemical status and fewer patients will die as a direct consequence of acute metabolic derangement. With ageing, more and more complications will develop of which progressive renal disease and the complications related to liver adenomas are likely to be two major causes of morbidity and mortality.
Collapse
Affiliation(s)
- Jan Peter Rake
- Department of Paediatrics, Beatrix Children's Hospital, University Hospital Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose.
Collapse
Affiliation(s)
- Emile van Schaftingen
- Laboratoire de Chimie Physiologique, UCL and ICP, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | |
Collapse
|
11
|
Xie W, van de Werve G, Berteloot A. Probing into the function of the gene product responsible for glycogen storage disease type Ib. FEBS Lett 2001; 504:23-6. [PMID: 11522289 DOI: 10.1016/s0014-5793(01)02758-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study aimed at directly assessing glucose 6-phosphate (G6P) transport by intact rat liver microsomes. Tracer uptake from labeled G6P occurred with T(1/2) values that proved insensitive to unlabeled G6P or 100 microM vanadate, and could not be activated over background levels by intravesicular phosphate in the complete absence of G6P hydrolysis. [(32)P]Phosphate efflux was similarly unaffected by G6P or phosphate in the incubation medium. We conclude that the gene product responsible for glycogen storage disease type Ib is functionally distinct from the bacterial hexose phosphate transporter, which operates as an obligatory phosphate:phosphate or G6P:phosphate exchanger.
Collapse
Affiliation(s)
- W Xie
- Laboratoire d'Endocrinologie Métabolique, Département de Nutrition, Centre de Recherche du CHUM, Montréal, QC, Canada
| | | | | |
Collapse
|
12
|
Weston BW, Lin JL, Muenzer J, Cameron HS, Arnold RR, Seydewitz HH, Mayatepek E, Van Schaftingen E, Veiga-da-Cunha M, Matern D, Chen YT. Glucose-6-phosphatase mutation G188R confers an atypical glycogen storage disease type 1b phenotype. Pediatr Res 2000; 48:329-34. [PMID: 10960498 DOI: 10.1203/00006450-200009000-00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycogen storage disease type 1a (GSD 1a) is caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase). A variant (GSD 1b) is caused by a defect in the transport of glucose-6-phosphate (G6P) into the microsome and is associated with chronic neutropenia and neutrophil dysfunction. Mutually exclusive mutations in the G6Pase gene and the G6P transport gene establish GSD la and GSD 1b as independent molecular processes and are consistent with a multicomponent translocase catalytic model. A modified translocase/catalytic unit model based on biochemical data in a G6Pase knockout mouse has also been proposed for G6Pase catalysis. This model suggests coupling of G6Pase activity and G6P transport. A 5-mo-old girl with hypoglycemia, hepatomegaly, and lactic acidemia was diagnosed with GSD 1a. She also developed neutropenia, neutrophil dysfunction, and recurrent infections characteristic of GSD 1b. Homozygous G188R mutations of the G6Pase gene were identified, but no mutations in the G6P translocase gene were found. We have subsequently identified a sibling and two unrelated patients with similar genotypic/phenotypic characteristics. The unusual association of neutrophil abnormalities in patients with homozygous G188R mutations in the G6Pase gene supports a modified translocase/catalytic unit model.
Collapse
Affiliation(s)
- B W Weston
- Department of Pediatrics, University of North Carolina at Chapel Hill, 27599-7220, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Visser G, Rake JP, Fernandes J, Labrune P, Leonard JV, Moses S, Ullrich K, Smit GP. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr 2000; 137:187-91. [PMID: 10931410 DOI: 10.1067/mpd.2000.105232] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the incidence, the severity, and the course of neutropenia, neutrophil dysfunction, and inflammatory bowel disease (IBD) in glycogen storage disease (GSD) type Ib. METHOD As part of a collaborative European Study on GSD type I, a retrospective registry was established in 12 European countries that included all patients with GSD-I who were known at the centers and were born from 1960 to 1995. Of a total of 288 patients with GSD-I, 57 who had GSD-Ib form the basis of this study. RESULTS Neutropenia (defined as an absolute neutrophil count <1 x 10(9)/L) was found in 54 patients. In 64% of the patients neutropenia was documented before the age of 1 year, but in 18% of the patients neutropenia was first noted between the ages of 6 and 9 years. Neutropenia was persistent in 5 patients and intermittent without any clear cyclical course in 45. Neutrophil function was investigated in 18 patients with neutropenia and was abnormal in all. Perioral infections were reported in 37 patients, perianal infections in 27 patients, and protracted diarrhea in 23 patients. Findings on colonoscopy and radiologic studies in 10 of 20 patients suspected to have IBD were abnormal in all. All patients with IBD, perioral infections, and perianal infections had neutropenia. CONCLUSIONS Intermittent severe neutropenia is frequently found in patients with GSD-Ib. The study also indicates that IBD in GSD-Ib is underdiagnosed; up to 77% of the patients studied had evidence of IBD, all of whom had neutropenia. IBD was not detected in those with normal neutrophil counts. These findings support the notion that neutropenia and/or neutrophil dysfunction in GSD-Ib and IBD are causally related.
Collapse
Affiliation(s)
- G Visser
- Beatrix Children's Hospital, University Hospital, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
van de Werve G, Lange A, Newgard C, Méchin MC, Li Y, Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1533-49. [PMID: 10712583 DOI: 10.1046/j.1432-1327.2000.01160.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The operation of glucose 6-phosphatase (EC 3.1.3.9) (Glc6Pase) stems from the interaction of at least two highly hydrophobic proteins embedded in the ER membrane, a heavily glycosylated catalytic subunit of m 36 kDa (P36) and a 46-kDa putative glucose 6-phosphate (Glc6P) translocase (P46). Topology studies of P36 and P46 predict, respectively, nine and ten transmembrane domains with the N-terminal end of P36 oriented towards the lumen of the ER and both termini of P46 oriented towards the cytoplasm. P36 gene expression is increased by glucose, fructose 2,6-bisphosphate (Fru-2,6-P2) and free fatty acids, as well as by glucocorticoids and cyclic AMP; the latter are counteracted by insulin. P46 gene expression is affected by glucose, insulin and cyclic AMP in a manner similar to P36. Accordingly, several response elements for glucocorticoids, cyclic AMP and insulin regulated by hepatocyte nuclear factors were found in the Glc6Pase promoter. Mutations in P36 and P46 lead to glycogen storage disease (GSD) type-1a and type-1 non a (formerly 1b and 1c), respectively. Adenovirus-mediated overexpression of P36 in hepatocytes and in vivo impairs glycogen metabolism and glycolysis and increases glucose production; P36 overexpression in INS-1 cells results in decreased glycolysis and glucose-induced insulin secretion. The nature of the interaction between P36 and P46 in controling Glc6Pase activity remains to be defined. The latter might also have functions other than Glc6P transport that are related to Glc6P metabolism.
Collapse
Affiliation(s)
- G van de Werve
- Laboratoire d'Endocrinologie Métabolique, Centre de Recherche du CHUM,Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Simon C, Herling AW, Preibisch G, Burger HJ. Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch Biochem Biophys 2000; 373:418-28. [PMID: 10620367 DOI: 10.1006/abbi.1999.1560] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multicomponent hepatic glucose 6-phosphatase (Glc-6-Pase) system catalyzes the terminal step of hepatic glucose production and plays a key role in the regulation of blood glucose. We used the chlorogenic acid derivative S 3483, a reversible inhibitor of the glucose-6-phosphate (Glc-6-P) translocase component, to demonstrate for the first time upregulation of Glc-6-Pase expression in rat liver in vivo after inhibition of Glc-6-P translocase. In accordance with its mode of action, S 3483-treatment of overnight-fasted rats induced hypoglycemia and increased blood lactate, hepatic Glc-6-P, and glycogen. The metabolic changes were accompanied by rapid and marked increases in Glc-6-Pase mRNA (above 35-fold), protein (about 2-fold), and enzymatic activity (about 2-fold). Maximal mRNA levels were reached after 4 h of treatment. Glycemia, blood lactate, and Glc-6-Pase mRNA levels returned to control values, whereas Glc-6-P and glycogen levels decreased but were still elevated 2 h after S 3483 withdrawal. The capacity for Glc-6-P influx was only marginally increased after 8.5 h of treatment. Prevention of hypoglycemia by euglycemic clamp did not abolish the increase in Glc-6-Pase mRNA induced by S 3483 treatment. A similar pattern of hypoglycemia and possibly of associated counterregulatory responses elicited by treatment with the phosphoenolpyruvate carboxykinase inhibitor 3-mercaptopicolinic acid could account for only a 2-fold induction of Glc-6-Pase mRNA. These findings suggest that the significant upregulation of Glc-6-Pase gene expression observed after treatment of rats in vivo with an inhibitor of Glc-6-P translocase is caused predominantly either by S 3483 per se or by the compound-induced changes of intracellular carbohydrate metabolism.
Collapse
Affiliation(s)
- C Simon
- Hoechst Marion Roussel Deutschland GmbH, Frankfurt am Main, 65926, Germany
| | | | | | | |
Collapse
|
16
|
Herling AW, Burger H, Schubert G, Hemmerle H, Schaefer H, Kramer W. Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol 1999; 386:75-82. [PMID: 10611466 DOI: 10.1016/s0014-2999(99)00748-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
S 4048 (1-[2-(4-Chloro-phenyl)-cyclopropylmethoxy]-3, 4-dihydroxy-5-(3-imidazo[4, 5-b]pyridin-1-yl-3-phenyl-acryloyloxy)-cyclohexanecarboxylic acid), a derivative of chlorogenic acid, specifically inhibits the glucose-6-phosphate translocating component T1 of the glucose-6-phosphatase system. Its pharmacological effect was studied on carbohydrate and lipid parameters in rats. In starved and fed rats, S 4048 caused a dose-dependent reduction of blood glucose levels with a corresponding increase in hepatic and renal glycogen and glucose-6-phosphate. The major quantitative route of carbon flux in the liver during S 4048-induced inhibition of the glucose-6-phosphatase activity seemed to be glycogenesis. Plasma free fatty acids were increased secondarily due to the S 4048-induced hypoglycemia. Hepatic triglycerides were increased possibly due to increased re-esterification of the readily available free fatty acids. Glucose-6-phosphate translocase inhibitors may be useful for experimentally studying aspects of type 1 glycogen storage disease in laboratory animals as well as for the therapeutic modulation of inappropriately high rates of hepatic glucose production in type 2 diabetes.
Collapse
Affiliation(s)
- A W Herling
- Hoechst Marion Roussel Deutschland GmbH, H 821 Pharmacology, 65926, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Li Y, Méchin MC, van de Werve G. Diabetes affects similarly the catalytic subunit and putative glucose-6-phosphate translocase of glucose-6-phosphatase. J Biol Chem 1999; 274:33866-8. [PMID: 10567346 DOI: 10.1074/jbc.274.48.33866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.
Collapse
Affiliation(s)
- Y Li
- Laboratoire d'Endocrinologie Métabolique, Department of Nutrition Groupe de Recherche en Transport Membranaire, Centre de Recherche du CHUM, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
18
|
Abstract
Glucose is an essential nutrient for the human body. It is the major energy source for many cells, which depend on the bloodstream for a steady supply. Blood glucose levels, therefore, are carefully maintained. The liver plays a central role in this process by balancing the uptake and storage of glucose via glycogenesis and the release of glucose via glycogenolysis and gluconeogenesis. The several substrate cycles in the major metabolic pathways of the liver play key roles in the regulation of glucose production. In this review, we focus on the short- and long-term regulation glucose-6-phosphatase and its substrate cycle counter-part, glucokinase. The substrate cycle enzyme glucose-6-phosphatase catalyzes the terminal step in both the gluconeogenic and glycogenolytic pathways and is opposed by the glycolytic enzyme glucokinase. In addition, we include the regulation of GLUT 2, which facilitates the final step in the transport of glucose out of the liver and into the bloodstream.
Collapse
Affiliation(s)
- R C Nordlie
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks 58202, USA.
| | | | | |
Collapse
|
19
|
Verhoeven AJ, Visser G, van Zwieten R, Gruszczynska B, Tien Poll-The DW, Smit GP. A convenient diagnostic function test of peripheral blood neutrophils in glycogen storage disease type Ib. Pediatr Res 1999; 45:881-5. [PMID: 10367783 DOI: 10.1203/00006450-199906000-00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils from patients suffering from glycogen storage disease type Ib (GSD-Ib) show several defects. one of which is a decreased rate of glucose utilization. In this study, we established experimental conditions to show the stimulation of the neutrophil respiratory burst by extracellular glucose. With phorbol-myristate-acetate as stimulus of the burst, the activity of the NADPH oxidase in GSD-Ib neutrophils hardly increased on addition of glucose. In control and GSD-type Ia neutrophils, a clear increase was observed. The lack of response to extracellular glucose in GSD-Ib neutrophils is correlated with the inability to raise intracellular glucose-6-P levels on glucose addition, thereby limiting the activity of the generation of NADPH in the hexose-monophosphate shunt. Our study shows the usefulness of this test for the diagnosis of neutrophil function abnormality in GSD-Ib patients.
Collapse
Affiliation(s)
- A J Verhoeven
- Sanquin Blood Supply Foundation and Laboratory for Experimental and Clinical Immunology, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Veiga-da-Cunha M, Gerin I, Chen YT, de Barsy T, de Lonlay P, Dionisi-Vici C, Fenske CD, Lee PJ, Leonard JV, Maire I, McConkie-Rosell A, Schweitzer S, Vikkula M, Van Schaftingen E. A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic. Am J Hum Genet 1998; 63:976-83. [PMID: 9758626 PMCID: PMC1377500 DOI: 10.1086/302068] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycogen-storage diseases type I (GSD type I) are due to a deficiency in glucose-6-phosphatase, an enzymatic system present in the endoplasmic reticulum that plays a crucial role in blood glucose homeostasis. Unlike GSD type Ia, types Ib and Ic are not due to mutations in the phosphohydrolase gene and are clinically characterized by the presence of associated neutropenia and neutrophil dysfunction. Biochemical evidence indicates the presence of a defect in glucose-6-phosphate (GSD type Ib) or inorganic phosphate (Pi) (GSD type Ic) transport in the microsomes. We have recently cloned a cDNA encoding a putative glucose-6-phosphate translocase. We have now localized the corresponding gene on chromosome 11q23, the region where GSD types Ib and Ic have been mapped. Using SSCP analysis and sequencing, we have screened this gene, for mutations in genomic DNA, from patients from 22 different families who have GSD types Ib and Ic. Of 20 mutations found, 11 result in truncated proteins that are probably nonfunctional. Most other mutations result in substitutions of conserved or semiconserved residues. The two most common mutations (Gly339Cys and 1211-1212 delCT) together constitute approximately 40% of the disease alleles. The fact that the same mutations are found in GSD types Ib and Ic could indicate either that Pi and glucose-6-phosphate are transported in microsomes by the same transporter or that the biochemical assays used to differentiate Pi and glucose-6-phosphate transport defects are not reliable.
Collapse
Affiliation(s)
- M Veiga-da-Cunha
- Laboratory of Physiological Chemistry, ICP and Université Catholique de Louvain, Brussels, Belguim
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Clottes E, Burchell A. Three thiol groups are important for the activity of the liver microsomal glucose-6-phosphatase system. Unusual behavior of one thiol located in the glucose-6-phosphate translocase. J Biol Chem 1998; 273:19391-7. [PMID: 9677356 DOI: 10.1074/jbc.273.31.19391] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver microsomal glucose-6-phosphatase (Glc-6-Pase) is a multicomponent system involving both substrate and product carriers and a catalytic subunit. We have investigated the inhibitory effect of N-ethylmaleimide (NEM), a rather specific sulfhydryl reagent, on rat liver Glc-6-Pase activity. Three thiol groups are important for Glc-6-Pase system activity. Two of them are located in the glucose-6-phosphate (Glc-6-P) translocase, and one is located in the catalytic subunit. The other transporters (phosphate and glucose) are not affected by NEM treatment. The NEM alkylation of the catalytic subunit sulfhydryl residue is prevented by preincubating the disrupted microsomes with saturating concentrations of substrate or product. This suggests either that the modified cysteine is located in the protein active site or that substrate binding hides the thiol group via a conformational change in the enzyme structure. Two other thiols important for the Glc-6-Pase system activity are located in the Glc-6-P translocase and are more reactive than the one located in the catalytic subunit. The study of the NEM inhibition of the translocase has provided evidence of the existence of two distinct areas in the protein that can behave independently, with conformational changes occurring during Glc-6-P binding to the transporter. The recent cloning of a human putative Glc-6-P carrier exhibiting homologies with bacterial phosphoester transporters, such as Escherichia coli UhpT (a Glc-6-P translocase), is compatible with the fact that two cysteine residues are important for the bacterial Glc-6-P transport.
Collapse
Affiliation(s)
- E Clottes
- Department of Obstetrics and Gynaecology, Ninewells Hospital and Medical School, Dundee University, Dundee, DD1 9SY, Scotland
| | | |
Collapse
|