1
|
Chu Y, Nie Q, Zhou X, Yang J, Fang J, Zhang J. Berberrubine as a novel TrxR inhibitor enhances cisplatin sensitivity in the treatment of non-small cell lung cancer. Bioorg Chem 2025; 158:108329. [PMID: 40056602 DOI: 10.1016/j.bioorg.2025.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Thioredoxin reductase (TrxR, TXNRD) is an essential enzyme implicated in the processes of cancer development and progression, positioning it as a promising target for cancer therapeutics. In this study, we employed target-based structural screening to identify berberrubine (BRB), a natural product characterized by an unprecedented isoquinoline scaffold that differs from known TrxR inhibitors. Our findings demonstrate that BRB serves as an effective inhibitor of TrxR, both in the context of the purified enzyme and within cancer cells. Since TrxR is highly expressed in non-small cell lung cancer (NSCLC) and is linked to patient prognosis and drug resistance, our results demonstrate, for the first time, that BRB can enhance the sensitivity of cisplatin to impede the proliferation of A549 cells, which was further confirmed in a xenograft model. The primary reason for cisplatin resistance in NSCLC is the DNA repair mechanism of apoptotic tumor cells. Our subsequent mechanistic investigation discovered that BRB selectively inhibits TrxR and impairs the biologically functional thioredoxin, which ultimately inhibits DNA synthesis and repair in cancer cells. Inhibition of TrxR by BRB led to a significant ROS accumulation in A549 cells, which contributed to oxidative stress-mediated apoptosis when used in combination with cisplatin. Our results conclude that BRB is a novel chemical entity of TrxR inhibitor that can increase the effectiveness of cisplatin in slowing down the growth of NSCLC both in vitro and in vivo. This provides a new perspective on the potential application of the combination of the two in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yajun Chu
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiedong Zhou
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Junwei Yang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China..
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
2
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
3
|
Shi W, Sun S, Liu H, Meng Y, Ren K, Wang G, Liu M, Wu J, Zhang Y, Huang H, Shi M, Xu W, Ma Q, Sun B, Xu J. Guiding bar motif of thioredoxin reductase 1 modulates enzymatic activity and inhibitor binding by communicating with the co-factor FAD and regulating the flexible C-terminal redox motif. Redox Biol 2024; 70:103050. [PMID: 38277963 PMCID: PMC10840350 DOI: 10.1016/j.redox.2024.103050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.
Collapse
Affiliation(s)
- Wuyang Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Kangshuai Ren
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Guoying Wang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Minghui Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Jiaqi Wu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yue Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Huang Huang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Meiyun Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Panjin, 124221, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
4
|
Qin H, Guo C, Chen B, Huang H, Tian Y, Zhong L. The C-terminal selenenylsulfide of extracellular/non-reduced thioredoxin reductase endows this protein with selectivity to small-molecule electrophilic reagents under oxidative conditions. Front Mol Biosci 2024; 11:1274850. [PMID: 38523661 PMCID: PMC10957665 DOI: 10.3389/fmolb.2024.1274850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Mammalian cytosolic thioredoxin reductase (TrxR1) serves as an antioxidant protein by transferring electrons from NADPH to various substrates. The action of TrxR1 is achieved via reversible changes between NADPH-reduced and non-reduced forms, which involves C-terminal selenolthiol/selenenylsulfide exchanges. TrxR1 may be released into extracellular environment, where TrxR1 is present mainly in the non-reduced form with active-site disulfide and selenenylsulfide bonds. The relationships between extracellular TrxR1 and tumor metastasis or cellular signaling have been discovered, but there are few reports on small-molecule compounds in targeted the non-reduced form of TrxR1. Using eight types of small-molecule thiol-reactive reagents as electrophilic models, we report that the selenenylsulfide bond in the non-reduced form of TrxR1 functions as a selector for the thiol-reactive reagents at pH 7.5. The non-reduced form of TrxR1 is resistant to hydrogen peroxide/oxidized glutathione, but is sensitive to certain electrophilic reagents in different ways. With 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and S-nitrosoglutathione (GSNO), the polarized selenenylsulfide bond breaks, and selenolate anion donates electron to the dynamic covalent bond in DTNB or GSNO, forming TNB-S-Se-TrxR1 complex or ON-Se-TrxR1 complex. The both complexes lose the ability to transfer electrons from NADPH to substrate. For diamide, the non-reduced TrxR1 actually prevents irreversible damage by this oxidant. This is consistent with the regained activity of TrxR1 through removal of diamide via dialysis. Diamide shows effective in the presence of human cytosolic thioredoxin (hTrx1), Cys residue(s) of which is/are preferentially affected by diamide to yield disulfide, hTrx1 dimer and the mixed disulfide between TrxR1-Cys497/Sec498 and hTrx1-Cys73. In human serum samples, the non-reduced form of TrxR1 exists as dithiothreitol-reducible polymer/complexes, which might protect the non-reduced TrxR1 from inactivation by certain electrophilic reagents under oxidative conditions, because cleavage of these disulfides can lead to regain the activity of TrxR1. The details of the selective response of the selenenylsulfide bond to electrophilic reagents may provide new information for designing novel small-molecule inhibitors (drugs) in targeted extracellular/non-reduced TrxR1.
Collapse
Affiliation(s)
- Huijun Qin
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenchen Guo
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bozhen Chen
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Huang
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Tian
- Chinese PLA General Hospital (301 Hospital), Beijing, China
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
6
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
7
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
9
|
Selenoprotein: Potential Player in Redox Regulation in Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081630. [PMID: 36009349 PMCID: PMC9404770 DOI: 10.3390/antiox11081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions.
Collapse
|
10
|
Zhang B, Fang J. Assay of selenol species in biological samples by the fluorescent probe Sel-green. Methods Enzymol 2021; 662:259-273. [PMID: 35101214 DOI: 10.1016/bs.mie.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenium (Se) is an essential trace element for diverse cellular functions. The biological significance of Se is predominantly dependent on its incorporation into the selenocysteine (Sec) for synthesis of selenoproteins (SePs), such as thioredoxin reductase family enzymes and glutathione peroxidase family enzymes. In general, the hyperactivity of the selenol group in Sec confers the Sec residue critical for functions of SePs. The Sec is much less abundant than its sulfur analog cysteine (Cys), and it remains a high challenge to detect Sec, especially in complex biological samples. We recently reported a selective fluorescent probe Sel-green for selenols and summarized the principles for design of selenol (and thiophenol) probes. Sel-green discriminates selenols from other biological species, especially thiols, under physiological conditions, and has been applied to detect both endogenous and exogenous selenol species in live cells. In this chapter, we describe a protocol and guideline for the selective detection of Sec by applying the Sel-green. This protocol is also suitable for detection of other selenol species. This practical and convenient assay would assist scientists to better understand the pivotal roles of Sec as well as SePs.
Collapse
Affiliation(s)
- Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Abstract
The cytosolic selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1), and to some extent mitochondrial TrxR2 (TXNRD2), can be inhibited by a wide range of electrophilic compounds. Many such compounds also yield cytotoxicity toward cancer cells in culture or in mouse models, and most compounds are likely to irreversibly modify the easily accessible selenocysteine residue in TrxR1, thereby inhibiting its normal activity to reduce cytosolic thioredoxin (Trx1, TXN) and other substrates of the enzyme. This leads to an oxidative challenge. In some cases, the inhibited forms of TrxR1 are not catalytically inert and are instead converted to prooxidant NADPH oxidases, named SecTRAPs, thus further aggravating the oxidative stress, particularly in cells expressing higher levels of the enzyme. In this review, the possible molecular and cellular consequences of these effects are discussed in relation to cancer therapy, with a focus on outstanding questions that should be addressed if targeted TrxR1 inhibition is to be further developed for therapeutic use. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; .,Department of Selenoprotein Research, National Institute of Oncology, Budapest 1122, Hungary
| |
Collapse
|
12
|
Sun S, Xu W, Zhang Y, Yang Y, Ma Q, Xu J. Menadione inhibits thioredoxin reductase 1 via arylation at the Sec 498 residue and enhances both NADPH oxidation and superoxide production in Sec 498 to Cys 498 substitution. Free Radic Biol Med 2021; 172:482-489. [PMID: 34186208 DOI: 10.1016/j.freeradbiomed.2021.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1; TXNRD1) participates in multiple cellular processes and is regarded as a cellular target in anti-tumor drug discovery and development. TrxR1 has been reported to reduce menadione to menadiol and to produce superoxide anion radicals. However, the details of TrxR1-mediated menadione reduction have rarely been studied. In this study, we found that wild-type TrxR1 could reduce menadione in a less efficient way, but the U498C mutant variant supported high-efficiency menadione reduction in a Sec-independent manner. Meanwhile, the site-directed mutagenesis results showed that Cys64 mutant increased the Km values and decreased the catalytic efficiency, which was associated with a charge-transfer complex between FAD-Cys64. Mass spectrometry (MS) revealed that in NADPH pre-reduced TrxR1 but not oxidized TrxR1, the highly active Sec498 of wild-type TrxR1 was arylated by menadione and strongly impaired the DTNB reducing activity in a dose-dependent manner. TrxR1 reduced menadione more efficiently than glutathione reductase (GR), and interestingly menadione did not inhibit the GSSG reducing activity of GR. In summary, our results demonstrate that TrxR1 catalyzes the reduction of menadione in a Sec-independent manner, which highly depend on Cys498 instead of N-terminal redox motif, and the Sec498 of TrxR1 is the primary target of menadione. The interaction between menadione and TrxR1 revealed in this study may provide a valuable reference for the development of anticancer drugs targeting selenoprotein TrxR1.
Collapse
Affiliation(s)
- Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Panjin 124221, China
| | - Yue Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Yijia Yang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
13
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
14
|
Mafireyi TJ, Escobedo JO, Strongin RM. Fluorogenic probes for thioredoxin reductase activity. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
15
|
Branco V, Pimentel J, Brito MA, Carvalho C. Thioredoxin, Glutathione and Related Molecules in Tumors of the Nervous System. Curr Med Chem 2020; 27:1878-1900. [PMID: 30706774 DOI: 10.2174/0929867326666190201113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Central Nervous System (CNS) tumors have a poor survival prognosis due to their invasive and heterogeneous nature, in addition to the resistance to multiple treatments. OBJECTIVE In this paper, the main aspects of brain tumor biology and pathogenesis are reviewed both for primary tumors of the brain, (i.e., gliomas) and for metastasis from other malignant tumors, namely lung cancer, breast cancer and malignant melanoma which account for a high percentage of overall malignant brain tumors. We review the role of antioxidant systems, namely the thioredoxin and glutathione systems, in the genesis and/or progression of brain tumors. METHODS Although overexpression of Thioredoxin Reductase (TrxR) and Thioredoxin (Trx) is often linked to increased malignancy rate of brain tumors, and higher expression of Glutathione (GSH) and Glutathione S-Transferases (GST) are associated to resistance to therapy, several knowledge gaps still exist regarding for example, the role of Peroxiredoxins (Prx), and Glutaredoxins (Grx). CONCLUSION Due to their central role in redox homeostasis and ROS scavenging, redox systems are potential targets for new antitumorals and examples of innovative therapeutics aiming at improving success rates in brain tumor treatment are discussed.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHLN), Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal.,Faculty of Medicine, Lisbon University, Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
16
|
Bai Y, Liu J, Yang L, Zhong L. New insights into serum/extracellular thioredoxin in regulating hepatic insulin receptor activation. Biochim Biophys Acta Gen Subj 2020; 1864:129630. [PMID: 32376199 DOI: 10.1016/j.bbagen.2020.129630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Serum thioredoxin of type-2 diabetic patients is significantly higher than that of healthy people. Pathophysiological significance is unclear. METHODS Effects of serum/extracellular thioredoxin on phosphorylation (activation) of hepatic insulin receptor (IR) were investigated by using methods in biochemistry, cell/molecular biology and mass spectrometry. RESULTS In human serum, thioredoxin and insulin may interact. Their mixture contains a mixed disulfide between insulin B-chain and thioredoxin-Cys73, which limits their activities. In contrast, free form of serum/extracellular thioredoxin is active, and can regulate phosphorylation of insulin receptor β-subunits (IRβ) via direct/indirect mechanisms. The direct mechanism associates with positive regulation. Serum/extracellular thioredoxin increases insulin binding to IR, facilitating insulin-induced phosphorylation of IRβ and downstream AKT. The indirect mechanism is involved in negative regulation. Entry of extracellular thioredoxin into hepatic cells via IR enhances the expression and activity of cellular protein-tyrosine phosphatase 1B (PTP1B), which negatively regulates IRβ phosphorylation. After coordination between these two mechanisms, the positive impact of serum/extracellular thioredoxin overwhelms its negative impact on IRβ phosphorylation, which subsequently accelerates hepatic glucose uptake. In hepatic cells with thioredoxin deficiency, insulin-induced IRβ phosphorylation is decreased, which could be restored by extracellular thioredoxin entry. Moreover, the results from assaying 475 serum samples demonstrate a discriminating value of serum thioredoxin activity in diagnosing type-2 diabetes. CONCLUSION Serum/extracellular thioredoxin plays a critical role in regulating hepatic IRβ phosphorylation. GENERAL SIGNIFICANCE In case of insulin resistance/type-2 diabetes, hepatic IRβ is at low phosphorylation level, thereby the improvement effect of serum/extracellular thioredoxin on insulin-induced IRβ phosphorylation seems particularly important.
Collapse
Affiliation(s)
- Yun Bai
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, Beijing 101407, China
| | - Jia Liu
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, Beijing 101407, China
| | - Lijuan Yang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, Beijing 101407, China.
| |
Collapse
|
17
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
18
|
Balsera M, Buchanan BB. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic Biol Med 2019; 140:28-35. [PMID: 30862542 DOI: 10.1016/j.freeradbiomed.2019.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Thioredoxins (Trxs) are low-molecular-weight proteins that participate in the reduction of target enzymes. Trxs contain a redox-active disulfide bond, in the form of a WCGPC amino acid sequence motif, that enables them to perform dithiol-disulfide exchange reactions with oxidized protein substrates. Widely distributed across the three domains of life, Trxs form an evolutionarily conserved family of ancient origin. Thioredoxin reductases (TRs) are enzymes that reduce Trxs. According to their evolutionary history, TRs have diverged, thereby leading to the emergence of variants of the enzyme that in combination with different types of Trxs meet the needs of the cell. In addition to participating in the regulation of metabolism and defense against oxidative stress, Trxs respond to environmental signals-an ability that developed early in evolution. Redox regulation of proteins targeted by Trx is accomplished with a pair of redox-active cysteines located in strategic positions on the polypeptide chain to enable reversible oxidative changes that result in structural and functional modifications target proteins. In this review, we present a general overview of the thioredoxin system and describe recent structural studies on the diversity of its components.
Collapse
Affiliation(s)
- Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| | - Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, Berkeley, 94720 CA, USA.
| |
Collapse
|
19
|
Booty LM, Gawel JM, Cvetko F, Caldwell ST, Hall AR, Mulvey JF, James AM, Hinchy EC, Prime TA, Arndt S, Beninca C, Bright TP, Clatworthy MR, Ferdinand JR, Prag HA, Logan A, Prudent J, Krieg T, Hartley RC, Murphy MP. Selective Disruption of Mitochondrial Thiol Redox State in Cells and In Vivo. Cell Chem Biol 2019; 26:449-461.e8. [PMID: 30713096 PMCID: PMC6436940 DOI: 10.1016/j.chembiol.2018.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 02/02/2023]
Abstract
Mitochondrial glutathione (GSH) and thioredoxin (Trx) systems function independently of the rest of the cell. While maintenance of mitochondrial thiol redox state is thought vital for cell survival, this was not testable due to the difficulty of manipulating the organelle's thiol systems independently of those in other cell compartments. To overcome this constraint we modified the glutathione S-transferase substrate and Trx reductase (TrxR) inhibitor, 1-chloro-2,4-dinitrobenzene (CDNB) by conjugation to the mitochondria-targeting triphenylphosphonium cation. The result, MitoCDNB, is taken up by mitochondria where it selectively depletes the mitochondrial GSH pool, catalyzed by glutathione S-transferases, and directly inhibits mitochondrial TrxR2 and peroxiredoxin 3, a peroxidase. Importantly, MitoCDNB inactivates mitochondrial thiol redox homeostasis in isolated cells and in vivo, without affecting that of the cytosol. Consequently, MitoCDNB enables assessment of the biomedical importance of mitochondrial thiol homeostasis in reactive oxygen species production, organelle dynamics, redox signaling, and cell death in cells and in vivo.
Collapse
Affiliation(s)
- Lee M Booty
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Justyna M Gawel
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Filip Cvetko
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | | | - Andrew R Hall
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Elizabeth C Hinchy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Sabine Arndt
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Cristiane Beninca
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas P Bright
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | | | - John R Ferdinand
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
20
|
Bakulina O, Bannykh A, Jovanović M, Domračeva I, Podolski-Renić A, Žalubovskis R, Pešić M, Dar'in D, Krasavin M. Design, synthesis, and biological evaluation of novel derivatives of dithiodiglycolic acid prepared via oxidative coupling of thiols. J Enzyme Inhib Med Chem 2019; 34:665-671. [PMID: 30746961 PMCID: PMC6374954 DOI: 10.1080/14756366.2019.1575372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing enzyme which plays a crucial role in regulating numerous redox signalling pathways within the cell. While its functioning is important in all cells, levels of TrxR1 expression are higher in cancer cells, possibly as an adaptation to much higher levels of reactive oxygen species and the need for more extensive DNA synthesis. This makes TrxR1 an attractive target for cancer therapy development. Inspired by the structure of disulphide compounds which have advanced through various stages of clinical development, we designed a series of dithiodiglycolic acid derivatives. These were prepared from respective thiol synthons using an iodine- or benzotriazolyl chloride-promoted oxidative disulphide bond formation. Inhibition of TrxR present in cell lysates from human neuroblastoma cells (SH-SY5Y) and rat liver cells indicated several compounds with a potential for TrxR inhibition. Some of these compounds were also tested for growth inhibition against two human cancer cell lines and normal human keratinocytes.
Collapse
Affiliation(s)
- Olga Bakulina
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Anton Bannykh
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Mirna Jovanović
- b Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | | | - Ana Podolski-Renić
- b Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Raivis Žalubovskis
- c Latvian Institute of Organic Synthesis , Riga , Latvia.,d Faculty of Materials Science and Applied Chemistry , Institute of Technology of Organic Chemistry, Riga Technical University , Riga , Latvia
| | - Milica Pešić
- b Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Dmitry Dar'in
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Mikhail Krasavin
- a Saint Petersburg State University , Saint Petersburg , Russian Federation
| |
Collapse
|
21
|
Branco V, Carvalho C. The thioredoxin system as a target for mercury compounds. Biochim Biophys Acta Gen Subj 2018; 1863:129255. [PMID: 30447253 DOI: 10.1016/j.bbagen.2018.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mercury interaction with selenium in vivo has been recognized for >50 years. Several researchers attempted to use selenium to mitigate the detrimental effects of mercurial compounds but the results were controversial. Selenium pools in living organisms are quite low and the high affinity of mercury to bind selenols pointed out selenoproteins as possible targets of toxicity. Such was the case of the selenoenzyme thioredoxin reductase (TrxR) which is an integrant part of the thioredoxin system. Given the important role of this redox system for cellular functioning and the high affinity of mercury for TrxR's active site, this interaction can be key to understand the mechanism by which Hg causes cell death. SCOPE OF THE REVIEW This review discusses the current state of knowledge concerning the interaction between mercury compounds and the thioredoxin system, its implications for the development of toxicity and the effects of selenium co-exposure. MAJOR CONCLUSIONS The mechanism of toxicity of mercurials is a complex chain of events starting with inhibition of the selenoenzyme, TrxR. Selenium supplementation protects TrxR from the toxicity of inorganic forms of mercury (i.e., Hg(II)) to a certain extent, but not from methylmercury. When TrxR is inhibited, thioredoxin is reduced by alternative mechanisms involving glutathione and glutaredoxin and only when this pathway is hampered does cell death occur. GENERAL SIGNIFICANCE Understanding the molecular mechanism of mercury toxicity and the mechanisms of enzymatic compensation allows the design of mitigation strategies and, since TxrR and Trx exist in the plasma, puts forward the possibility for future use of changes in activity/expression of these enzymes as biomarkers of mercury toxicity, thus refining the risk assessment process.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| |
Collapse
|
22
|
The genomics of selenium: Its past, present and future. Biochim Biophys Acta Gen Subj 2018; 1862:2427-2432. [DOI: 10.1016/j.bbagen.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
|
23
|
Ren X, Zou L, Lu J, Holmgren A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic Biol Med 2018; 127:238-247. [PMID: 29807162 DOI: 10.1016/j.freeradbiomed.2018.05.081] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
Thioredoxin system is a ubiquitous disulfide reductase system evolutionarily conserved through all living organisms. It contains thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH. TrxR can use NADPH to reduce Trx which passes the reducing equivalent to its downstream substrates involved in various biomedical events, such as ribonucleotide reductase for deoxyribonucleotide and DNA synthesis, or peroxiredoxins for counteracting oxidative stress. Obviously, TrxR stays in the center of the system to maintain the electron flow. Mammalian TrxR contains a selenocysteine (Sec) in its active site, which is not present in the low molecular weight prokaryotic TrxRs. Due to the special property of Sec, mammalian TrxR employs a different catalytic mechanism from prokaryotic TrxRs and has a broader substrate-spectrum. On the other hand, Sec is easily targeted by electrophilic compounds which inhibits the TrxR activity and may turn TrxR into an NADPH oxidase. Ebselen, a synthetic seleno-compound containing selenazol, has been tested in several clinical studies. In mammalian cells, ebselen works as a GSH peroxidase mimic and mainly as a peroxiredoxin mimic via Trx and TrxR to scavenge hydrogen peroxide and peroxynitrite. In prokaryotic cells, ebselen is an inhibitor of TrxR and leads to elevation of reactive oxygen species (ROS). Recent studies have made use of the difference and developed ebselen as a potential antibiotic, especially in combination with silver which enables ebselen to kill multi-drug resistant Gram-negative bacteria. Collectively, Sec is important for the biological functions of mammalian TrxR and distinguishes it from prokaryotic TrxRs, therefore it is a promising drug target.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
24
|
Miller CG, Holmgren A, Arnér ESJ, Schmidt EE. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med 2018; 127:248-261. [PMID: 29609022 PMCID: PMC6165701 DOI: 10.1016/j.freeradbiomed.2018.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons ("reducing power") from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
25
|
Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic Biol Med 2018; 127:62-79. [PMID: 29596885 DOI: 10.1016/j.freeradbiomed.2018.03.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Thioredoxin reductase 2 (TrxR2) is a key component of the mitochondrial thioredoxin system able to transfer electrons to peroxiredoxin 3 (Prx3) in a reaction mediated by thioredoxin 2 (Trx2). In this way, both the level of hydrogen peroxide and thiol redox state are modulated. TrxR2 is often overexpressed in cancer cells conferring apoptosis resistance. Due to their exposed flexible arm containing selenocysteine, both cytosolic and mitochondrial TrxRs are inhibited by a large number of molecules. The various classes of inhibitors are listed and the molecules acting specifically on TrxR2 are extensively described. Particular emphasis is given to gold(I/III) complexes with phosphine, carbene or other ligands and to tamoxifen-like metallocifens. Also chemically unrelated organic molecules, including natural compounds and their derivatives, are taken into account. An important feature of many TrxR2 inhibitors is provided by their nature of delocalized lipophilic cations that allows their accumulation in mitochondria exploiting the organelle membrane potential. The consequences of TrxR2 inhibition are presented focusing especially on the impact on mitochondrial pathophysiology. Inhibition of TrxR2, by hindering the activity of Trx2 and Prx3, increases the mitochondrial concentration of reactive oxygen species and shifts the thiol redox state toward a more oxidized condition. This is reflected by alterations of specific targets involved in the release of pro-apoptotic factors such as cyclophilin D which acts as a regulator of the mitochondrial permeability transition pore. Therefore, the selective inhibition of TrxR2 could be utilized to induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Institute of Neuroscience (CNR), Padova Section, c/o Department of Biomedical Sciences, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
26
|
Zhang B, Liu Y, Li X, Xu J, Fang J. Small Molecules to Target the Selenoprotein Thioredoxin Reductase. Chem Asian J 2018; 13:3593-3600. [DOI: 10.1002/asia.201801136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Yuxin Liu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute; Dalian University of Technology; Panjin 124221 China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|
27
|
Gencheva R, Cheng Q, Arnér ESJ. Efficient selenocysteine-dependent reduction of toxoflavin by mammalian thioredoxin reductase. Biochim Biophys Acta Gen Subj 2018; 1862:2511-2517. [PMID: 29807072 DOI: 10.1016/j.bbagen.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Toxoflavin (1,6-dimethylpyrimido[5,4-e][1,2,4]triazine-5,7-dione; xanthothricin) is a well-known natural toxin of the pyrimidinetriazinedione type that redox cycles with oxygen under reducing conditions. In mammalian systems, toxoflavin is an inhibitor of Wnt signaling as well as of SIRT1 and SIRT2 activities, but other molecular targets in mammalian cells have been scarcely studied. Interestingly, in a library of nearly 400,000 compounds (PubChem assay ID 588456), toxoflavin was identified as one out of only 56 potential substrates of the mammalian selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1). This activity was here examined in further detail. METHODS Kinetic parameters in interactions of toxoflavin with rat or human TrxR isoenzymes were determined and compared with those of juglone (5-Hydroxy-1,4-naphthoquinone; walnut toxin) and 9,10-phenanthrene quinone. Selenocysteine dependence was examined using Sec-to-Cys and Sec-to-Ser substituted variants of recombinant rat TrxR1. RESULTS Toxoflavin was confirmed as an efficient substrate for TrxR. Rat and human cytosolic TrxR1 supported NADPH-dependent redox cycling coupled to toxoflavin reduction, accompanied by H2O2 production under aerobic conditions. Apparent kinetic parameters for the initial rates of reduction showed that rat TrxR1 displayed higher apparent turnover (kcat = 1700 ± 330 min-1) than human TrxR1 (kcat = 1100 ± 82 min-1) but also a higher Km (Km = 24 ± 4.3 μM for human TrxR1 versus Km = 54 ± 18 μM for rat TrxR1). Human TrxR2 (TXNRD2) was less efficient in reduction of toxoflavin (Km = 280 ± 110 μM and kcat = 740 ± 240 min-1). The activity was absolutely dependent upon selenocysteine (Sec). Toxoflavin was also a subversive substrate indirectly inhibiting reduction of other substrates of TrxR1. CONCLUSIONS Our results identify toxoflavin as an efficient redox cycling substrate of mammalian TrxR enzymes, in a strict Sec-dependent manner. GENERAL SIGNIFICANCE Тhe interactions of toxoflavin with mammalian TrxR isoenzymes can help to explain parts of the molecular mechanisms giving rise to the well-known toxicity as well as pro-oxidant properties of this toxin.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
28
|
Abstract
Thioredoxin reductases are important oxidoreductases that keep the active site disulfide/dithiol motif of thioredoxins reduced using NADPH, thereby supporting many thioredoxin-dependent reductive pathways in cells. Mammalian thioredoxin reductases are selenoproteins that have several additional substrates beyond thioredoxins. This chapter first lists several different assays for measurement of thioredoxin reductase activities, before giving a protocol for a selective evaluation of these activities that can be used in either crude cell lysates as well as with purified enzymes. The same assay can also be easily adopted for the determination of thioredoxin activities.
Collapse
|
29
|
Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L, Cheng Q, Trésaugues L, Dexheimer TS, Coussens NP, Augsten M, Ahlzén HSM, Orwar O, Östman A, Stone-Elander S, Maloney DJ, Jadhav A, Simeonov A, Linder S, Arnér ESJ. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med 2018; 10:eaaf7444. [PMID: 29444979 PMCID: PMC7059553 DOI: 10.1126/scitranslmed.aaf7444] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
Cancer cells adapt to their inherently increased oxidative stress through activation of the glutathione (GSH) and thioredoxin (TXN) systems. Inhibition of both of these systems effectively kills cancer cells, but such broad inhibition of antioxidant activity also kills normal cells, which is highly unwanted in a clinical setting. We therefore evaluated targeting of the TXN pathway alone and, more specifically, selective inhibition of the cytosolic selenocysteine-containing enzyme TXN reductase 1 (TXNRD1). TXNRD1 inhibitors were discovered in a large screening effort and displayed increased specificity compared to pan-TXNRD inhibitors, such as auranofin, that also inhibit the mitochondrial enzyme TXNRD2 and additional targets. For our lead compounds, TXNRD1 inhibition correlated with cancer cell cytotoxicity, and inhibitor-triggered conversion of TXNRD1 from an antioxidant to a pro-oxidant enzyme correlated with corresponding increases in cellular production of H2O2 In mice, the most specific TXNRD1 inhibitor, here described as TXNRD1 inhibitor 1 (TRi-1), impaired growth and viability of human tumor xenografts and syngeneic mouse tumors while having little mitochondrial toxicity and being better tolerated than auranofin. These results display the therapeutic anticancer potential of irreversibly targeting cytosolic TXNRD1 using small molecules and present potent and selective TXNRD1 inhibitors. Given the pronounced up-regulation of TXNRD1 in several metastatic malignancies, it seems worthwhile to further explore the potential benefit of specific irreversible TXNRD1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- William C Stafford
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
| | - Xiaoxiao Peng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Maria Hägg Olofsson
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Diane K Luci
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Li Lu
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Lionel Trésaugues
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Thomas S Dexheimer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Nathan P Coussens
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Martin Augsten
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Hanna-Stina Martinsson Ahlzén
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- University of Bergen, Postboks 7804, N-5020 Bergen, Norway
| | - Sharon Stone-Elander
- Department of Neuroradiology, Positron Emission Tomography Radiochemistry, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
- Department of Clinical Neurosciences, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Division of Drug Research, Department of Medicine and Health, Linköping University, SE 581 83 Linköping, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden.
| |
Collapse
|
30
|
Oberstadt M, Stieler J, Simpong DL, Römuß U, Urban N, Schaefer M, Arendt T, Holzer M. TDP-43 self-interaction is modulated by redox-active compounds Auranofin, Chelerythrine and Riluzole. Sci Rep 2018; 8:2248. [PMID: 29396541 PMCID: PMC5797228 DOI: 10.1038/s41598-018-20565-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a fatal neurodegenerative disease, which is characterized by a rapid loss of lower and upper motor neurons. As a major neuropathological hallmark, protein aggregates containing the Transactivating Response Region (TAR) DNA Binding Protein (TDP-43) are detectable in about 95% of sporadic ALS patients. TDP-43 interacts with itself physiologically to form liquid droplets, which may progress to pathological aggregates. In this study, we established the NanoBit luciferase complementation assay to measure TDP-43 self-interaction and found the fusion of the split luciferase subunits to the N-terminus of the protein as the strongest interacting partners. A screen of pharmacologically active compounds from the LOPAC®1280 library identified auranofin, chelerythrine and riluzole as dose-dependent inhibitors of TDP-43 self-interaction. Further analysis of drug action of the gold-containing thioredoxin reductase inhibitor auranofin revealed a redistribution from insoluble TDP-43 protein pool to PBS-soluble protein pool in N2a cells. In addition, auranofin treatment diminished reduced glutathione as a sign for oxidative modulation.
Collapse
Affiliation(s)
- Moritz Oberstadt
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Jens Stieler
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - David Larbi Simpong
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Ute Römuß
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Thomas Arendt
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Max Holzer
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| |
Collapse
|
31
|
Oxidative Stress, Selenium Redox Systems Including GPX/TXNRD Families. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Organoselenium in Nature. NEW FRONTIERS IN ORGANOSELENIUM COMPOUNDS 2018. [PMCID: PMC7123397 DOI: 10.1007/978-3-319-92405-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Selenium, among the naturally occurring elements, is nowadays considered the most relevant for the redox homeostasis of living systems. In this chapter, its role in plants, bacteria, and humans is scholarly discussed. Some plants have the possibility to accumulate this element, thus becoming a natural source for animals and humans, in which selenium is embedded in selenoproteins, as the 21st amino acid, selenocysteine (l-Sec). The main classes of selenoenzymes (glutathione peroxidase, thioredoxin reductase, and iodothyronine deiodinases) are reported here and the molecular mechanism that characterizes their physiological action is discussed.
Collapse
|
33
|
Zhang J, Li X, Han X, Liu R, Fang J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol Sci 2017; 38:794-808. [PMID: 28648527 DOI: 10.1016/j.tips.2017.06.001] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
34
|
Sánchez-de-Diego C, Mármol I, Pérez R, Gascón S, Rodriguez-Yoldi MJ, Cerrada E. The anticancer effect related to disturbances in redox balance on Caco-2 cells caused by an alkynyl gold(I) complex. J Inorg Biochem 2016; 166:108-121. [PMID: 27842247 DOI: 10.1016/j.jinorgbio.2016.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
The alkynyl gold(I) derivative [Au(C≡CPh)(PTA)] (PTA=1,3,5-triaza-7-phosphaadamantane) induces apoptosis in colorectal carcinoma tumour cells (Caco-2) without affecting to normal enterocytes. [Au(C≡CPh)(PTA)] is a slight lipophilic drug, stable in PBS (Phosphate Buffered Saline) and able to bind BSA (Bovin Serum Albumin) by hydrophobic interactions. Once inside the cell, [Au(C≡CPh)(PTA)] targets seleno proteins such as Thioredoxin Reductase 1, increasing ROS (Reactive Oxygen Species) levels, reducing cell viability and proliferation and inducing mitochondrial apoptotic pathway, pro-apoptotic and anti-apoptotic protein imbalance, loss of mitochondrial membrane potential, cytochrome c release and activation of caspases 9 and 3. Moreover, unlike other metal-based drugs such as cisplatin, [Au(C≡CPh)(PTA)] does not target nucleic acid, reducing the risk of side mutation in the DNA. In consequence, our results predict a promising future for [Au(C≡CPh)(PTA)] as a chemotherapeutic agent for colorectal carcinoma.
Collapse
Affiliation(s)
- Cristina Sánchez-de-Diego
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn, Spain
| | - Inés Mármol
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn, Spain
| | - Rocío Pérez
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn, Spain
| | - Sonia Gascón
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn, Spain
| | - Mª Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain.
| |
Collapse
|
35
|
A reciprocal inhibitory relationship between adiponectin and mammalian cytosolic thioredoxin. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1127-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
37
|
Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling. Int J Biol Macromol 2016; 89:152-60. [DOI: 10.1016/j.ijbiomac.2016.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
|
38
|
Gopalakrishna R, Gundimeda U, Zhou S, Zung K, Forell K, Holmgren A. Imbalance in Protein Thiol Redox Regulation and Cancer-Preventive Efficacy of Selenium. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:272-289. [PMID: 29795790 DOI: 10.20455/ros.2016.851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although several experimental studies showed cancer-preventive efficacy of supplemental dietary selenium, human clinical trials questioned this efficacy. Identifying its molecular targets and mechanism is important in understanding this discrepancy. Methylselenol, the active metabolite of selenium, reacts with lipid hydroperoxides bound to protein kinase C (PKC) and is oxidized to methylseleninic acid (MSA). This locally generated MSA selectively inactivates PKC by oxidizing its critical cysteine sulfhydryls. The peroxidatic redox cycle occurring in this process may explain how extremely low concentrations of selenium catalytically modify specific membrane-bound proteins compartmentally separated from glutathione and selectively induce cytotoxicity in promoting cells. Mammalian thioredoxin reductase (TR) is itself a selenoenzyme with a catalytic selenocysteine residue. Together with thioredoxin (Trx), it catalyzes reduction of selenite and selenocystine by NADPH generating selenide which in the presence of oxygen redox cycles producing reactive oxygen species. Trx binds with high affinity to PKC and reverses PKC inactivation. Therefore, established tumor cells overexpressing TR and Trx may escape the cancer-preventive actions of selenium. This suggests that in some cases, certain selenoproteins may counteract selenometabolite actions. Lower concentrations of selenium readily inactivate antiapoptotic PKC isoenzymes e and a which have a cluster of vicinal thiols, thereby inducing apoptosis. Higher concentrations of selenium also inactivate proapoptotic enzymes such as proteolytically activated PKCd fragment, holo-PKCz, caspase-3, and c-Jun N-terminal kinase, which all have a limited number of critical cysteine residues and make tumor cells resistant to selenium-induced apoptosis. This may explain the intriguing U-shaped curve that is seen with dietary selenium intake and the extent of cancer prevention.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Zhou
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kristen Zung
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaitlyn Forell
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
39
|
Xu J, Cheng Q, Arnér ESJ. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities. Free Radic Biol Med 2016; 94:110-20. [PMID: 26898501 DOI: 10.1016/j.freeradbiomed.2016.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 01/04/2023]
Abstract
The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide. The activity also utilizes the FAD and the N-terminal redox active disulfide/dithiol motif of TrxR1. If a sole Cys residue at the C-terminal tail of TrxR1, in the absence of Sec, was moved further towards the C-terminal end of the protein compared to its natural position at residue 497, juglone reduction was, surprisingly, further increased. Ala substitutions of Trp407, Asn418 and Asn419 in a previously described "guiding bar", thought to mediate interactions of the C-terminal tail of TrxR1 with the FAD/dithiol site at the N-terminal domain of the other subunit in the dimeric enzyme, lowered turnover with juglone about 4.5-fold. Four residues of Sec-deficient TrxR1 were found to be easily arylated by juglone, including the Cys residue at position 497. Based upon our observations we suggest a model for involvement of the juglone-arylated C-terminal motif of TrxR1 to explain its high activity with juglone. This study thus provides novel insights into the catalytic mechanisms of TrxR1. One-electron juglone reduction by TrxR1 producing superoxide should furthermore contribute to the well-known prooxidant cytotoxicity of juglone.
Collapse
Affiliation(s)
- Jianqiang Xu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China; Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
40
|
Sachweh MCC, Stafford WC, Drummond CJ, McCarthy AR, Higgins M, Campbell J, Brodin B, Arnér ESJ, Laín S. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget 2016; 6:16488-506. [PMID: 26029997 PMCID: PMC4599284 DOI: 10.18632/oncotarget.4108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma is the most dangerous type of skin cancer. Although recent progress in treatment has been achieved, lack of response, drug resistance and relapse remain major problems. The tumor suppressor p53 is rarely mutated in melanoma, yet it is inactive in the majority of cases due to dysregulation of upstream pathways. Thus, we screened for compounds that can activate p53 in melanoma cells. Here we describe effects of the small molecule MJ25 (2-{[2-(1,3-benzothiazol-2-ylsulfonyl)ethyl]thio}-1,3-benzoxazole), which increased the level of p53-dependent transactivation both as a single agent and in combination with nutlin-3. Furthermore, MJ25 showed potent cytotoxicity towards melanoma cell lines, whilst having weaker effects against human normal cells. MJ25 was also identified in an independent screen as an inhibitor of thioredoxin reductase 1 (TrxR1), an important selenoenzyme in the control of oxidative stress and redox regulation. The well-characterized TrxR inhibitor auranofin, which is FDA-approved and currently in clinical trials against leukemia and a number of solid cancers, displayed effects comparable with MJ25 on cells and led to eradication of cultured melanoma cells at low micromolar concentrations. In conclusion, auranofin, MJ25 or other inhibitors of TrxR1 should be evaluated as candidate compounds or leads for targeted therapy of malignant melanoma.
Collapse
Affiliation(s)
- Marijke C C Sachweh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - William C Stafford
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Catherine J Drummond
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna R McCarthy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maureen Higgins
- Centre for Oncology and Molecular Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Tayside, United Kingdom
| | - Johanna Campbell
- Centre for Oncology and Molecular Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Tayside, United Kingdom
| | - Bertha Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Bilan DS, Shokhina AG, Lukyanov SA, Belousov VV. [Main Cellular Redox Couples]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:385-402. [PMID: 26615634 DOI: 10.1134/s1068162015040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.
Collapse
|
42
|
Liang W, Fernandes AP, Holmgren A, Li X, Zhong L. Bacterial thioredoxin and thioredoxin reductase as mediators for epigallocatechin 3-gallate-induced antimicrobial action. FEBS J 2015; 283:446-58. [PMID: 26546231 DOI: 10.1111/febs.13587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/03/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
Abstract
Epigallocatechin 3-gallate (EGCG) is the most abundant catechin in green tea and may combat bacteria with few side-effects. Its selectivity for different bacterial infections remains unclear, and hence the identification of the underlying mechanism is of practical importance. Both the thioredoxin (Trx) system and the glutathione/glutaredoxin (Grx) system support bacterial growth. Some pathogenic bacteria are naturally deficient in the Grx system. We analyzed the effect of green tea extract (GTE) and EGCG on wild-type and null mutants of Escherichia coli with either Trx or Grx system deficiency and found that GTE and EGCG selected the Trx system as a target and killed the mutant that is exclusively dependent on Trx/Trx reductase (TrxR). EGCG inhibited the activity of both Trx1 and TrxR of E. coli in a dose-dependent and time-dependent manner. The IC50 values of EGCG for the reduced forms of E. coli Trx1/TrxR were ~ 3-4-fold lower than those for their non-reduced forms. The IC50 value of EGCG for the E. coli Trx1 system was 56-fold lower than that for the mammalian Trx1 system. The inhibition by EGCG of both Trx1 and TrxR of E. coli was irreversible. EGCG-induced inactivation of E. coli Trx1 was a second-order process, and that of E. coli TrxR was an affinity-labeling process. The covalent binding sites for EGCG in E. coli Trx1 were Trp(28) , Trp(31) and Cys(32) , and in E. coli TrxR were Cys(135) and Cys(138) . Moreover, the sensitivity of Staphylococcus aureus to EGCG was similar to that of an E. coli mutant with Grx system deficiency. EGCG-induced inactivation of Trx/TrxR in S. aureus coincided with suppressed growth of this virulent pathogen. Our findings suggest a role for EGCG-dependent Trx/TrxR inactivation in potentiating antibacterial activity of EGCG.
Collapse
Affiliation(s)
- Wei Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Xiaoming Li
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liangwei Zhong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
44
|
Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin. Biochimie 2015; 110:25-35. [PMID: 25576832 DOI: 10.1016/j.biochi.2014.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/29/2014] [Indexed: 11/20/2022]
Abstract
Overnutrition can lead to oxidative stress, but its underlying mechanism remains unclear. In this study, we report that human liver-derived HepG2 cells utilize cytosolic thioredoxin reductase (TrxR1) and thioredoxin (hTrx1) to defend against the high glucose/palmitate-mediated increase in reactive oxygen species. However, enhanced TrxR1/hTrx1 palmitoylation occurs in parallel with a decrease in their activities under the conditions studied here. An autoacylation process appears to be the major mechanism for generating palmitoylated TrxR1/Trx1 in HepG2 cells. A novel feature of this post-translational modification is the covalent inhibition of TrxR1/hTrx1 by palmitoyl-CoA, an activated form of palmitate. The palmitoyl-CoA/TrxR1 reaction is NADPH-dependent and produces palmitoylated TrxR1 at an active site selenocysteine residue. Conversely, S-palmitoylation occurs at the structural Cys62/Cys69/Cys72 residues but not the active site Cys32/Cys35 residues of hTrx1. Palmitoyl-CoA concentration and the period of incubation with TrxR1/hTrx1 are important factors that influence the inhibitory efficacy of palmitoyl-CoA on TrxR1/hTrx1. Thus, an increase in TrxR1/hTrx1 palmitoylation could be a potential consequence of high glucose/palmitate. The time-dependent inactivation of the NADPH-TrxR1-Trx1 system by palmitoyl-CoA occurs in a biphasic manner - a fast phase followed by a slow phase. Kinetic analysis suggests that the fast phase is consistent with a fast and reversible association between TrxR1/hTrx1 and palmitoyl-CoA. The slow phase is correlated with a slow and irreversible inactivation, in which selenolate/thiolate groups nucleophilically attack the α-carbon of bound palmitoyl-CoA, leading to the formation of thioester/selenoester bonds. hTrx1 can enhance rate of fast phase but limits the rate of slow phase when it is present in a preincubation mixture containing NADPH, TrxR1 and palmitoyl-CoA. Therefore, hTrx1 may provide palmitoylation sites or partially protect the TrxR1 active site selenol/thiol group(s) from palmitoylation. Our data suggest that Se/S-palmitoylation acts as an important modulator of TrxR1/hTrx1 activities, representing a novel potential mechanism that underlies overnutrition-induced events.
Collapse
|
45
|
Pannala VR, Dash RK. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide. Free Radic Biol Med 2015; 78:42-55. [PMID: 25451645 PMCID: PMC4280359 DOI: 10.1016/j.freeradbiomed.2014.10.508] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/14/2023]
Abstract
The thioredoxin system, which consists of a family of proteins, including thioredoxin (Trx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR), plays a critical role in the defense against oxidative stress by removing harmful hydrogen peroxide (H2O2). Specifically, Trx donates electrons to Prx to remove H2O2 and then TrxR maintains the reduced Trx concentration with NADPH as the cofactor. Despite a great deal of kinetic information gathered on the removal of H2O2 by the Trx system from various sources/species, a mechanistic understanding of the associated enzymes is still not available. We address this issue by developing a thermodynamically consistent mathematical model of the Trx system which entails mechanistic details and provides quantitative insights into the kinetics of the TrxR and Prx enzymes. Consistent with experimental studies, the model analyses of the available data show that both enzymes operate by a ping-pong mechanism. The proposed mechanism for TrxR, which incorporates substrate inhibition by NADPH and intermediate protonation states, well describes the available data and accurately predicts the bell-shaped behavior of the effect of pH on the TrxR activity. Most importantly, the model also predicts the inhibitory effects of the reaction products (NADP(+) and Trx(SH)2) on the TrxR activity for which suitable experimental data are not available. The model analyses of the available data on the kinetics of Prx from mammalian sources reveal that Prx operates at very low H2O2 concentrations compared to their human parasite counterparts. Furthermore, the model is able to predict the dynamic overoxidation of Prx at high H2O2 concentrations, consistent with the available data. The integrated Prx-TrxR model simulations well describe the NADPH and H2O2 degradation dynamics and also show that the coupling of TrxR- and Prx-dependent reduction of H2O2 allowed ultrasensitive changes in the Trx concentration in response to changes in the TrxR concentration at high Prx concentrations. Thus, the model of this sort is very useful for integration into computational H2O2 degradation models to identify its role in physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
46
|
Branco V, Godinho-Santos A, Gonçalves J, Lu J, Holmgren A, Carvalho C. Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic Biol Med 2014; 73:95-105. [PMID: 24816296 DOI: 10.1016/j.freeradbiomed.2014.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/21/2014] [Accepted: 04/27/2014] [Indexed: 01/21/2023]
Abstract
The thioredoxin system has essential functions in the maintenance of cellular redox homeostasis in the cytosol, nucleus, and mitochondria. Thioredoxin (Trx) and thioredoxin reductase (TrxR) are targets for mercury compounds in vitro and in vivo. This study aimed at understanding mechanistically how the mitochondrial and cytosolic thioredoxin systems were affected by mercurials, including the regulation of TrxR transcription. The effects of coexposure to selenite and mercurials on the thioredoxin system were also addressed. Results in HepG2 cells showed that TrxR1 expression was enhanced by Hg(2+), whereas exposure to MeHg decreased expression. Selenite exposure also increased the expression of TrxR1 and resulted in higher specific activity. Coexposure to 2 µM selenite and up to 5 µM Hg(2+) increased even further TrxR1 expression. This synergistic effect was not verified for MeHg, because TrxR1 expression and activity were reduced. Analysis of Nrf-2 translocation to the nucleus and TrxR mRNA suggests that induction of TrxR1 transcription was slower upon exposure to MeHg in comparison to Hg(2+). Subcellular fractions showed that MeHg affected the activity of the thioredoxin system equally in the mitochondria and cytosol, whereas Hg(2+) inhibited primarily the activity of TrxR2. The expression of TrxR2 was not upregulated by any treatment. These results show important differences between the mechanisms of toxicity of Hg(2+) and MeHg and stress the narrow range of selenite concentrations capable of antagonizing mercury toxicity. The results also highlight the relevance of the mitochondrial thioredoxin system (TrxR2 and Trx2) in the development of mercury toxicity.
Collapse
Affiliation(s)
- Vasco Branco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ana Godinho-Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Cristina Carvalho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
47
|
Suzuki H, Hatano N, Muraki Y, Itoh Y, Kimura S, Hayashi H, Onozaki K, Ohi Y, Haji A, Muraki K. The NADPH oxidase inhibitor diphenyleneiodonium activates the human TRPA1 nociceptor. Am J Physiol Cell Physiol 2014; 307:C384-94. [PMID: 24944203 DOI: 10.1152/ajpcell.00182.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a Ca(2+)-permeable nonselective cation channel expressed in neuronal and nonneuronal cells and plays an important role in acute and inflammatory pain. Here, we show that an NADPH oxidase (NOX) inhibitor, diphenyleneiodonium (DPI), functions as a TRPA1 activator in human embryonic kidney cells expressing human TRPA1 (HEK-TRPA1) and in human fibroblast-like synoviocytes. Application of DPI at 0.03-10 μM induced a Ca(2+) response in HEK-TRPA1 cells in a concentration-dependent manner. The Ca(2+) response was effectively blocked by a selective TRPA1 antagonist, HC-030031 (HC). In contrast, DPI had no effect on HEK cells expressing TRPV1-V4 or TRPM8. Four other NOX inhibitors, apocynin (APO), VAS2870 (VAS), plumbagin, and 2-acetylphenothiazine, also induced a Ca(2+) response in HEK-TRPA1 cells, which was inhibited by pretreatment with HC. In the presence of 5 mM glutathione, the Ca(2+) response to DPI was effectively reduced. Moreover, mutation of cysteine 621 in TRPA1 substantially inhibited the DPI-induced Ca(2+) response, while it did not inhibit the APO- and VAS-induced responses. The channel activity was induced by DPI in excised membrane patches with both outside-out and inside-out configurations. Internal application of neomycin significantly inhibited the DPI-induced inward currents. In inflammatory synoviocytes with TRPA1, DPI evoked a Ca(2+) response that was sensitive to HC. In mice, intraplantar injection of DPI caused a pain-related response which was inhibited by preadministration with HC. Taken together, our findings demonstrate that DPI and other NOX inhibitors activate human TRPA1 without mediating NOX.
Collapse
Affiliation(s)
- Hiroka Suzuki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Yukiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Yuka Itoh
- Department of Drug Metabolism and Disposition, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoko Kimura
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Hidetoshi Hayashi
- Department of Drug Metabolism and Disposition, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kikuo Onozaki
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Ohi
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Akira Haji
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan;
| |
Collapse
|
48
|
Conterato GMM, Quatrin A, Somacal S, Ruviaro AR, Vicentini J, Augusti PR, Sobieski R, Figueiredo C, dos Santos CMM, Pereira TCB, Bogo MR, Flores EMM, Emanuelli T. Acute exposure to low lead levels and its implications on the activity and expression of cytosolic thioredoxin reductase in the kidney. Basic Clin Pharmacol Toxicol 2014; 114:476-84. [PMID: 24345272 DOI: 10.1111/bcpt.12183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Renal thioredoxin reductase-1 (TrxR-1) activity is stimulated at lead doses lower than that necessary to inhibit δ-aminolevulinate dehydratase activity (δ-ALA-D), which is a classical early biomarker of lead effects. Thus, we hypothesized that the activity of TrxR-1 could be a more sensitive early indicator of lead effects than is δ-ALA-D. To evaluate this hypothesis, we assessed the blood and renal TrxR-1 activity and its gene expression along with biomarkers of oxidative damage, antioxidant enzyme activities and biomarkers of lead exposure in rats acutely exposed to lead. A histopathological analysis was performed to verify renal damage. The increase in renal TrxR-1 activity paralleled the increase in the blood and renal lead levels at 6, 24 and 48 hr after the exposure to 25 mg/kg lead acetate (p < 0.05), whereas its expression was increased 24 and 48 hr after exposure. These effects were not accompanied by oxidative or tissue damage in the kidneys. Blood TrxR-1 activity was not affected by lead exposure (up to 25 mg/kg). Erythrocyte δ-ALA-D activity was inhibited 6 hr after the exposure to 25 mg/kg lead acetate (p < 0.05) but recovered thereafter. Renal δ-ALA-D activity decreased 24 and 48 hr after the exposure to 25 mg/kg lead acetate. There were no changes in any parameters at lead acetate doses <25 mg/kg. Our results indicate that blood TrxR-1 activity is not a suitable indicator of lead effects. In contrast, the increase in renal TrxR-1 expression and activity is implicated in the early events of lead exposure, most likely as a protective cellular mechanism against lead toxicity.
Collapse
|
49
|
Lothrop AP, Snider GW, Flemer S, Ruggles EL, Davidson RS, Lamb AL, Hondal RJ. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis. Biochemistry 2014; 53:664-74. [PMID: 24490974 PMCID: PMC3931472 DOI: 10.1021/bi4007258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Mammalian thioredoxin reductase (TR)
is a pyridine disulfide oxidoreductase
that uses the rare amino acid selenocysteine (Sec) in place of the
more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced
element because it is both highly nucleophilic and highly electrophilic.
Cys orthologs of Sec-containing enzymes may compensate for the absence
of a Sec residue by making the active site Cys residue more (i) nucleophilic,
(ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has
already been shown that the Cys ortholog TR from Drosophila
melanogaster (DmTR) has increased S-nucleophilicity
[Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S.,
Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér,
E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618–12623].
Here we present evidence that DmTR also enhances the electrophilicity
of Cys490 through the use of an “electrophilic activation”
mechanism. This mechanism is proposed to work by polarizing the disulfide
bond that occurs between Cys489 and Cys490 in the C-terminal redox
center by the placement of a positive charge near Cys489. This polarization
renders the sulfur atom of Cys490 electron deficient and enhances
the rate of thiol/disulfide exchange that occurs between the N- and
C-terminal redox centers. Our hypothesis was developed by using a
strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys
redox dyad of DmTR to differentiate the function of each Cys residue.
The results show that hCys could substitute for Cys490 with little
loss of thioredoxin reductase activity, but that substitution of hCys
for Cys489 resulted in a 238-fold reduction in activity. We hypothesize
that replacement of Cys489 with hCys destroys an interaction between
the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic
activation mechanism. This electrophilic activation serves as a compensatory
mechanism in the absence of the more electrophilic Sec residue. We
present an argument for the importance of S-electrophilicity
in Cys orthologs of selenoenzymes.
Collapse
Affiliation(s)
- Adam P Lothrop
- Department of Biochemistry, University of Vermont, College of Medicine , 89 Beaumont Avenue, Given Building Room B413, Burlington, Vermont 05405, United States
| | | | | | | | | | | | | |
Collapse
|
50
|
Snider GW, Dustin CM, Ruggles EL, Hondal RJ. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum. Biochemistry 2014; 53:601-9. [PMID: 24400600 PMCID: PMC3957191 DOI: 10.1021/bi400931k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
High-molecular
mass thioredoxin reductases (TRs) are pyridine nucleotide
disulfide oxidoreductases that catalyze the reduction of the disulfide
bond of thioredoxin (Trx). Trx is responsible for reducing multiple
protein disulfide targets in the cell. TRs utilize reduced β-nicotinamide
adenine dinucleotide phosphate to reduce a bound flavin prosthetic
group, which in turn reduces an N-terminal redox center that has the
conserved sequence CICVNVGCCT, where CIC is denoted as the interchange thiol while the thiol involved in
charge-transfer complexation is denoted as CCT. The reduced
N-terminal redox center reduces a C-terminal redox center on the opposite
subunit of the head-to-tail homodimer, the C-terminal redox center
that catalyzes the reduction of the Trx-disulfide. Variations in the
amino acid sequence of the C-terminal redox center differentiate high-molecular
mass TRs into different types. Type Ia TRs have tetrapeptide C-terminal
redox centers of with a GCUG sequence, where U is the rare amino acid
selenocysteine (Sec), while the tetrapeptide sequence in type Ib TRs
has its Sec residue replaced with a conventional cysteine (Cys) residue
and can use small polar amino acids such as serine and threonine in
place of the flanking glycine residues. The TR from Plasmodium
falciparum (PfTR) is similar in structure and mechanism to
type Ia and type Ib TRs except that the C-terminal redox center is
different in its amino acid sequence. The C-terminal redox center
of PfTR has the sequence G534CGGGKCG541, and
we classify it as a type II high-molecular mass TR. The oxidized type
II redox motif will form a 20-membered disulfide ring, whereas the
absence of spacer amino acids in the type I motif results in the formation
of a rare eight-membered ring. We used site-directed mutagenesis and
protein semisynthesis to investigate features of the distinctive type
II C-terminal redox motif that help it perform catalysis. Deletion
of Gly541 reduces thioredoxin reductase activity by ∼50-fold,
most likely because of disruption of an important hydrogen bond between
the amide NH group of Gly541 and the carbonyl of Gly534 that helps
to stabilize
the β–turn−β motif. Alterations of the 20-membered
disulfide ring either by amino acid deletion or by substitution resulted
in impaired catalytic activity. Subtle changes in the ring structure
and size caused by using semisynthesis to substitute homocysteine
for cysteine also caused significant reductions in catalytic activity,
demonstrating the importance of the disulfide ring’s geometry
in making the C-terminal redox center reactive for thiol–disulfide
exchange. The data suggested to us that the transfer of electrons
from the N-terminal redox center to the C-terminal redox center may
be rate-limiting. We propose that the transfer of electrons from the
N-terminal redox center in PfTR to the type II C-terminal disulfide
is accelerated by the use of an “electrophilic activation”
mechanism. In this mechanism, the type II C-terminal disulfide is
polarized, making the sulfur atom of Cys540 electron deficient, highly
electrophilic, and activated for thiol–disulfide exchange with
the N-terminal redox center. This hypothesis was investigated by constructing
chimeric PfTR mutant enzymes containing C-terminal type I sequences
GCCG and GCUG, respectively. The PfTR-GCCG chimera had 500-fold less
thioredoxin reductase activity than the native enzyme but still reduced
selenocystine and lipoic acid efficiently. The PfTR-GCUG chimera had
higher catalytic activity than the native enzyme with Trx, selenocystine,
and lipoic acid as substrates. The results suggested to us that (i)
Sec in the mutant enzyme accelerated the rate of thiol–disulfide
exchange between the N- and C-terminal redox centers, (ii) the type
II redox center evolved for efficient catalysis utilizing Cys instead
of Sec, and (iii) the type II redox center of PfTR is partly responsible
for substrate recognition of the cognate PfTrx substrate relative
to noncognate thioredoxins.
Collapse
Affiliation(s)
- Gregg W Snider
- Department of Biochemistry, University of Vermont, College of Medicine , 89 Beaumont Avenue, Given Building Room B413, Burlington, Vermont 05405, United States
| | | | | | | |
Collapse
|