1
|
Rajabloo Y, Saberi-Karimian M, Soflaei SS, Ferns GA, Ghayour-Mobarhan M. Syndecans and diabetic complications: A narrative review. Am J Med Sci 2024; 368:99-111. [PMID: 38697476 DOI: 10.1016/j.amjms.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Syndecan (SDC) is a member of the heparan sulfate proteoglycan (HSPG) family. It appears to play a role in the aetiology of diabetic complications, with decreased levels of SDCs being reported in the kidney, retina, and cardiac muscle in models of diabetes mellitus (DM). The reduced levels of SDCs may play an important role in the development of albuminuria in DM. Some studies have provided the evidence supporting the mechanisms underlying the role of SDCs in DM. However, SDCs and the molecular mechanisms involved are complex and need to be further elucidated. This review focuses on the underlying molecular mechanisms of SDCs that are involved in the development and progression of the complications of DM, which may help in developing new strategies to prevent and treat these complications.
Collapse
Affiliation(s)
- Yasamin Rajabloo
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Saffar Soflaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Støle TP, Lunde M, Gehmlich K, Christensen G, Louch WE, Carlson CR. Exploring Syndecan-4 and MLP and Their Interaction in Primary Cardiomyocytes and H9c2 Cells. Cells 2024; 13:947. [PMID: 38891079 PMCID: PMC11172336 DOI: 10.3390/cells13110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The transmembrane proteoglycan syndecan-4 is known to be involved in the hypertrophic response to pressure overload. Although multiple downstream signaling pathways have been found to be involved in this response in a syndecan-4-dependent manner, there are likely more signaling components involved. As part of a larger syndecan-4 interactome screening, we have previously identified MLP as a binding partner to the cytoplasmic tail of syndecan-4. Interestingly, many human MLP mutations have been found in patients with hypertrophic (HCM) and dilated cardiomyopathy (DCM). To gain deeper insight into the role of the syndecan-4-MLP interaction and its potential involvement in MLP-associated cardiomyopathy, we have here investigated the syndecan-4-MLP interaction in primary adult rat cardiomyocytes and the H9c2 cell line. The binding of syndecan-4 and MLP was analyzed in total lysates and subcellular fractions of primary adult rat cardiomyocytes, and baseline and differentiated H9c2 cells by immunoprecipitation. MLP and syndecan-4 localization were determined by confocal microscopy, and MLP oligomerization was determined by immunoblotting under native conditions. Syndecan-4-MLP binding, as well as MLP self-association, were also analyzed by ELISA and peptide arrays. Our results showed that MLP-WT and syndecan-4 co-localized in many subcellular compartments; however, their binding was only detected in nuclear-enriched fractions of isolated adult cardiomyocytes. In vitro, syndecan-4 bound to MLP at three sites, and this binding was reduced in some HCM-associated MLP mutations. While MLP and syndecan-4 also co-localized in many subcellular fractions of H9c2 cells, these proteins did not bind at baseline or after differentiation into cardiomyocyte-resembling cells. Independently of syndecan-4, mutated MLP proteins had an altered subcellular localization in H9c2 cells, compared to MLP-WT. The DCM- and HCM-associated MLP mutations, W4R, L44P, C58G, R64C, Y66C, K69R, G72R, and Q91L, affected the oligomerization of MLP with an increase in monomeric at the expense of trimeric and tetrameric recombinant MLP protein. Lastly, two crucial sites for MLP self-association were identified, which were reduced in most MLP mutations. Our data indicate that the syndecan-4-MLP interaction was present in nuclear-enriched fractions of isolated adult cardiomyocytes and that this interaction was disrupted by some HCM-associated MLP mutations. MLP mutations were also linked to changes in MLP oligomerization and self-association, which may be essential for its interaction with syndecan-4 and a critical molecular mechanism of MLP-associated cardiomyopathy.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - Katja Gehmlich
- Institute for Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
| |
Collapse
|
3
|
Kim M, Kim Y. NMR Structural Study of Syndecan-4 Transmembrane Domain with Cytoplasmic Region. Molecules 2023; 28:7855. [PMID: 38067582 PMCID: PMC10708377 DOI: 10.3390/molecules28237855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Syndecan-4 (SDC4) consists of transmembrane heparan sulfate proteoglycan (HSPG) belonging to the syndecan family. It is present in most cell types of Mammalia. Its structure contains a heparan-sulfate-modified extracellular domain, a single transmembrane domain, and a short C-terminal cytoplasmic domain. Regarding the overall cellular function of SDC4, other cells or ligands can bind to its ecto-domain. In addition, 4,5-bisphosphate phosphatidylinositol (PIP2) or protein kinase Cα can bind to its cyto-domain to activate downstream signaling pathways. To understand the signal transduction mechanism of syndecan, it is important to know the interactions between their actual structure and function in vivo. Therefore, it is important to identify the structure of SDC4 to understand the ligand binding behavior of SDC4. In this study, expression and purification were performed to reveal structures of the short ecto-domain, the transmembrane domain, and the cytoplasmic domain of Syd4-eTC (SDC4). Solution-state NMR spectroscopy and solid-state NMR spectroscopy were used to study the structure of Syd4-eTC in membrane environments and to demonstrate the interaction between Syd4-eTC and PIP2.
Collapse
Affiliation(s)
| | - Yongae Kim
- Department of Chemistry, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon, Yongin 17035, Republic of Korea;
| |
Collapse
|
4
|
Shaik F, Balderstone MJM, Arokiasamy S, Whiteford JR. Roles of Syndecan-4 in cardiac injury and repair. Int J Biochem Cell Biol 2022; 146:106196. [PMID: 35331918 DOI: 10.1016/j.biocel.2022.106196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The heparan sulphate proteoglycan Syndecan-4 belongs to a 4-member family of transmembrane receptors. Genetic deletion of Syndecan-4 in mice causes negligible developmental abnormalities however when challenged these animals show distinct phenotypes. Synedcan-4 is expressed in many cell types in the heart and its expression is elevated in response to cardiac injury and recent studies have suggested roles for Syndecan-4 in repair mechanisms within the damaged heart. The purpose of this review is to explore these biological insights into the role of Syndecan-4 in both the injured heart and later during cardiac repair and remodeling.
Collapse
Affiliation(s)
- Faheem Shaik
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Michaela J M Balderstone
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| | - James R Whiteford
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| |
Collapse
|
5
|
Potje SR, Isbatan A, Tostes RC, Bendhack LM, Dull RO, Carvalho-de-Souza JL, Chignalia AZ. Glypican 1 and syndecan 1 differently regulate noradrenergic hypertension development: Focus on IP3R and calcium. Pharmacol Res 2021; 172:105813. [PMID: 34411733 PMCID: PMC10200078 DOI: 10.1016/j.phrs.2021.105813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vascular dysfunction is a checkpoint to the development of hypertension. Heparan sulfate proteoglycans (HSPG) participate in nitric oxide (NO) and calcium signaling, key regulators of vascular function. The relationship between HSPG-mediated NO and calcium signaling and vascular dysfunction has not been explored. Likewise, the role of HSPG on the control of systemic blood arterial pressure is unknown. Herein, we sought to determine if the HSPG syndecan 1 and glypican 1 control systemic blood pressure and the progression of hypertension. PURPOSE To determine the mechanisms whereby glypican 1 and syndecan 1 regulate vascular tone and contribute to the development of noradrenergic hypertension. EXPERIMENTAL APPROACH AND KEY RESULTS By assessing systemic arterial blood pressure we observed that syndecan 1 (Sdc1-/-) and glypican 1 (Gpc1-/-) knockout mice show a similar phenotype of decreased systolic blood pressure that is presented in a striking manner in the Gpc1-/- strain. Gpc1-/- mice are also uniquely protected from a norepinephrine hypertensive challenge failing to become hypertensive. This phenotype was associated with impaired calcium-dependent vasoconstriction and altered expression of calcium-sensitive proteins including SERCA and calmodulin. In addition, Gpc1-/- distinctively showed decreased IP3R activity and increased calcium storage in the endoplasmic reticulum. CONCLUSIONS AND IMPLICATIONS Glypican 1 is a trigger for the development of noradrenergic hypertension that acts via IP3R- and calcium-dependent signaling pathways. Glypican 1 may be a potential target for the development of new therapies for resistant hypertension or conditions where norepinephrine levels are increased.
Collapse
Affiliation(s)
- Simone R Potje
- Department of Anesthesiology, College of Medicine Tucson, University of Arizona, USA; Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, USA; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ayman Isbatan
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, USA
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Randal O Dull
- Department of Anesthesiology, College of Medicine Tucson, University of Arizona, USA; Department of Physiology, College of Medicine Tucson, University of Arizona, USA; Department of Pathology, College of Medicine Tucson, University of Arizona, USA
| | - Joao L Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine Tucson, University of Arizona, USA; Department of Physiology, College of Medicine Tucson, University of Arizona, USA
| | - Andreia Z Chignalia
- Department of Anesthesiology, College of Medicine Tucson, University of Arizona, USA; Department of Physiology, College of Medicine Tucson, University of Arizona, USA; Department of Pharmacology and Toxicology, College of Pharmacy Tucson, University of Arizona, USA.
| |
Collapse
|
6
|
Karampoor S, Zahednasab H, Farahmand M, Mirzaei R, Zamani F, Tabibzadeh A, Bouzari B, Ajdarkosh H, Nikkhah M, Hashemi MR, Laali A, Keyvani H. A possible pathogenic role of Syndecan-1 in the pathogenesis of coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2021; 97:107684. [PMID: 33932696 PMCID: PMC8052477 DOI: 10.1016/j.intimp.2021.107684] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
A cell-surface heparan proteoglycan called Syndecan-1 (SDC-1) has multiple roles in healthy and pathogenic conditions, including respiratory viral infection. In this study, we explore the dynamic alternation in the levels of SDC-1 in cases with COVID-19. A total of 120 cases definitely diagnosed with COVID-19 were admitted to the Firoozgar Hospital, Tehran, Iran, from December 1, 2020, to January 29, 2021, and included in our study. Also, 58 healthy subjects (HS) were chosen as the control group. Patients were classified into two groups: 1) ICU patients and (63 cases) 2) non-ICU patients (57 cases). The dynamic changes of serum SCD-1, CRP, IL-6, IL-10, IL-18, and Vit D levels a well as the disease activity were investigated in three-time points (T1-T3). Our results indicated that the COVID-19 patients had significantly increased SCD-1, CRP, IL-6, IL-10, and IL-18 levels than in HS, while the Vit D levels in COVID-19 patients were significantly lower than HS. Further analysis demonstrated that the SCD-1, CRP, IL-6, IL-10, and IL-18 levels in ICU patients were significantly higher than in non-ICU patients. Tracking dynamic changes in the above markers indicated that on the day of admission, the SCD-1, CRP, IL-6, IL-10, and IL-18 levels were gradually increased on day 5 (T2) and then gradually decreased on day 10 (T3). ROC curve analysis suggests that markers mentioned above, SDC-1, IL-6, and IL-18 are valuable indicators in evaluating the activity of COVID-19. All in all, it seems that the serum SDC-1 levels alone or combined with other markers might be a good candidate for disease activity monitoring.
Collapse
Affiliation(s)
- Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahmand
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikkhah
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Razavi Hashemi
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Laali
- Department of Infectious Disease, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
8
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
9
|
Galeev A, Suwandi A, Bakker H, Oktiviyari A, Routier FH, Krone L, Hensel M, Grassl GA. Proteoglycan-Dependent Endo-Lysosomal Fusion Affects Intracellular Survival of Salmonella Typhimurium in Epithelial Cells. Front Immunol 2020; 11:731. [PMID: 32411142 PMCID: PMC7201003 DOI: 10.3389/fimmu.2020.00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
Proteoglycans (PGs) are glycoconjugates which are predominately expressed on cell surfaces and consist of glycosaminoglycans (GAGs) linked to a core protein. An initial step of GAGs assembly is governed by the β-D-xylosyltransferase enzymes encoded in mammals by the XylT1/XylT2 genes. PGs are essential for the interaction of a cell with other cells as well as with the extracellular matrix. A number of studies highlighted a role of PGs in bacterial adhesion, invasion, and immune response. In this work, we investigated a role of PGs in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection of epithelial cells. Gentamicin protection and chloroquine resistance assays were applied to assess invasion and replication of S. Typhimurium in wild-type and xylosyltransferase-deficient (ΔXylT2) Chinese hamster ovary (CHO) cells lacking PGs. We found that S. Typhimurium adheres to and invades CHO WT and CHO ΔXylT2 cells at comparable levels. However, 24 h after infection, proteoglycan-deficient CHO ΔXylT2 cells are significantly less colonized by S. Typhimurium compared to CHO WT cells. This proteoglycan-dependent phenotype could be rescued by addition of PGs to the cell culture medium, as well as by complementation of the XylT2 gene. Chloroquine resistance assay and immunostaining revealed that in the absence of PGs, significantly less bacteria are associated with Salmonella-containing vacuoles (SCVs) due to a re-distribution of endocytosed gentamicin. Inhibition of endo-lysosomal fusion by a specific inhibitor of phosphatidylinositol phosphate kinase PIKfyve significantly increased S. Typhimurium burden in CHO ΔXylT2 cells demonstrating an important role of PGs for PIKfyve dependent vesicle fusion which is modulated by Salmonella to establish infection. Overall, our results demonstrate that PGs influence survival of intracellular Salmonella in epithelial cells via modulation of PIKfyve-dependent endo-lysosomal fusion.
Collapse
Affiliation(s)
- Alibek Galeev
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Ade Oktiviyari
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Françoise H Routier
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Lena Krone
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| |
Collapse
|
10
|
Abstract
Exosomes, extracellular vesicles (EVs) of endosomal origin, emerge as master regulators of cell-to-cell signaling in physiology and disease. Exosomes are highly enriched in tetraspanins (TSPNs) and syndecans (SDCs), the latter occurring mainly in proteolytically cleaved form, as membrane-spanning C-terminal fragments of the proteins. While both protein families are membrane scaffolds appreciated for their role in exosome formation, composition, and activity, we currently ignore whether these work together to control exosome biology. Here we show that TSPN6, a poorly characterized tetraspanin, acts as a negative regulator of exosome release, supporting the lysosomal degradation of SDC4 and syntenin. We demonstrate that TSPN6 tightly associates with SDC4, the SDC4-TSPN6 association dictating the association of TSPN6 with syntenin and the TSPN6-dependent lysosomal degradation of SDC4-syntenin. TSPN6 also inhibits the shedding of the SDC4 ectodomain, mimicking the effects of matrix metalloproteinase inhibitors. Taken together, our data identify TSPN6 as a regulator of the trafficking and processing of SDC4 and highlight an important physical and functional interconnection between these membrane scaffolds for the production of exosomes. These findings clarify our understanding of the molecular determinants governing EV formation and have potentially broad impact for EV-related biomedicine.
Collapse
|
11
|
Abstract
Syndecans are transmembrane proteoglycans with heparan and chondroitin sulfate chains attached to their extracellular domain. Like many proteoglycans, they interact with a large number of ligands, such as growth factors, adhesion receptors, soluble small molecules, proteinases, and other extracellular matrix proteins to initiate downstream signaling pathways. Syndecans play a major role in inflammation, mainly by regulating leukocyte extravasation and cytokine function. At the same time, syndecans can undergo cytokine mediated changes in their expression levels during inflammation. The function of syndecans during inflammation appears to depend on the stage of inflammation, sulfation of heparan/chondroitin sulfate chains, the rate of ectodomain shedding and the solubility of the ectodomains. From the current literature, it is clear that syndecans are not only involved in the initial recruitment of pro-inflammatory molecules but also in establishing a balanced progression of inflammation. This review will summarize how cell surface and soluble syndecans regulate multiple aspects of inflammation.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Arokiasamy S, Balderstone MJM, De Rossi G, Whiteford JR. Syndecan-3 in Inflammation and Angiogenesis. Front Immunol 2020; 10:3031. [PMID: 31998313 PMCID: PMC6962229 DOI: 10.3389/fimmu.2019.03031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
Syndecans are a four member multifunctional family of cell surface molecules with diverse biological roles. Syndecan-3 (SDC3) is the largest of these, but in comparison to the other family members relatively little is known about this molecule. SDC3 null mice grow and develop normally, all be it with subtle anatomical phenotypes in the brain. Roles for this molecule in both neuronal and brain tissue have been identified, and is associated with altered satiety responses. Recent studies suggest that SDC3 expression is not restricted to neuronal tissues and has important roles in inflammatory disorders such as rheumatoid arthritis, disease associated processes such as angiogenesis and in the facilitation of infection of dendritic cells by HIV. The purpose of this review article is to explore these new biological insights into SDC3 functions in inflammatory disease.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michaela J. M. Balderstone
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia De Rossi
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - James R. Whiteford
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Calcium in Cell-Extracellular Matrix Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1079-1102. [PMID: 31646546 DOI: 10.1007/978-3-030-12457-1_43] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.
Collapse
|
14
|
Bizzarro V, Belvedere R, Pessolano E, Parente L, Petrella F, Perretti M, Petrella A. Mesoglycan induces keratinocyte activation by triggering syndecan‐4 pathway and the formation of the annexin A1/S100A11 complex. J Cell Physiol 2019; 234:20174-20192. [DOI: 10.1002/jcp.28618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Luca Parente
- Department of Pharmacy University of Salerno Salerno Italy
| | - Francesco Petrella
- Department of Primary Care, Wound Care Service Health Local Agency Naples 3 South Napoli Italy
| | - Mauro Perretti
- William Harvey Research Institute Queen Mary University of London London UK
| | | |
Collapse
|
15
|
Morrin ST, Owens RA, Le Berre M, Gerlach JQ, Joshi L, Bode L, Irwin JA, Hickey RM. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1902-1917. [PMID: 30663306 DOI: 10.1021/acs.jafc.8b06484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bovine colostrum is a rich source of bioactive components which are important in the development of the intestine, in stimulating gut structure and function and in preparing the gut surface for subsequent colonization of microbes. What is not clear, however, is how colostrum may affect the repertoire of receptors and membrane proteins of the intestinal surface and the post-translational modifications associated with them. In the present work, we aimed to characterize the surface receptor and glycan profile of human HT-29 intestinal cells after exposure to a bovine colostrum fraction (BCF) by means of proteomic and glycomic analyses. Integration of label-free quantitative proteomic analysis and lectin array profiles confirmed that BCF exposure results in changes in the levels of glycoproteins present at the cell surface and also changes to their glycosylation pattern. This study contributes to our understanding of how milk components may regulate intestinal cells and prime them for bacterial interaction.
Collapse
Affiliation(s)
- Sinead T Morrin
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rebecca A Owens
- Department of Biology , Maynooth University , Maynooth , W23 F2H6 , County Kildare , Ireland
| | - Marie Le Berre
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Jared Q Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lokesh Joshi
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence , University of California, San Diego , La Jolla , California 92093 , United States
| | - Jane A Irwin
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
| |
Collapse
|
16
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Fröhling M, Tepasse P, Intemann J, Sambale M, Sherwood J, Paruzel P, Tiemeyer NM, Nowacki TM, Brückner M, Mennigen R, Lügering A, Echtermeyer F, Pap T, Stratis A, Bettenworth D. Syndecan-4 Modulates Epithelial Gut Barrier Function and Epithelial Regeneration in Experimental Colitis. Inflamm Bowel Dis 2018; 24:2579-2589. [PMID: 30053064 DOI: 10.1093/ibd/izy248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transmembrane heparan sulfate proteoglycan Syndecan-4 (Sdc4) plays an important role in the regulation of various inflammatory disorders. However, the involvement of Sdc4 in intestinal inflammation remains unknown. Therefore, we assessed the impact of Sdc4 deficiency on experimental colitis and epithelial wound healing in vitro and in vivo. METHODS Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Sdc4-deficient (Sdc4-/-) mice by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. Syndecan-4 expression was measured by immunohistochemistry, Western blot, and quantitative real-time PCR. Epithelial permeability was evaluated by Evans blue measurements, Western blot, and immunohistological analysis of tight junction protein expression. Impact of Sdc4 on epithelial wound healing was determined by scratch assay in vitro and by colonoscopy following mechanical wounding in vivo. RESULTS In Sdc4-/- mice, colitis-like symptoms including severe weight loss, shortened colon length, histological damage, and invasion of macrophages and granulocytes were markedly aggravated compared with wild type (WT) animals. Moreover, colonic epithelial permeability in Sdc4-/- mice was enhanced, while tight junction protein expression decreased. Furthermore, Sdc4-/- colonic epithelial cells had lower cell proliferation and migration rates which presented in vivo as a prolonged intestinal wound healing phenotype. Strikingly, in WT animals, Sdc4 expression was reduced during colitis and was elevated during recovery. CONCLUSIONS The loss of Sdc4 aggravates the course of experimental colitis, potentially through impaired epithelial cell integrity and regeneration. In view of the development of current treatment approaches involving Sdc4 inhibition for inflammatory disorders like arthritis, particular caution should be taken in case of adverse gastrointestinal side-effects.
Collapse
Affiliation(s)
- Mareike Fröhling
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Phil Tepasse
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Meike Sambale
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Peter Paruzel
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Nina-Marie Tiemeyer
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Tobias M Nowacki
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Markus Brückner
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Rudolf Mennigen
- Department of General Surgery, University Hospital Münster, Münster, Germany
| | | | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Medical University Hannover, Hannover, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Athanasios Stratis
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
18
|
Borland SJ, Morris TG, Borland SC, Morgan MR, Francis SE, Merry CL, Canfield AE. Regulation of vascular smooth muscle cell calcification by syndecan-4/FGF-2/PKCα signalling and cross-talk with TGFβ. Cardiovasc Res 2017; 113:1639-1652. [PMID: 29016732 PMCID: PMC5852548 DOI: 10.1093/cvr/cvx178] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 02/01/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
AIMS Vascular calcification is a major cause of morbidity and mortality. Fibroblast growth factor-2 (FGF-2) plays an instructive role in osteogenesis and bone development, but its role in vascular calcification was unknown. Therefore, we investigated the involvement of FGF-2 in vascular calcification and determined the mechanism by which it regulates this process. METHODS AND RESULTS We demonstrate that FGF-2 expression is increased in vascular smooth muscle cells (VSMCs) induced to deposit a mineralized matrix by incubation with β-glycerophosphate. FGF-2 is also localized to sites of calcification within human atherosclerotic plaques. The expression of syndecan-4, a heparan sulfate proteoglycan which regulates FGF-2 signalling, is also increased in mineralizing VSMCs and co-localizes with FGF-2 in human calcified atherosclerotic plaques. Exogenous FGF-2 inhibits VSMC mineralization, and this inhibition is reduced when syndecan-4 expression is knocked-down using siRNA. Biochemical inhibition of FGFR signalling using a pan FGFR inhibitor (BGJ398) or knocking-down syndecan-4 expression in VSMCs using siRNA increases VSMC mineralization. These increases are prevented by inhibiting transforming growth factor-β (TGFβ) signalling with SB431542, suggesting cross-talk between FGF-2 and TGFβ signalling is crucial for the regulation of VSMC mineralization. Syndecan-4 can also regulate FGF-2 signalling directly via protein kinase Cα (PKCα) activation. Biochemical inhibition of PKCα activity using Gö6976, or siRNA-mediated suppression of PKCα expression increases VSMC mineralization; this increase is also prevented with SB431542. Finally, the ability of FGF-2 to inhibit VSMC mineralization is reduced when PKCα expression is knocked-down. CONCLUSION This is the first demonstration that syndecan-4 promotes FGF-2 signalling, and in turn, suppresses VSMC mineralization by down-regulating TGFβ signalling. Our discoveries that FGF-2 and syndecan-4 expression is increased in mineralizing VSMCs and that PKCα regulates FGF-2 and TGFβ signalling in VSMCs suggests that the syndecan-4/FGF-2/TGFβ signalling axis could represent a new therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Samantha J. Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Stem Cell Glycobiology Group, School of Materials, University of Manchester, Manchester, UK
| | - Thomas G. Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shona C. Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark R. Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Catherine L.R. Merry
- Stem Cell Glycobiology Group, School of Materials, University of Manchester, Manchester, UK
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ann E. Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
19
|
Velleman SG, Song Y. Development and Growth of the Avian Pectoralis Major (Breast) Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation. Front Physiol 2017; 8:577. [PMID: 28848451 PMCID: PMC5550705 DOI: 10.3389/fphys.2017.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fiber number is determined around the time hatch with continued posthatch muscle growth being mediated by the adult myoblast, satellite cell, population of cells. Satellite cells are dynamic in their expression of proteins including the cell membrane associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure, cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation. Proteoglycans are composed of a central core protein defined functional domains, and covalently attached glycosaminoglycans and N-glycosylation chains. The functional association of these components with satellite cell function is discussed as well as an emerging role for microRNA regulation of syndecan-4 and glypican-1.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State UniversityWooster, OH, United States
| | - Yan Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
20
|
Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 2017; 474:1965-1979. [PMID: 28546458 DOI: 10.1042/bcj20160747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Cell surface proteoglycans comprise a transmembrane or membrane-associated core protein to which one or more glycosaminoglycan chains are covalently attached. They are ubiquitous receptors on nearly all animal cell surfaces. In mammals, the cell surface proteoglycans include the six glypicans, CD44, NG2 (CSPG4), neuropilin-1 and four syndecans. A single syndecan is present in invertebrates such as nematodes and insects. Uniquely, syndecans are receptors for many classes of proteins that can bind to the heparan sulphate chains present on syndecan core proteins. These range from cytokines, chemokines, growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens. Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein. This places syndecans at the nexus of many cellular responses to extracellular cues in development, maintenance, repair and disease. The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins. All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration. Recent data now suggest that syndecans can regulate stretch-activated ion channels. The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion. This area sheds new light on the syndecans, not least since evidence suggests that this is an evolutionarily conserved relationship that is also potentially important in the progression of some common diseases where syndecans are implicated.
Collapse
|
21
|
Ross T, Jakubzig B, Grundmann M, Massing U, Kostenis E, Schlesinger M, Bendas G. The molecular mechanism by which saturated lysophosphatidylcholine attenuates the metastatic capacity of melanoma cells. FEBS Open Bio 2016; 6:1297-1309. [PMID: 28255537 PMCID: PMC5324772 DOI: 10.1002/2211-5463.12152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Lysophophatidylcholine (LysoPC) is an abundant constituent in human plasma. Patients with malignant cancer diseases have attenuated LysoPC plasma levels, and thus LysoPC has been examined as a metabolic biomarker for cancer prediction. Preclinical studies have shown that solid tumor cells drastically degrade LysoPCs by incorporating their free fatty acids into cell membrane phospholipids. In this way, LysoPC C18:0 reduced the metastatic spread of murine melanoma B16.F10 cells in mice. Although membrane rigidification may have a key role in the attenuation of metastasis, evidence for this has yet to be shown. Therefore, the present study aimed to determine how LysoPC reduces the metastatic capacity of B16.F10 cells. Following cellular preincubation with LysoPC C18:0 at increasing concentrations and lengths of time, cell migration was most significantly attenuated with 450 μm LysoPC C18:0 at 72 h. Biosensor measurements suggest that, despite their abundance in B16.F10 cells, LysoPC‐sensitive G protein‐coupled receptors do not appear to contribute to this effect. Instead, the attenuated migration appears to result from changes in cell membrane properties and their effect on underlying signaling pathways, most likely the formation of focal adhesion complexes. Treatment with 450 μm LysoPC C18:0 activates protein kinase C (PKC)δ to phosphorylate syndecan‐4, accompanied by deactivation of PKCα. Subsequently, focal adhesion complex formation was attenuated, as confirmed by the reduced activity of focal adhesion kinase (FAK). Interestingly, 450 μm LysoPC C18:1 did not affect FAK activity, explaining its lower propensity to affect migration and metastasis. Therefore, membrane rigidification by LysoPC C18:0 appears to prevent the formation of focal adhesion complexes, thus affecting integrin activity as a key for metastatic melanoma spread.
Collapse
Affiliation(s)
- Thomas Ross
- Department of Pharmaceutical Chemistry II University of Bonn Germany
| | - Bastian Jakubzig
- Department of Pharmaceutical Chemistry II University of Bonn Germany
| | | | - Ulrich Massing
- Andreas Hettich GmbH & Co. KGF&E Lifescience Applications Freiburg Germany; Faculty of Chemistry & Pharmacy University of Freiburg Germany
| | - Evi Kostenis
- Department of Pharmaceutical Biology University of Bonn Germany
| | | | - Gerd Bendas
- Department of Pharmaceutical Chemistry II University of Bonn Germany
| |
Collapse
|
22
|
Choi Y, Yun JH, Yoo J, Lee I, Kim H, Son HN, Kim IS, Yoon HS, Zimmermann P, Couchman JR, Cho HS, Oh ES, Lee W. New structural insight of C-terminal region of Syntenin-1, enhancing the molecular dimerization and inhibitory function related on Syndecan-4 signaling. Sci Rep 2016; 6:36818. [PMID: 27830760 PMCID: PMC5103296 DOI: 10.1038/srep36818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
The PDZ domain-containing scaffold protein, syntenin-1, binds to the transmembrane proteoglycan, syndecan-4, but the molecular mechanism/function of this interaction are unknown. Crystal structure analysis of syntenin-1/syndecan-4 cytoplasmic domains revealed that syntenin-1 forms a symmetrical pair of dimers anchored by a syndecan-4 dimer. The syndecan-4 cytoplasmic domain is a compact intertwined dimer with a symmetrical clamp shape and two antiparallel strands forming a cavity within the dimeric twist. The PDZ2 domain of syntenin-1 forms a direct antiparallel interaction with the syndecan-4 cytoplasmic domain, inhibiting the functions of syndecan-4 such as focal adhesion formation. Moreover, C-terminal region of syntenin-1 reveals an essential role for enhancing the molecular homodimerization. Mutation of key syntenin-1 residues involved in the syndecan-4 interaction or homodimer formation abolishes the inhibitory function of syntenin-1, as does deletion of the homodimerization-related syntenin-1 C-terminal domain. Syntenin-1, but not dimer-formation-incompetent mutants, rescued the syndecan-4-mediated inhibition of migration and pulmonary metastasis by B16F10 cells. Therefore, we conclude that syntenin-1 negatively regulates syndecan-4 function via oligomerization and/or syndecan-4 interaction, impacting cytoskeletal organization and cell migration.
Collapse
Affiliation(s)
- Youngsil Choi
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science &Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Jiho Yoo
- Department of Biology, College of Life Science &Biotechnology, Yonsei University, Seoul 136-791, Republic of Korea
| | - Inhwan Lee
- Department of Biochemistry, College of Life Science &Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Heeyoun Kim
- Department of Biochemistry, College of Life Science &Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Hye-Nam Son
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Ho Sup Yoon
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Genetic Engineering, College of Life Sciences, Kyung Hee University,Yongin-si Gyeonggi-do, 446-701, Republic of Korea
| | - Pascale Zimmermann
- Laboratory for Glycobiology, University of Leuven &Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, Biocenter, 2200 Copenhagen, Denmark
| | - Hyun-Soo Cho
- Department of Biology, College of Life Science &Biotechnology, Yonsei University, Seoul 136-791, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science &Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
23
|
Alvarez A, Lagos-Cabré R, Kong M, Cárdenas A, Burgos-Bravo F, Schneider P, Quest AFG, Leyton L. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2175-88. [PMID: 27235833 DOI: 10.1016/j.bbamcr.2016.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release.
Collapse
Affiliation(s)
- Alvaro Alvarez
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Raúl Lagos-Cabré
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Milene Kong
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Areli Cárdenas
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Andrew F G Quest
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Advanced Center for Chronic Diseases, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Advanced Center for Chronic Diseases, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile; Biomedical Neuroscience Institute, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.
| |
Collapse
|
24
|
Cheng B, Montmasson M, Terradot L, Rousselle P. Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins. Front Pharmacol 2016; 7:10. [PMID: 26869927 PMCID: PMC4735372 DOI: 10.3389/fphar.2016.00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/12/2016] [Indexed: 01/23/2023] Open
Abstract
Syndecans are transmembrane receptors with ectodomains that are modified by glycosaminoglycan chains. The ectodomains can interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors, and extracellular matrix (ECM) components. The four syndecans in mammals are expressed in a development-, cell-type-, and tissue-specific manner and can function either as co-receptors with other cell surface receptors or as independent adhesion receptors that mediate cell signaling. They help regulate cell proliferation and migration, angiogenesis, cell/cell and cell/ECM adhesion, and they may participate in several key tumorigenesis processes. In some cancers, syndecan expression regulates tumor cell proliferation, adhesion, motility, and other functions, and may be a prognostic marker for tumor progression and patient survival. The short cytoplasmic tail is likely to be involved in these events through recruitment of signaling partners. In particular, the conserved carboxyl-terminal EFYA tetrapeptide sequence that is present in all syndecans binds to some PDZ domain-containing proteins that may function as scaffold proteins that recruit signaling and cytoskeletal proteins to the plasma membrane. There is growing interest in understanding these interactions at both the structural and biological levels, and recent findings show their high degree of complexity. Parameters that influence the recruitment of PDZ domain proteins by syndecans, such as binding specificity and affinity, are the focus of active investigations and are important for understanding regulatory mechanisms. Recent studies show that binding may be affected by post-translational events that influence regulatory mechanisms, such as phosphorylation within the syndecan cytoplasmic tail.
Collapse
Affiliation(s)
- Bill Cheng
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| | - Laurent Terradot
- Bases Moléculaires et Structurales des Systèmes Infectieux UMR 5086, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, Université Lyon 1 Lyon, France
| |
Collapse
|
25
|
Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 2016; 97:28-40. [PMID: 26519775 DOI: 10.1016/j.addr.2015.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.
Collapse
|
26
|
Gomes AM, Sinkeviciute D, Multhaupt HAB, Yoneda A, Couchman JR. Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. TRENDS GLYCOSCI GLYC 2016; 28:E79-E90. [DOI: 10.4052/tigg.1422.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Angélica Maciel Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Dovile Sinkeviciute
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Hinke A. B. Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| | - John R. Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
- Dept. Biomedical Sciences, University of Copenhagen, Biocenter
| |
Collapse
|
27
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Gomes AM, Sinkeviciute D, Multhaupt HAB, Yoneda A, Couchman JR. Syndecan Heparan Sulfate Proteoglycans: Regulation, Signaling and Impact on Tumor Biology. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1422.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Angélica Maciel Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Dovile Sinkeviciute
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Hinke A. B. Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| | - John R. Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen
- Dept. Biomedical Sciences, University of Copenhagen, Biocenter
| |
Collapse
|
29
|
Kim H, Yoo J, Lee I, Kang YJ, Cho HS, Lee W. Crystal structure of syndesmos and its interaction with Syndecan-4 proteoglycan. Biochem Biophys Res Commun 2015; 463:762-7. [PMID: 26100207 DOI: 10.1016/j.bbrc.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022]
Abstract
Syndesmos, nucleoside diphosphate linked moiety X (nudix)-type motif 16-like 1 (Nudt16l1), is evolutionarily divergent from the Nudt16 family. Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain (Syn4(cyto)) in focal contacts, interacts with various cell adhesion adaptor proteins to control cell signaling. We determined the X-ray crystal structure of syndesmos; it is composed of seven α-helices and seven β-strands. Although syndesmos has a molecular topology similar to that of nudix hydrolase proteins, the structure of the nudix motif differs from that of X29. The dimeric interface of syndesmos is composed of α-helix 4, 7 and β-strand 2, 7, which primarily form hydrophobic interactions. The binding interaction between syndesmos and syn4(cyto) was characterized as a low-affinity interaction (Kd = 62 μM) by surface plasmon resonance (SPR) and nuclear magnetic resonance (NMR). The NMR resonances of Lys (177, 178, 179), Gly182, and Ser183 in the C1 region and Lys193 and Lys194 in the V region of syndecan-4 are perturbed upon syndesmos binding. Our results provide structural insight into the molecular function of syndesmos in the regulation of cell signaling via binding to syndecan-4.
Collapse
Affiliation(s)
- Heeyoun Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Jiho Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Inhwan Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Ying Jin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, South Korea.
| |
Collapse
|
30
|
Pataki CA, Couchman JR, Brábek J. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans. J Histochem Cytochem 2015; 63:465-80. [PMID: 25910817 DOI: 10.1369/0022155415586961] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling comprises a group of pathways emanating from the extracellular environment through cell-surface receptors into the intracellular milieu. Wnt signaling cascades can be divided into two main branches, the canonical/β-catenin pathway and the non-canonical pathways containing the Wnt/planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some of the pathologies resulting from dysregulation of the components of these pathways are summarized.
Collapse
Affiliation(s)
- Csilla A Pataki
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research and Innovation Center, University of Copenhagen, Denmark (JRC)
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Czech Republic, University of Copenhagen, Denmark (CAP,JB)
| |
Collapse
|
31
|
Leonova EI, Galzitskaya OV. Structure and functions of syndecans in vertebrates. BIOCHEMISTRY (MOSCOW) 2015; 78:1071-85. [PMID: 24237141 DOI: 10.1134/s0006297913100015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Syndecans constitute a family of transmembrane proteoglycans that perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. Through mediating binding of a great number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions regulating, thereby, various processes in a cell: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. In fibroblasts, syndecans are responsible for cell adhesion by modulating functions of integrins through interaction with fibronectin at the external side of a cell and with cytoskeleton and signaling molecules inside the cell. The extracellular domain of syndecans is subjected to periodic shedding from the cell membrane. This process may be stimulated in response to inflammation, tissue damage, and other pathological manifestations. Cleaved domain may act as either competitive inhibitor or activator of signaling cascades. This review summarizes and analyzes the available data regarding structure, main biochemical properties, and functions of syndecans in vertebrates.
Collapse
Affiliation(s)
- E I Leonova
- Lomonosov Moscow State University, Pushchino Branch, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
32
|
Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HAB. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 2014; 96:1-10. [PMID: 25546317 DOI: 10.1111/iep.12112] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
In the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
33
|
Filla MS, Clark R, Peters DM. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells. Exp Cell Res 2014; 327:171-82. [PMID: 25128150 PMCID: PMC4164596 DOI: 10.1016/j.yexcr.2014.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure.
Collapse
Affiliation(s)
- Mark S Filla
- Department of Ophthalmology & Visual Sciences, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States.
| | - Ross Clark
- Department of Pathology & Laboratory Medicine, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States.
| | - Donna M Peters
- Department of Ophthalmology & Visual Sciences, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States; Department of Pathology & Laboratory Medicine, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
34
|
Maillard L, Saito N, Hlawaty H, Friand V, Suffee N, Chmilewsky F, Haddad O, Laguillier C, Guyot E, Ueyama T, Oudar O, Sutton A, Charnaux N. RANTES/CCL5 mediated-biological effects depend on the syndecan-4/PKCα signaling pathway. Biol Open 2014; 3:995-1004. [PMID: 25260916 PMCID: PMC4197448 DOI: 10.1242/bio.20148227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
The perpetuation of angiogenesis is involved in certain chronic inflammatory diseases. The accelerated neovascularisation may result from an inflammatory status with a response of both endothelial cells and monocytes to inflammatory mediators such as chemokines. We have previously described in vitro and in vivo the pro-angiogenic effects of the chemokine Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES)/CCL5. The effects of RANTES/CCL5 may be related to its binding to G protein-coupled receptors and to proteoglycans such as syndecan-1 and -4. The aim of this study was to evaluate the functionality of syndecan-4 as a co-receptor of RANTES/CCL5 by the use of mutated syndecan-4 constructs. Our data demonstrate that site-directed mutations in syndecan-4 modify RANTES/CCL5 biological activities in endothelial cells. The SDC4S179A mutant, associated with an induced protein kinase C (PKC)α activation, leads to higher RANTES/CCL5 pro-angiogenic effects, whereas the SDC4L188QQ and the SDC4A198del mutants, leading to lower phosphatidylinositol 4,5-bisphosphate (PIP2) binding or to lower PDZ protein binding respectively, are associated with reduced RANTES/CCL5 cellular effects. Moreover, our data highlight that the intracellular domain of SDC-4 is involved in RANTES/CCL5-induced activation of the PKCα signaling pathway and biological effect. As RANTES/CCL5 is involved in various physiopathological processes, the development of a new therapeutic strategy may be reliant on the mechanism by which RANTES/CCL5 exerts its biological activities, for example by targeting the binding of the chemokine to its proteoglycan receptor.
Collapse
Affiliation(s)
- Loïc Maillard
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hanna Hlawaty
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Véronique Friand
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Nadine Suffee
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Fanny Chmilewsky
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Oualid Haddad
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Christelle Laguillier
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France Laboratoire de Biochimie, Hôpital Jean Verdier, AP-HP, 93143 Bondy, France
| | - Erwan Guyot
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France Laboratoire de Biochimie, Hôpital Jean Verdier, AP-HP, 93143 Bondy, France
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Olivier Oudar
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Angela Sutton
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France Laboratoire de Biochimie, Hôpital Jean Verdier, AP-HP, 93143 Bondy, France
| | - Nathalie Charnaux
- Inserm U1148, Laboratory for Vascular Translational Science, Bio-ingénierie Cardio-vasculaire, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny, France Laboratoire de Biochimie, Hôpital Jean Verdier, AP-HP, 93143 Bondy, France
| |
Collapse
|
35
|
Leonova EI, Galzitskaya OV. Cell communication using intrinsically disordered proteins: what can syndecans say? J Biomol Struct Dyn 2014; 33:1037-50. [PMID: 24956062 DOI: 10.1080/07391102.2014.926256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Because intrinsically disordered proteins are incapable of forming unique tertiary structures in isolation, their interaction with partner structures enables them to play important roles in many different biological functions. Therefore, such proteins are usually multifunctional, and their ability to perform their major function, as well as accessory functions, depends on the characteristics of a given interaction. The present paper demonstrates, using predictions from two programs, that the transmembrane proteoglycans syndecans are natively disordered because of their diverse functions and large number of interaction partners. Syndecans perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. By mediating the binding of a large number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions that subsequently regulate various cell processes: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. The occurrences of 20 amino acids in syndecans 1-4 from 25 animals were compared with those in 17 animal proteomes. Gly + Ala, Thr, Glu, and Pro were observed to predominate in the syndecans, contributing to the lack of an ordered structure. In contrast, there were many fewer amino acids in syndecans that promote an ordered structure, such as Cys, Trp, Asn, and His. In addition, a region rich in Asp has been identified between two heparan sulfate-binding sites in the ectodomains, and a region rich in Lys has been identified in the conserved C1 site of the cytoplasmic domain. These particular regions play an essential role in the various functions of syndecans due to their lack of structure.
Collapse
Affiliation(s)
- Elena I Leonova
- a Institute of Protein Research, Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | | |
Collapse
|
36
|
Nakase I, Osaki K, Tanaka G, Utani A, Futaki S. Molecular interplays involved in the cellular uptake of octaarginine on cell surfaces and the importance of syndecan-4 cytoplasmic V domain for the activation of protein kinase Cα. Biochem Biophys Res Commun 2014; 446:857-62. [PMID: 24632200 DOI: 10.1016/j.bbrc.2014.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Arginine-rich cell-penetrating peptides (CPPs) are promising carriers for the intracellular delivery of various bioactive molecules. However, many ambiguities remain about the molecular interplays on cell surfaces that ultimately lead to endocytic uptake of CPPs. By treatment of cells with octaarginine (R8), enhanced clustering of syndecan-4 on plasma membranes and binding of protein kinase Cα (PKCα) to the cytoplasmic domain of syndecan-4 were observed; these events potentially lead to the macropinocytic uptake of R8. The cytoplasmic V domain of syndecan-4 made a significant contribution to the cellular uptake of R8, whereas the cytoplasmic C1 and C2 domains were not involved in the process.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan.
| | - Katsuhiro Osaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Gen Tanaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsushi Utani
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
37
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
38
|
Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta Gen Subj 2014; 1840:1993-2003. [PMID: 24412195 DOI: 10.1016/j.bbagen.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 01/02/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. METHODS Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. RESULTS Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. CONCLUSIONS Differentiation of embryonic stem cells markedly changes the proteoglycanome. GENERAL SIGNIFICANCE The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation.
Collapse
|
39
|
Briñas L, Vassilopoulos S, Bonne G, Guicheney P, Bitoun M. Role of dynamin 2 in the disassembly of focal adhesions. J Mol Med (Berl) 2013; 91:803-9. [DOI: 10.1007/s00109-013-1040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
40
|
Wang Y, Zhang D, Chiu APL, Wan A, Neumaier K, Vlodavsky I, Rodrigues B. Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes. Arterioscler Thromb Vasc Biol 2013; 33:894-902. [PMID: 23471235 DOI: 10.1161/atvbaha.113.301309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE After diabetes mellitus, transfer of lipoprotein lipase (LPL) from cardiomyocytes to the coronary lumen increases, and this requires liberation of LPL from the myocyte surface heparan sulfate proteoglycans with subsequent replenishment of this reservoir. At the lumen, LPL breaks down triglyceride to meet the increased demand of the heart for fatty acid. Here, we examined the contribution of coronary endothelial cells (ECs) toward regulation of cardiomyocyte LPL secretion. APPROACH AND RESULTS Bovine coronary artery ECs were exposed to high glucose, and the conditioned medium was used to treat cardiomyocytes. EC-conditioned medium liberated LPL from the myocyte surface, in addition to facilitating its replenishment. This effect was attributed to the increased heparanase content in EC-conditioned medium. Of the 2 forms of heparanase secreted from EC in response to high glucose, active heparanase released LPL from the myocyte surface, whereas latent heparanase stimulated reloading of LPL from an intracellular pool via heparan sulfate proteoglycan-mediated RhoA activation. CONCLUSIONS Endothelial heparanase is a participant in facilitating LPL increase at the coronary lumen. These observations provide an insight into the cross-talk between ECs and cardiomyocytes to regulate cardiac metabolism after diabetes mellitus.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
41
|
Ju R, Simons M. Syndecan 4 regulation of PDK1-dependent Akt activation. Cell Signal 2013; 25:101-5. [PMID: 22975683 PMCID: PMC3508137 DOI: 10.1016/j.cellsig.2012.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/17/2022]
Abstract
The phosphatidylinositol 3 kinase (Pi3K)/Akt pathway is a major regulator of cell growth, proliferation, metabolism, survival, and angiogenesis. Despite extensive study, a thorough understanding of the modulation and regulation of this pathway has remained elusive. We have previously demonstrated that syndecan 4 (S4) regulates the intracellular localization of mTORC2, thus altering phosphorylation of Akt at serine473 (Ser473), one of two critical phosphorylation sites essential for the full activation of Akt [1]. Here we report that S4 also regulates the phosphorylation of Akt at threonine308 (Thr308), the second phosphorylation site required for the full Akt activation. A deletion of S4 resulted in lower levels of Thr308 phosphorylation both in vitro and in vivo. Furthermore, a deletion or knockdown of the S4 effector molecule PKCα led to a similar reduction in phosphorylation of Thr308 while overexpression of myristoylated PKCα rescued AktThr308 phosphorylation in endothelial cells lacking S4. Finally, PAK1/2 is also recruited to the rafts by the S4-PKCα complex and is required for AKT activation.
Collapse
Affiliation(s)
- Rong Ju
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
42
|
Okina E, Grossi A, Gopal S, Multhaupt HAB, Couchman JR. Alpha-actinin interactions with syndecan-4 are integral to fibroblast-matrix adhesion and regulate cytoskeletal architecture. Int J Biochem Cell Biol 2012; 44:2161-74. [PMID: 22940199 DOI: 10.1016/j.biocel.2012.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/01/2012] [Accepted: 08/15/2012] [Indexed: 11/26/2022]
Abstract
All cells of the musculoskeletal system possess transmembrane syndecan proteoglycans, notably syndecan-4. In fibroblasts it regulates integrin-mediated adhesion to the extracellular matrix. Syndecan-4 null mice have a complex wound repair phenotype while their fibroblasts have reduced focal adhesions and matrix contraction abilities. Signalling through syndecan-4 core protein to the actin cytoskeleton involves protein kinase Cα and Rho family G proteins but also direct interactions with α-actinin. The contribution of the latter interaction to cell-matrix adhesion is not defined but investigated here since manipulation of Rho GTPase and its downstream targets could not restore a wild type microfilament organisation to syndecan-4 null cells. Microarray and protein analysis revealed no significant alterations in mRNA or protein levels for actin- or α-actinin associated proteins when wild type and syndecan-4 knockout fibroblasts were compared. The binding site for syndecan-4 cytoplasmic domain was identified as spectrin repeat 4 of α-actinin while further experiments confirmed the importance of this interaction in stabilising cell-matrix junctions. However, α-actinin is also present in adherens junctions, these organelles not being disrupted in the absence of syndecan-4. Indeed, co-culture of wild type and knockout cells led to adherens junction-associated stress fibre formation in cells lacking syndecan-4, supporting the hypothesis that the proteoglycan regulates cell-matrix adhesion and its associated microfilament bundles at a post-translational level. These data provide an additional dimension to syndecan function related to tension at the cell-matrix interface, wound healing and potentially fibrosis.
Collapse
Affiliation(s)
- E Okina
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
43
|
Song Y, McFarland DC, Velleman SG. Syndecan-4 cytoplasmic domain regulation of turkey satellite cell focal adhesions and apoptosis. Mol Biol Rep 2012; 39:8251-64. [DOI: 10.1007/s11033-012-1673-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/17/2012] [Indexed: 11/30/2022]
|
44
|
Role of syndecan-4 side chains in turkey satellite cell apoptosis and focal adhesion formation. Cell Biol Int 2012; 36:433-40. [DOI: 10.1042/cbi20110467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Velleman SG, Shin J, Li X, Song Y. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2011-098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Velleman, S. G., Shin, J., Li, X. and Song, Y. 2012. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can. J. Anim. Sci. 92: 1–10. Skeletal muscle fibers are surrounded by an extrinsic extracellular matrix environment. The extracellular matrix is composed of collagens, proteoglycans, glycoproteins, growth factors, and cytokines. How the extracellular matrix influences skeletal muscle development and growth is an area that is not completely understood at this time. Studies on myogenesis have largely been directed toward the cellular components and overlooked that muscle cells secrete a complex extracellular matrix network. The extracellular matrix modulates muscle development by acting as a substrate for muscle cell migration, growth factor regulation, signal transduction of information from the extracellular matrix to the intrinsic cellular environment, and provides a cellular structural architecture framework necessary for tissue function. This paper reviews extracellular matrix regulation of muscle growth with a focus on secreted proteoglycans, cell surface proteoglycans, growth factors and cytokines, and the dynamic nature of the skeletal muscle extracellular matrix, because of its impact on the regulation of muscle cell proliferation and differentiation during myogenesis.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| | - Jonghyun Shin
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| | - Xuehui Li
- University of Florida, Department of Anatomy and Cell Biology, Gainesville, FL 32610, USA
| | - Yan Song
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| |
Collapse
|
46
|
Gasimli L, Linhardt RJ, Dordick JS. Proteoglycans in stem cells. Biotechnol Appl Biochem 2012; 59:65-76. [PMID: 23586787 DOI: 10.1002/bab.1002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/18/2012] [Indexed: 12/18/2022]
Abstract
The remarkable promise of pluripotent and multipotent stem cells (SCs) imparts tremendous optimism for advancement of regenerative medicine, developmental biology, and drug discovery. Perhaps the greatest challenge is to finely direct, control, and command their differentiation. As those processes are managed on many levels, including genomic, transcriptomic, and epigenomic, examination of all of these components will yield powerful tools for manipulation of SCs. Carbohydrates surround all cells, including SCs as a glycocalyx. Of particular interest is the class of carbohydrates known as proteoglycans (PGs), which are a diverse group of glycoconjugates consisting of core protein with one or more glycosaminoglycan (GAG) chains attached. They are primarily located in the extracellular matrix as well as at cell surfaces, where they are bound or anchored to the membrane through their core proteins. GAG chains are linear, anionic, and highly heterogeneous carbohydrates consisting of repeating disaccharides. PGs facilitate interaction of cells with the extracellular environment by interacting with chemokines, growth factors, and other signaling molecules. Core proteins are involved in many signaling pathways, both individually, as well as through attached proteins via GAG-mediated interactions. These essential and accessible functions make PGs an excellent target for manipulating SCs and guiding their fate. Studying the role of PGs in cell development will yield valuable insight into the mechanism of SC differentiation and suggest approaches toward directing those pathways. Such studies may also help identify valuable markers for distinguishing between various cell populations during differentiation.
Collapse
Affiliation(s)
- Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|
47
|
Song Y, McFarland DC, Velleman SG. Critical amino acids in syndecan-4 cytoplasmic domain modulation of turkey satellite cell growth and development. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:271-8. [DOI: 10.1016/j.cbpa.2011.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/24/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
48
|
Bass MD, Williamson RC, Nunan RD, Humphries JD, Byron A, Morgan MR, Martin P, Humphries MJ. A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell 2011; 21:681-93. [PMID: 21982645 PMCID: PMC3202633 DOI: 10.1016/j.devcel.2011.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 06/03/2011] [Accepted: 08/07/2011] [Indexed: 11/24/2022]
Abstract
Cell migration during wound healing requires adhesion receptor turnover to enable the formation and disassembly of cell-extracellular matrix contacts. Although recent advances have improved our understanding of integrin trafficking pathways, it is not known how extracellular ligand engagement controls receptor dynamics. Using atomic force microscopy, we have measured cell avidity for fibronectin and defined a mechanism for the outside-in regulation of α(5)β(1)-integrin. Surprisingly, adhesive strength was attenuated by the syndecan-4-binding domain of fibronectin due to a rapid triggering of α(5)β(1)-integrin endocytosis. Association of syndecan-4 with PKCα was found to trigger RhoG activation and subsequent dynamin- and caveolin-dependent integrin uptake. Like disruption of syndecan-4 or caveolin, gene disruption of RhoG in mice was found to retard closure of dermal wounds due to a migration defect of the fibroblasts and keratinocytes of RhoG null mice. Thus, this syndecan-4-regulated integrin endocytic pathway appears to play a key role in tissue repair.
Collapse
Affiliation(s)
- Mark D Bass
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Echtermeyer F, Harendza T, Hubrich S, Lorenz A, Herzog C, Mueller M, Schmitz M, Grund A, Larmann J, Stypmann J, Schieffer B, Lichtinghagen R, Hilfiker-Kleiner D, Wollert KC, Heineke J, Theilmeier G. Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovasc Res 2011; 92:123-31. [PMID: 21632883 DOI: 10.1093/cvr/cvr149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Myocardial infarction (MI) results in acute impairment of left ventricular (LV) function through the initial development of cardiomyocyte death and subsequent progression of LV remodelling. The expression of syndecan-4 (Sdc4), a transmembrane proteoglycan, is up-regulated after MI, but its function in the heart remains unknown. Here, we characterize the effects of Sdc4 deficiency in murine myocardial ischaemia and permanent infarction. METHODS AND RESULTS Targeted deletion of Sdc4 (Sdc4(-/-)) leads to increased myocardial damage after ischaemic-reperfusion injury due to enhanced cardiomyocyte apoptosis associated with reduced activation of extracellular signal-regulated kinase in cardiomyocytes in vitro and in vivo. After ischaemic-reperfusion injury and permanent infarction, we observed an increase in cardiomyocyte area, nuclear translocation of nuclear factor of activated T cells (NFAT), and transcription of the NFAT target rcan1.4 in wild-type mice. NFAT pathway activation was enhanced in Sdc4(-/-) mice. In line with the in vivo data, NFAT activation and hypertrophy occurs in isolated cardiomyocytes with reduced Sdc4 expression during phenylephrine stimulation in vitro. Despite the initially increased myocardial damage, echocardiography revealed improved LV geometry and function in Sdc4(-/-) mice 7 days after MI. CONCLUSION Interception of the Sdc4 pathway enhances infarct expansion and hypertrophic remodelling during early infarct healing in ischaemic-reperfusion injury and permanent infarction mouse models and exerts net beneficial effects on LV function.
Collapse
Affiliation(s)
- Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Song Y, McFarland DC, Velleman SG. Role of syndecan-4 side chains in turkey satellite cell growth and development. Dev Growth Differ 2011; 53:97-109. [PMID: 21261615 DOI: 10.1111/j.1440-169x.2010.01230.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syndecan-4 is a cell membrane heparan sulfate proteoglycan that is composed of a core protein and covalently attached glycosaminoglycans (GAG) and N-linked glycosylated (N-glycosylated) chains. Syndecan-4 has been shown to function independent of its GAG chains. Syndecan-4 may derive its biological function from the N-glycosylated chains due to the biological role of N-glycosylated chains in protein folding and cell membrane localization. The objective of the current study was to investigate the role of syndecan-4 N-glycosylated chains and the interaction between GAG and N-glycosylated chains in turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 (FGF2) responsiveness. The wild type turkey syndecan-4 and the syndecan-4 without GAG chains were cloned into the expression vector pCMS-EGFP and used as templates to generate syndecan-4 N-glycosylated one-chain and no-chain mutants with or without GAG chains. The wild type syndecan-4, all of the syndecan-4 N-glycosylated chain mutants were transfected into turkey myogenic satellite cells. Cell proliferation, differentiation, and responsiveness to FGF2 were measured. The overexpression of syndecan-4 N-glycosylated mutants with or without GAG chains did not change cell proliferation, differentiation, and responsiveness to FGF2 compared to the wild type syndecan-4 except that the overexpression of syndecan-4 N-glycosylated mutants without GAG chains increased cell proliferation at 48 and 72 h post-transfection. These data suggest that syndecan-4 functions in an FGF2-independent manner, and the N-glycosylated and GAG chains are required for syndecan-4 to regulate turkey myogenic satellite cell proliferation, but not differentiation.
Collapse
Affiliation(s)
- Yan Song
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, USA
| | | | | |
Collapse
|