1
|
Gao Y, Liu P, Peng L, Li M, Ni B. α-GalCer regulates acute stress-induced steroidogenesis by modulating lipid metabolism in female BALB/c mice. Psychoneuroendocrinology 2025; 178:107481. [PMID: 40328043 DOI: 10.1016/j.psyneuen.2025.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
The immune system orchestrates the hypothalamus-pituitary-adrenal (HPA) axis response to stress. However, the impact of invariant natural killer T (iNKT) cell activation on stress-induced glucocorticoid levels remains poorly understood. Alpha-galactosylceramide (α-GalCer), a specific agonist for iNKT cells, activates iNKT cells to produce inflammatory cytokines including interleukin (IL)-4 and interferon (IFN)-γ. Our findings indicate that treatment with α-GalCer 3 hours before acute restraint stress suppressed the elevation of adrenocorticotropic hormone (ACTH) but did not affect the increase in corticosterone (CORT) in mice. However, treatment with α-GalCer 24 hours prior to restraint stress did not alter the rise in ACTH but reduced the increase in CORT by about half. This dissociation between stress-induced ACTH and CORT levels suggests an intra-adrenal regulation of HPA axis responses to acute stress following α-GalCer treatment. We further found that administration of α-GalCer enhances lipid utilization within adrenocortical cells and elicits a hyperresponsive reaction to ACTH stimulation. Mechanistically, IL-4 elevates the expression of type II 3β-hydroxysteroid dehydrogenase/isomerase (HSD3B2) and scavenger receptor class B type I (SRBI) protein in adrenocortical cells, thereby facilitating ACTH-induced glucocorticoid release. Additionally, we observed that acute stress amplifies both α-GalCer-induced IL-4 and IFN-γ production as well as liver injury. Our findings not only elucidate the mechanistic basis underlying interactions between immunity and stress but also highlight potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Paiyu Liu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Li Peng
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Min Li
- Department of Military Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Potapenko A, Frey K, Schlumpf E, Robert J, Wollscheid B, von Eckardstein A, Rohrer L. The two major splice variants of scavenger receptor BI differ by their interactions with lipoproteins and cellular localization in endothelial cells. J Lipid Res 2024; 65:100665. [PMID: 39393447 PMCID: PMC11585690 DOI: 10.1016/j.jlr.2024.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
The scavenger receptor BI (SR-BI) facilitates the transport of both HDL and LDL through endothelial cells. Its two splice variants, SR-BIvar1 and SR-BIvar2, differ in their carboxy terminal domains. Only SR-BIvar1 contains the putative binding sites for the adapter proteins PDZ domain containing protein 1 (PDZK1) and dedicator of cytokinesis 4 (DOCK4), which limit the cell surface abundance and internalization of the receptor. To investigate the cellular localization of the SR-BI variants and their interaction with lipoproteins in endothelial cells, EA.hy926 cells were stably transfected with vectors encoding untagged, GFP- or mCherry-tagged constructs of the two SR-BI variants. Additionally, the cells were transfected with shRNAs against PDZK1 or DOCK4. Microscopy investigation showed that SR-BIvar1 was predominantly localized on the cell surface together with clathrin whereas SR-BIvar2 was absent from the cell surface but retrieved in endosomes and lysosomes. Accordingly, only SR-BIvar1 increased lipoprotein binding to endothelial while HDL and LDL uptake were enhanced by both variants. Silencing of PDZK1 or DOCK4 only reduced HDL association in SR-BIvar2 overexpressing cells while LDL association was reduced both in WT and SR-BIvar2 overexpressing cells. In conclusion, either SR-BI variant facilitates the uptake of HDL and LDL into endothelial cells, however by different mechanisms and trafficking routes. This dual role may explain why the loss of DOCK4 or PDZK1 differently affects the uptake of HDL and LDL in different endothelial cells.
Collapse
Affiliation(s)
- Anton Potapenko
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Kathrin Frey
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Eveline Schlumpf
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Jérôme Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Shen T, Li Y, Liu T, Lian Y, Kong L. Association between Mycoplasma pneumoniae infection, high‑density lipoprotein metabolism and cardiovascular health (Review). Biomed Rep 2024; 20:39. [PMID: 38357242 PMCID: PMC10865299 DOI: 10.3892/br.2024.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The association between Mycoplasma pneumoniae (M. pneumoniae) infection, high-density lipoprotein metabolism and cardiovascular disease is an emerging research area. The present review summarizes the basic characteristics of M. pneumoniae infection and its association with high-density lipoprotein and cardiovascular health. M. pneumoniae primarily invades the respiratory tract and damages the cardiovascular system through various mechanisms including adhesion, invasion, secretion of metabolites, production of autoantibodies and stimulation of cytokine production. Additionally, the present review highlights the potential role of high-density lipoprotein for the development of prevention and intervention of M. pneumoniae infection and cardiovascular disease, and provides suggestions for future research directions and clinical practice. It is urgent to explore the specific mechanisms underlying the association between M. pneumoniae infection, high-density lipoprotein metabolism, and cardiovascular disease and analyze the roles of the immune system and inflammatory response.
Collapse
Affiliation(s)
- Tao Shen
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yanfang Li
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Tingting Liu
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Yunzhi Lian
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Luke Kong
- Department of Clinical Laboratory, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| |
Collapse
|
5
|
Shi XZ, Yang MC, Kang XL, Li YX, Hong PP, Zhao XF, Vasta G, Wang JX. Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans. Proc Natl Acad Sci U S A 2023; 120:e2216574120. [PMID: 37276415 PMCID: PMC10268257 DOI: 10.1073/pnas.2216574120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD21202
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| |
Collapse
|
6
|
Paterson HAB, Yu S, Artigas N, Prado MA, Haberman N, Wang YF, Jobbins AM, Pahita E, Mokochinski J, Hall Z, Guerin M, Paulo JA, Ng SS, Villarroya F, Rashid ST, Le Goff W, Lenhard B, Cebola I, Finley D, Gygi SP, Sibley CR, Vernia S. Liver RBFOX2 regulates cholesterol homeostasis via Scarb1 alternative splicing in mice. Nat Metab 2022; 4:1812-1829. [PMID: 36536133 PMCID: PMC9771820 DOI: 10.1038/s42255-022-00681-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases.
Collapse
Affiliation(s)
- Helen A B Paterson
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Hospital Universitario, Oviedo, Spain
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Andrew M Jobbins
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elena Pahita
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Maryse Guerin
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Soon Seng Ng
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Sheikh Tamir Rashid
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology. School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Scavenger receptor class B type 1 (SR-B1) promotes atheroprotection through its role in HDL metabolism and reverse cholesterol transport in the liver. However, evidence indicates that SR-B1 may impact atherosclerosis through nonhepatic mechanisms. RECENT FINDINGS Recent studies have brought to light various mechanisms by which SR-B1 affects lesional macrophage function and protects against atherosclerosis. Efferocytosis is efficient in early atherosclerotic lesions. At this stage, and beyond its role in cholesterol efflux, SR-B1 promotes free cholesterol-induced apoptosis of macrophages through its control of apoptosis inhibitor of macrophage (AIM). At more advanced stages, macrophage SR-B1 binds and mediates the removal of apoptotic cells. SR-B1 also participates in the induction of autophagy which limits necrotic core formation and increases plaque stability. SUMMARY These studies shed new light on the atheroprotective role of SR-B1 by emphasizing its essential contribution in macrophages during atherogenesis as a function of lesion stages. These new findings suggest that macrophage SR-B1 is a therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Thierry Huby
- Sorbonne Universités, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | | |
Collapse
|
8
|
Abe RJ, Abe JI, Nguyen MTH, Olmsted-Davis EA, Mamun A, Banerjee P, Cooke JP, Fang L, Pownall H, Le NT. Free Cholesterol Bioavailability and Atherosclerosis. Curr Atheroscler Rep 2022; 24:323-336. [PMID: 35332444 PMCID: PMC9050774 DOI: 10.1007/s11883-022-01011-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.
Collapse
Affiliation(s)
- Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minh T H Nguyen
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Abrar Mamun
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Longhou Fang
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Henry Pownall
- Weill Cornell Medicine, New York, NY, USA
- Center for Bioenergetics, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Powers HR, Sahoo D. SR-B1's Next Top Model: Structural Perspectives on the Functions of the HDL Receptor. Curr Atheroscler Rep 2022; 24:277-288. [PMID: 35107765 PMCID: PMC8809234 DOI: 10.1007/s11883-022-01001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The binding of high-density lipoprotein (HDL) to its primary receptor, scavenger receptor class B type 1 (SR-B1), is critical for lowering plasma cholesterol levels and reducing cardiovascular disease risk. This review provides novel insights into how the structural elements of SR-B1 drive efficient function with an emphasis on bidirectional cholesterol transport. RECENT FINDINGS We have generated a new homology model of full-length human SR-B1 based on the recent resolution of the partial structures of other class B scavenger receptors. Interrogating this model against previously published observations allows us to generate structurally informed hypotheses about SR-B1's ability to mediate HDL-cholesterol (HDL-C) transport. Furthermore, we provide a structural perspective as to why human variants of SR-B1 may result in impaired HDL-C clearance. A comprehensive understanding of SR-B1's structure-function relationships is critical to the development of therapeutic agents targeting SR-B1 and modulating cardiovascular disease risk.
Collapse
Affiliation(s)
- Hayley R. Powers
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| | - Daisy Sahoo
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Cardiovascular Center, H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
10
|
Li Y, Huang R, Chen L, Li Y, Li Y, Liao L, He L, Zhu Z, Wang Y. Characterization of SR-B2a and SR-B2b genes and their ability to promote GCRV infection in grass carp (Ctenopharyngodon idellus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104202. [PMID: 34246624 DOI: 10.1016/j.dci.2021.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Scavenger receptor class B type 2 (SR-B2) is a pattern recognition receptor involved in innate immunity in mammals; however, the immunological function of SR-Bs in fish remains unclear. In this study, the full-length cDNA sequences of SR-B2a and SR-B2b from grass carp (Ctenopharyngodon idellus) were cloned and designated as CiSR-B2a and CiSR-B2b. Multiple alignments and phylogenetic analyses deduced that CiSR-B2a and CiSR-B2b had the highest evolutionary conservation and were closely related to the zebrafish (Danio rerio) homologs, DrSR-B2a and DrSR-B2b, respectively. Both CiSR-B2a and CiSR-B2b were expressed in all the tested tissues, with the highest expression levels found in the hepatopancreas. In Ctenopharyngodon idellus kidney cells (CIK), CiSR-B2a and CiSR-B2b were mainly located in the cytoplasm, and a small amount located on the plasma membrane. After challenge with Grass Carp Reovirus (GCRV), the expression of CiSR-B2a and CiSR-B2b were significantly upregulated in the spleen (about 10.27 and 27.19 times higher than that at 0 day, p < 0.01). With CiSR-B2a or CiSR-B2b overexpressed in CIK, the relative copy number of GCRV in the cells was both significantly increased compared to that in the control group, indicating that CiSR-B2a and CiSR-B2b may be important proteins during the infection processes of GCRV.
Collapse
Affiliation(s)
- Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
11
|
Yang Y, He X, Xia S, Liu F, Luo L. Porphyromonas gingivalis facilitated the foam cell formation via lysosomal integral membrane protein 2 (LIMP2). J Periodontal Res 2021; 56:265-274. [PMID: 33372271 DOI: 10.1111/jre.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The involvement of lysosomal integral membrane protein 2 (LIMP2) in cholesterol transport and formation of foam cells under the infection of Porphyromonas gingivalis (P. gingivalis) is yet to be elucidated. The current study verified the role and explored the mechanism of LIMP2 in promoting foam cell formation by P. gingivalis. BACKGROUND An association between periodontitis and atherosclerosis (AS) has been established. P. gingivalis is a key pathogen of periodontitis that promotes foam cell formation by regulating activities of CD36 scavenger receptors expressed on the macrophages. LIMP2, a member of CD36 superfamily, is involved in cholesterol efflux. However, whether LIMP2 is involved in the formation of foam cells promoted by P. gingivalis remains unclear. METHODS The formation of foam cells was examined by Oil Red O staining. The knockdown of limp2 was identified by qRT-PCR. The accumulation of cholesterol was monitored by Cholesterol Assay Kit. The location of P. gingivalis was visualized by confocal microscopy. Cathepsin L activity was monitored with Magic Red Cathepsin L Assay Kit. The key genes and pathways in P. gingivalis-infected macrophages were explored by RNA sequencing. The protein level was investigated by Western blotting. RESULTS Porphyromonas gingivalis increases foam cells formation and upregulates the expression of LIMP2 in foam cells. The knockdown of limp2 decreases the number of foam cells and increases cholesterol export, which is related to lysosomal functions. In addition, the interaction between LIMP2 and caveolin-1(CAV1) might contribute to this process, and NF-κB and JNK activity is required for increased expression of P. gingivalis-induced LIMP2. CONCLUSIONS This study suggested that LIMP2 is involved in the foam cells formation facilitated by P. gingivalis, which favors a close connection between periodontitis and atherosclerosis (AS).
Collapse
Affiliation(s)
- Yanan Yang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Xiaoli He
- Dental Diseases Prevention & Treatment Center of Jiading District, Shanghai, China
| | - Siying Xia
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lijun Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Periodontics, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
13
|
Ji A, Wang X, Noffsinger VP, Jennings D, de Beer MC, de Beer FC, Tannock LR, Webb NR. Serum amyloid A is not incorporated into HDL during HDL biogenesis. J Lipid Res 2020; 61:328-337. [PMID: 31915139 DOI: 10.1194/jlr.ra119000329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.
Collapse
Affiliation(s)
- Ailing Ji
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Xuebing Wang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Drew Jennings
- Departments of Agricultural and Medical Biotechnology, University of Kentucky, Lexington, KY
| | - Maria C de Beer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Physiology, University of Kentucky, Lexington, KY
| | - Frederick C de Beer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Internal Medicine, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Internal Medicine, University of Kentucky, Lexington, KY
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY .,Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
14
|
Calderón B, Huerta L, Casado ME, González-Casbas JM, Botella-Carretero JI, Martín-Hidalgo A. Morbid obesity-related changes in the expression of lipid receptors, transporters, and HSL in human sperm. J Assist Reprod Genet 2019; 36:777-786. [PMID: 30659447 PMCID: PMC6505031 DOI: 10.1007/s10815-019-01406-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To study the location and expression of receptors (SR-BI/CLA-1, SR-BII, and LDLr) and transporter (ABCA1) involved in uptake and efflux of cholesterol in human spermatozoa and assess whether obesity alters its location/expression and whether this could be related to infertility. DESIGN Observational study. SETTING None PATIENT(S): Ten controls and 20 obese patients. INTERVENTION(S) Anthropometric parameters. Serum and semen samples were collected. MAIN OUTCOME MEASURE(S) Spermatozoon concentration, immunolocalization, and protein expression in semen. RESULTS Spermatozoon concentration and motility was decreased in morbidly obese patients. SR-BI/CLA-1, SR-BII, LDLr, and ABCA1 are located in the spermatozoon cell membrane and the localization does not change between obese patients and controls. Control spermatozoa showed high SR-BI expression, and less expression for the rest of the receptors analyzed, indicating that SR-BI/CLA-1 is relevant in human spermatozoon cholesterol uptake/efflux. On the contrary, spermatozoa of obese patients showed less SR-BI/CLA-1 expression than controls, and more intense positive staining for SR-BII, LDLr, and ABCA1. Finally, human sperm expresses the 130- and 82-kDa hormone-sensitive lipase (HSL) isoforms. The 130-kDa isoform is expressed in the control sperm, and the expression disappears in the obese patients. CONCLUSION(S) The presence of lipid receptors/transporters and HSL in human spermatozoa suggests their role in the process of maturation/capacitation. The changes in the expression of lipid receptors/transporters and the lack of the 130-kDa HSL isoform in obese patients prevent the hydrolysis of cholesterol esters internalized by these receptors, and favor their accumulation in the cytoplasm of the spermatozoa that could contribute to lipotoxicity and infertility.
Collapse
Affiliation(s)
- Berniza Calderón
- Instituto Tecnológico Santo Domingo (INTEC), Santo Domingo, República Dominicana
- Departamento de Endocrinología y Metabolismo, Madrid, Spain
| | - Lydia Huerta
- Servicio de Bioquímica-Investigación, Madrid, Spain
| | - María Emilia Casado
- Servicio de Bioquímica-Investigación, Madrid, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - José Manuel González-Casbas
- Instituto Europeo de Fertilidad y Unidad de Reproducción Asistida, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Hospital Universitario Ramón y Cajal, E-28034, Madrid, Spain
| | - José Ignacio Botella-Carretero
- Departamento de Endocrinología y Metabolismo, Madrid, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación, Madrid, Spain.
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Madrid, Spain.
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Ctra.ColmenarViejo, Km 9.100, E-28034, Madrid, Spain.
| |
Collapse
|
15
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
16
|
Shen WJ, Azhar S, Kraemer FB. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu Rev Physiol 2017; 80:95-116. [PMID: 29125794 DOI: 10.1146/annurev-physiol-021317-121550] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scavenger receptor, class B type 1 (SR-B1), is a multiligand membrane receptor protein that functions as a physiologically relevant high-density lipoprotein (HDL) receptor whose primary role is to mediate selective uptake or influx of HDL-derived cholesteryl esters into cells and tissues. SR-B1 also facilitates the efflux of cholesterol from peripheral tissues, including macrophages, back to liver. As a regulator of plasma membrane cholesterol content, SR-B1 promotes the uptake of lipid soluble vitamins as well as viral entry into host cells. These collective functions of SR-B1 ultimately affect programmed cell death, female fertility, platelet function, vasculature inflammation, and diet-induced atherosclerosis and myocardial infarction. SR-B1 has also been identified as a potential marker for cancer diagnosis and prognosis. Finally, the SR-B1-linked selective HDL-cholesteryl ester uptake pathway is now being evaluated as a gateway for the delivery of therapeutic and diagnostic agents. In this review, we focus on the regulation and functional significance of SR-B1 in mediating cholesterol movement into and out of cells.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
17
|
PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B, Means TK, Moestrup SK, Post SR, Sawamura T, Silverstein S, Speth RC, Telfer JC, Thiele GM, Wang XY, Wright SD, El Khoury J. A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:3775-3789. [PMID: 28483986 DOI: 10.4049/jimmunol.1700373] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings.
Collapse
Affiliation(s)
- Mercy R PrabhuDas
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Paul L Bollyky
- Department of Medicine, Stanford University, Stanford, CA 94305
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, M.G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Maria Febbraio
- Department of Dentistry, Katz Group Centre for Pharmacy and Health Research, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John Loike
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Benita McVicker
- University of Nebraska Medical Center, Omaha VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Soren K Moestrup
- Department of Biomedicine, University of Aarhus, 8000 Aarhus C, Denmark
| | - Steven R Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Tatsuya Sawamura
- Department of Physiology, Research Institute, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Samuel Silverstein
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Robert C Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Geoffrey M Thiele
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68105
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Samuel D Wright
- Cardiovascular Therapeutics, CSL Behring, King of Prussia, PA 19406; and
| | - Joseph El Khoury
- Infectious Disease Division, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
18
|
Scavenger receptor class B member 1 (SCARB1) variants modulate hepatitis C virus replication cycle and viral load. J Hepatol 2017; 67:237-245. [PMID: 28363797 DOI: 10.1016/j.jhep.2017.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS There are numerous coding and non-coding variants in the SCARB1 gene that encodes scavenger receptor class B member 1 (SR-BI), a key receptor for both high density lipoproteins and hepatitis C virus (HCV). Many have been linked to clinical phenotypes, yet their impact on the HCV replication cycle is incompletely understood. The aim of this study was to analyze the impact of these variants on the molecular biology and clinical course of HCV. METHODS We analyzed key coding non-synonymous as well as non-coding SCARB1 variants using virological in vitro and human genetics approaches. RESULTS Non-synonymous variants: S112F and T175A have greatly reduced HCV receptor function. When present on the cell surface, these variants are impaired in their ability to interact with HCV E2. Non-coding variants: The G allele in rs3782287 is associated with decreased viral load. Haplotype analysis confirmed these findings and identified haplotype rs3782287 A/rs5888 C as a risk allele associated with increased viral load. We also detected a trend towards lower hepatic SR-BI expression in individuals with the rs3782287 GG genotype associated with low viral load suggesting a potential underlying mechanism. CONCLUSION Coding and non-coding genetic SCARB1 variants modulate the HCV replication cycle and possibly clinical features of hepatitis C. These findings underscore the relevance of SR-BI as an HCV receptor and contribute to our understanding of inter-individual variation in HCV infection. LAY SUMMARY The cell surface receptor SR-BI (scavenger receptor class B member 1), is essential for hepatitis C virus (HCV) entry into hepatocytes. Variations in the gene coding this receptor influence infectivity and viral load. We analyzed these variations to gain a better understanding of inter-individual differences over the course of HCV infection.
Collapse
|
19
|
Vasquez M, Simões I, Consuegra-Fernández M, Aranda F, Lozano F, Berraondo P. Exploiting scavenger receptors in cancer immunotherapy: Lessons from CD5 and SR-B1. Eur J Immunol 2017; 47:1108-1118. [PMID: 28504304 DOI: 10.1002/eji.201646903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
Abstract
Scavenger receptors (SRs) are structurally heterogeneous cell surface receptors characterized by their capacity to remove extraneous or modified self-macromolecules from circulation, thus avoiding the accumulation of noxious agents in the extracellular space. This scavenging activity makes SRs important molecules for host defense and homeostasis. In turn, SRs keep the activation of the steady-state immune response in check, and participate as co-receptors in the priming of the effector immune responses when the macromolecules are associated with a threat that might compromise host homeostasis. Therefore, SRs built up sophisticated sensor mechanisms controlling the immune system, which may be exploited to develop novel drugs for cancer immunotherapy. In this review, we focus on the regulation of the anti-tumor immune response by two paradigmatic SRs: the lymphocyte receptor CD5 and the more broadly distributed scavenger receptor class B type 1 (SR-B1). Cancer immunity can be boosted by blockade of SRs working as immune checkpoint inhibitors (CD5) and/or by proper engagement of SRs working as innate danger receptor (SR-B1). Thus, these receptors illustrate both the complexity of targeting SRs in cancer immunotherapy and also the opportunities offered by such an approach.
Collapse
Affiliation(s)
- Marcos Vasquez
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| | - Inês Simões
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Fernando Aranda
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Hospital Clínic of Barcelona, Barcelona, Spain.,Departament de Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Pedro Berraondo
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain
| |
Collapse
|
20
|
Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo. PLoS One 2017; 12:e0175824. [PMID: 28423002 PMCID: PMC5396919 DOI: 10.1371/journal.pone.0175824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/01/2017] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold) increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold) higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold) expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.
Collapse
Affiliation(s)
- Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana C. P. Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Boris L. Vaisman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo J. Amar
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Rueda CM, Rodríguez-Perea AL, Moreno-Fernandez M, Jackson CM, Melchior JT, Davidson WS, Chougnet CA. High density lipoproteins selectively promote the survival of human regulatory T cells. J Lipid Res 2017; 58:1514-1523. [PMID: 28377425 DOI: 10.1194/jlr.m072835] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
HDLs appear to affect regulatory T cell (Treg) homeostasis, as suggested by the increased Treg counts in HDL-treated mice and by the positive correlation between Treg frequency and HDL-cholesterol levels in statin-treated healthy adults. However, the underlying mechanisms remain unclear. Herein, we show that HDLs, not LDLs, significantly decreased the apoptosis of human Tregs in vitro, whereas they did not alter naïve or memory CD4+ T cell survival. Similarly, oleic acid bound to serum albumin increased Treg survival. Tregs bound and internalized high amounts of HDL compared with other subsets, which might arise from the higher expression of the scavenger receptor class B type I by Tregs; accordingly, blocking this receptor hindered HDL-mediated Treg survival. Mechanistically, we showed that HDL increased Treg ATP concentration and mitochondrial activity, enhancing basal respiration, maximal respiration, and spare respiratory capacity. Blockade of FA oxidation by etoxomir abolished the HDL-mediated enhanced survival and mitochondrial activity. Our findings thus suggest that Tregs can specifically internalize HDLs from their microenvironment and use them as an energy source. Furthermore, a novel implication of our data is that enhanced Treg survival may contribute to HDLs' anti-inflammatory properties.
Collapse
Affiliation(s)
- Cesar M Rueda
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Maria Moreno-Fernandez
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Courtney M Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - John T Melchior
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - W Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To outline the roles of SR-B1 and PDZK1 in hepatic selective HDL cholesterol uptake and reverse cholesterol transport and the consequences for atherosclerosis development. RECENT FINDINGS Much of our understanding of the physiological roles of SR-B1 and PDZK1 in HDL metabolism and atherosclerosis comes from studies of genetically manipulated mice. These show SR-B1 and PDZK1 play key roles in HDL metabolism and protection against atherosclerosis. The recent identification of rare loss of function mutations in the human SCARB1 gene verifies that it plays similar roles in HDL metabolism in humans. Other rare mutations in both the human SCARB1 and PDZK1 genes remain to be characterized but may have potentially devastating consequences to SR-B1 function. SUMMARY Identification of carriers of rare mutations in human SCARB1 and PDZK1 that impair the function of their gene products and characterization of the effects of these mutations on HDL cholesterol levels and atherosclerosis will add to our understanding of the importance of HDL function and cholesterol flux, as opposed to HDL-cholesterol levels, per se, for protection against cardiovascular disease.
Collapse
Affiliation(s)
- Bernardo L Trigatti
- aDepartment of Biochemistry and Biomedical Sciences, McMaster University bThrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Hoekstra M. SR-BI as target in atherosclerosis and cardiovascular disease - A comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis 2017; 258:153-161. [DOI: 10.1016/j.atherosclerosis.2017.01.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
|
24
|
Gutierrez-Pajares JL, Ben Hassen C, Chevalier S, Frank PG. SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer. Front Pharmacol 2016; 7:338. [PMID: 27774064 PMCID: PMC5054001 DOI: 10.3389/fphar.2016.00338] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Studies have demonstrated the significant role of cholesterol and lipoprotein metabolism in the progression of cancer. The SCARB1 gene encodes the scavenger receptor class B type I (SR-BI), which is an 82-kDa glycoprotein with two transmembrane domains separated by a large extracellular loop. SR-BI plays an important role in the regulation of cholesterol exchange between cells and high-density lipoproteins. Accordingly, hepatic SR-BI has been shown to play an essential role in the regulation of the reverse cholesterol transport pathway, which promotes the removal and excretion of excess body cholesterol. In the context of atherosclerosis, SR-BI has been implicated in the regulation of intracellular signaling, lipid accumulation, foam cell formation, and cellular apoptosis. Furthermore, since lipid metabolism is a relevant target for cancer treatment, recent studies have focused on examining the role of SR-BI in this pathology. While signaling pathways have initially been explored in non-tumoral cells, studies with cancer cells have now demonstrated SR-BI's function in tumor progression. In this review, we will discuss the role of SR-BI during tumor development and malignant progression. In addition, we will provide insights into the transcriptional and post-transcriptional regulation of the SCARB1 gene. Overall, studying the role of SR-BI in tumor development and progression should allow us to gain useful information for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jorge L Gutierrez-Pajares
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Céline Ben Hassen
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Stéphan Chevalier
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Philippe G Frank
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| |
Collapse
|
25
|
Pal R, Ke Q, Pihan GA, Yesilaltay A, Penman ML, Wang L, Chitraju C, Kang PM, Krieger M, Kocher O. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am J Physiol Heart Circ Physiol 2016; 311:H1392-H1408. [PMID: 27694217 DOI: 10.1152/ajpheart.00463.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
The HDL receptor SR-BI mediates the transfer of cholesteryl esters from HDL to cells and controls HDL abundance and structure. Depending on the genetic background, loss of SR-BI causes hypercholesterolemia, anemia, reticulocytosis, splenomegaly, thrombocytopenia, female infertility, and fatal coronary heart disease (CHD). The carboxy terminus of SR-BI (505QEAKL509) must bind to the cytoplasmic adaptor PDZK1 for normal hepatic-but not steroidogenic cell-expression of SR-BI protein. To determine whether SR-BI's carboxy terminus is also required for normal protein levels in steroidogenic cells, we introduced into SR-BI's gene a 507Ala/STOP mutation that produces a truncated receptor (SR-BIΔCT). As expected, the dramatic reduction of hepatic receptor protein in SR-BIΔCT mice was similar to that in PDZK1 knockout (KO) mice. Unlike SR-BI KO females, SR-BIΔCT females were fertile. The severity of SR-BIΔCT mice's hypercholesterolemia was intermediate between those of SR-BI KO and PDZK1 KO mice. Substantially reduced levels of the receptor in adrenal cortical cells, ovarian cells, and testicular Leydig cells in SR-BIΔCT mice suggested that steroidogenic cells have an adaptor(s) functionally analogous to hepatic PDZK1. When SR-BIΔCT mice were crossed with apolipoprotein E KO mice (SR-BIΔCT/apoE KO), pathologies including hypercholesterolemia, macrocytic anemia, hepatic and splenic extramedullary hematopoiesis, massive splenomegaly, reticulocytosis, thrombocytopenia, and rapid-onset and fatal occlusive coronary arterial atherosclerosis and CHD (median age of death: 9 wk) were observed. These results provide new insights into the control of SR-BI in steroidogenic cells and establish SR-BIΔCT/apoE KO mice as a new animal model for the study of CHD.
Collapse
Affiliation(s)
- Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - German A Pihan
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Marsha L Penman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Li Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Peter M Kang
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
26
|
Yang X, Sethi A, Yanek LR, Knapper C, Nordestgaard BG, Tybjærg-Hansen A, Becker DM, Mathias RA, Remaley AT, Becker LC. SCARB1 Gene Variants Are Associated With the Phenotype of Combined High High-Density Lipoprotein Cholesterol and High Lipoprotein (a). ACTA ACUST UNITED AC 2016; 9:408-418. [PMID: 27651445 DOI: 10.1161/circgenetics.116.001402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/20/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND SR-B1 (scavenger receptor class B type 1), encoded by the gene SCARB1, is a lipoprotein receptor that binds both high-density lipoprotein (HDL) and low-density lipoprotein. We reported that SR-B1 is also a receptor for lipoprotein (a) (Lp(a)), mediating cellular uptake of Lp(a) in vitro and promoting clearance of Lp(a) in vivo. Although genetic variants in SCARB1 are associated with variations in HDL level, no SCARB1 variants affecting Lp(a) have been reported. METHODS AND RESULTS In an index subject with high levels of HDL cholesterol and Lp(a), SCARB1 was sequenced and demonstrated a missense mutation resulting in an S129L substitution in exon 3. To follow up, 2 cohorts (GeneSTAR, the family-based Genetic Study of Atherosclerosis Risk [n=543], and CCHS, the population-based Copenhagen City Heart Study [n=5835]) were screened for combined HDL cholesterol and Lp(a) elevations. Subjects with the extreme phenotype (HDL >80 mg/dL and Lp(a) >100 nmol/L in GeneSTAR, n=8, and >100 mg/dL in CCHS, n=9) underwent sequencing of SCARB1 exons; 15 of 18 from the combined population demonstrated genetic variants, including rare or uncommon missense or splice site mutations in 9 and homozygous synonymous variants in 6. Functional studies with 4 of the SCARB1 variants (c.386C>T, c.631-14T>G, c.4G>A, and c.631-53mC>T & c.726+55mCG>CA) showed decreased receptor function in vitro. CONCLUSIONS Human SCARB1 gene variants are associated with a new lipid phenotype, characterized by high levels of both HDL cholesterol and Lp(a). SCARB1 exonic variants often result in diminished function of translated SR-B1 via reduced binding/intracellular transport of Lp(a).
Collapse
Affiliation(s)
- Xiaoping Yang
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Amar Sethi
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Lisa R Yanek
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Cathy Knapper
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Børge G Nordestgaard
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Anne Tybjærg-Hansen
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Diane M Becker
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Rasika A Mathias
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Alan T Remaley
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Lewis C Becker
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.).
| |
Collapse
|
27
|
Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Kost Y, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL. Human SR-BI and SR-BII Potentiate Lipopolysaccharide-Induced Inflammation and Acute Liver and Kidney Injury in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3135-47. [PMID: 26936883 PMCID: PMC4856165 DOI: 10.4049/jimmunol.1501709] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
The class B scavenger receptors BI (SR-BI) and BII (SR-BII) are high-density lipoprotein receptors that recognize various pathogens, including bacteria and their products. It has been reported that SR-BI/II null mice are more sensitive than normal mice to endotoxin-induced inflammation and sepsis. Because the SR-BI/II knockout model demonstrates multiple immune and metabolic disorders, we investigated the role of each receptor in the LPS-induced inflammatory response and tissue damage using transgenic mice with pLiv-11-directed expression of human SR-BI (hSR-BI) or human SR-BII (hSR-BII). At 6 h after i.p. LPS injection, transgenic hSR-BI and hSR-BII mice demonstrated markedly higher serum levels of proinflammatory cytokines and 2- to 3-fold increased expression levels of inflammatory mediators in the liver and kidney, compared with wild-type (WT) mice. LPS-stimulated inducible NO synthase expression was 3- to 6-fold higher in the liver and kidney of both transgenic strains, although serum NO levels were similar in all mice. Despite the lower high-density lipoprotein plasma levels, both transgenic strains responded to LPS by a 5-fold increase of plasma corticosterone levels, which were only moderately lower than in WT animals. LPS treatment resulted in MAPK activation in tissues of all mice; however, the strongest response was detected for hepatic extracellular signal-regulated protein kinase 1 and 2 and kidney JNK of both transgenic mice. Histological examination of hepatic and renal tissue from LPS-challenged mice revealed more injury in hSR-BII, but not hSR-BI, transgenic mice versus WT controls. Our findings demonstrate that hSR-BII, and to a lesser extent hSR-BI, significantly increase LPS-induced inflammation and contribute to LPS-induced tissue injury in the liver and kidney, two major organs susceptible to LPS toxicity.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ana C P Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892;
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Boris L Vaisman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marcelo J Amar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Yana Kost
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892; Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Qin L, Yang YB, Yang YX, Zhu N, Liu Z, Ni YG, Li SX, Zheng XL, Liao DF. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway. Clin Exp Pharmacol Physiol 2016; 43:182-92. [DOI: 10.1111/1440-1681.12524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/13/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Li Qin
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Yun-Bo Yang
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
- Matthew Mailing Centre for Translational Transplantation Studies; London Health Sciences Centre; Western University; London Canada
| | - Yi-Xin Yang
- Matthew Mailing Centre for Translational Transplantation Studies; London Health Sciences Centre; Western University; London Canada
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine; Changsha Hunan China
| | - Zheng Liu
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Ya-Guang Ni
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Shun-Xiang Li
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Xi-Long Zheng
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
- Department of Biochemistry & Molecular Biology; Libin Cardiovascular Institute of Alberta; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Duan- Fang Liao
- Division of Stem Cell Regulation and Application; School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| |
Collapse
|
29
|
Gardner LA, Levin MC. Importance of Apolipoprotein A-I in Multiple Sclerosis. Front Pharmacol 2015; 6:278. [PMID: 26635608 PMCID: PMC4654019 DOI: 10.3389/fphar.2015.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person's own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood-brain barrier to cause inflammation and myelin destruction. The anti-inflammatory role of high-density lipoproteins (HDLs) has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However, it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.
Collapse
Affiliation(s)
- Lidia A. Gardner
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael C. Levin
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
30
|
Hu Z, Hu J, Shen WJ, Kraemer FB, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry 2015; 54:6917-30. [PMID: 26567857 DOI: 10.1021/acs.biochem.5b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salt-inducible kinase 1 (SIK1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMPK family of kinases. SIK1 expression is rapidly induced in Y1 adrenal cells in response to ACTH via the cAMP-PKA signaling cascade, and it has been suggested that an increased level of SIK1 expression inhibits adrenal steroidogenesis by repressing the cAMP-dependent transcription of steroidogenic proteins, CYP11A1 and StAR, by attenuating CREB transcriptional activity. Here we show that SIK1 stimulates adrenal steroidogenesis by modulating the selective HDL-CE transport activity of SR-B1. Overexpression of SIK1 increases cAMP-stimulated and SR-B1-mediated selective HDL-BODIPY-CE uptake in cell lines without impacting SR-B1 protein levels, whereas knockdown of SIK1 attenuated cAMP-stimulated selective HDL-BODIPY-CE uptake. SIK1 forms a complex with SR-B1 by interacting with its cytoplasmic C-terminal domain, and in vitro kinase activity measurements indicate that SIK1 can phosphorylate the C-terminal domain of SR-B1. Among potential phosphorylation sites, SIK1-catalyzed phosphorylation of Ser496 is critical for SIK1 stimulation of the selective CE transport activity of SR-B1. Mutational studies further demonstrated that both the intact catalytic activity of SIK1 and its PKA-catalyzed phosphorylation are essential for SIK1 stimulation of SR-B1 activity. Finally, overexpression of SIK1 caused time-dependent increases in SR-B1-mediated and HDL-supported steroid production in Y1 cells; however, these effects were lost with knockdown of SR-B1. Taken together, these studies establish a role for SIK1 in the positive regulation of selective HDL-CE transport function of SR-B1 and steroidogenesis and suggest a potential mechanism for SIK1 signaling in modulating SR-B1-mediated selective CE uptake and associated steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| |
Collapse
|
31
|
Wang S, Zhang X, Liu M, Luan H, Ji Y, Guo P, Wu C. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. PHARMACEUTICAL BIOLOGY 2015; 53:1481-1487. [PMID: 25857322 DOI: 10.3109/13880209.2014.986688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Chrysin, a natural flavonoid, has been shown to possess multiple pharmacological activities including anti-atherosclerosis. OBJECTIVE The effects of chrysin on foam cell formation and cholesterol flow in RAW264.7 macrophages were investigated in this work to explore the potential mechanism underlying its anti-atherogenic activity. MATERIALS AND METHODS The inhibitive effect of chrysin on foam cell formation and cholesterol accumulation induced by oxidized low-density lipoprotein cholesterol (ox-LDL) was assessed by oil red O staining and intracellular total cholesterol and triglyceride quantification in RAW264.7 macrophages. The action of chrysin on cholesterol efflux and influx was tested by fluorescent assays. Real-time quantitative PCR was used to quantify the relative expression of cholesterol flow-associated genes and luciferase assay was applied to test the transcription activity of peroxisome proliferator-activated receptor gamma (PPARγ). RESULTS Chrysin dose dependently inhibited the formation of foam cells and prevented the enhanced cholesterol accumulation by ox-LDL. Treatment with chrysin (10 μM) significantly enhanced cholesterol efflux and substantially inhibited cholesterol influx. Simultaneously, chrysin significantly increased the mRNA levels of PPARγ, liver X receptor alpha (LXRα), ATP-binding cassette, sub-family A1 (ABCA1), and sub-family G1 (ABCG1), decreased scavenger receptor A1 (SR-A1) and SR-A2, and increased the transcriptional activity of PPARγ. DISCUSSION AND CONCLUSION Chrysin is a new inhibitor of foam cell formation that may stimulate cholesterol flow. Up-regulation of the classical PPARγ-LXRα-ABCA1/ABCG1 pathway and down-regulation of SR-A1 and SR-A2 may participate in its suppressive effect on intracellular cholesterol accumulation.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , PR China and
| | | | | | | | | | | | | |
Collapse
|
32
|
Lobo MVT, Arenas MI, Huerta L, Sacristán S, Pérez-Crespo M, Gutiérrez-Adán A, Díaz-Gil JJ, Lasunción MA, Martín-Hidalgo A. Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors. Am J Physiol Endocrinol Metab 2015; 308:E111-21. [PMID: 25389365 DOI: 10.1152/ajpendo.00329.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3β-hydroxysteroid dehydrogenase (3β-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3β-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery.
Collapse
Affiliation(s)
- M V T Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M I Arenas
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - L Huerta
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - S Sacristán
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - M Pérez-Crespo
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain; and
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain; and
| | - J J Díaz-Gil
- Servicio de Bioquímica Experimental, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - M A Lasunción
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - A Martín-Hidalgo
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
33
|
Karlsson H, Kontush A, James RW. Functionality of HDL: antioxidation and detoxifying effects. Handb Exp Pharmacol 2015; 224:207-228. [PMID: 25522989 DOI: 10.1007/978-3-319-09665-0_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-density lipoproteins (HDL) are complexes of multiple talents, some of which have only recently been recognised but all of which are under active investigation. Clinical interest initially arose from their amply demonstrated role in atherosclerotic disease with their consequent designation as a major cardiovascular disease (CVD) risk factor. However, interest is no longer confined to vascular tissues, with the reports of impacts of the lipoprotein on pancreatic, renal and nervous tissues, amongst other possible targets. The ever-widening scope of HDL talents also encompasses environmental hazards, including infectious agents and environmental toxins. In almost all cases, HDL would appear to have a beneficial impact on health. It raises the intriguing question of whether these various talents emanate from a basic ancestral function to protect the cell.The following chapter will illustrate and review our current understanding of some of the functions attributed to HDL. The first section will look at the antioxidative functions of HDL and possible mechanisms that are involved. The second section will focus specifically on paraoxonase-1 (PON1), which appears to bridge the divide between the two HDL functions discussed herein. This will lead into the final section dealing with HDL as a detoxifying agent protecting against exposure to environmental pathogens and other toxins.
Collapse
Affiliation(s)
- Helen Karlsson
- Occupational and Environmental Medicine, Heart Medical Centre, County Council of Ostergotland, Linkoping University, SE-58185, Linkoping, Sweden,
| | | | | |
Collapse
|
34
|
Godfrey L, Yamada-Fowler N, Smith J, Thornalley PJ, Rabbani N. Arginine-directed glycation and decreased HDL plasma concentration and functionality. Nutr Diabetes 2014; 4:e134. [PMID: 25177914 PMCID: PMC4183972 DOI: 10.1038/nutd.2014.31] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/06/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Decreased plasma concentration of high-density lipoprotein cholesterol (HDL-C) is a risk factor linked to increased risk of cardiovascular disease (CVD). Decreased anti-atherogenic properties of HDL are also implicated in increased CVD risk. The cause is unknown but has been linked to impaired glucose tolerance. The aim of this study was to quantify the modification of HDL by methylglyoxal and related dicarbonyls in healthy people and patients with type 2 diabetes characterise structural, functional and physiological consequences of the modification and predict the importance in high CVD risk groups. SUBJECTS/METHODS Major fractions of HDL, HDL2 and HDL3 were isolated from healthy human subjects and patients with type 2 diabetes and fractions modified by methylglyoxal and related dicarbonyl metabolites quantified. HDL2 and HDL3 were glycated by methylglyoxal to minimum extent in vitro and molecular, functional and physiological characteristics were determined. A one-compartment model of HDL plasma clearance was produced including formation and clearance of dicarbonyl-modified HDL. RESULTS HDL modified by methylglyoxal and related dicarbonyl metabolites accounted for 2.6% HDL and increased to 4.5% in patients with type 2 diabetes mellitus (T2DM). HDL2 and HDL3 were modified by methylglyoxal to similar extents in vitro. Methylglyoxal modification induced re-structuring of the HDL particles, decreasing stability and plasma half-life in vivo. It occurred at sites of apolipoprotein A-1 in HDL linked to membrane fusion, intramolecular bonding and ligand binding. Kinetic modelling of methylglyoxal modification of HDL predicted a negative correlation of plasma HDL-C with methylglyoxal-modified HDL. This was validated clinically. It also predicted that dicarbonyl modification produces 2-6% decrease in total plasma HDL and 5-13% decrease in functional HDL clinically. CONCLUSIONS These results suggest that methylglyoxal modification of HDL accelerates its degradation and impairs its functionality in vivo, likely contributing to increased risk of CVD-particularly in high CVD risk groups.
Collapse
Affiliation(s)
- L Godfrey
- Clinical Sciences Research Laboratories, Medical School, University of Warwick, University Hospital, Coventry, UK
| | - N Yamada-Fowler
- Clinical Sciences Research Laboratories, Medical School, University of Warwick, University Hospital, Coventry, UK
| | - J Smith
- Bruker UK Ltd, Banner Lane, Coventry, UK
| | - P J Thornalley
- Clinical Sciences Research Laboratories, Medical School, University of Warwick, University Hospital, Coventry, UK
| | - N Rabbani
- Clinical Sciences Research Laboratories, Medical School, University of Warwick, University Hospital, Coventry, UK
| |
Collapse
|
35
|
Eguchi A, Kaneko Y, Murakami A, Ohigashi H. Zerumbone Suppresses Phorbol Ester-Induced Expression of Multiple Scavenger Receptor Genes in THP-1 Human Monocytic Cells. Biosci Biotechnol Biochem 2014; 71:935-45. [PMID: 17420607 DOI: 10.1271/bbb.60596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unregulated uptake of oxidized low-density lipoproteins (ox-LDL) via macrophage scavenger receptors (SRs), such as lectin-like ox-LDL receptor-1 (LOX-1), is a key event in atherosclerosis. In the present study, we used differentiated Caco-2 cells as a model of the human small intestine to evaluate the suppressive effects of 16 traditional food items selected from Okinawa on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced LOX-1 mRNA expression in THP-1 human monocyte-like cells. Three Zingiberaceae plants, Curcuma aromatica Salisbury, Curcuma longa L., and Zingiber zerumbet Smith, markedly suppressed that expression. When added to the apical sides of Caco-2 monolayers, zerumbone, a sesquiterpene from Z. zerumbet Smith, was found to permeate into the basolateral medium as an intact structure in a time-dependent manner. alpha-Humulene, a structural analog of zerumbone lacking the alpha,beta-unsaturated carbonyl group, did not suppress LOX-1 mRNA expression, indicating that its electrophilic moiety might play pivotal roles in its activities. Further, zerumbone attenuated the expression of SR-A, SR-PSOX, and CD36, but not that of CD68 or CLA-1, leading to a blockade of DiI-acLDL uptake, while it also inhibited the transcriptional activities of activator protein-1 and nuclear factor-kappaB. Together, our results indicate that zerumbone is a potential phytochemical for regulating atherosclerosis with reasonable action mechanisms.
Collapse
Affiliation(s)
- Ai Eguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
36
|
Prabhudas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, Means TK, Moestrup SK, Post S, Sawamura T, Silverstein S, Wang XY, El Khoury J. Standardizing scavenger receptor nomenclature. THE JOURNAL OF IMMUNOLOGY 2014; 192:1997-2006. [PMID: 24563502 DOI: 10.4049/jimmunol.1490003] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a variety of ligands, including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of Health to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of non-self or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. The discussion and nomenclature recommendations described in this report only refer to mammalian scavenger receptors. The purpose of this article is to describe the proposed mammalian nomenclature and classification developed at the workshop and to solicit additional feedback from the broader research community.
Collapse
Affiliation(s)
- Mercy Prabhudas
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Colley HE, Hearnden V, Avila-Olias M, Cecchin D, Canton I, Madsen J, MacNeil S, Warren N, Hu K, McKeating JA, Armes SP, Murdoch C, Thornhill MH, Battaglia G. Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D in Vitro Evaluation. Mol Pharm 2014; 11:1176-88. [DOI: 10.1021/mp400610b] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Helen E. Colley
- School of Clinical Dentistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Vanessa Hearnden
- School of Clinical Dentistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department of Materials Science and Engineering, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Milagros Avila-Olias
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- The Centre for Membrane
Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Denis Cecchin
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Irene Canton
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Jeppe Madsen
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department
of Chemistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Nicholas Warren
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department
of Chemistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Ke Hu
- Institute for Biomedical
Research, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K
| | - Jane A. McKeating
- Institute for Biomedical
Research, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Martin H. Thornhill
- School of Clinical Dentistry, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
| | - Giuseppe Battaglia
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|
38
|
Getts DR, McCarthy DP, Miller SD. Exploiting apoptosis for therapeutic tolerance induction. THE JOURNAL OF IMMUNOLOGY 2014; 191:5341-6. [PMID: 24244028 DOI: 10.4049/jimmunol.1302070] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune tolerance remains the most promising yet elusive strategy for treating immune-mediated diseases. An experimental strategy showing promise in phase 1 clinical studies is the delivery of Ag cross-linked to apoptotic leukocytes using ethylene carbodiimide. This approach originated from demonstration of the profound tolerance-inducing ability of i.v. administered Ag-coupled splenocytes (Ag-SP) in mice, which has been demonstrated to treat T cell-mediated disorders including autoimmunity, allergy, and transplant rejection. Recent studies have defined the intricate interplay between the innate and adaptive immune systems in Ag-SP tolerance induction. Innate mechanisms include scavenger receptor-mediated uptake of Ag-SP by host APCs, Ag representation, and the required upregulation of PD-L1 expression and IL-10 production by splenic marginal zone macrophages leading to Ag-specific T cell regulation via the combined effects of cell-intrinsic anergy and regulatory T cell induction. In this paper, we discuss the history, advantages, current mechanistic understanding, and clinical potential of tolerance induction using apoptotic Ag-coupled apoptotic leukocytes.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW With the advent of whole-transcriptome sequencing, or RNA-seq, we now know that alternative splicing is a generalized phenomenon, with nearly all multiexonic genes subject to alternative splicing. In this review, we highlight recent studies examining alternative splicing as a modulator of cellular cholesterol homeostasis and as an underlying mechanism of dyslipidemia. RECENT FINDINGS A number of key genes involved in cholesterol metabolism are known to undergo functionally relevant alternative splicing. Recently, we have identified coordinated changes in alternative splicing in multiple genes in response to alterations in cellular sterol content. We and others have implicated several splicing factors as regulators of lipid metabolism. Furthermore, a number of cis-acting human gene variants that modulate alternative splicing have been implicated in a variety of human metabolic diseases. SUMMARY Alternative splicing is of importance in various types of genetically influenced dyslipidemias and in the regulation of cellular cholesterol metabolism.
Collapse
Affiliation(s)
- Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
40
|
Zhang M, Xu Y, Li L, Wei S, Zhang S, Liu Z. Identification, evolution and expression of a CD36 homolog in the basal chordate amphioxus Branchiostoma japonicum. FISH & SHELLFISH IMMUNOLOGY 2013; 34:546-555. [PMID: 23261503 DOI: 10.1016/j.fsi.2012.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
CD36, as one member of scavenger receptor class B (SRB) family, is a transmembrane glycoprotein and has been associated with diverse normal physiological processes and pathological conditions. However, little is known about it in amphioxus, a model organism for insights into the origin and evolution of vertebrates. In this paper, CD36 homologs in amphioxus were identified. Evolutionary analysis suggested that amphioxus BfCD36F-a/b, which were more similar to vertebrate CD36, might represent the primitive form before the splitting of CD36, SRB1 and SRB2 genes during evolution. Then the BjCD36F-a cDNA was cloned from Branchiostoma japonicum using RACE technology. Real-time PCR and in situ hybridization revealed the expression of BjCD36F-a in all the tissues detected with the highest expression in the hepatic caecum. The BjCD36F-a expression was obviously up-regulated after feeding and down-regulated during fasting, indicating a role of BjCD36F-a in feeding regulation. Besides, the up-regulation expression of BjCD36F-a transcripts was also found after either Lipoteichoic acid (LTA) treatment in the BjCD36F-a-transfected FG cells or Escherichia coli (E. coli) challenge in vivo, implying an immune-related function for BjCD36F-a. Collectively, we identify and characterize a conserved gene that is important in the fundamental process of immune and nutritional regulation. These are the first such data in amphioxus, laying a foundation for further study of their physiological functions.
Collapse
Affiliation(s)
- Min Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
41
|
The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A. J Lipids 2013; 2013:283486. [PMID: 23431457 PMCID: PMC3572687 DOI: 10.1155/2013/283486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/19/2023] Open
Abstract
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.
Collapse
|
42
|
Casado ME, Huerta L, Ortiz AI, Pérez-Crespo M, Gutiérrez-Adán A, Kraemer FB, Lasunción MÁ, Busto R, Martín-Hidalgo A. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains. J Lipid Res 2012; 53:2586-97. [PMID: 22988039 DOI: 10.1194/jlr.m028076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baranova IN, Vishnyakova TG, Bocharov AV, Leelahavanichkul A, Kurlander R, Chen Z, Souza ACP, Yuen PST, Star RA, Csako G, Patterson AP, Eggerman TL. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. THE JOURNAL OF IMMUNOLOGY 2011; 188:1371-80. [PMID: 22205027 DOI: 10.4049/jimmunol.1100350] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class B scavenger receptors (SR-B) are lipoprotein receptors that also mediate pathogen recognition, phagocytosis, and clearance as well as pathogen-induced signaling. In this study we report that three members of the SR-B family, namely, CLA-1, CLA-2, and CD36, mediate recognition of bacteria not only through interaction with cell wall LPS but also with cytosolic chaperonin 60. HeLa cells stably transfected with any of these SR-Bs demonstrated markedly (3- to 5-fold) increased binding and endocytosis of Escherichia coli, LPS, and chaperonin 60 (GroEL) as revealed by both FACS analysis and confocal microscopy imaging. Increased pathogen (E. coli, LPS, and GroEL) binding to SR-Bs was also associated with the dose-dependent stimulation of cytokine secretion in the order of CD36 > CLA-2 > CLA-1 in HEK293 cells. Pathogen-induced IL-6-secretion was reduced in macrophages from CD36- and SR-BI/II-null mice by 40-50 and 30-40%, respectively. Intravenous GroEL administration increased plasma IL-6 and CXCL1 levels in mice. The cytokine responses were 40-60% lower in CD36(-/-) relative to wild-type mice, whereas increased cytokine responses were found in SR-BI/II(-/-) mice. While investigating the discrepancy of in vitro versus in vivo data in SR-BI/II deficiency, SR-BI/II(-/-) mice were found to respond to GroEL administration without increases in either plasma corticosterone or aldosterone as normally seen in wild-type mice. SR-BI/II(-/-) mice with mineralocorticoid replacement demonstrated an ∼40-50% reduction in CXCL1 and IL-6 responses. These results demonstrate that, by recognizing and mediating inflammatory signaling of both bacterial cell wall LPS and cytosolic GroEL, all three SR-B family members play important roles in innate immunity and host defense.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wroblewski JM, Jahangiri A, Ji A, de Beer FC, van der Westhuyzen DR, Webb NR. Nascent HDL formation by hepatocytes is reduced by the concerted action of serum amyloid A and endothelial lipase. J Lipid Res 2011; 52:2255-2261. [PMID: 21957202 DOI: 10.1194/jlr.m017681] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammation is associated with significant decreases in plasma HDL-cholesterol (HDL-C) and apoA-I levels. Endothelial lipase (EL) is known to be an important determinant of HDL-C in mice and in humans and is upregulated during inflammation. In this study, we investigated whether serum amyloid A (SAA), an HDL apolipoprotein highly induced during inflammation, alters the ability of EL to metabolize HDL. We determined that EL hydrolyzes SAA-enriched HDL in vitro without liberating lipid-free apoA-I. Coexpression of SAA and EL in mice by adenoviral vector produced a significantly greater reduction in HDL-C and apoA-I than a corresponding level of expression of either SAA or EL alone. The loss of HDL occurred without any evidence of HDL remodeling to smaller particles that would be expected to have more rapid turnover. Studies with primary hepatocytes demonstrated that coexpression of SAA and EL markedly impeded ABCA1-mediated lipidation of apoA-I to form nascent HDL. Our findings suggest that a reduction in nascent HDL formation may be partly responsible for reduced HDL-C during inflammation when both EL and SAA are known to be upregulated.
Collapse
Affiliation(s)
- Joanne M Wroblewski
- Department of Internal Medicine, Endocrinology Division and Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536; and
| | - Anisa Jahangiri
- Department of Internal Medicine, Endocrinology Division and Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536; and
| | - Ailing Ji
- Department of Internal Medicine, Endocrinology Division and Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536; and
| | - Frederick C de Beer
- Department of Internal Medicine, Endocrinology Division and Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536; and; Department of Veterans Affairs Medical Center, Lexington, KY 40511
| | - Deneys R van der Westhuyzen
- Department of Internal Medicine, Endocrinology Division and Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536; and; Department of Veterans Affairs Medical Center, Lexington, KY 40511
| | - Nancy R Webb
- Department of Internal Medicine, Endocrinology Division and Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536; and.
| |
Collapse
|
45
|
Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJC, Miller SD. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2405-17. [PMID: 21821796 DOI: 10.4049/jimmunol.1004175] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerance is a highly desired therapy for immune-mediated diseases. Intravenous infusion of protein/peptide Ags linked to syngeneic splenic leukocytes with ethylene carbodiimide (Ag-coupled splenocytes [Ag-SP]) has been demonstrated to be a highly efficient method for inducing peripheral, Ag-specific T cell tolerance for treatment of autoimmune disease. However, little is understood about the mechanisms underlying this therapy. In this study, we show that apoptotic Ag-SP accumulate in the splenic marginal zone, where their uptake by F4/80(+) macrophages induces production of IL-10, which upregulates the expression of the immunomodulatory costimulatory molecule PD-L1 that is essential for Ag-SP tolerance induction. Ag-SP infusion also induces T regulatory cells that are dispensable for tolerance induction but required for long-term tolerance maintenance. Collectively, these results indicate that Ag-SP tolerance recapitulates how tolerance is normally maintained in the hematopoietic compartment and highlight the interplay between the innate and adaptive immune systems in the induction of Ag-SP tolerance. To our knowledge, we show for the first time that tolerance results from the synergistic effects of two distinct mechanisms, PD-L1-dependent T cell-intrinsic unresponsiveness and the activation of T regulatory cells. These findings are particularly relevant as this tolerance protocol is currently being tested in a Phase I/IIa clinical trial in new-onset relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis 2011; 217:299-307. [DOI: 10.1016/j.atherosclerosis.2011.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/11/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022]
|
47
|
Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med 2011; 13:e13. [PMID: 21489334 DOI: 10.1017/s1462399411001785] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry - the first encounter of the virus with the host cell - are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.
Collapse
|
48
|
Kent AP, Stylianou IM. Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepat Med 2011; 3:29-44. [PMID: 24367219 PMCID: PMC3846864 DOI: 10.2147/hmer.s7860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Scavenger receptor class B member 1 (SR-BI, also known as SCARB1) is the primary receptor for the selective uptake of cholesterol from high-density lipoprotein (HDL). SR-BI is present in several key tissues; however, its presence and function in the liver is deemed the most relevant for protection against atherosclerosis. Cholesterol is transferred from HDL via SR-BI to the liver, which ultimately results in the excretion of cholesterol via bile and feces in what is known as the reverse cholesterol transport pathway. Much of our knowledge of SR-BI hepatic function and regulation is derived from mouse models and in vitro characterization. Multiple independent regulatory mechanisms of SR-BI have been discovered that operate at the transcriptional and post-transcriptional levels. In this review we summarize the critical discoveries relating to hepatic SR-BI cholesterol metabolism, atherosclerosis, and regulation of SR-BI, as well as alternative functions that may indirectly affect atherosclerosis.
Collapse
Affiliation(s)
- Anthony P Kent
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ioannis M Stylianou
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
49
|
Fioravanti J, Medina-Echeverz J, Berraondo P. Scavenger receptor class B, type I: a promising immunotherapy target. Immunotherapy 2011; 3:395-406. [DOI: 10.2217/imt.10.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) is a crucial molecule in lipid metabolism, since the interaction of high-density lipoproteins (HDLs) with SR-BI is involved in reverse cholesterol transport and cholesterol efflux. Recent findings also underscore a critical role of SR-BI in antimicrobial and immune responses. SR-BI is not only highly expressed in liver and steroidogenic glands, but also in endothelial cells, macrophages and dendritic cells. SR-BI mainly mediates anti-inflammatory responses, which may be altered by dysfunctional HDLs produced in several diseases. Moreover, SR-BI has been involved in the capture and cross-presentation of antigens from viruses, bacteria and parasites. It thus works as a pattern-recognition receptor that interacts with both damage-associated molecular patterns and pathogen-associated molecular patterns. These new findings in the microbiology and immunology fields present SR-BI as an unexplored therapeutic target that warrants further basic and applied research.
Collapse
Affiliation(s)
- Jessica Fioravanti
- Division of Hepatology & Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | - José Medina-Echeverz
- Division of Hepatology & Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | | |
Collapse
|
50
|
Hoekstra M, Berkel TJCV, Eck MV. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism. World J Gastroenterol 2010; 16:5916-24. [PMID: 21157967 PMCID: PMC3007109 DOI: 10.3748/wjg.v16.i47.5916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scavenger receptor class B type I (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepatocytes, which identifies SR-BI as a multi-purpose player in lipid uptake from the blood circulation into hepatocytes in mice. In adrenocortical cells, SR-BI mediates the selective uptake of HDL-cholesteryl esters, which is efficiently coupled to the synthesis of glucocorticoids (i.e. corticosterone). SR-BI knockout mice suffer from adrenal glucocorticoid insufficiency, which suggests that functional SR-BI protein is necessary for optimal adrenal steroidogenesis in mice. SR-BI in macrophages plays a dual role in cholesterol metabolism as it is able to take up cholesterol associated with HDL and apoB-containing lipoproteins and can possibly facilitate cholesterol efflux to HDL. Absence of SR-BI is associated with thrombocytopenia and altered thrombosis susceptibility, which suggests a novel role for SR-BI in regulating platelet number and function in mice. Transgenic expression of cholesteryl ester transfer protein in humanized SR-BI knockout mice normalizes hepatic delivery of HDL-cholesteryl esters. However, other pathologies associated with SR-BI deficiency, i.e. increased atherosclerosis susceptibility, adrenal glucocorticoid insufficiency, and impaired platelet function are not normalized, which suggests an important role for SR-BI in cholesterol and steroid metabolism in man. In conclusion, generation of SR-BI knockout mice has significantly contributed to our knowledge of the physiological role of SR-BI. Studies using these mice have identified SR-BI as a multi-purpose player in cholesterol and steroid metabolism because it has distinct roles in reverse cholesterol transport, adrenal steroidogenesis, and platelet function.
Collapse
|