1
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
5
|
WITHDRAWN: Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Lei J, Chen S, Zhong S. Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017; 1:112-120. [PMID: 29276645 PMCID: PMC5739085 DOI: 10.1016/j.livres.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The levels of the products of RNA polymerase III-dependent genes (Pol III genes), including tRNAs and 5S rRNA, are elevated in transformed and tumor cells, which potentiate tumorigenesis. TFIIB-related factor 1 (Brf1) is a key transcription factor and specifically regulates the transcription of Pol III genes. In vivo and in vitro studies have demonstrated that a decrease in Brf1 reduces Pol III gene transcription and is sufficient for inhibiting cell transformation and tumor formation. Emerging evidence indicates that dysregulation of Brf1 and Pol III genes is linked to the development of hepatocellular carcinoma (HCC) in humans and animals. We have reported that Brf1 is overexpressed in human liver cancer patients and that those with high Brf1 levels have shorter survivals. This review summarizes the effects of dysregulation of these genes on HCC and their regulation by signaling pathways and epigenetics. These novel data should help us determine the molecular mechanisms of HCC from a different perspective and guide the development of therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Junxia Lei
- School of medicine, South china university of technology, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. (S. Zhong)
| |
Collapse
|
7
|
Johnson SA, Lin JJ, Walkey CJ, Leathers MP, Coarfa C, Johnson DL. Elevated TATA-binding protein expression drives vascular endothelial growth factor expression in colon cancer. Oncotarget 2017; 8:48832-48845. [PMID: 28415573 PMCID: PMC5564728 DOI: 10.18632/oncotarget.16384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/13/2017] [Indexed: 11/26/2022] Open
Abstract
The TATA-binding protein (TBP) plays a central role in eukaryotic gene transcription. Given its key function in transcription initiation, TBP was initially thought to be an invariant protein. However, studies showed that TBP expression is upregulated by oncogenic signaling pathways. Furthermore, depending on the cell type, small increases in cellular TBP amounts can induce changes in cellular growth properties towards a transformed phenotype. Here we sought to identify the specific TBP-regulated gene targets that drive its ability to induce tumorigenesis. Using microarray analysis, our results reveal that increases in cellular TBP concentrations produce selective alterations in gene expression that include an enrichment for genes involved in angiogenesis. Accordingly, we find that TBP levels modulate VEGFA expression, the master regulator of angiogenesis. Increases in cellular TBP amounts induce VEGFA expression and secretion to enhance cell migration and tumor vascularization. TBP mediates changes in VEGFA transcription requiring its recruitment at a hypoxia-insensitive proximal TSS, revealing a mechanism for VEGF regulation under non-stress conditions. The results are clinically relevant as TBP expression is significantly increased in both colon adenocarcinomas as well as adenomas relative to normal tissue. Furthermore, TBP expression is positively correlated with VEGFA expression. Collectively, these studies support the idea that increases in TBP expression contribute to enhanced VEGFA transcription early in colorectal cancer development to drive tumorigenesis.
Collapse
Affiliation(s)
- Sandra A.S. Johnson
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Justin J. Lin
- Zymo Research, Irvine, California, United States of America
| | - Christopher J. Walkey
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. Leathers
- Department of Orthopedic Surgery, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Deborah L. Johnson
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Majima R, Shindoh K, Yamaguchi T, Inoue N. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62. Antiviral Res 2017; 140:142-150. [PMID: 28161581 DOI: 10.1016/j.antiviral.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Previously we established reporter cell lines for human cytomegalovirus (HCMV) and varicella zoster virus (VZV) and identified several antiviral compounds against these viruses using the reporter cells. In this study, we found that one of the identified anti-HCMV compounds, a thienylcarboxamide derivative (coded as 133G4), was effective against not only HCMV but also VZV. The following findings indicate that 133G4 inhibits the activation of early gene promoters by HCMV IE2 and VZV IE62: i) 133G4 decreased the expression of HCMV early and late genes but not that of HCMV IE1/IE2 in HCMV-infected cells, ii) 133G4 inhibited the activation of several HCMV early gene promoters of transiently-transfected plasmids in HCMV-infected cells, and iii) in transient transfection assays, 133G4 decreased the activation of HCMV (or VZV) early gene promoters by HCMV IE2 (or VZV IE62) in the absence of other viral protein expression. The inhibition of early gene activation was observed in the human and African green monkey cell lines but not in the rodent cell lines, and the compound was not effective against murine CMV. In addition, VZV IE62 activated HCMV early promoters, and 133G4 still inhibited such promoter activation. Therefore, we hypothesized that 133G4 targets a cellular factor used commonly in activation of human herpesvirus promoters and examined whether 133G4 affects the functions of cellular proteins USF1, TBP, Med25 and EAP, the involvement of which in VZV IE62-dependent viral gene activation has been well characterized. Our experimental results using one-hybrid and bimolecular fluorescence complementation assays demonstrated that 133G4 did not inhibit the recruitment of USF1 or TBP to their binding sites, nor inhibited the direct interactions of VZV IE62 with Med25 and EAP. Thus, 133G4 is a unique anti-VZV and -HCMV compound, which warrants further studies to find out its inhibitory mechanism.
Collapse
Affiliation(s)
- Ryuichi Majima
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Shindoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Toyofumi Yamaguchi
- Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
9
|
Anthony K, More A, Zhang X. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators. PLoS One 2014; 9:e95790. [PMID: 24755922 PMCID: PMC3995891 DOI: 10.1371/journal.pone.0095790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.
Collapse
Affiliation(s)
- Kim Anthony
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
| | - Abhijit More
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mao Y, Chen H, Lin Y, Xu X, Hu Z, Zhu Y, Wu J, Xu X, Zheng X, Xie L. microRNA-330 inhibits cell motility by downregulating Sp1 in prostate cancer cells. Oncol Rep 2013; 30:327-33. [PMID: 23670210 DOI: 10.3892/or.2013.2452] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 12/26/2022] Open
Abstract
microRNAs (miRNAs), small non-coding RNAs, have emerged as key regulators of a large number of genes. The present study aimed to explore novel biological functions of miR-330 in the human prostate cancer cell lines DU145 and PC3. We confirmed that miR-330 was downregulated and inversely correlated with specificity protein 1 (Sp1) expression. Overexpression of miR-330 by transfection of a chemically synthesized miR-330 mimic induced a reduction in expression levels of the Sp1 protein, accompanied by significant suppression of cellular migration and invasion capability. In addition, the Sp1-knockdown experiments presented similar phenomena. Finally, the luciferase reporter assay validated Sp1 as the direct target of miR-330. These findings indicate that miR-330 acts as an anti-metastatic miRNA in prostate cancer.
Collapse
Affiliation(s)
- Yeqing Mao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
12
|
Victoriano AFB, Imai K, Togami H, Ueno T, Asamitsu K, Suzuki T, Miyata N, Ochiai K, Okamoto T. Novel histone deacetylase inhibitor NCH-51 activates latent HIV-1 gene expression. FEBS Lett 2011; 585:1103-11. [DOI: 10.1016/j.febslet.2011.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/24/2011] [Accepted: 03/07/2011] [Indexed: 12/20/2022]
|
13
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
14
|
Zhong S, Fromm J, Johnson DL. TBP is differentially regulated by c-Jun N-terminal kinase 1 (JNK1) and JNK2 through Elk-1, controlling c-Jun expression and cell proliferation. Mol Cell Biol 2006; 27:54-64. [PMID: 17074809 PMCID: PMC1800663 DOI: 10.1128/mcb.01365-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence supports the idea that the c-Jun N-terminal kinases (JNKs) possess overlapping but distinct functions. The potential roles of the ubiquitously expressed JNK1 and JNK2 in regulating expression of the central transcription initiation factor, TATA-binding protein (TBP), were examined. Relative to wild-type fibroblasts, TBP was decreased in Jnk1(-/-) cells and increased in Jnk2(-/-) cells. Similarly, reduction of JNK1 in human hepatoma cells decreased TBP expression, whereas reduction of JNK2 enhanced it. JNK-mediated regulation of TBP expression occurs at the transcriptional level through their ability to target Elk-1, which directly regulates the TBP promoter in response to epidermal growth factor stimulation. JNK1 increases, whereas JNK2 decreases, the phosphorylation state of Elk-1, which differentially affects Elk-1 occupancy at a defined site within the TBP promoter. These JNK-mediated alterations in TBP expression, alone, serve to regulate c-Jun expression and fibroblast proliferation rates. These studies uncovered several new molecular events that distinguish the functions of JNK1 and JNK2 that are critical for their regulation of cellular proliferation.
Collapse
Affiliation(s)
- Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
15
|
Copik AJ, Webb MS, Miller AL, Wang Y, Kumar R, Thompson EB. Activation function 1 of glucocorticoid receptor binds TATA-binding protein in vitro and in vivo. Mol Endocrinol 2006; 20:1218-30. [PMID: 16469772 DOI: 10.1210/me.2005-0257] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.
Collapse
Affiliation(s)
- Alicja J Copik
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | |
Collapse
|
16
|
Brady J, Kashanchi F. Tat gets the "green" light on transcription initiation. Retrovirology 2005; 2:69. [PMID: 16280076 PMCID: PMC1308864 DOI: 10.1186/1742-4690-2-69] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/09/2005] [Indexed: 11/10/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR) and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD) of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC) assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.
Collapse
Affiliation(s)
- John Brady
- National Cancer Institute, Laboratory of Cellular Oncology, Bethesda, MD 20892, USA
| | - Fatah Kashanchi
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| |
Collapse
|
17
|
Kulkarni MM, Arnosti DN. cis-regulatory logic of short-range transcriptional repression in Drosophila melanogaster. Mol Cell Biol 2005; 25:3411-20. [PMID: 15831448 PMCID: PMC1084297 DOI: 10.1128/mcb.25.9.3411-3420.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioinformatics analysis of transcriptional control is guided by knowledge of the characteristics of cis-regulatory regions or enhancers. Features such as clustering of binding sites and co-occurrence of binding sites have aided enhancer identification, but quantitative predictions of enhancer function are not yet generally feasible. To facilitate the analysis of regulatory sequences in Drosophila melanogaster, we identified quantitative parameters that affect the activity of short-range transcriptional repressors, proteins that play key roles in development. In addition to the previously noted distance dependence, repression is strongly influenced by the stoichiometry, affinity, spacing, and arrangement of activator binding sites. Repression is insensitive to the type of activation domain, suggesting that short-range repression may primarily affect activators at the level of DNA binding. The activity of several short-range, but not long-range, repressors is circumscribed by the same quantitative parameters. This cis-regulatory "grammar" may aid the identification of enhancers regulated by short-range repressors and facilitate bioinformatic prediction of the functional output of transcriptional regulatory sequences.
Collapse
Affiliation(s)
- Meghana M Kulkarni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
18
|
Chong JA, Moran MM, Teichmann M, Kaczmarek JS, Roeder R, Clapham DE. TATA-binding protein (TBP)-like factor (TLF) is a functional regulator of transcription: reciprocal regulation of the neurofibromatosis type 1 and c-fos genes by TLF/TRF2 and TBP. Mol Cell Biol 2005; 25:2632-43. [PMID: 15767669 PMCID: PMC1061635 DOI: 10.1128/mcb.25.7.2632-2643.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of direct targets for TATA-binding protein (TBP)-like factors (TLFs) confounds the understanding of their role in gene expression. Here we report that human TLF (also called TBP-related factor 2 [TRF2]) activates a number of different genes, including the neurofibromatosis type 1 (NF1) gene. The overexpression of TLF increases the amount of NF1 mRNA in cells. In vivo, TLF binds to and upregulates transcription from a fragment of the NF1 promoter. In vitro, purified TLF-TFIIA binds directly to the same NF1 promoter fragment that is required for TLF responsiveness in cells. Furthermore, targeted deletion of TLF in mice reduces NF1 levels. In contrast, TLF inhibits transcription driven by a fragment from the TATA-containing c-fos promoter by sequestering TFIIA. TBP affects the NF1 and c-fos promoters in a manner reciprocal to that of TLF, stimulating the c-fos promoter and inhibiting NF1 transcription. We conclude that TLF is a functional regulator of transcription with targets distinct from those of TBP.
Collapse
Affiliation(s)
- Jayhong A Chong
- Department of Cardiology, Children's Hospital, Enders 1309, 320 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Transcription of rRNA and tRNA genes by RNA polymerases I and III is essential for sustained protein synthesis and is therefore a fundamental determinant of the capacity of a cell to grow. When cell growth is not required, this transcription is repressed by retinoblastoma protein, p53 and ARF. However, inactivation of these tumour suppressors in cancers deregulates RNA polymerases I and III, and oncoproteins such as Myc can stimulate these systems further. Such events might have a significant impact on the growth potential of tumours.
Collapse
Affiliation(s)
- Robert J White
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Ching YP, Chun ACS, Chin KT, Zhang ZQ, Jeang KT, Jin DY. Specific TATAA and bZIP requirements suggest that HTLV-I Tax has transcriptional activity subsequent to the assembly of an initiation complex. Retrovirology 2004; 1:18. [PMID: 15285791 PMCID: PMC509288 DOI: 10.1186/1742-4690-1-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 07/30/2004] [Indexed: 11/21/2022] Open
Abstract
Background Human T-cell leukemia virus type I (HTLV-I) Tax protein is a transcriptional regulator of viral and cellular genes. In this study we have examined in detail the determinants for Tax-mediated transcriptional activation. Results Whereas previously the LTR enhancer elements were thought to be the sole Tax-targets, herein, we find that the core HTLV-I TATAA motif also provides specific responsiveness not seen with either the SV40 or the E1b TATAA boxes. When enhancer elements which can mediate Tax-responsiveness were compared, the authentic HTLV-I 21-bp repeats were found to be the most effective. Related bZIP factors such as CREB, ATF4, c-Jun and LZIP are often thought to recognize the 21-bp repeats equivalently. However, amongst bZIP factors, we found that CREB, by far, is preferred by Tax for activation. When LTR transcription was reconstituted by substituting either κB or serum response elements in place of the 21-bp repeats, Tax activated these surrogate motifs using surfaces which are different from that utilized for CREB interaction. Finally, we employed artificial recruitment of TATA-binding protein to the HTLV-I promoter in "bypass" experiments to show for the first time that Tax has transcriptional activity subsequent to the assembly of an initiation complex at the promoter. Conclusions Optimal activation of the HTLV-I LTR by Tax specifically requires the core HTLV-I TATAA promoter, CREB and the 21-bp repeats. In addition, we also provide the first evidence for transcriptional activity of Tax after the recruitment of TATA-binding protein to the promoter.
Collapse
Affiliation(s)
- Yick-Pang Ching
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Abel CS Chun
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - King-Tung Chin
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhi-Qing Zhang
- National Key Laboratory for Molecular Virology, Institute of Virology, 100 Yingxin Street, Beijing 100052, China
| | | | - Dong-Yan Jin
- Laboratory of Molecular Microbiology, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| |
Collapse
|
21
|
Zhong S, Zhang C, Johnson DL. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I- and III-dependent gene activity. Mol Cell Biol 2004; 24:5119-29. [PMID: 15169879 PMCID: PMC419868 DOI: 10.1128/mcb.24.12.5119-5129.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
TATA binding protein (TBP) is a central transcription factor used by all three cellular RNA polymerases. Changes in the levels of TBP have been shown to have selective effects on gene activity. Overexpression of TBP has been recently shown to contribute to cellular transformation, and elevated levels of TBP occur in a clinically significant proportion of human colon tumors relative to matched normal tissue. To understand the mechanisms by which TBP is regulated, we have analyzed whether activation of the epidermal growth factor receptor (EGFR), a membrane-bound tyrosine receptor kinase that is activated in a large number of human cancers, can serve to regulate cellular TBP. We show that treatment of mouse epidermal cells with EGF produces an increase in TBP levels, which can be blocked with an EGFR-specific inhibitor. In contrast, TBP levels remain unchanged after EGF treatment of EGFR null cells. EGF-mediated increases in TBP are regulated at the transcriptional level, as transient expression of the human TBP promoter is induced with EGF. This regulatory event is dependent upon the downstream activation of Ras and requires the activation of p38, JNK, and ERK mitogen-activated protein kinases. The consequence of elevated TBP on gene expression was further determined. Transcription by RNA polymerase (Pol) I and III was induced by EGF. Directly overexpressing TBP also stimulated transcription from these promoters. Thus, we have identified a new and important target of EGFR signaling, TBP, that contributes to EGF-mediated stimulation of RNA Pol I- and III-dependent gene activity. Since the cellular levels of the products of these genes, tRNAs and rRNAs, determine the translational capacity of cells, this event may be an important contributor to the transforming function of EGF.
Collapse
Affiliation(s)
- Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| | | | | |
Collapse
|
22
|
Mishra AK, Vanathi P, Bhargava P. The transcriptional activator GAL4-VP16 regulates the intra-molecular interactions of the TATA-binding protein. J Biosci 2003; 28:423-36. [PMID: 12799489 DOI: 10.1007/bf02705117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Binding characteristics of yeast TATA-binding protein (yTBP) over five oligomers having different TATA variants and lacking a UASGAL, showed that TATA-binding protein (TBP)-TATA complex gets stabilized in the presence of the acidic activator GAL4-VP16. Activator also greatly suppressed the non-specific TBP-DNA complex formation. The effects were more pronounced over weaker TATA boxes. Activator also reduced the TBP dimer levels both in vitro and in vivo, suggesting the dimer may be a direct target of transcriptional activators. The transcriptional activator facilitated the dimer to monomer transition and activated monomers further to help TBP bind even the weaker TATA boxes stably. The overall stimulatory effect of the GAL4-VP16 on the TBP-TATA complex formation resembles the known effects of removal of the N-terminus of TBP on its activity, suggesting that the activator directly targets the N-terminus of TBP and facilitates its binding to the TATA box.
Collapse
Affiliation(s)
- Anurag Kumar Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007,India
| | | | | |
Collapse
|
23
|
Johnson SAS, Dubeau L, Kawalek M, Dervan A, Schönthal AH, Dang CV, Johnson DL. Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis. Mol Cell Biol 2003; 23:3043-51. [PMID: 12697807 PMCID: PMC153209 DOI: 10.1128/mcb.23.9.3043-3051.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the central role of TATA-binding protein (TBP) in transcription, changes in cellular TBP concentration produce selective effects on gene expression. Moreover, TBP is up-regulated by oncogenic signaling pathways. These findings suggest that TBP could be a nexus in pathways that regulate cell proliferation and that genetic lesions that result in cellular transformation may produce their effects at least in part through TBP. We provide evidence consistent with this hypothesis, demonstrating that increases in TBP expression contribute to cellular transformation. A Ras-mediated increase in TBP expression is required for full Ras transforming activity. TBP overexpression induces cells to grow in an anchorage-independent manner and to form tumors in athymic mice. These effects on cellular transformation require changes in RNA polymerase II-dependent transcription and on the selective recruitment of TBP to promoters via its DNA binding activity. TBP expression is elevated in human colon carcinomas relative to normal colon epithelium. Both Ras-dependent and Ras-independent mechanisms mediate increases in TBP expression in colon carcinoma cell lines. We conclude that TBP may be a critical component in dysregulated signaling that occurs downstream of genetic lesions that cause tumors.
Collapse
Affiliation(s)
- Sandra A S Johnson
- Department of Biochemistry and Molecular Biology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kays AR, Schepartz A. Gal4-VP16 and Gal4-AH increase the orientational and axial specificity of TATA box recognition by TATA box binding protein. Biochemistry 2002; 41:3147-55. [PMID: 11863454 DOI: 10.1021/bi015817z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous work has shown that binding of the TATA box binding protein (TBP) to the TATA box is a rate-limiting step during pre-initiation complex (PIC) formation. Although the transcription of eukaryotic genes normally proceeds in one direction, studies in solution have shown that TBP lacks the information necessary to orient itself on the TATA box. Instead, yeast TBP binds TATA-containing promoters in two orientations that are related by a 180 rotation about TBP's pseudo-2-fold symmetry axis. Recruitment of PIC components by gene-specific activators is considered a primary mechanism of transcriptional enhancement. Here we ask whether activators might function, at least in part, by increasing the fraction of PICs assembled with TBP bound in the orientation necessary for transcription. We use DNA affinity cleavage and a TBP-phenanthroline-copper conjugate to monitor the orientation of TBP in the presence of the well-studied activators Gal4-VP16 and Gal4-AH. In the absence of a transcriptional activator, only 51% of the TBP x TATA box complexes were bound in the orientation necessary for the initiation of transcription. However, in the presence of saturating Gal4-VP16, 87% of the TBP bound to the TATA box was oriented correctly at equilibrium. This increase in orientational specificity corresponds to a free energy difference (Delta Delta G(obs)) of 1.1 kcal x mol(-1) and was accompanied by a dramatic increase in axial specificity, reminiscent of the effects of transcription factors TFIIB and TFIIA reported previously. Gal4-AH also enhanced the orientational and axial specificity of the TBP x TATA complex, although to a lesser extent. We suggest that these effects on specificity represent a variation of recruitment, since they require direct interactions between the activator and a PIC component but only increase the effective concentration of the correctly oriented PIC component. These findings add to increasing evidence that recruitment may encompass a broad range of mechanisms.
Collapse
Affiliation(s)
- Alexis R Kays
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
25
|
Felinski EA, Quinn PG. The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. Proc Natl Acad Sci U S A 2001; 98:13078-83. [PMID: 11687654 PMCID: PMC60827 DOI: 10.1073/pnas.241337698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific TATA binding protein-associated factor (TAF), dTAF(II)110/hTAF(II)135, interacts with cAMP response element binding protein (CREB) through its constitutive activation domain (CAD), which recruits a polymerase complex and activates transcription. The simplest explanation is that the TAF is a coactivator, but several studies have questioned this role of TAFs. Using a reverse two-hybrid analysis in yeast, we previously mapped the interaction between dTAF(II)110 (amino acid 1-308) and CREB to conserved hydrophobic amino acid residues in the CAD. That mapping was possible only because CREB fails to activate transcription in yeast, where all TAFs are conserved, except for the TAF recognizing CREB. To test whether CREB fails to activate transcription in yeast because it lacks a coactivator, we fused dTAF(II)110 (amino acid 1-308) to the TATA binding protein domain of the yeast scaffolding TAF, yTAF(II)130. Transformation of yeast with this hybrid TAF conferred activation by the CAD, indicating that interaction with yTFIID is sufficient to recruit a polymerase complex and activate transcription. The hybrid TAF did not mediate activation by VP16 or vitamin D receptor, each of which interacts with TFIIB, but not with dTAF(II)110 (amino acid 1-308). Enhancement of transcription activation by dTAF(II)110 in mammalian cells required interaction with both the CAD and TFIID and was inhibited by mutation of core hydrophobic residues in the CAD. These data demonstrate that dTAF(II)110/hTAF(II)135 acts as a coactivator to recruit TFIID and polymerase and that this mechanism of activation is conserved in eukaryotes.
Collapse
Affiliation(s)
- E A Felinski
- Department of Cellular and Molecular Physiology and Program in Cellular and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
26
|
Licciardo P, Ruggiero L, Lania L, Majello B. Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Nucleic Acids Res 2001; 29:3539-45. [PMID: 11522823 PMCID: PMC55871 DOI: 10.1093/nar/29.17.3539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human FCP1 in association with RNAP II reconstitutes a highly specific CTD phosphatase activity and is required for recycling RNA polymerase II (RNAP II) in vitro. Here we demonstrate that targeted recruitment of FCP1 to promoter templates, through fusion to a DNA-binding domain, stimulates transcription. We demonstrate that a short region at the C-terminus of the FCP1 protein is required and sufficient for activation, indicating that neither the N-terminal phosphatase domain nor the BRCT domains are required for transcription activity of DNA-bound FCP1. In addition, we demonstrate that the C-terminus region of FCP1 suffices for efficient binding in vivo to the RAP74 subunit of TFIIF and is also required for the exclusive nuclear localization of the protein. These findings suggest a role for FCP1 as a positive regulator of RNAP II transcription.
Collapse
Affiliation(s)
- P Licciardo
- Department of Genetics, General and Molecular Biology, University of Naples 'Federico II' and IIGB, CNR, Naples, Italy
| | | | | | | |
Collapse
|
27
|
Ohbayashi T, Shimada M, Nakadai T, Tamura TA. TBP-like protein (TLP/TLF/TRF2) artificially recruited to a promoter stimulates basal transcription in vivo. Biochem Biophys Res Commun 2001; 285:616-22. [PMID: 11453637 DOI: 10.1006/bbrc.2001.5217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metazoan genomes generally contain one TBP-related gene designated as TBP-like protein (TLP/TLF/TRF2). Although TLP is thought to work for transcriptional regulation, its natural function has not been clearly demonstrated. Here we describe the stimulation of transcription from TATA-containing and TATA-less class II promoters by artificially recruited mammalian TLP. TLP fused with Gal4 DNA-binding domain stimulated transcription when it was recruited at a proximal promoter. Compared to TBP, stimulation by TLP was less TATA-dependent. Slight truncation from each terminus of TLP destroyed this function drastically. Amino acid substitutions of TLP whose corresponding residues in TBP are crucial for its function resulted in the loss of function. Consequently, Gal4-fused TLP was demonstrated to exhibit ability of transcription activation irrespective of the type of promoter, the mechanism of which was thought to be similar to that of artificially recruited TBP. TLP is presumably able to behave as a transcriptional activator in cells.
Collapse
Affiliation(s)
- T Ohbayashi
- Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
28
|
Li YF, Dubois F, Zhou DX. Ectopic expression of TATA box-binding protein induces shoot proliferation in Arabidopsis. FEBS Lett 2001; 489:187-91. [PMID: 11165247 DOI: 10.1016/s0014-5793(01)02101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TATA box-binding protein (TBP) is an essential component of transcription initiation complexes of all three eukaryotic RNA polymerases. Increasing evidence suggests that the TBP activity and availability may be regulated to precisely control gene transcription and play an important role in cell type-specific regulation. Arabidopsis TBP-2 is up-regulated in apical shoot tissues. Overexpression of TBP-2 in transgenic Arabidopsis induces apical shoot proliferation. The expression of some shoot meristem regulatory genes is altered. These data suggest that the TBP gene dosage and/or expression level may play an important role in controlling shoot production and plant morphology.
Collapse
Affiliation(s)
- Y F Li
- Institut de Biotechnologie de Plante, Université Paris XI, Orsay, France
| | | | | |
Collapse
|
29
|
Napolitano G, Majello B, Licciardo P, Giordano A, Lania L. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Gene 2000; 254:139-45. [PMID: 10974544 DOI: 10.1016/s0378-1119(00)00278-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) is an important step in transcription and the positive transcription elongation factor b (P-TEFb) has been proposed to facilitate elongation at many genes. The P-TEFb contains a catalytic subunit (Cdk9) that, in association with a cyclin subunit (cyclinT1), has the ability to phosphorylate the CTD substrate in vitro. Here, we demonstrate that cyclinT1/Cdk9-mediated transcription requires CTD-containing RNAPII, suggesting that the CTD is the major target of the cyclinT1/Cdk9 complex in vivo. Unlike Cdk7 and Cdk8, two other cyclin-dependent kinases that are capable of phosphorylating the CTD in vitro, we found that only the Cdk9 activates gene expression in a catalysis-dependent manner. Finally, unlike cyclinT1 and T2, we found that the targeted recruitment to promoter DNA of cyclinK (a recently described alternative partner of Cdk9) does not stimulate transcription in vivo. Collectively, our data strongly indicate that the P-TEFb kinase subunits cyclinT/Cdk9 are specifically involved in transcription and the CTD domain of RNAPII is the major functional target of this complex in vivo.
Collapse
Affiliation(s)
- G Napolitano
- Department of Genetics, Molecular and General Biology, University of Naples 'Federico II' and International Institute of Genetics and Biophysics, CNR, Via Mezzocannone 8, 80134, Naples, Italy
| | | | | | | | | |
Collapse
|
30
|
Ryan MP, Stafford GA, Yu L, Morse RH. Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol Cell Biol 2000; 20:5847-57. [PMID: 10913168 PMCID: PMC86062 DOI: 10.1128/mcb.20.16.5847-5857.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin remodeling accompanying artificial recruitment of TBP in yeast (Saccharomyces cerevisiae). We measured transcription of reporter genes with defined chromatin structure by artificial recruitment of TBP and found that a reporter gene whose TATA element was relatively accessible could be activated by artificially recruited TBP, whereas two promoters, GAL10 and CHA1, that have accessible activator binding sites, but nucleosomal TATA elements, could not. A third reporter gene containing the HIS4 promoter could be activated by GAL4-TBP only when a RAP1 binding site was present, although RAP1 alone could not activate the reporter, suggesting that RAP1 was needed to open the chromatin structure to allow activation. Consistent with this interpretation, artificially recruited TBP was unable to perturb nucleosome positioning via a nucleosomal binding site, in contrast to a true activator such as GAL4, or to perturb the TATA-containing nucleosome at the CHA1 promoter. Finally, we show that activation of the GAL10 promoter by GAL4, which requires chromatin remodeling, can occur even in swi gcn5 yeast, implying that remodeling pathways independent of GCN5, the SWI-SNF complex, and TFIID can operate during transcriptional activation in vivo.
Collapse
Affiliation(s)
- M P Ryan
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
31
|
Dorris DR, Struhl K. Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells. Mol Cell Biol 2000; 20:4350-8. [PMID: 10825198 PMCID: PMC85802 DOI: 10.1128/mcb.20.12.4350-4358.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In yeast cells, transcriptional activation occurs when the RNA polymerase II (Pol II) machinery is artificially recruited to a promoter by fusing individual components of this machinery to a DNA-binding domain. Here, we show that artificial recruitment of components of the TFIID complex can activate transcription in mammalian cells. Surprisingly, artificial recruitment of TATA-binding protein (TBP) activates transiently transfected and chromosomally integrated promoters with equal efficiency, whereas artificial recruitment of TBP-associated factors activates only chromosomal reporters. In contrast, artificial recruitment of various components of the mammalian Pol II holoenzyme does not confer transcriptional activation, nor does it result in synergistic activation in combination with natural activation domains. In the one case examined in more detail, the Srb7 fusion failed to activate despite being associated with the Pol II holoenzyme and being directly recruited to the promoter. Interestingly, some acidic activation domains are less effective when the promoter is chromosomally integrated rather than transiently transfected, whereas the Sp1 glutamine-rich activation domain is more effective on integrated reporters. Thus, yeast and mammalian cells differ with respect to transcriptional activation by artificial recruitment of the Pol II holoenzyme.
Collapse
Affiliation(s)
- D R Dorris
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Kim JM, Hong Y, Kim S. Artificial recruitment of Sp1 or TBP can replace the role of IE1 in the synergistic transactivation by IE1 and IE2. Biochem Biophys Res Commun 2000; 269:302-8. [PMID: 10708547 DOI: 10.1006/bbrc.2000.2298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The IE1 and IE2 proteins of human cytomegalovirus transactivate various viral and cellular promoters in a synergistic manner, but the mechanism of their action has not been well elucidated. Here we have examined the IE1-IE2 synergy by artificial recruitment of either Sp1 or TBP to the promoter. We found that in the presence of Sp1, the synergistic effect of IE1 on IE2-mediated transactivation dramatically decreased. Furthermore, a 117-amino acids glutamine-rich fragment of Sp1, which can interact with dTAF(II)110 and hTAF(II)130, was sufficient to replace the role of IE1 in IE1-IE2 synergism. It was also found that TBP recruitment to the promoter markedly decreased the synergistic effect of IE1 on IE2-mediated transactivation. These results suggested that in the context of the synergism between IE1 and IE2, the function of IE1 might overlap with that of Sp1, for example by recruiting the TFIID complex.
Collapse
Affiliation(s)
- J M Kim
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 151-742, Korea
| | | | | |
Collapse
|
33
|
Bertolotti A, Bell B, Tora L. The N-terminal domain of human TAFII68 displays transactivation and oncogenic properties. Oncogene 1999; 18:8000-10. [PMID: 10637511 DOI: 10.1038/sj.onc.1203207] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Ewing tumor, the (11;22) chromosomal translocation produces a chimeric molecule composed of the amino-terminal domain of EWS fused to the carboxyl-terminal DNA-binding domain of FLI-1. Previously, we have identified a novel protein TAFII68, which is highly similar to EWS and another closely related protein TLS (also called FUS). We demonstrate that the N-terminus of TAFII68 efficiently stimulates transcription when fused to two different DNA binding domains and that overexpression of TAFII68-FLI-1 chimeras in NIH3T3 cells leads to oncogenic transformation. We have also investigated the molecular mechanisms which could account for the transcriptional activation and the oncogenic transformation potential of the N-termini of TAFII68 and EWS. Thus, we have tested whether the artificial recruitment of components of the preinitiation complex (PIC) or a histone acetyltransferase (HAT) could bypass the requirement for the activation domains of either EWS or TAFII68. Recruitment of individual components of the transcription machinery or the GCN5 HAT is not sufficient to promote activation from FLI-1 responsive genes either in transfection experiments or in oncogenic transformation assays. These results suggest that the TAFII68 or EWS activation domains enhance a step after PIC formation in the transcriptional activation process.
Collapse
Affiliation(s)
- A Bertolotti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163 - 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
34
|
Majello B, Napolitano G, Giordano A, Lania L. Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo. Oncogene 1999; 18:4598-605. [PMID: 10467404 DOI: 10.1038/sj.onc.1202822] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CDK9 kinase in association with Cyclin T is a component of the transcription positive-acting complex pTEFb which facilitates the transition from abortive to productive transcription elongation by phosphorylating the carboxyl-terminal domain of RNA polymerase II. The Cyclin T1/CDK9 complex is implicated in Tat transactivation, and it has been suggested that Tat functions by recruiting this complex to RNAPII through cooperative binding to RNA. Here, we demonstrate that targeted recruitment of Cyclin T1/CDK9 kinase complex to specific promoters, through fusion to a DNA-binding domain of either Cyclin T1 or CDK9 kinase, stimulates transcription in vivo. Transcriptional enhancement was dependent on active CDK9, as a catalytically inactive form had no transcriptional effect. We determined that, unlike conventional activators, DNA-bound CDK9 does not activate enhancerless TATA-promoters unless TBP is overexpressed, suggesting that CDK9 acts in vivo at a step subsequent to TFIID recruitment DNA-bound. Finally, we determined that CDK9-mediated transcriptional activation is mediated by preferentially stimulating productive transcription elongation.
Collapse
Affiliation(s)
- B Majello
- Department of Genetics, Molecular and General Biology, University of Naples 'Federico II' and International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
35
|
Suñé C, Garcia-Blanco MA. Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 1999; 19:4719-28. [PMID: 10373521 PMCID: PMC84270 DOI: 10.1128/mcb.19.7.4719] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat protein strongly activates transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) by enhancing the elongation efficiency of RNA polymerase II complexes. Tat-mediated transcriptional activation requires cellular cofactors and specific cis-acting elements within the HIV-1 promoter, among them a functional TATA box. Here, we have investigated the mechanism by which one of these cofactors, termed CA150, regulates HIV-1 transcription in vivo. We present a series of functional assays that demonstrate that the regulation of the HIV-1 LTR by CA150 has the same functional requirements as the activation by Tat. We found that CA150 affects elongation of transcription complexes assembled on the HIV-1 promoter in a TATA-box-dependent manner. We discuss the data in terms of the involvement of CA150 in the regulation of Tat-activated HIV-1 gene expression. In addition, we also provide evidence suggesting a role for CA150 in the regulation of cellular transcriptional processes.
Collapse
Affiliation(s)
- C Suñé
- Departments of Pharmacology and Cancer Biology, Levine Science Research Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
36
|
Fry CJ, Pearson A, Malinowski E, Bartley SM, Greenblatt J, Farnham PJ. Activation of the murine dihydrofolate reductase promoter by E2F1. A requirement for CBP recruitment. J Biol Chem 1999; 274:15883-91. [PMID: 10336493 DOI: 10.1074/jbc.274.22.15883] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2F family of heterodimeric transcription factors plays an important role in the regulation of gene expression at the G1/S phase transition of the mammalian cell cycle. Previously, we have demonstrated that cell cycle regulation of murine dihydrofolate reductase (dhfr) expression requires E2F-mediated activation of the dhfr promoter in S phase. To investigate the mechanism by which E2F activates an authentic E2F-regulated promoter, we precisely replaced the E2F binding site in the dhfr promoter with a Gal4 binding site. Using Gal4-E2F1 derivatives, we found that E2F1 amino acids 409-437 contain a potent core transactivation domain. Functional analysis of the E2F1 core domain demonstrated that replacement of phenylalanine residues 413, 425, and 429 with alanine reduces both transcriptional activation of the dhfr promoter and protein-protein interactions with CBP, transcription factor (TF) IIH, and TATA-binding protein (TBP). However, additional amino acid substitutions for phenylalanine 429 demonstrated a strong correlation between activation of the dhfr promoter and binding of CBP, but not TFIIH or TBP. Finally, transactivator bypass experiments indicated that direct recruitment of CBP is sufficient for activation of the dhfr promoter. Therefore, we suggest that recruitment of CBP is one mechanism by which E2F activates the dhfr promoter.
Collapse
Affiliation(s)
- C J Fry
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nevado J, Gaudreau L, Adam M, Ptashne M. Transcriptional activation by artificial recruitment in mammalian cells. Proc Natl Acad Sci U S A 1999; 96:2674-7. [PMID: 10077569 PMCID: PMC15827 DOI: 10.1073/pnas.96.6.2674] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that the typical "nonclassical" activator, which comprises a fusion protein bearing a component of the transcriptional machinery fused to a DNA-binding domain, activates transcription in mammalian cells only weakly when tested with an array of promoters. However, as found in analogous "artificial recruitment" experiments performed in yeast, these activators work synergistically with "classical" activators. The effect of the classical activator in such experiments requires that it be tethered to DNA, a requirement that cannot be overcome by expression of that classical activator at high levels. The effect of the one nonclassical activator that does elicit significant levels of transcription when working alone (i.e., that bearing TATA box-binding protein) is strongly influenced by promoter architecture. The results, consistent with those of analogous experiments in yeast [see the accompanying paper: Gaudreau, L., Keaveney, M., Nevado, J., Zaman, Z., Bryant, G. O., Struhl, K. & Ptashne, M. (1999) Proc. Natl. Acad. Sci. USA 96, 2668-2673], suggest that classical activators, presumably by virtue of their abilities to interact with multiple targets, have a functional flexibility that nonclassical activators lack.
Collapse
Affiliation(s)
- J Nevado
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
38
|
Huh JR, Park JM, Kim M, Carlson BA, Hatfield DL, Lee BJ. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro. Biochem Biophys Res Commun 1999; 256:45-51. [PMID: 10066420 DOI: 10.1006/bbrc.1999.0280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eukaryotic transcriptional activators may function, at least in part, to facilitate the assembly of the RNA polymerase II (pol II) preinitiation complex at the core promoter region through their interaction with a subset of components of the basal transcription machinery. Previous studies have shown that artificial tethering of TATA-binding protein (TBP) to the promoter region is sufficient to stimulate pol II transcription in yeast. To test whether this phenomenon is a general one in eukaryotic pol II transcription, the DNA-binding domain of yeast GAL4 was fused to either Xenopus laevis TBP or TFIIB in order to enable these factors to be efficiently positioned near the transcription start site in a GAL4-binding site-dependent manner. We found that GAL4-xTBP as well as GAL4-xTFIIB directed an increased level of transcription without involvement of the transcriptional activator, suggesting that incorporation of these basal factors into a preinitiation complex (PIC) is a major rate-limiting step accelerated by activator proteins in metazoans. These results show that transcription activation by artificial recruitment of basal transcription machinery can be observed in general among eukaryotic transcription both in vivo and in vitro. Furthermore, failure of recovery of transcription by adding GAL4-xTFIIB after depletion of endogenous TBP with TATA oligo competitor suggests that recruitment of TBP cannot be bypassed for Pol II transcription.
Collapse
Affiliation(s)
- J R Huh
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Barberis A, Gaudreau L. Recruitment of the RNA polymerase II holoenzyme and its implications in gene regulation. Biol Chem 1998; 379:1397-405. [PMID: 9894806 DOI: 10.1515/bchm.1998.379.12.1397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In yeast cells, interaction between a DNA-bound protein and a single component of the RNA polymerase II (poIII) holoenzyme is sufficient to recruit the latter to a promoter and thereby activate gene transcription. Here we review results which have suggested such a simple mechanism for how genes can be turned on. The series of experiments which eventually led to this model was originally instigated by studying gene expression in a yeast strain which carries a point mutation in Gal11, a component of the poIII holoenzyme. In cells containing this mutant protein termed Gall11P, a derivative of the transcriptional activator Gal4 devoid of any classical activating region is turned into a strong activator. This activating function acquired by an otherwise silent DNA-binding protein is solely due to a novel and fortuitous interaction between Gal11P and a fragment of the Gal4 dimerization region generated by the P mutation. The simplest explanation for these results is that tethering Gal11 to DNA recruits the poIII holoenzyme and, consequently, activates gene transcription. Transcription factors that are believed not to be integral part of the poIII holoenzyme but are nevertheless required for this instance of gene activation, e.g. the TATA-binding TFIID complex, may bind DNA cooperatively with the holoenzyme when recruited to a promoter, thus forming a complete poIII preinitiation complex. One prediction of this model is that recruitment of the entire poIII transcription complex and consequent gene activation can be achieved by tethering different components to DNA. Indeed, fusion of a DNA-binding domain to a variety of poIII holoenzyme components and TFIID subunits leads to activation of genes bearing the recognition site for the DNA-binding protein. These results imply that accessory factors, which are required to remove or modify nucleosomes do not need to be directly contacted by activators, but can rather be engaged in the activation process when the poIII complex is recruited to DNA. In fact, recruitment of the poIII holoenzyme suffices to remodel nucleosomes at the PHO5 promoter and presumably at many other promoters. Other events in the process of gene expression following recruitment of the transcription complex, e.g. initiation, promoter clearance, elongation and termination, could unravel as a consequence of the recruitment step and the formation of an active preinitiation complex on DNA. This view does not exclude the possibility that classical activators also act directly on chromatin remodeling and post-recruitment steps to regulate gene expression.
Collapse
Affiliation(s)
- A Barberis
- Institute of Molecular Biology, University of Zurich, Switzerland
| | | |
Collapse
|
40
|
Xiao H, Jeang KT. Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae. J Biol Chem 1998; 273:22873-6. [PMID: 9722505 DOI: 10.1074/jbc.273.36.22873] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation domains of eukaryotic transcription factors can be classified into at least three distinct types based on their amino acid composition: acidic, proline-rich, and glutamine-rich. Acidic activators, such as yeast GAL4 and GCN4 and herpes simplex virus VP16, have been shown to stimulate transcription in various higher and lower eukaryotic cells. Similarly, proline-rich activators also function in both mammalian and yeast cells. These activators are regarded to possess "universal" activating potentials. By contrast, several studies have suggested that glutamine-rich activators such as human Sp1 are active in higher (mammalian) but not lower (yeast) eukaryotic cells. One interpretation is that lower eukaryotic cells lack a critical co-factor necessary for a glutamine-rich domain. This reasoning is counter-intuitive because many native yeast activator proteins contain glutamine-rich domains. Here, we have investigated the activity of a glutamine-rich GAL4-Sp1 domain A (Sp1A) hybrid protein in yeast Saccharomyces cerevisiae. We show that GAL4-Sp1A activated a GAL1-lacZ reporter by more than 200-fold over basal when the reporter was carried on a 2mu vector. The generality of the Sp1A results is supported by our finding that yeast glutamine-rich domains from HAP2 and MCM1 are also transcriptionally active in S. cerevisiae. Interestingly, we found that glutamine-rich domains are considerably less potent when responsive promoters (i.e. GAL1-lacZ) are integrated into yeast chromosome. Thus our results segregate the inherent transcriptional activity of a glutamine-rich domain in yeast S. cerevisiae from its apparent lack of activity when assayed on chromosomally embedded promoters.
Collapse
Affiliation(s)
- H Xiao
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA.
| | | |
Collapse
|