1
|
Xiong B, Zhang Y, Liu S, Liao S, Zhou Z, He Q, Zhou Y. NOX Family: Regulators of Reactive Oxygen Species Balance in Tumor Cells. FASEB J 2025; 39:e70565. [PMID: 40266050 PMCID: PMC12017260 DOI: 10.1096/fj.202500238rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Cancer cells are capable of surviving, proliferating, and invading or migrating within hypoxic environments by regulating various adaptive mechanisms. Due to the activation of oncogenes and the inactivation of tumor suppressor genes, and relative deficiencies in oxygen and nutrients, cancer cells demonstrate elevated production of reactive oxygen species (ROS), primarily sourced from NADPH oxidases (NOX family). A key aspect of the reorientation of tumor cell metabolism is the combating of cellular oxidative stress through the promotion of antioxidant molecule synthesis to counteract ROS production. Given that most cancers experience hypoxia and that NOX is closely linked to numerous redox-dependent signaling pathways, the expression and function of NOX are altered in various malignancies. Therefore, this review summarizes the characteristics of NOX family members, their influence on tumor proliferation, invasion, and migration, the role of NOX in promoting tumor angiogenesis, the impact of NOX on the function of immune cells within the tumor microenvironment, and the potential of targeting NOX in tumor therapy. This aims to offer a fresh viewpoint on a comprehensive understanding of the functions of NOX family members.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer HospitalChangshaHunanChina
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Yang Zhang
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Siyi Liu
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| | - Shan Liao
- Department of PathologyThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiHunanChina
| | - Qian He
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer HospitalChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Noce B, Marchese S, Massari M, Lambona C, Reis J, Fiorentino F, Raucci A, Fioravanti R, Castelôa M, Mormino A, Garofalo S, Limatola C, Basile L, Gottinger A, Binda C, Mattevi A, Mai A, Valente S. Design of Benzyl-triazolopyrimidine-Based NADPH Oxidase Inhibitors Leads to the Discovery of a Potent Dual Covalent NOX2/MAOB Inhibitor. J Med Chem 2025; 68:6292-6311. [PMID: 40042998 PMCID: PMC11956017 DOI: 10.1021/acs.jmedchem.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
NADPH oxidases (NOXs) are enzymes dedicated to reactive oxygen species (ROS) production and are implicated in cancer, neuroinflammation, and neurodegenerative diseases. VAS2870 is a covalent inhibitor of mainly NOX2 and NOX5. It alkylates a conserved active-site cysteine, blocking productive substrate binding. To enhance potency and selectivity toward NOXs, we conducted some chemical modifications, leading to the discovery of compound 9a that preferentially inhibits NOX2 with an IC50 of 0.155 μM, and only upon its preactivation. We found that 9a, bearing a pargyline moiety, is also able to selectively inhibit MAOB over MAOA (465-fold) with an IC50 of 0.182 μM, being the first-in-class dual NOX2/MAOB covalent inhibitor. Tested in the BV2 microglia neuroinflammation model, 9a decreased ROS production and downregulated proinflammatory cytokines as iNOS, IL-1β, and IL-6 expression more efficiently than the single target inhibitors (rasagiline for MAOB and VAS2870 for NOXs) but also, more importantly, than their combination.
Collapse
Affiliation(s)
- Beatrice Noce
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sara Marchese
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Marta Massari
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Joana Reis
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Alessia Raucci
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Mariana Castelôa
- CIQUP-IMS/Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Alessandro Mormino
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Stefano Garofalo
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Cristina Limatola
- Department
of Physiology and Pharmacology, Sapienza
University of Rome, P.le
Aldo Moro 5, Rome 00185, Italy
| | - Lorenzo Basile
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Andrea Gottinger
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Claudia Binda
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Adolfo Ferrata 9A, Pavia 27100, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Scalia E, Chirco A, Calugi L, Lenci E, Pagano PJ, Pula G, Trabocchi A. Development of New Peptidomimetic NADPH Oxidase Inhibitors with Antithrombotic Properties. ChemMedChem 2024; 19:e202400330. [PMID: 38924475 DOI: 10.1002/cmdc.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The ability of synthetic peptides inhibitors of NOX1 to effectively block the production of ROS by the enzyme was studied with different methodologies. Specifically, taking advantage of our understanding of the active epitope of the regulatory NOX1 subunit NOXA1 as a potent inhibitor of NOX1-derived O2⋅- formation, a panel of peptidomimetic derivatives of this peptide were designed and synthesized with the aim of improving their activity and increasing their stability in plasma. The results highlighted that improved efficacy and potency was found for both the peptide-peptoid hybrid GS2, whereas stapled peptide AC5 and its precursor showed higher stability despite lower biological potency. This study showed that minimal structural modifications of NOXA1 peptides are required to improve both their potency and stability to finally achieve best candidates as new potential anti-thrombotic drugs.
Collapse
Affiliation(s)
- Elisabetta Scalia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Antony Chirco
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Lorenzo Calugi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Giordano Pula
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf, Hamburg, Germany
- Biomedical Institute for Multimorbidity, Hull York Medical School, Hull, UK
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
4
|
Liu X, Shi Y, Liu R, Song K, Chen L. Structure of human phagocyte NADPH oxidase in the activated state. Nature 2024; 627:189-195. [PMID: 38355798 DOI: 10.1038/s41586-024-07056-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Kangcheng Song
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
5
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
6
|
Liu ZM, Shen PC, Lu CC, Chou SH, Tien YC. Suramin enhances chondrogenic properties by regulating the p67 phox/PI3K/AKT/SOX9 signalling pathway. Bone Joint Res 2022; 11:723-738. [PMID: 36222195 PMCID: PMC9582866 DOI: 10.1302/2046-3758.1110.bjr-2022-0013.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance. Results Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67phox) activity and membrane translocation. Overexpression of p67phox but not p67phoxAD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67phox with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67phox-induced COL2A1 and ACAN expression was significantly inhibited. Conclusion Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67phox activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopaedic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Yin-Chun Tien. E-mail:
| |
Collapse
|
7
|
Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease. Blood 2022; 139:2512-2522. [PMID: 35108370 DOI: 10.1182/blood.2021011134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Superoxide production by the phagocyte reduced NAD phosphate (NADPH) oxidase is essential for innate immunity as shown in chronic granulomatous disease (CGD), an immunodeficiency disease resulting from mutations in 1 of its genes. The NADPH oxidase is composed of 2 membrane proteins (gp91phox/NOX2 and p22phox) and 4 cytosolic proteins (p47phox, p67phox, p40phox, and Rac1/2). The phosphorylation of p47phox is required for NADPH oxidase activation in cells. As p47phox and p67phox can form a tight complex in cells, we hypothesized that p67phox could regulate p47phox phosphorylation. To investigate this hypothesis, we used phospho-specific antibodies against 5 major p47phox-phosphorylated sites (Ser304, Ser315, Ser320, Ser328, and Ser345) and neutrophils from healthy donors and from p67phox-/- CGD patients. Results showed that formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate induced a time- and a concentration-dependent phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328 in healthy human neutrophils. Interestingly, in neutrophils and Epstein-Barr virus-transformed B lymphocytes from p67phox-/- CGD patients, phosphorylation of p47phox on serine residues was dramatically reduced. In COSphox cells, the presence of p67phox led to increased phosphorylation of p47phox. In vitro studies showed that recombinant p47phox was phosphorylated on Ser304, Ser315, Ser320, and Ser328 by different PKC isoforms and the addition of recombinant p67phox alone or in combination with p40phox potentiated this process. Thus, p67phox and p40phox are required for optimal p47phox phosphorylation on Ser304, Ser315, Ser320, and Ser328 in intact cells. Therefore, p67phox and p40phox are novel regulators of p47phox-phosphorylation.
Collapse
|
8
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Rac-dependent feedforward autoactivation of NOX2 leads to oxidative burst. J Biol Chem 2021; 297:100982. [PMID: 34293347 PMCID: PMC8353492 DOI: 10.1016/j.jbc.2021.100982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 12/03/2022] Open
Abstract
NADPH oxidase 2 (NOX2) produces the superoxide anion radical (O2−), which has functions in both cell signaling and immune defense. NOX2 is a multimeric-protein complex consisting of several protein subunits including the GTPase Rac. NOX2 uniquely facilitates an oxidative burst, which is described by initially slow O2− production, which increases over time. The NOX2 oxidative burst is considered critical to immune defense because it enables expedited O2− production in response to infections. However, the mechanism of the initiation and progression of this oxidative burst and its implications for regulation of NOX2 have not been clarified. In this study, we show that the NOX2 oxidative burst is a result of autoactivation of NOX2 coupled with the redox function of Rac. NOX2 autoactivation begins when active Rac triggers NOX2 activation and the subsequent production of O2−, which in turn activates redox-sensitive Rac. This activated Rac further activates NOX2, amplifying the feedforward cycle and resulting in a NOX2-mediated oxidative burst. Using mutagenesis-based kinetic and cell analyses, we show that enzymatic activation of Rac is exclusively responsible for production of the active Rac trigger that initiates NOX2 autoactivation, whereas redox-mediated Rac activation is the main driving force of NOX2 autoactivation and contributes to generation of ∼98% of the active NOX2 in cells. The results of this study provide insight into the regulation of NOX2 function, which could be used to develop therapeutics to control immune responses associated with dysregulated NOX2 oxidative bursts.
Collapse
|
10
|
El-Benna J, Dang PMC. Starting-NOX2-Up: Rac unrolls p67 phox. J Leukoc Biol 2021; 110:213-215. [PMID: 33993516 DOI: 10.1002/jlb.4ce0321-134r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Discussion on the molecular mechanism of phagocyte NADPH oxidase activation.
Collapse
Affiliation(s)
- Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Pham My-Chan Dang
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| |
Collapse
|
11
|
Bechor E, Zahavi A, Berdichevsky Y, Pick E. The molecular basis of Rac-GTP action-promoting binding of p67 phox to Nox2 by disengaging the β hairpin from downstream residues. J Leukoc Biol 2021; 110:219-237. [PMID: 33857329 DOI: 10.1002/jlb.4hi1220-855rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/11/2022] Open
Abstract
p67phox fulfils a key role in the assembly/activation of the NADPH oxidase by direct interaction with Nox2. We proposed that Rac-GTP serves both as a carrier of p67phox to the membrane and an inducer of a conformational change enhancing its affinity for Nox2. This study provides evidence for the latter function: (i) oxidase activation was inhibited by p67phox peptides (106-120) and (181-195), corresponding to the β hairpin and to a downstream region engaged in intramolecular bonds with the β hairpin, respectively; (ii) deletion of residues 181-193 and point mutations Q115R or K181E resulted in selective binding of p67phox to Nox2 peptide (369-383); (iii) both deletion and point mutations led to a change in p67phox , expressed in increased apparent molecular weights; (iv) p67phox was bound to p67phox peptide (181-195) and to a cluster of peptides (residues 97-117), supporting the participation of selected residues within these sequences in intramolecular bonds; (v) p67phox failed to bind to Nox2 peptide (369-383), following interaction with Rac1-GTP, but a (p67phox -Rac1-GTP) chimera exhibited marked binding to the peptide, similar to that of p67phox deletion and point mutants; and (vi) size exclusion chromatography of the chimera revealed its partition in monomeric and polymeric forms, with binding to Nox2 peptide (369-383) restricted to polymers. The molecular basis of Rac-GTP action entails unmasking of a previously hidden Nox2-binding site in p67phox , following disengagement of the β hairpin from more C-terminal residues. The domain in Nox2 binding the "modified" p67phox comprises residues within the 369-383 sequence in the cytosolic dehydrogenase region.
Collapse
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Huang D, Siaw-Debrah F, Wang H, Ye S, Wang K, Wu K, Zhang Y, Wang H, Yao C, Chen J, Yan L, Zhang CL, Zhuge Q, Yang J. Transplanting Rac1-silenced bone marrow mesenchymal stem cells promote neurological function recovery in TBI mice. Aging (Albany NY) 2020; 13:2822-2850. [PMID: 33411679 PMCID: PMC7880331 DOI: 10.18632/aging.202334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
Bone marrow mesenchymal stem cells (BMMSCs)-based therapy has emerged as a promising novel therapy for Traumatic Brain Injury (TBI). However, the therapeutic quantity of viable implanted BMMSCs necessary to initiate efficacy is still undetermined. Increased oxidative stress following TBI, which leads to the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase signaling pathway, has been implicated in accounting for the diminished graft survival and therapeutic effect. To prove this assertion, we silenced the expression of NADPH subunits (p22-phox, p47-phox, and p67-phox) and small GTPase Rac1 in BMMSCs using shRNA. Our results showed that silencing these proteins significantly reduced oxidative stress and cell death/apoptosis, and promoted implanted BMMSCs proliferation after TBI. The most significant result was however seen with Rac1 silencing, which demonstrated decreased expression of apoptotic proteins, enhanced in vitro survival ratio, reduction in TBI lesional volume and significant improvement in neurological function post shRac1-BMMSCs transplantation. Additionally, two RNA-seq hub genes (VEGFA and MMP-2) were identified to play critical roles in shRac1-mediated cell survival. In summary, we propose that knockdown of Rac1 gene could significantly boost cell survival and promote the recovery of neurological functions after BMMSCs transplantation in TBI mice.
Collapse
Affiliation(s)
- Dongdong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sheng Ye
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lin Yan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes (Basel) 2020. [DOI: 10.3390/pr8111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
14
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
15
|
Bechor E, Zahavi A, Berdichevsky Y, Pick E. p67 phox -derived self-assembled peptides prevent Nox2 NADPH oxidase activation by an auto-inhibitory mechanism. J Leukoc Biol 2020; 109:657-673. [PMID: 32640488 DOI: 10.1002/jlb.4a0620-292r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nox2-dependent NADPH oxidase is the result of a conformational change in Nox2 induced by interaction with the cytosolic component p67phox . In preliminary work we identified a cluster of overlapping 15-mer synthetic peptides, corresponding to p67phox residues 259-279, which inhibited oxidase activity in an in vitro, cell-free assay, but the results did not point to a competitive mechanism. We recently identified an auto-inhibitory intramolecular bond in p67phox , one extremity of which was located within the 259-279 sequence, and we hypothesized that inhibition by exogenous peptides might mimic intrinsic auto-inhibition. In this study, we found that: (i) progressive N- and C-terminal truncation of inhibitory p67phox peptides, corresponding to residues 259-273 and 265-279, revealed that inhibitory ability correlated with the presence of residues 265 NIVFVL270 , exposed at either the N- or C-termini of the peptides; (ii) inhibition of oxidase activity was associated exclusively with self-assembled peptides, which pelleted upon centrifugation at 12,000 ×g; (iii) self-assembled p67phox peptides inhibited oxidase activity by specific binding of p67phox and the ensuing depletion of this component, essential for interaction with Nox2; and (iv) peptides subjected to scrambling or reversing the order of residues in NIVFVL retained the propensity for self-assembly, oxidase inhibitory ability, and specific binding of p67phox , indicating that the dominant parameter was the hydrophobic character of five of the six residues. This appears to be the first description of inhibition of oxidase activity by self-assembled peptides derived from an oxidase component, acting by an auto-inhibitory mechanism.
Collapse
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Bechor E, Zahavi A, Amichay M, Fradin T, Federman A, Berdichevsky Y, Pick E. p67phoxbinds to a newly identified site in Nox2 following the disengagement of an intramolecular bond—Canaan sighted? J Leukoc Biol 2020; 107:509-528. [DOI: 10.1002/jlb.4a1219-607r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Maya Amichay
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Tanya Fradin
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Aya Federman
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte ResearchDepartment of Clinical Microbiology and ImmunologySackler School of MedicineTel Aviv University Tel Aviv Israel
| |
Collapse
|
17
|
Abstract
A growing appreciation of NADPH oxidases (NOXs) as mediators of fundamental physiological processes and as important players in myriad diseases has led many laboratories on a search for specific inhibitors to help dissect the role in a given pathway or pathological condition. To date, there are only a few available inhibitors with a demonstrated specificity for a given isozyme. Among those, peptidic inhibitors have the advantage of being designed to target very specific protein-protein interactions that are essential for NOX activity. Herein, we provide the techniques to deliver these inhibitors both in cell culture as well as in vivo.
Collapse
|
18
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
19
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Huetsch JC, Suresh K, Shimoda LA. Regulation of Smooth Muscle Cell Proliferation by NADPH Oxidases in Pulmonary Hypertension. Antioxidants (Basel) 2019; 8:antiox8030056. [PMID: 30841544 PMCID: PMC6466559 DOI: 10.3390/antiox8030056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperproliferation of pulmonary arterial smooth muscle cells is a key component of vascular remodeling in the setting of pulmonary hypertension (PH). Numerous studies have explored factors governing the changes in smooth muscle cell phenotype that lead to the increased wall thickness, and have identified various potential candidates. A role for reactive oxygen species (ROS) has been well documented in PH. ROS can be generated from a variety of sources, including mitochondria, uncoupled nitric oxide synthase, xanthine oxidase, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In this article, we will review recent data supporting a role for ROS generated from NADPH oxidases in promoting pulmonary arterial smooth muscle cell proliferation during PH.
Collapse
Affiliation(s)
- John C Huetsch
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA.
| | - Karthik Suresh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA.
| | - Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019; 132:73-82. [PMID: 30176344 PMCID: PMC6342625 DOI: 10.1016/j.freeradbiomed.2018.08.038] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/07/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Chondrocytes are responsible for the maintenance of the articular cartilage. A loss of homeostasis in cartilage contributes to the development of osteoarthritis (OA) when the synthetic capacity of chondrocytes is overwhelmed by processes that promote matrix degradation. There is evidence for an age-related imbalance in reactive oxygen species (ROS) production relative to the anti-oxidant capacity of chondrocytes that plays a role in cartilage degradation as well as chondrocyte cell death. The ROS produced by chondrocytes that have received the most attention include superoxide, hydrogen peroxide, the reactive nitrogen species nitric oxide, and the nitric oxide derived product peroxynitrite. Excess levels of these ROS not only cause oxidative-damage but, perhaps more importantly, cause a disruption in cell signaling pathways that are redox-regulated, including Akt and MAP kinase signaling. Age-related mitochondrial dysfunction and reduced activity of the mitochondrial superoxide dismutase (SOD2) are associated with an increase in mitochondrial-derived ROS and are in part responsible for the increase in chondrocyte ROS with age. Peroxiredoxins (Prxs) are a key family of peroxidases responsible for removal of H2O2, as well as for regulating redox-signaling events. Prxs are inactivated by hyperoxidation. An age-related increase in chondrocyte Prx hyperoxidation and an increase in OA cartilage has been noted. The finding in mice that deletion of SOD2 or the anti-oxidant gene transcriptional regulator nuclear factor-erythroid 2- related factor (Nrf2) result in more severe OA, while overexpression or treatment with mitochondrial targeted anti-oxidants reduces OA, further support a role for excessive ROS in the pathogenesis of OA. Therefore, new therapeutic strategies targeting specific anti-oxidant systems including mitochondrial ROS may be of value in reducing the progression of age-related OA.
Collapse
Affiliation(s)
- Jesalyn A Bolduc
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - John A Collins
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Sumimoto H, Minakami R, Miyano K. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. Methods Mol Biol 2019; 1982:121-137. [PMID: 31172470 DOI: 10.1007/978-1-4939-9424-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Reiko Minakami
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
23
|
Gonzalez-Perilli L, Prolo C, Álvarez MN. Arachidonic Acid and Nitroarachidonic: Effects on NADPH Oxidase Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:85-95. [PMID: 31140173 DOI: 10.1007/978-3-030-11488-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid that participates in the inflammatory response mainly through bioactive-lipids formation in macrophages and also in the phagocytic NADPH oxidase 2 (NOX2) activation. NOX2 is the enzyme responsible for a huge superoxide formation in macrophages, essential to eliminate pathogens inside the phagosome. The oxidase is an enzymatic complex comprised of a membrane-bound flavocytochrome b 558 (gp91phox/p22phox), three cytosolic subunits (p47phox, p40phox and p67phox) and a Rac-GTPase. The enzyme becomes active when macrophages are exposed to appropriate stimuli that trigger the phosphorylation of cytosolic subunits and its migration to plasmatic membrane to form the active complex. It is proposed that AA stimulates NOX2 activity through AA interaction with different components of the NADPH oxidase complex. In inflammatory conditions, there is an increase in reactive oxygen and nitrogen species that results in the production of nitrated derivatives of AA, such as nitroarachidonic acid (NO2-AA). NO2-AA is capable to inhibit NOX2 activity by interfering with p47phox migration to the membrane without affecting phosphorylation of cytosolic proteins. Also, NO2-AA is capable to interact with protein disulfide isomerase (PDI), which is involved on NOX2 active complex formation. It has been demonstrated that NO2-AA forms a covalent adduct with PDI that could prevent the interaction with NOX2 and it would explain the inhibitory effects of the fatty acid upon NOX2. Together, current data indicate that AA is an important activator of NOX2 formed in the early events of the inflammatory response, leading to a massive production of oxidants that may, in turn, promote NO2-AA formation and shutting down the oxidative burst. Hence, AA and its derivatives could have antagonistic roles on NOX2 activity regulation.
Collapse
Affiliation(s)
- Lucía Gonzalez-Perilli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
24
|
Pick E. Using Synthetic Peptides for Exploring Protein-Protein Interactions in the Assembly of the NADPH Oxidase Complex. Methods Mol Biol 2019; 1982:377-415. [PMID: 31172485 DOI: 10.1007/978-1-4939-9424-3_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NADPH oxidase complex, responsible for reactive oxygen species (ROS) generation by phagocytes, consists of a membrane-associated flavocytochrome b 558 (a heterodimer of NOX2 and p22phox) and the cytosolic components p47phox, p67phox, Rac(1 or 2), and p40phox. NOX2 carries all redox stations through which electrons flow from NADPH to molecular oxygen, to generate the primary ROS, superoxide. For the electron flow to start, a conformational change in NOX2 is required. The dominant hypothesis is that this change is the result of the interaction of NOX2 with one or more of the cytosolic components (NADPH oxidase assembly). At the most basic level, assembly is the sum of several protein-protein interactions among oxidase components. This chapter describes a reductionist approach to the identification of regions in oxidase components involved in assembly. This approach consists of "transforming" one component in an array of overlapping synthetic peptides and assessing binding to the peptides of another component, represented by a recombinant protein. The peptides are tagged with biotin, at the N- or C-terminus, and immobilized on streptavidin-coated 96-well plates. The protein partners are expressed with a 6His tag and added to the plates in the fluid phase. Binding of the protein to the peptides is quantified by a kinetic ELISA , using a peroxidase-conjugated anti-polyhistidine antibody. Protein-peptide binding assays were applied successfully to (a) identifying the binding site on one component (represented by peptides) for another component (proteins), (b) precisely defining the "binding sequence," (c) acquiring information on the binding site in the partner protein, (d) investigating the effect of conformational changes in proteins on binding to peptides, (e) determining the effect of physicochemical modification of peptides on binding of proteins, and (f) identifying epitopes recognized by anti-oxidase component antibodies by binding of antibody to peptide arrays derived from the component.
Collapse
Affiliation(s)
- Edgar Pick
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Role of NADPH oxidase in cooperative reactive oxygen species generation in dopaminergic neurons induced by combined treatment with dieldrin and lindane. Toxicol Lett 2018; 299:47-55. [DOI: 10.1016/j.toxlet.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/31/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022]
|
26
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
27
|
Masoud R, Serfaty X, Erard M, Machillot P, Karimi G, Hudik E, Wien F, Baciou L, Houée-Levin C, Bizouarn T. Conversion of NOX2 into a constitutive enzyme in vitro and in living cells, after its binding with a chimera of the regulatory subunits. Free Radic Biol Med 2017; 113:470-477. [PMID: 29079525 DOI: 10.1016/j.freeradbiomed.2017.10.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022]
Abstract
During the phagocytosis of pathogens by phagocyte cells, the NADPH oxidase complex is activated to produce superoxide anion, a precursor of microbial oxidants. The activated NADPH oxidase complex from phagocytes consists in two transmembrane proteins (Nox2 and p22phox) and four cytosolic proteins (p40phox, p47phox, p67phox and Rac1-2). In the resting state of the cells, these proteins are dispersed in the cytosol, the membrane of granules and the plasma membrane. In order to synchronize the assembly of the cytosolic subunits on the membrane components of the oxidase, a fusion of the cytosolic proteins p47phox, p67phox and Rac1 named trimera was constructed. The trimera investigated in this paper is composed of the p47phox segment 1-286, the p67phox segment 1-212 and the mutated Rac1(Q61L). We demonstrate that the complex trimera-cyt b558 is functionally comparable to the one containing the separated subunits. Each of the subunits p47phox, p67phox and Rac1Q61L has kept its own activating property. The trimera is produced in an activated conformation as seen by circular dichroism. However, the presence of amphiphile is still necessary in a cell-free system to trigger superoxide anion production. The COS7gp91-p22 cells expressing the trimera produce continuously superoxide anion at high rate. This constitutive activity in cells can be of particular interest for understanding the NADPH oxidase functioning independently of signaling pathways.
Collapse
Affiliation(s)
- Rawand Masoud
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Marie Erard
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Paul Machillot
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Gilda Karimi
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Elodie Hudik
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Frank Wien
- Synchrotron SOLEIL, campus Paris Saclay, Gif-sur-Yvette, France
| | - Laura Baciou
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Chantal Houée-Levin
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique, UMR8000, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
28
|
Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 2017; 12:84. [PMID: 29132391 PMCID: PMC5683583 DOI: 10.1186/s13024-017-0225-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD.
Collapse
Affiliation(s)
- Karim Belarbi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Elodie Cuvelier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Alain Destée
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Bernard Gressier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,Inserm UMR S-1172 Team "Early stages of Parkinson's Disease", 1 Place de Verdun, 59006, Lille, France.
| |
Collapse
|
29
|
Forte M, Palmerio S, Yee D, Frati G, Sciarretta S. Functional Role of Nox4 in Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:307-326. [DOI: 10.1007/978-3-319-55330-6_16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Forte M, Nocella C, De Falco E, Palmerio S, Schirone L, Valenti V, Frati G, Carnevale R, Sciarretta S. The Pathophysiological Role of NOX2 in Hypertension and Organ Damage. High Blood Press Cardiovasc Prev 2017; 23:355-364. [PMID: 27915400 DOI: 10.1007/s40292-016-0175-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidases (NOXs) represent one of the major sources of reactive oxygen species in the vascular district. Reactive oxygen species are responsible for vascular damage that leads to several cardiovascular pathological conditions. Among NOX isoforms, NOX2 is widely expressed in many cells types, such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells, confirming its pivotal role in vascular pathophysiology. Studies in mice models with systemic deletion of NOX2, as well as in transgenic mice overexpressing NOX2, have demonstrated the undeniable involvement of NOX2 in the development of hypertension, atherosclerosis, diabetes mellitus, cardiac hypertrophy, platelet aggregation, and aging. Of note, the inhibition of NOX2 has been found to be protective for cardiovascular homeostasis. Here, we review the evidence demonstrating that the modulation of NOX2 activity is able to improve vascular physiology, suggesting that NOX2 may be a potential target for therapeutic applications.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Cristina Nocella
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Elena De Falco
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Silvia Palmerio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Valentina Valenti
- Department of Imaging, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giacomo Frati
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy
| | - Roberto Carnevale
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Sebastiano Sciarretta
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, 86077, Italy. .,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 79 Corso della Repubblica, 04100, Latina, Italy.
| |
Collapse
|
31
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|
32
|
Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R. The evolution of reactive oxygen species metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5933-5943. [PMID: 27742750 DOI: 10.1093/jxb/erw382] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the regulation of many biological processes in plants. Nonetheless, they are considered highly reactive and toxic to cells. Owing to their toxicity, as well as their important role in signaling, the level of ROS in cells needs to be tightly regulated. The ROS gene network, encoding a highly redundant arsenal of ROS scavenging mechanisms and an array of enzymes involved in ROS production, regulates ROS metabolism and signaling in plants. In this article, we review the role of the ROS gene network in plants and examine how it evolved. We identify key components of the ROS gene network in organisms that likely originated as early as 4.1-3.5 billion years ago, prior to the great oxidation event that resulted from the rise of cyanobacteria on Earth. This estimate concurs with recent evidence for the appearance of oxygenic photosynthetic organisms on Earth, suggesting that low and/or localized levels of photosynthetically produced oxygen necessitated the emergence of ROS scavenging mechanisms to protect life. Life forms have therefore evolved in the presence of ROS on Earth for at least 3.8-3.6 billion years, highlighting the intimate relationship that exists today between many physiological and developmental processes and ROS.
Collapse
Affiliation(s)
| | - Soham Sengupta
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Amith R Devireddy
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| | - Ron Mittler
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
33
|
Cifuentes-Pagano ME, Meijles DN, Pagano PJ. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr Pharm Des 2016; 21:6023-35. [PMID: 26510437 DOI: 10.2174/1381612821666151029112013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow.
Collapse
Affiliation(s)
| | | | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Biomedical Science Tower, 12th Floor, Room E1247, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
34
|
Zheleznova NN, Yang C, Cowley AW. Role of Nox4 and p67phox subunit of Nox2 in ROS production in response to increased tubular flow in the mTAL of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2016; 311:F450-8. [PMID: 27279484 DOI: 10.1152/ajprenal.00187.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
Nox4 and Nox2 are the most abundant NADPH oxidases (Nox) in the kidney and have been shown to contribute to hypertension, renal oxidative stress, and injury in Dahl salt-sensitive (SS) hypertensive rats. The present study focused on the role of Nox4 and p67phox/Nox2 in the generation of H2O2 and O2 (·-) in the renal medullary thick ascending limb of Henle (mTAL) of SS rats in response to increasing luminal flow (from 5 to 20 nl/min). Nox4 and p67phox/Nox2 genes were found to be expressed in the mTAL of SS rats. Responses of SS rats were compared with those of SS rats with knockout of Nox4 (SS(Nox4-/-)) or functional mutation of p67phox (SS(p67phox-/-)). Nox4 was the dominant source of increased intracellular H2O2 production in response to increased luminal flow as determined using the fluorescent dye peroxyfluor 6-AM (PF6-AM). The rate of mitochondrial H2O2 production [as determined by mitochondria peroxy yellow 1 (mitoPY1)] was also significantly reduced in SS(Nox4-/-) compared with SS rats, but not in SS(p67phox-/-) rats. In contrast, intracellular superoxide (O2 (·-)) production (the ratio of ethidium to dihydroethidium) in the mTAL of SS(Nox4-/-) rats was nearly identical to that of SS rats in response to luminal flow, indicating that Nox4 made no measurable contribution. mTAL O2 (·-) production was reduced in SS(p67phox-/-) compared with SS rats at the lower luminal flow of 5 nl/min and progressively increased when perfusion was changed to 20 nl/min. We conclude that increased mTAL luminal flow results in increases in intracellular and mitochondrial H2O2, which are dependent on the presence of Nox4, and that p67phox/Nox2 accounts solely for increases in O2 (·-) production.
Collapse
Affiliation(s)
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
35
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Violi F, Pignatelli P. Clinical Application of NOX Activity and Other Oxidative Biomarkers in Cardiovascular Disease: A Critical Review. Antioxid Redox Signal 2015; 23:514-32. [PMID: 24382131 DOI: 10.1089/ars.2013.5790] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE The oxidative stress theory of atherosclerosis is based on the assumption that the production of reactive oxidant species (ROS) by blood, as well as resident cells of the artery wall, elicits the formation of oxidized low-density lipoproteins (ox-LDL), which, in turn, promotes a series of inflammatory responses, ultimately leading to atherosclerotic plaque. This theory prompted the development of new laboratory methodologies that aimed at assessing the relationship between oxidative stress and clinical progression of human atherosclerosis. CRITICAL ISSUES Markers assessing the oxidation of phospholipid and protein components of LDL were among the first to be developed. Clinical trials included cross-sectional as well as retrospective and prospective studies that, however, provided equivocal results. Thus, clear evidence that oxidative biomarkers add more to the risk stratification by common atherosclerotic risk factors is still lacking. RECENT ADVANCES More recently, the analysis of oxidative stress focused on enzymatic pathways generating ROS, such as NADPH oxidase and myeloperoxidase (MPO). Experimental and clinical studies suggest that both enzymes may be implicated in promoting atherosclerotic disease. Novel laboratory methodologies have been, therefore, developed to study NADPH oxidase and MPO in patients with stable atherosclerosis as well as in patients with acute coronary and cerebro-vascular syndromes. FUTURE DIRECTIONS This review will analyze the strengths and weaknesses of the current methodology to study these enzymes in human atherosclerosis with particular regard to their clinical application in several settings of cardiovascular disease. Clinical methodology and results of previous studies with regard to markers of LDL oxidation have also been reviewed as a useful background for the future development of clinical trials.
Collapse
Affiliation(s)
- Francesco Violi
- I Clinica Medica , Department of Internal Medicine and Medical Specialties, Rome, Italy
| | - Pasquale Pignatelli
- I Clinica Medica , Department of Internal Medicine and Medical Specialties, Rome, Italy
| |
Collapse
|
37
|
Pastori D, Pignatelli P, Carnevale R, Violi F. Nox-2 up-regulation and platelet activation: Novel insights. Prostaglandins Other Lipid Mediat 2015; 120:50-5. [DOI: 10.1016/j.prostaglandins.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022]
|
38
|
Kuwabara WMT, Zhang L, Schuiki I, Curi R, Volchuk A, Alba-Loureiro TC. NADPH oxidase-dependent production of reactive oxygen species induces endoplasmatic reticulum stress in neutrophil-like HL60 cells. PLoS One 2015; 10:e0116410. [PMID: 25668518 PMCID: PMC4323339 DOI: 10.1371/journal.pone.0116410] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/09/2014] [Indexed: 01/20/2023] Open
Abstract
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.
Collapse
Affiliation(s)
| | - Liling Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Irmgard Schuiki
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Allen Volchuk
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Bechor E, Dahan I, Fradin T, Berdichevsky Y, Zahavi A, Federman Gross A, Rafalowski M, Pick E. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). Front Chem 2015; 3:3. [PMID: 25699251 PMCID: PMC4316792 DOI: 10.3389/fchem.2015.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022] Open
Abstract
The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
40
|
Vlahos R, Selemidis S. NADPH oxidases as novel pharmacologic targets against influenza A virus infection. Mol Pharmacol 2014; 86:747-59. [PMID: 25301784 DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza.
Collapse
Affiliation(s)
- Ross Vlahos
- Respiratory Research Group, Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne (R.V.), and Oxidant and Inflammation Biology Group, Department of Pharmacology, Monash University (S.S.), Victoria, Australia
| | - Stavros Selemidis
- Respiratory Research Group, Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne (R.V.), and Oxidant and Inflammation Biology Group, Department of Pharmacology, Monash University (S.S.), Victoria, Australia
| |
Collapse
|
41
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 521] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
42
|
Kosami KI, Ohki I, Nagano M, Furuita K, Sugiki T, Kawano Y, Kawasaki T, Fujiwara T, Nakagawa A, Shimamoto K, Kojima C. The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase. J Biol Chem 2014; 289:28569-78. [PMID: 25128531 DOI: 10.1074/jbc.m114.603282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rac/Rop proteins are Rho-type small GTPases that act as molecular switches in plants. Recent studies have identified these proteins as key components in many major plant signaling pathways, such as innate immunity, pollen tube growth, and root hair formation. In rice, the Rac/Rop protein OsRac1 plays an important role in regulating the production of reactive oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity. However, the molecular mechanism by which OsRac1 regulates OsRbohB remains unknown. Here, we report the crystal structure of OsRac1 complexed with the non-hydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate at 1.9 Å resolution; this represents the first active-form structure of a plant small GTPase. To elucidate the ROS production in rice cells, structural information was used to design OsRac1 mutants that displayed reduced binding to OsRbohB. Only mutations in the OsRac1 Switch I region showed attenuated interactions with OsRbohB in vitro. In particular, Tyr(39) and Asp(45) substitutions suppressed ROS production in rice cells, indicating that these residues are critical for interaction with and activation of OsRbohB. Structural comparison of active-form OsRac1 with AtRop9 in its GDP-bound inactive form showed a large conformational difference in the vicinity of these residues. Our results provide new insights into the molecular mechanism of the immune response through OsRac1 and the various cellular responses associated with plant Rac/Rop proteins.
Collapse
Affiliation(s)
- Ken-ichi Kosami
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871
| | - Izuru Ohki
- the Laboratory of Biophysics and Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, the Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, and
| | - Minoru Nagano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Kyoko Furuita
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871
| | - Toshihiko Sugiki
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Tsutomu Kawasaki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, the Department of Advanced Bioscience, Kinki University, Nara 631-8505, Japan
| | - Toshimichi Fujiwara
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871
| | - Atsushi Nakagawa
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Chojiro Kojima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, the Laboratory of Biophysics and
| |
Collapse
|
43
|
Abstract
Nox4 is an oddity among members of the Nox family of NADPH oxidases [seven isoenzymes that generate reactive oxygen species (ROS) from molecular oxygen] in that it is constitutively active. All other Nox enzymes except for Nox4 require upstream activators, either calcium or organizer/activator subunits (p47(phox), NOXO1/p67(phox), and NOXA1). Nox4 may also be unusual as it reportedly releases hydrogen peroxide (H₂O₂) in contrast to Nox1-Nox3 and Nox5, which release superoxide, although this result is controversial in part because of possible membrane compartmentalization of superoxide, which may prevent detection. Our studies were undertaken (1) to identify the Nox4 ROS product using a membrane-free, partially purified preparation of Nox4 and (2) to test the hypothesis that Nox4 activity is acutely regulated not by activator proteins or calcium, but by cellular pO₂, allowing it to function as an O₂ sensor, the output of which is signaling H₂O₂. We find that approximately 90% of the electron flux through isolated Nox4 produces H₂O₂ and 10% forms superoxide. The kinetic mechanism of H₂O₂ formation is consistent with a mechanism involving binding of one oxygen molecule, which is then sequentially reduced by the heme in two one-electron reduction steps first to form a bound superoxide intermediate and then H₂O₂; kinetics are not consistent with a previously proposed internal superoxide dismutation mechanism involving two oxygen binding/reduction steps for each H₂O₂ formed. Critically, Nox4 has an unusually high Km for oxygen (∼18%), similar to the values of known oxygen-sensing enzymes, compared with a Km of 2-3% for Nox2, the phagocyte NADPH oxidase. This allows Nox4 to generate H₂O₂ as a function of oxygen concentration throughout a physiological range of pO2 values and to respond rapidly to changes in pO₂.
Collapse
|
44
|
Matono R, Miyano K, Kiyohara T, Sumimoto H. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 2014; 289:24874-84. [PMID: 25056956 DOI: 10.1074/jbc.m114.581785] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The phagocyte NADPH oxidase Nox2, heterodimerized with p22(phox) in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47(phox) and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22(phox) and p67(phox), leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47(phox) conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47(phox) and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67(phox), AA induces the direct interaction of Rac-GTP-bound p67(phox) with the C-terminal cytosolic region of Nox2. p67(phox)-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67(phox) activation domain that localizes the C-terminal to the Rac-binding domain. Thus the "third" switch (AA-inducible interaction of p67(phox)·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.
Collapse
Affiliation(s)
- Rumi Matono
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei Miyano
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Kiyohara
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
45
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
46
|
Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases 2014; 5:e27952. [PMID: 24598074 PMCID: PMC4114928 DOI: 10.4161/sgtp.27952] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b 558 (a heterodimer of Nox2 and p22(phox)) and 4 cytosolic components: p47(phox), p67(phox), p40(phox), and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67(phox) playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67(phox); (5) Induction of a conformational change in p67(phox), promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general.
Collapse
Affiliation(s)
- Edgar Pick
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research; Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
47
|
Violi F, Pignatelli P. Platelet NOX, a novel target for anti-thrombotic treatment. Thromb Haemost 2014; 111:817-23. [PMID: 24402688 DOI: 10.1160/th13-10-0818] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022]
Abstract
There is a growing body of evidence to suggest that reactive oxidant species (ROS) including O2-, OH- or H2O2 act as second messengers to activate platelets via 1) calcium mobilisation, 2) nitric oxide (NO) inactivation, and 3) interaction with arachidonic to give formation of isoprostanes. Among the enzymes generating ROS formation NOX2, the catalytic core of NADPH oxidase (NOX), plays a prominent role as shown by the almost absent ROS production by platelets taken from patients with hereditary deficiency of NOX2. Experimental and clinical studies provided evidence that NOX2 is implicated in platelet activation. Thus, impaired platelet activation has been detected in patients with NOX2 hereditary deficiency. Similarly, normal platelets added with NOX2 specific inhibitors disclosed impaired platelet activation along with ROS down-regulation. Accordingly, animals prone to atherosclerosis treated with apocynin, a NOX inhibitor, showed reduced platelet adhesion and atherosclerotic plaque. Furthermore, a significant association between NOX2 up-regulation and platelet activation has been detected in patients at athero-thrombotic risk, but a cause-effect relationship needs to be established. These findings may represent a rationale to plan interventional trials with NOX inhibitors to establish if blocking NOX2 or other NOX isoforms may represent a novel anti-platelet approach.
Collapse
Affiliation(s)
- Francesco Violi
- Prof. Francesco Violi, I Clinica Medica, Viale del Policlinico 155, Roma, 00161, Italy, Tel.: +39 064461933, Fax: +39 0649970103, E-mail:
| | | |
Collapse
|
48
|
Abstract
The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
Affiliation(s)
- Edgar Pick
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Ranayhossaini DJ, Rodriguez AI, Sahoo S, Chen BB, Mallampalli RK, Kelley EE, Csanyi G, Gladwin MT, Romero G, Pagano PJ. Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem 2013; 288:36437-50. [PMID: 24187133 PMCID: PMC3868757 DOI: 10.1074/jbc.m113.521344] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 11/06/2022] Open
Abstract
Excessive vascular and colon epithelial reactive oxygen species production by NADPH oxidase isoform 1 (Nox1) has been implicated in a number of disease states, including hypertension, atherosclerosis, and neoplasia. A peptide that mimics a putative activation domain of the Nox1 activator subunit NOXA1 (NOXA1 docking sequence, also known as NoxA1ds) potently inhibited Nox1-derived superoxide anion (O2·-) production in a reconstituted Nox1 cell-free system, with no effect on Nox2-, Nox4-, Nox5-, or xanthine oxidase-derived reactive oxygen species production as measured by cytochrome c reduction, Amplex Red fluorescence, and electron paramagnetic resonance. The ability of NoxA1ds to cross the plasma membrane was tested by confocal microscopy in a human colon cancer cell line exclusively expressing Nox1 (HT-29) using FITC-labeled NoxA1ds. NoxA1ds significantly inhibited whole HT-29 carcinoma cell-derived O2·- generation. ELISA and fluorescence recovery after photobleaching experiments indicate that NoxA1ds, but not its scrambled control, binds Nox1. FRET experiments conducted using Nox1-YFP and NOXA1-CFP illustrate that NoxA1ds disrupts the binding interaction between Nox1 and NOXA1, whereas a control peptide did not. Moreover, hypoxia-induced human pulmonary artery endothelial cell O2·- production was completely inhibited by NoxA1ds. Human pulmonary artery endothelial cell migration under hypoxic conditions was also reduced by pretreatment with NoxA1ds. Our data indicate that a peptide recapitulating a putative activation subdomain of NOXA1 (NoxA1ds) is a highly efficacious and selective inhibitor of Nox1 activity and establishes a critical interaction site for Nox1-NOXA1 binding required for enzyme activation.
Collapse
Affiliation(s)
- Daniel J. Ranayhossaini
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Andres I. Rodriguez
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | | | - Beibei B. Chen
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| | - Rama K. Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
- the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Eric E. Kelley
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Gabor Csanyi
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Mark T. Gladwin
- From the Vascular Medicine Institute and
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| | | | - Patrick J. Pagano
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| |
Collapse
|
50
|
Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 2013; 3:1011-34. [PMID: 23897679 DOI: 10.1002/cphy.c120024] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress, and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the antioxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting cofactor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|