1
|
Taskinen JH, Holopainen M, Ruhanen H, van der Stoel M, Käkelä R, Ikonen E, Keskitalo S, Varjosalo M, Olkkonen VM. Functional omics of ORP7 in primary endothelial cells. BMC Biol 2024; 22:292. [PMID: 39695567 DOI: 10.1186/s12915-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Many members of the oxysterol-binding protein-related protein (ORP) family have been characterized in detail over the past decades, but the lipid transport and other functions of ORP7 still remain elusive. What is known about ORP7 points toward an endoplasmic reticulum and plasma membrane-localized protein, which also interacts with GABA type A receptor-associated protein like 2 (GABARAPL2) and unlipidated Microtubule-associated proteins 1A/1B light chain 3B (LC3B), suggesting a further autophagosomal/lysosomal association. Functional roles of ORP7 have been suggested in cholesterol efflux, hypercholesterolemia, and macroautophagy. We performed a hypothesis-free multi-omics analysis of chemical ORP7 inhibition utilizing transcriptomics and lipidomics as well as proximity biotinylation interactomics to characterize ORP7 functions in a primary cell type, human umbilical vein endothelial cells (HUVECs). Moreover, assays on angiogenesis, cholesterol efflux, and lipid droplet quantification were conducted. RESULTS Pharmacological inhibition of ORP7 leads to an increase in gene expression related to lipid metabolism and inflammation, while genes associated with cell cycle and cell division were downregulated. Lipidomic analysis revealed increases in ceramides and lysophosphatidylcholines as well as saturated and monounsaturated triacylglycerols. Significant decreases were seen in all cholesteryl ester and in some unsaturated triacylglycerol species, compatible with the detected decrease of mean lipid droplet area. Along with the reduced lipid stores, ATP-binding cassette subfamily G member 1 (ABCG1)-mediated cholesterol efflux and angiogenesis decreased. Interactomics revealed an interaction of ORP7 with AKT1, a central metabolic regulator. CONCLUSIONS The transcriptomics results suggest an increase in prostanoid as well as oxysterol synthesis, which could be related to the observed upregulation of proinflammatory genes. We envision that the defective angiogenesis in HUVECs subjected to ORP7 inhibition could be the result of an unfavorable plasma membrane lipid composition and/or reduced potential for cell division. To conclude, the present study suggests multifaceted functions of ORP7 in lipid homeostasis, angiogenic tube formation, and gene expression of lipid metabolism, inflammation, and cell cycle in primary endothelial cells.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Miesje van der Stoel
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Salla Keskitalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
| | - Markku Varjosalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
2
|
Wang Y, Wang Y, Hu Y, Wu Q, Gui L, Zeng W, Chen Q, Yu T, Zhang X, Lan K. CYP8B1 Catalyzes 12alpha-Hydroxylation of C 27 Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid. Drug Metab Dispos 2024; 52:1234-1243. [PMID: 39214664 DOI: 10.1124/dmd.124.001694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 μM and kcat of 3.2 and 2.6 minutes-1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT: The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.
Collapse
Affiliation(s)
- Yutong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Yixuan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - YiTing Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - QingLiang Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Lanlan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Wushuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Qi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Tingting Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Xinjie Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China (Yu.W., Yi.W., Y.H., Q.W., L.G., W.Z., Q.C., T.Y., X.Z., K.L.) and Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., K.L.)
| |
Collapse
|
3
|
Kaynar A, Kim W, Ceyhan AB, Zhang C, Uhlén M, Turkez H, Shoaie S, Mardinoglu A. Unveiling the Molecular Mechanisms of Glioblastoma through an Integrated Network-Based Approach. Biomedicines 2024; 12:2237. [PMID: 39457550 PMCID: PMC11504402 DOI: 10.3390/biomedicines12102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Despite current treatments extending the lifespan of Glioblastoma (GBM) patients, the average survival time is around 15-18 months, underscoring the fatality of GBM. This study aims to investigate the impact of sample heterogeneity on gene expression in GBM, identify key metabolic pathways and gene modules, and explore potential therapeutic targets. Methods: In this study, we analysed GBM transcriptome data derived from The Cancer Genome Atlas (TCGA) using genome-scale metabolic models (GEMs) and co-expression networks. We examine transcriptome data incorporating tumour purity scores (TPSs), allowing us to assess the impact of sample heterogeneity on gene expression profiles. We analysed the metabolic profile of GBM by generating condition-specific GEMs based on the TPS group. Results: Our findings revealed that over 90% of genes showing brain and glioma specificity in RNA expression demonstrate a high positive correlation, underscoring their expression is dominated by glioma cells. Conversely, negatively correlated genes are strongly associated with immune responses, indicating a complex interaction between glioma and immune pathways and non-tumorigenic cell dominance on gene expression. TPS-based metabolic profile analysis was supported by reporter metabolite analysis, highlighting several metabolic pathways, including arachidonic acid, kynurenine and NAD pathway. Through co-expression network analysis, we identified modules that significantly overlap with TPS-correlated genes. Notably, SOX11 and GSX1 are upregulated in High TPS, show a high correlation with TPS, and emerged as promising therapeutic targets. Additionally, NCAM1 exhibits a high centrality score within the co-expression module, which shows a positive correlation with TPS. Moreover, LILRB4, an immune-related gene expressed in the brain, showed a negative correlation and upregulated in Low TPS, highlighting the importance of modulating immune responses in the GBM mechanism. Conclusions: Our study uncovers sample heterogeneity's impact on gene expression and the molecular mechanisms driving GBM, and it identifies potential therapeutic targets for developing effective treatments for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Atakan Burak Ceyhan
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum 25240, Türkiye;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| |
Collapse
|
4
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Natraj P, Rajan P, Jeon YA, Kim SS, Lee YJ. Antiadipogenic Effect of Citrus Flavonoids: Evidence from RNA Sequencing Analysis and Activation of AMPK in 3T3-L1 Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17788-17800. [PMID: 37955544 DOI: 10.1021/acs.jafc.3c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Citrus fruits are rich in dietary flavonoids and have many health benefits, but their antiadipogenic mechanism of action and their impact on lipid metabolism remain unclear. In this study, we investigated the effect of citrus flavonoids, namely, hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on preventing fat cell development by gene expression in 3T3-L1 adipocytes. Among the citrus flavonoids tested, HES and NAR significantly reduced fat storage and triglyceride levels and increased glucose uptake in 3T3-L1 adipocytes. Additionally, HES and NAR treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) while reducing the protein expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Furthermore, in silico docking revealed that flavonoids activate AMPK. RNA sequencing analysis demonstrated that citrus flavonoids normalized the expression of 40 genes, which were either upregulated by more than 2-fold or downregulated by less than 0.6-fold including Acadv1, Acly, Akr1d1, Awat1, Cyp27a1, Decr1, Dhrs4, Elovl3, Fasn, G6pc, Gba, Hmgcs1, Mogat2, Lrp5, Sptlc3, and Snca to levels comparable to the control group. Altogether, HES and NAR among five citrus flavonoids showed antiadipogenic effects by regulating the expression of specific lipid metabolism genes partially restored to control levels in 3T3-L1 cells.
Collapse
Affiliation(s)
- Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| | - Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 63607, Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
6
|
Wu D, Nealon G, Liu Y, Kim TK, Slominski AT, Tuckey RC. Metabolism of Lumisterol 2 by CYP27A1. J Steroid Biochem Mol Biol 2023; 233:106370. [PMID: 37499840 DOI: 10.1016/j.jsbmb.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.
Collapse
Affiliation(s)
- Dongxian Wu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuchen Liu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
7
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
Mast N, El-Darzi N, Li Y, Pikuleva IA. Quantitative characterizations of the cholesterol-related pathways in the retina and brain of hamsters. J Lipid Res 2023:100401. [PMID: 37330011 PMCID: PMC10394389 DOI: 10.1016/j.jlr.2023.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
The retina and brain are separated from the systemic circulation by the anatomical barriers, which are permeable (the outer blood-retinal barrier) and impermeable (the blood-brain and inner blood-retina barriers) to cholesterol. Herein we investigated whether the whole-body cholesterol maintenance affects cholesterol homeostasis in the retina and brain. We used hamsters, whose whole-body cholesterol handling is more similar to those in humans than in mice and conducted separate administrations of deuterated water and deuterated cholesterol. We assessed the quantitative significance of the retinal and brain pathways of cholesterol input and compared the results with those from our previous studies in mice. The utility of the measurements in the plasma of deuterated 24-hydroxycholesterol, the major cholesterol elimination product from the brain, was investigated as well. We established that despite a 7-fold higher serum LDL to HDL ratio and other cholesterol-related differences, in situ biosynthesis remained the major source of cholesterol for hamster retina, although its quantitative significance was reduced to 53% as compared to 72-78% in mouse retina. In the brain, the principal pathway of cholesterol input was also the same, in situ biosynthesis, accounting for 94% of the total brain cholesterol input (96% in mice); the interspecies differences pertained to the absolute rates of the total cholesterol input and turnover. We documented the correlations between deuterium enrichments of the brain 24-hydroxycholesterol, brain cholesterol, and plasma 24-hydroxycholesterol, which suggested that deuterium enrichment of plasma 24-hydroxycholesteol could be an in vivo marker of cholesterol elimination and turnover in the brain.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH USA.
| |
Collapse
|
9
|
Tuckey RC, Cheng CYS, Li L, Jiang Y. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. J Steroid Biochem Mol Biol 2023; 227:106229. [PMID: 36455719 DOI: 10.1016/j.jsbmb.2022.106229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
25-Hydroxyvitamin D3 (25(OH)D3) is present in the human circulation esterified to sulfate with some studies showing that 25(OH)D3 3-sulfate levels are almost as high as unconjugated 25(OH)D3. Vitamin D3 is also present in human serum in the sulfated form as are other metabolites. Our aim was to determine whether sulfated forms of vitamin D3 and vitamin D3 metabolites can be acted on by vitamin D-metabolizing cytochromes P450 (CYPs), one of which (CYP11A1) is known to act on cholesterol sulfate. We used purified, bacterially expressed CYPs to test if they could act on the sulfated forms of their natural substrates. Purified CYP27A1 converted vitamin D3 sulfate to 25(OH)D3 3-sulfate with a catalytic efficiency (kcat/Km) approximately half that for the conversion of vitamin D3 to 25(OH)D3. Similarly, the rate of metabolism of vitamin D3 sulfate was half that of vitamin D3 for CYP27A1 in rat liver mitochondria. CYP2R1 which is also a vitamin D 25-hydroxylase did not act on vitamin D3 sulfate. CYP11A1 was able to convert vitamin D3 sulfate to 20(OH)D3 3-sulfate but at a considerably lower rate than for conversion of vitamin D3 to 20(OH)D3. 25(OH)D3 3-sulfate was not metabolized by the activating enzyme, CYP27B1, nor by the inactivating enzyme, CYP24A1. Thus, we conclude that 25(OH)D3 3-sulfate in the circulation may act as a pool of metabolically inactive vitamin D3 to be released by hydrolysis at times of need whereas vitamin D3 sulfate can be metabolized in a similar manner to free vitamin D3 by CYP27A1 and to a lesser degree by CYP11A1.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Lei Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuhan Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
El-Darzi N, Mast N, Hammer SS, Dorweiler TF, Busik JV, Pikuleva IA. 2-Hydroxypropyl-β-cyclodextrin mitigates pathological changes in a mouse model of retinal cholesterol dyshomeostasis. J Lipid Res 2023; 64:100323. [PMID: 36586438 PMCID: PMC9883287 DOI: 10.1016/j.jlr.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-β-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1-/- mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1-/- mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch's membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch's membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1-/- mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Suresh S, Rabbie R, Garg M, Lumaquin D, Huang TH, Montal E, Ma Y, Cruz NM, Tang X, Nsengimana J, Newton-Bishop J, Hunter MV, Zhu Y, Chen K, de Stanchina E, Adams DJ, White RM. Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discov 2023; 13:194-215. [PMID: 36259947 PMCID: PMC9827116 DOI: 10.1158/2159-8290.cd-22-0427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 01/16/2023]
Abstract
In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Dianne Lumaquin
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yilun Ma
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xinran Tang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Biochemistry and Structural Biology, Cellular and Developmental Biology and Molecular Biology Ph.D. Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Miranda V. Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuxin Zhu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
12
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun 2021; 12:5103. [PMID: 34429409 PMCID: PMC8385107 DOI: 10.1038/s41467-021-25354-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia and dyslipidemia are associated with an increased risk for many cancer types and with poor outcomes in patients with established disease. Whereas the mechanisms by which this occurs are multifactorial we determine that chronic exposure of cells to 27-hydroxycholesterol (27HC), an abundant circulating cholesterol metabolite, selects for cells that exhibit increased cellular uptake and/or lipid biosynthesis. These cells exhibit substantially increased tumorigenic and metastatic capacity. Notably, the metabolic stress imposed upon cells by the accumulated lipids requires sustained expression of GPX4, a negative regulator of ferroptotic cell death. We show that resistance to ferroptosis is a feature of metastatic cells and further demonstrate that GPX4 knockdown attenuates the enhanced tumorigenic and metastatic activity of 27HC resistant cells. These findings highlight the general importance of ferroptosis in tumor growth and metastasis and suggest that dyslipidemia/hypercholesterolemia impacts cancer pathogenesis by selecting for cells that are resistant to ferroptotic cell death.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, 30322, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Wu J, Ye Y, Quan J, Ding R, Wang X, Zhuang Z, Zhou S, Geng Q, Xu C, Hong L, Xu Z, Zheng E, Cai G, Wu Z, Yang J. Using nontargeted LC-MS metabolomics to identify the Association of Biomarkers in pig feces with feed efficiency. Porcine Health Manag 2021; 7:39. [PMID: 34078468 PMCID: PMC8170940 DOI: 10.1186/s40813-021-00219-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Improving feed efficiency is economically and environmentally beneficial in the pig industry. A deeper understanding of feed efficiency is essential on many levels for its highly complex nature. The aim of this project is to explore the relationship between fecal metabolites and feed efficiency-related traits, thereby identifying metabolites that may assist in the screening of the feed efficiency of pigs. Results We performed fecal metabolomics analysis on 50 individuals selected from 225 Duroc x (Landrace x Yorkshire) (DLY) commercial pigs, 25 with an extremely high feed efficiency and 25 with an extremely low feed efficiency. A total of 6749 and 5644 m/z features were detected in positive and negative ionization modes by liquid chromatography-mass spectrometry (LC/MS). Regrettably, the PCA could not classify the the samples accurately. To improve the classification, OPLS-DA was introduced. However, the predictive ability of the OPLS-DA model did not perform well. Then, through weighted coexpression network analysis (WGCNA), we found that one module in each positive and negative mode was related to residual feed intake (RFI), and six and three metabolites were further identified. The nine metabolites were found to be involved in multiple metabolic pathways, including lipid metabolism (primary bile acid synthesis, linoleic acid metabolism), vitamin D, glucose metabolism, and others. Then, Lasso regression analysis was used to evaluate the importance of nine metabolites obtained by the annotation process. Conclusions Altogether, this study provides new insights for the subsequent evaluation of commercial pig feed efficiency through small molecule metabolites, but also provide a reference for the development of new feed additives. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00219-w.
Collapse
Affiliation(s)
- Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642l, China. .,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, 510642, China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
16
|
12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158811. [PMID: 32896622 DOI: 10.1016/j.bbalip.2020.158811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023]
Abstract
There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4β-hydroxycholesterol (4βOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4βOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4βOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.
Collapse
|
17
|
Lu Z, Wang S, Ji C, Li F, Cong M, Shan X, Wu H. iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113591. [PMID: 31744679 DOI: 10.1016/j.envpol.2019.113591] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is an important heavy metal pollutant in the Bohai Sea. Mitochondria are recognized as the key target for Cd toxicity. However, mitochondrial responses to Cd have not been fully investigated in marine fishes. In this study, the mitochondrial responses were characterized in gills of juvenile flounder Paralichthys olivaceus treated with two environmentally relevant concentrations (5 and 50 μg/L) of Cd for 14 days by determination of mitochondrial membrane potential (MMP), observation of mitochondrial morphology and quantitative proteomic analysis. Both Cd treatments significantly decreased MMPs of mitochondria from flounder gills. Mitochondrial morphologies were altered in Cd-treated flounder samples, indicated by more and smaller mitochondria. iTRAQ-based proteomic analysis indicated that a total of 128 proteins were differentially expressed in both Cd treatments. These proteins were basically involved in various biological processes in gill mitochondria, including mitochondrial morphology and import, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), primary bile acid biosynthesis, stress resistance and apoptosis. These results indicated that dynamic regulations of energy homeostasis, cholesterol metabolism, stress resistance, apoptosis, and mitochondrial morphology in gill mitochondria might play significant roles in response to Cd toxicity. Overall, this study provided a global view on mitochondrial toxicity of Cd in flounder gills using iTRAQ-based proteomics.
Collapse
Affiliation(s)
- Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
18
|
mRNA as a Novel Treatment Strategy for Hereditary Spastic Paraplegia Type 5. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:359-370. [PMID: 31828178 PMCID: PMC6888748 DOI: 10.1016/j.omtm.2019.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
Hereditary spastic paraplegia type 5 is a neurodegenerative disease caused by loss-of-function mutations in the CYP7B1 gene encoding the oxysterol 7-α-hydroxylase involved in bile acid synthesis in the liver. Lack of CYP7B1 leads to an accumulation of its oxysterol substrates, in particular 25-hydroxycholesterol and 27-hydroxycholesterol that are able to cross the blood-brain barrier and have neurotoxic properties. A potential therapeutic strategy for SPG5 is the replacement of CYP7B1 by administration of mRNA. Here, we studied the intravenous application of formulated mouse and human CYP7B1 mRNA in mice lacking the endogenous Cyp7b1 gene. A single-dose injection of either mouse or human CYP7B1 mRNA led to a pronounced degradation of oxysterols in liver and serum within 2 days of treatment. Pharmacokinetics indicate a single injection of human CYP7B1 mRNA to be effective in reducing oxysterols for at least 5 days. Repetitive applications of mRNA were safe for at least 17 days and resulted in a significant reduction of neurotoxic oxysterols not only in liver and serum but also to some extent in the brain. Our study highlights the potential to use mRNA as a novel therapy to treat patients with SPG5 disease.
Collapse
|
19
|
Abstract
On January 21, 2017, I received an E-mail from Herb Tabor that I had been simultaneously hoping for and dreading for several years: an invitation to write a "Reflections" article for the Journal of Biological Chemistry On the one hand, I was honored to receive an invitation from Herb, a man I have admired for over 40 years, known for 24 years, and worked with as a member of the Editorial Board and Associate Editor of the Journal of Biological Chemistry for 17 years. On the other hand, the invitation marked the waning of my career as an academic scientist. With these conflicting emotions, I wrote this article with the goals of recording my career history and recognizing the many mentors, trainees, and colleagues who have contributed to it and, perhaps with pretension, with the desire that students who are beginning a career in research will find inspiration in the path I have taken and appreciate the importance of luck.
Collapse
Affiliation(s)
- David W Russell
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| |
Collapse
|
20
|
Ibrahim S, Dayoub R, Krautbauer S, Liebisch G, Wege AK, Melter M, Weiss TS. Bile acid-induced apoptosis and bile acid synthesis are reduced by over-expression of Augmenter of Liver Regeneration (ALR) in a STAT3-dependent mechanism. Exp Cell Res 2019; 374:189-197. [DOI: 10.1016/j.yexcr.2018.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/31/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
|
21
|
Tuckey RC, Li W, Ma D, Cheng CYS, Wang KM, Kim TK, Jeayeng S, Slominski AT. CYP27A1 acts on the pre-vitamin D3 photoproduct, lumisterol, producing biologically active hydroxy-metabolites. J Steroid Biochem Mol Biol 2018; 181:1-10. [PMID: 29452159 PMCID: PMC5992068 DOI: 10.1016/j.jsbmb.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 01/03/2023]
Abstract
Prolonged exposure of the skin to UV radiation causes previtamin D3, the initial photoproduct formed by opening of the B ring of 7-dehydrocholesterol, to undergo a second photochemical reaction where the B-ring is reformed giving lumisterol3 (L3), a stereoisomer of 7-dehydrocholesterol. L3 was believed to be an inactive photoproduct of excessive UV radiation whose formation prevents excessive vitamin D production. Recently, we reported that L3 is present in serum and that CYP11A1 can act on L3 producing monohydroxy- and dihydroxy-metabolites which inhibit skin cell proliferation similarly to 1α,25-dihydroxyvitamin D3. In this study we tested the ability of human CYP27A1 to hydroxylate L3. L3 was metabolized by purified CYP27A1 to 3 major products identified as 25-hydroxyL3, (25R)-27-hydroxyL3 and (25S)-27-hydroxyL3, by NMR. These three products were also seen when mouse liver mitochondria containing CYP27A1 were incubated with L3. The requirement for CYP27A1 for their formation by mitochondria was confirmed by the inhibition of their synthesis by 5β-cholestane-3α,7α,12α-triol, an intermediate in bile acid synthesis which serves as an efficient competitive substrate for CYP27A1. CYP27A1 displayed a high kcat for the metabolism of L3 (76 mol product/min/mol CYP27A1) and a catalytic efficiency (kcat/Km) that was 260-fold higher than that for vitamin D3. The CYP27A1-derived hydroxy-derivatives inhibited the proliferation of cultured human melanoma cells and colony formation with IC50 values in the nM range. Thus, L3 is metabolized efficiently by CYP27A1 with hydroxylation at C25 or C27 producing metabolites potent in their ability to inhibit melanoma cell proliferation, supporting that L3 is a prohormone which can be activated by CYP-dependent hydroxylations.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Katie M Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL 35294, USA
| | - Saowanee Jeayeng
- Department of Dermatology, University of Alabama at Birmingham, AL 35294, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL 35294, USA; VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Nelson ER. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol Cell Endocrinol 2018; 466:73-80. [PMID: 28919300 PMCID: PMC5854519 DOI: 10.1016/j.mce.2017.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Although significant advances in the treatment of breast cancer have been made, in particular in the use of endocrine therapy, de novo and aquired resistance to therapy, and metastatic recurrence continue to be major clinical problems. Given the high prevalence of breast cancer, new life-style or chemotherapeutic approaches are required. In this regard, cholesterol has emerged as a risk factor for the onset of breast cancer, and elevated cholesterol is associated with a poor prognosis. While treatment with cholesterol lowering medication is not associated with breast cancer risk, it does appear to be protective against recurrence. Importantly, the cholesterol axis represents a potential target for both life-style and pharmacological intervention. This review will outline the clinical and preclinical data supporting a role for cholesterol in breast cancer pathophysiology. Specific focus is given to 27-hydroxycholesterol (27-OHC; (3β,25R)-Cholest-5-ene-3,26-diol)), a primary metabolite of cholesterol that has recently been defined as an endogenous Selective Estrogen Receptor Modulator. Future perspectives and directions are discussed.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, IL, USA.
| |
Collapse
|
23
|
Cheng CYS, Kim TK, Jeayeng S, Slominski AT, Tuckey RC. Properties of purified CYP2R1 in a reconstituted membrane environment and its 25-hydroxylation of 20-hydroxyvitamin D3. J Steroid Biochem Mol Biol 2018; 177:59-69. [PMID: 28716760 PMCID: PMC5767547 DOI: 10.1016/j.jsbmb.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA
| | - Saowanee Jeayeng
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
24
|
Schöls L, Rattay TW, Martus P, Meisner C, Baets J, Fischer I, Jägle C, Fraidakis MJ, Martinuzzi A, Saute JA, Scarlato M, Antenora A, Stendel C, Höflinger P, Lourenco CM, Abreu L, Smets K, Paucar M, Deconinck T, Bis DM, Wiethoff S, Bauer P, Arnoldi A, Marques W, Jardim LB, Hauser S, Criscuolo C, Filla A, Züchner S, Bassi MT, Klopstock T, De Jonghe P, Björkhem I, Schüle R. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain 2017; 140:3112-3127. [PMID: 29126212 PMCID: PMC5841036 DOI: 10.1093/brain/awx273] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Tim W Rattay
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Christoph Meisner
- Institute for Clinical Epidemiology and Applied Biostatistics, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Jonathan Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2610 Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biostatistics, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Christine Jägle
- Center for Rare Diseases and Institute of Human Genetics and Applied Genomics, Eberhard-Karls-University, 72076 Tübingen, Germany
| | - Matthew J Fraidakis
- Rare Neurological Diseases Unit, Department of Neurology, University Hospital ‘Attikon’, Medical School of the University of Athens, 12462 Athens, Greece
| | - Andrea Martinuzzi
- Scientific Institute IRCCS E. Medea, Conegliano Research Center, 31015 Conegliano, Italy
| | - Jonas Alex Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Genetics Identification Laboratory, Hospital de Clínicas de Porto Alegre, 90035 Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), 90040 Porto Alegre, Brazil
| | - Marina Scarlato
- Neurology Department and INSPE, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonella Antenora
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, 80131 Naples, Italy
| | - Claudia Stendel
- Department of Neurology, Friedrich Baur Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Philip Höflinger
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Charles Marques Lourenco
- Departamento de Neurologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, 14049 Ribeirao Preto, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 90040 Porto Alegre, Brazil
| | - Lisa Abreu
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, 33136 Miami, Florida, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, 33136 Miami, Florida, USA
| | - Katrien Smets
- Neurogenetics Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2610 Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital Huddinge and Department of Clinical Neuroscience, Karolinska Institute, 14152 Huddinge, Sweden
| | - Tine Deconinck
- Neurogenetics Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
| | - Dana M Bis
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, 33136 Miami, Florida, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, 33136 Miami, Florida, USA
| | - Sarah Wiethoff
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls-University, 72076 Tübingen, Germany
- CENTOGENE AG, 18057 Rostock, Germany
| | - Alessia Arnoldi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Wilson Marques
- Departamento de Neurologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, 14049 Ribeirao Preto, Brazil
| | - Laura Bannach Jardim
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Genetics Identification Laboratory, Hospital de Clínicas de Porto Alegre, 90035 Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), 90040 Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 90040 Porto Alegre, Brazil
| | - Stefan Hauser
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, 80131 Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, 80131 Naples, Italy
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, 33136 Miami, Florida, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, 33136 Miami, Florida, USA
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Thomas Klopstock
- Department of Neurology, Friedrich Baur Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2610 Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
| | - Ingemar Björkhem
- Karolinska University Hospital Huddinge, Karolinska Institute, 14152 Stockholm, Sweden
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| |
Collapse
|
25
|
Abstract
(25R)-26-Hydroxycholesterol (27-hydroxycholesterol) has been found to accumulate in breast tissue and to stimulate tumor growth via the estrogen receptor. Although most tissues express CYP27A1, the highest levels are in macrophages and most attention had been given to the production of 27-hydroxycholesterol in sub-endothelial macrophages as part of reverse cholesterol transport. In view of the newly identified biologic activity, it is important to consider the determinants of the levels of 27-hydroxycholesterol in macrophages that infiltrate breast tissue. Among these determinants are the oxysterol binding proteins expressed in macrophages, the level of expression of CYP7B1, the oxysterol 7 alpha hydroxylase that generates an inactive triol, and further oxidation of 27-hydroxycholestrol to the C27 acid by multifunctional CYP27A1. Transport of 27-hydroxycholesterol from macrophages to plasma is HDL-associated. In many tissues the ratio of 27-hydroxycholesterol to cholesterol (ng/μg) is higher than that in plasma. Tamoxifen, an effective estrogen receptor antagonist that prevents breast cancer, also has the biologic property of blocking several steps in the lanosterol to cholesterol metabolic pathway. In genetically disposed women, tamoxifen may increase the amount of 27-hydroxycholesterol in breast tissue.
Collapse
|
26
|
Fedorova OV, Zernetkina VI, Shilova VY, Grigorova YN, Juhasz O, Wei W, Marshall CA, Lakatta EG, Bagrov AY. Synthesis of an Endogenous Steroidal Na Pump Inhibitor Marinobufagenin, Implicated in Human Cardiovascular Diseases, Is Initiated by CYP27A1 via Bile Acid Pathway. ACTA ACUST UNITED AC 2015; 8:736-45. [PMID: 26374826 DOI: 10.1161/circgenetics.115.001217] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/31/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The bioactive steroid, marinobufagenin, is an endogenous Na/K-ATPase bufadienolide inhibitor that is synthesized by adrenocortical and placental cells. Marinobufagenin binding to Na/K-ATPase initiates profibrotic cell signaling, and heightened marinobufagenin levels are implicated in the pathogenesis of hypertension, preeclampsia, and chronic kidney disease. Steroids are derived from cholesterol through the traditional steroidogenesis pathway initiated by enzyme CYP11A1, and via the acidic bile acid pathway, which is controlled by enzyme CYP27A1. The mechanism of marinobufagenin biosynthesis in mammals, however, remains unknown. METHODS AND RESULTS Here, we show that post-transcriptional silencing of the CYP27A1 gene in human trophoblast and rat adrenocortical cells reduced the expression of CYP27A1 mRNA by 70%, reduced total bile acids 2-fold, and marinobufagenin levels by 67% when compared with nontreated cells or cells transfected with nontargeting siRNA. In contrast, silencing of the CYP11A1 gene did not affect marinobufagenin production in either cell culture, but suppressed production of progesterone 2-fold in human trophoblast cells and of corticosterone by 90% in rat adrenocortical cells when compared with cells transfected with nontargeting siRNA. In vivo, in a high-salt administration experiment, male and female Dahl salt-sensitive rats became hypertensive after 4 weeks on a high-NaCl diet, their plasma marinobufagenin levels doubled, and adrenocortical CYP27A1 mRNA and protein increased 1.6-fold and 2.0-fold. CONCLUSIONS Therefore, the endogenous steroidal Na/K-ATPase inhibitor, marinobufagenin, is synthesized in mammalian placenta and adrenal cortex from cholesterol through the novel acidic bile acid pathway. These findings will help to understand the role of marinobufagenin in highly prevalent human cardiovascular diseases.
Collapse
Affiliation(s)
- Olga V Fedorova
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| | - Valentina I Zernetkina
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Victoria Y Shilova
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yulia N Grigorova
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ondrej Juhasz
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Wen Wei
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Courtney A Marshall
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Edward G Lakatta
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alexei Y Bagrov
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| |
Collapse
|
27
|
Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res 2014; 41:64-89. [PMID: 24704580 DOI: 10.1016/j.preteyeres.2014.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because of eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes' roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link.
Collapse
|
28
|
Li J, Daly E, Campioli E, Wabitsch M, Papadopoulos V. De novo synthesis of steroids and oxysterols in adipocytes. J Biol Chem 2013; 289:747-64. [PMID: 24280213 DOI: 10.1074/jbc.m113.534172] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.
Collapse
Affiliation(s)
- Jiehan Li
- From the Research Institute, McGill University Health Centre, and
| | | | | | | | | |
Collapse
|
29
|
Langhi C, Pedraz-Cuesta E, Haro D, Marrero PF, Rodríguez JC. Regulation of human class I alcohol dehydrogenases by bile acids. J Lipid Res 2013; 54:2475-84. [PMID: 23772048 DOI: 10.1194/jlr.m039404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.
Collapse
Affiliation(s)
- Cédric Langhi
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Institute of Biomedicine of University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Charvet CD, Laird J, Xu Y, Salomon RG, Pikuleva IA. Posttranslational modification by an isolevuglandin diminishes activity of the mitochondrial cytochrome P450 27A1. J Lipid Res 2013; 54:1421-9. [PMID: 23479405 DOI: 10.1194/jlr.m035790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification by isolevuglandins (isoLGs), arachidonate oxidation products, is an important yet understudied process associated with altered protein properties. This type of modification is detected in cytochrome P450 27A1 (CYP27A1), a multifunction enzyme expressed in almost every cell and involved in the metabolism of cholesterol and other sterols. Previously, the CYP27A1 Lys(358)-isoLG adduct was found in human retina afflicted with age-related macular degeneration. Yet, the effect of Lys(358) modification on enzyme activity was not investigated. Herein, we characterized catalytic properties of Lys(358) as well as Lys(476) CYP27A1 mutants before and after isoLG treatment and quantified the extent of modification by multiple reaction monitoring. The K358R mutant was less susceptible to isoLG-induced loss of catalytic activity than the wild type (WT), whereas the K476R mutant was nearly as vulnerable as the WT. Both mutants showed less isoLG modification than WT. Thus, modification of Lys(358), a residue involved in redox partner interactions, is the major contributor to isoLG-associated loss of CYP27A1 activity. Our data show the specificity of isoLG modification, provide direct evidence that isoLG adduction impairs enzyme activity, and support our hypothesis that isoLG modification in the retina is detrimental to CYP27A1 enzyme activity, potentially disrupting cholesterol homeostasis.
Collapse
Affiliation(s)
- Casey D Charvet
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
31
|
Meaney S. Epigenetic regulation of oxysterol formation. Biochimie 2012; 95:531-7. [PMID: 22986023 DOI: 10.1016/j.biochi.2012.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that may be formed by either enzymatic or non-enzymatic mechanisms. Expression of the genes responsible for oxysterol synthesis (GROS) is known to be restricted across different tissues and cell types. Regulation of the transcription of GROS and the activity of their enzyme transcripts has been the subject of intense activity for many years. Recent studies have sought to decipher the mechanism(s) that underpin the restricted expression of the GROS. Available data indicates that epigenetic mechanisms have an important role to play in the control of the expression of GROS. In the current review we summarize the available evidence for the epigenetic regulation of these genes.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
32
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
33
|
Wang M, Heo GY, Omarova S, Pikuleva IA, Turko IV. Sample prefractionation for mass spectrometry quantification of low-abundance membrane proteins. Anal Chem 2012; 84:5186-91. [PMID: 22607469 DOI: 10.1021/ac300587v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Use of stable isotope-labeled full-length proteins as an internal standard prior to multiple reaction monitoring (MRM) analysis enables prefractionation of the target proteins and quantification of those low-abundance proteins, which cannot be reached without biological sample enrichment. In terms of membrane proteins, this benefit can be used if a sample processing workflow allows entire solubilization of membrane proteins. We have developed a universal workflow for sample processing and enrichment by optimizing washing and solubilization conditions and implementing sample fractionation by Whole Gel Eluter. The optimized protocol was applied to various membrane-bound cytochromes P450 (CYPs) and their electron transferring protein partners, cytochrome P450 reductase (CPR), ferredoxin reductase (FdR), and ferredoxin (Fdx), all important proteins for cholesterol elimination from different organs. Both, weakly associated (CPR and FdR) and tightly associated (CYP7B1, CYP11A1, CYP27A1, and CYP46A1) membrane proteins were quantified. Measurements were performed on three human tissues (temporal lobe of the brain, retina, and retinal pigment epithelium) obtained from multiple donors. The biological implications of our quantitative measurements are also discussed.
Collapse
Affiliation(s)
- Meiyao Wang
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
34
|
Tieu EW, Li W, Chen J, Baldisseri DM, Slominski AT, Tuckey RC. Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. J Steroid Biochem Mol Biol 2012; 129:163-71. [PMID: 22210453 PMCID: PMC3303980 DOI: 10.1016/j.jsbmb.2011.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
CYP27A1 is a mitochondrial cytochrome P450 which can hydroxylate vitamin D3 and cholesterol at carbons 25 and 26, respectively. The product of vitamin D3 metabolism, 25-hydroxyvitamin D3, is the precursor to the biologically active hormone, 1α,25-dihydroxyvitamin D3. CYP27A1 is attached to the inner mitochondrial membrane and substrates appear to reach the active site through the membrane phase. We have therefore examined the ability of bacterially expressed and purified CYP27A1 to metabolize substrates incorporated into phospholipid vesicles which resemble the inner mitochondrial membrane. We also examined the ability of CYP27A1 to metabolize 20-hydroxyvitamin D3 (20(OH)D3), a novel non-calcemic form of vitamin D derived from CYP11A1 action on vitamin D3 which has anti-proliferative activity on keratinocytes, leukemic and myeloid cells. CYP27A1 displayed high catalytic activity towards cholesterol with a turnover number (k(cat)) of 9.8 min(-1) and K(m) of 0.49 mol/mol phospholipid (510 μM phospholipid). The K(m) value of vitamin D3 was similar for that of cholesterol, but the k(cat) was 4.5-fold lower. 20(OH)D3 was metabolized by CYP27A1 to two major products with a k(cat)/K(m) that was 2.5-fold higher than that for vitamin D3, suggesting that 20(OH)D3 could effectively compete with vitamin D3 for catalysis. NMR and mass spectrometric analyses revealed that the two major products were 20,25-dihydroxyvitamin D3 and 20,26-dihydroxyvitamin D3, in almost equal proportions. Thus, the presence of the 20-hydroxyl group on the vitamin D3 side chain enables it to be metabolized more efficiently than vitamin D3, with carbon 26 in addition to carbon 25 becoming a major site of hydroxylation. Our study reports the highest k(cat) for the 25-hydroxylation of vitamin D3 by any human cytochrome P450 suggesting that CYP27A1 might be an important contributor to the synthesis of 25-hydroxyvitamin D3, particularly in tissues where it is highly expressed.
Collapse
Affiliation(s)
- Elaine W. Tieu
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Andrzej T. Slominski
- Department of Pathology and Laboratory Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C. Tuckey
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Corresponding author. Tel.: +61 864883040; fax.: +61 864881148., Postal address: 35 Stirling Highway, Crawley, WA 6009, Australia., address:
| |
Collapse
|
35
|
Hargrove TY, Wawrzak Z, Liu J, Waterman MR, Nes WD, Lepesheva GI. Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol. J Lipid Res 2011; 53:311-20. [PMID: 22135275 DOI: 10.1194/jlr.m021865] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sterol 14α-demethylase (CYP51) that catalyzes the removal of the 14α-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14α-methylenecyclopropyl-Δ7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bile Acid signaling in liver metabolism and diseases. J Lipids 2011; 2012:754067. [PMID: 21991404 PMCID: PMC3185234 DOI: 10.1155/2012/754067] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/04/2011] [Indexed: 12/12/2022] Open
Abstract
Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.
Collapse
|
37
|
Kayser H, Eilinger P, Piechon P, Wagner T. C-26 vs. C-27 hydroxylation of insect steroid hormones: regioselectivity of a microsomal cytochrome P450 from a hormone-resistant cell line. Arch Biochem Biophys 2011; 513:27-35. [PMID: 21763268 DOI: 10.1016/j.abb.2011.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
Hydroxylation of steroids at one of the side chain terminal methyl groups, commonly linked to C-26, represents an important regulatory step established in many phyla. Discrimination between the two sites, C-26 and C-27, requires knowing the stereochemistry of the products. 26-Hydroxylation of the insect steroid hormone 20-hydroxyecdysone by a microsomal cytochrome P450 was previously found to be responsible for hormonal resistance in a Chironomus cell line mainly producing the (25S)-epimer of 20,26-dihydroxyecdysone. Here, we studied the 25-desoxy analog of 20-hydroxyecdysone, ponasterone A, to elucidate the stereochemistry of the expected 26-hydroxy product, inokosterone, which occurs as C-25 epimers in nature. We identified the predominant metabolite as the C-25 R epimer of inokosterone on comparison by RP-HPLC with the (25R)- and (25S)-epimers the stereochemistry of which was confirmed by X-ray crystallography. (25R)-inokosterone was further oxidized to the 26-aldehyde identified by mass spectroscopy, borohydride reduction and metabolic transformation to 26-carboxylic acid. The (25S)-epimers of inokosterone and its aldehyde were minor products. With 20-hydroxyecdysone as substrate, we newly identified the (25R)-epimer of 20,26-dihydroxyecdysone as a minor product. In conclusion, the present stereochemical studies revealed high regioselectivity of the Chironomus enzyme to hydroxylate both steroids at the same methyl group, denoted C-27.
Collapse
Affiliation(s)
- Hartmut Kayser
- Institute of General Zoology and Endocrinology, University of Ulm, Germany.
| | | | | | | |
Collapse
|
38
|
24S-hydroxycholesterol and cholesterol-24S-hydroxylase (CYP46A1) in the retina: from cholesterol homeostasis to pathophysiology of glaucoma. Chem Phys Lipids 2011; 164:496-9. [DOI: 10.1016/j.chemphyslip.2011.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
|
39
|
Oxysterols in bile acid metabolism. Clin Chim Acta 2011; 412:2037-45. [PMID: 21855537 DOI: 10.1016/j.cca.2011.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
Increasing body of evidence is available indicating that oxysterols are more much than intermediates of metabolic pathways. Oxysterols play a role in the regulation of cholesterol synthesis, transport and efflux. A scavenger effect of cholesterol 27-hydroxylase on elevated serum cholesterol levels is well demonstrated. Bile acid synthesis occurs through two main pathways, the classic and the alternative ones. Since plasma concentrations of 27-hydroxycholesterol were clearly shown to reflect its production rate the alternative pathway of bile acid synthesis can be easily explored. Conversely this was not true for 7α-hydroxycholesterol and also the direct evaluation of the classic pathway by kinetic studies is more difficult since the rate of plasma appearance during continuous infusion of deuterated isotopomers may not exactly measure its production rate. Hepatic cholesterol 7alpha-hydroxylase activity is absent during fetal life in humans and upregulates after birth. Both the classic and alternative pathways become mature after the age of 4 years. It has been clearly demonstrated that in patients with liver disease the classic pathway is impaired while the alternative one is preserved. Conversely, in obese patients, preliminary data suggest an increase of the production rate of 27-hydroxycholesterol, a possible mechanism to counteract the increase of atherosclerotic risk.
Collapse
|
40
|
Charvet C, Liao WL, Heo GY, Laird J, Salomon RG, Turko IV, Pikuleva IA. Isolevuglandins and mitochondrial enzymes in the retina: mass spectrometry detection of post-translational modification of sterol-metabolizing CYP27A1. J Biol Chem 2011; 286:20413-22. [PMID: 21498512 PMCID: PMC3121529 DOI: 10.1074/jbc.m111.232546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Indexed: 11/06/2022] Open
Abstract
We report the first peptide mapping and sequencing of an in vivo isolevuglandin-modified protein. Mitochondrial cytochrome P450 27A1 (CYP27A1) is a ubiquitous multifunctional sterol C27-hydroxylase that eliminates cholesterol and likely 7-ketocholesterol from the retina and many other tissues. We investigated the post-translational modification of this protein with isolevuglandins, arachidonate oxidation products. Treatment of purified recombinant CYP27A1 with authentic iso[4]levuglandin E(2) (iso[4]LGE(2)) in vitro diminished enzyme activity in a time- and phospholipid-dependent manner. A multiple reaction monitoring protocol was then developed to identify the sites and extent of iso[4]LGE(2) adduction. CYP27A1 exhibited only three Lys residues, Lys(134), Lys(358), and Lys(476), that readily interact with iso[4]LGE(2) in vitro. Such selective modification enabled the generation of an internal standard, (15)N-labeled CYP27A1 modified with iso[4]LGE(2), for the subsequent analysis of a human retinal sample. Two multiple reaction monitoring transitions arising from the peptide AVLK(358)(-C(20)H(26)O(3))ETLR in the retinal sample were observed that co-eluted with the corresponding two (15)N transitions from the supplemented standard. These data demonstrate that modified CYP27A1 is present in the retina. We suggest that such protein modification impairs sterol elimination and likely has other pathological sequelae. We also propose that the post-translational modifications identified in CYP27A1 exemplify a general mechanism whereby oxidative stress and inflammation deleteriously affect protein function, contributing, for example, to cholesterol-rich lesions associated with age-related macular degeneration and cardiovascular disease. The proteomic protocols developed in this study are generally applicable to characterization of lipid-derived oxidative protein modifications occurring in vivo, including proteins bound to membranes.
Collapse
Affiliation(s)
- Casey Charvet
- From the Departments of Ophthalmology and Visual Sciences and
| | - Wei-Li Liao
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
| | - Gun-Young Heo
- From the Departments of Ophthalmology and Visual Sciences and
| | - James Laird
- Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Illarion V. Turko
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
- the Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | | |
Collapse
|
41
|
Heo GY, Bederman I, Mast N, Liao WL, Turko IV, Pikuleva IA. Conversion of 7-ketocholesterol to oxysterol metabolites by recombinant CYP27A1 and retinal pigment epithelial cells. J Lipid Res 2011; 52:1117-1127. [PMID: 21411718 DOI: 10.1194/jlr.m014217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Of the different oxygenated cholesterol metabolites, 7-ketocholesterol (7KCh) is considered a noxious oxy-sterol implicated in the development of certain pathologies, including those found in the eye. Here we elucidated whether sterol 27-hydroxylase cytochrome P450 27A1 (CYP27A1) is involved in elimination of 7KCh from the posterior part of the eye: the neural retina and underlying retinal pigment epithelium (RPE). We first established that the affinities of purified recombinant CYP27A1 for 7KCh and its endogenous substrate cholesterol are similar, yet 7KCh is metabolized at a 4-fold higher rate than cholesterol in the reconstituted system in vitro. Lipid extracts from bovine neural retina and RPE were then analyzed by isotope dilution GC-MS for the presence of the 7KCh-derived oxysterols. Two metabolites, 3β,27-dihydroxy-5-cholesten-7-one (7KCh-27OH) and 3β-hydroxy-5-cholesten-7-one-26-oic acid (7KCh-27COOH), were detected in the RPE but not in the neural retina. 7KCh-27OH was also formed when RPE homogenates were supplemented with NADPH and the mitochondrial redox system. Quantifications in human RPE showed that CYP27A1 is indeed expressed in the RPE at 2-4-fold higher levels than in the neural retina. The data obtained represent evidence for the role of CYP27A1 in retinal metabolism of 7KCh and suggest that, in addition to cholesterol removal, the functions of this enzyme could also include elimination of toxic endogenous compounds.
Collapse
Affiliation(s)
- Gun-Young Heo
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Ilya Bederman
- Pediatrics, Case Western Reserve University, Cleveland, OH
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Wei-Li Liao
- Institute for Bioscience and Biotechnology Research, Rockville, MD
| | - Illarion V Turko
- Institute for Bioscience and Biotechnology Research, Rockville, MD; Division Analytical Chemistry, National Institute of Standards and Technology, Gaithersburg, MD
| | - Irina A Pikuleva
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
42
|
Mast N, Reem R, Bederman I, Huang S, DiPatre PL, Bjorkhem I, Pikuleva IA. Cholestenoic Acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest Ophthalmol Vis Sci 2011; 52:594-603. [PMID: 20881306 DOI: 10.1167/iovs.10-6021] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Accumulating evidence indicates a link between cholesterol and age-related macular degeneration. Yet, little is known about cholesterol elimination from the retina and retinal pigment epithelium (RPE), the two layers that are damaged in this blinding disease. Several different pathways of enzymatic cholesterol removal exist in extraocular tissues. The authors tested whether metabolites from these pathways could also be quantified in the bovine and human retina and RPE. For comparison, they measured cholesterol oxidation products in two regions of the bovine and human brain and in the bovine liver and adrenal glands. METHODS Sterol quantification was carried out by isotope dilution gas chromatography-mass spectrometry. Bovine tissues were used first to optimize analytical procedures and to investigate postmortem changes in oxysterol concentrations. Then human specimens were analyzed for oxysterol concentrations. RESULTS Qualitatively, oxysterol profiles were similar in the bovine and human tissues. In the human retina and RPE, the authors could not detect 27-hydroxycholesterol but unexpectedly found that its oxidation product, 5-cholestenoic acid, is the most abundant oxysterol, varying up to threefold in different persons. 24S-Hydroxysterol and pregnenolone were also present in the retina, but at much lower quantities and without significant interindividual variability. In the brain, the predominant oxysterol was 24S-hydroxycholesterol. CONCLUSIONS The oxysterol profile of the retina suggests that all known pathways of cholesterol elimination in extraocular organs are operative in the retina and that they likely vary depending on specific cell type. However, overall oxidation to 5-cholestenoic acid appears to be the predominant mechanism for cholesterol elimination from this organ.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Hagey LR, Møller PR, Hofmann AF, Krasowski MD. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol Biochem Zool 2010; 83:308-21. [PMID: 20113173 PMCID: PMC2845723 DOI: 10.1086/649966] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.
Collapse
Affiliation(s)
- Lee R. Hagey
- Department of Medicine, University of California at San Diego, MC 0063, La Jolla, California 92093-0063
| | - Peter R. Møller
- National History Museum of Denmark, Zoological Museum, University of Copenhagen, Denmark
| | - Alan F. Hofmann
- Department of Medicine, University of California at San Diego, MC 0063, La Jolla, California 92093-0063
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
44
|
Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res 2009; 2009:501739. [PMID: 19636418 PMCID: PMC2712638 DOI: 10.1155/2009/501739] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/15/2009] [Indexed: 01/27/2023] Open
Abstract
Bile acids are amphipathic molecules synthesized from cholesterol in the liver. Bile acid synthesis is a major pathway for hepatic cholesterol catabolism. Bile acid synthesis generates bile flow which is important for biliary secretion of free cholesterol, endogenous metabolites, and xenobiotics. Bile acids are biological detergents that facilitate intestinal absorption of lipids and fat-soluble vitamins. Recent studies suggest that bile acids are important metabolic regulators of lipid, glucose, and energy homeostasis. Agonists of peroxisome proliferator-activated receptors (PPARα, PPARγ, PPARδ) regulate lipoprotein metabolism, fatty acid oxidation, glucose homeostasis and inflammation, and therefore are
used as anti-diabetic drugs for treatment of dyslipidemia and insulin insistence. Recent studies have shown that activation of
PPARα alters bile acid synthesis, conjugation, and transport, and also cholesterol synthesis, absorption and reverse cholesterol transport. This review will focus on the roles of PPARs in the regulation of pathways in bile acid and cholesterol homeostasis, and the therapeutic implications of using PPAR agonists for the treatment of metabolic syndrome.
Collapse
|
45
|
Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol 2009; 156:7-27. [PMID: 19133988 DOI: 10.1111/j.1476-5381.2008.00030.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis and detoxification. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors including the farnesoid X receptor, pregnane X receptor, vitamin D receptor and constitutive androstane receptor, which target overlapping, although not identical, sets of genes. Because the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis, therapeutic targeting of these receptors via specific and potent agonists may further enhance the hepatic defence against toxic bile acids. Activation of these receptors results in repression of bile acid synthesis, induction of phases I and II bile acid hydroxylation and conjugation and stimulation of alternative bile acid export while limiting hepatocellular bile acid import. Furthermore, the use of nuclear receptor ligands may not only influence bile acid transport and metabolism but may also directly target hepatic fibrogenesis and inflammation. Many drugs already used to treat cholestasis and its complications such as pruritus (e.g. ursodeoxycholic acid, rifampicin, fibrates) may act via activation of nuclear receptors. More specific and potent nuclear receptor ligands are currently being developed. This article will review the current knowledge on nuclear receptors and their potential role in the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
46
|
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89:147-91. [PMID: 19126757 DOI: 10.1152/physrev.00010.2008] [Citation(s) in RCA: 1222] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an increased risk of cardiovascular disease and diabetes. The metabolic syndrome can be defined as a cluster of cardiovascular disease risk factors including visceral obesity, insulin resistance, dyslipidemia, increased blood pressure, and hypercoagulability. The farnesoid X receptor (FXR) belongs to the superfamily of ligand-activated nuclear receptor transcription factors. FXR is activated by bile acids, and FXR-deficient (FXR(-/-)) mice display elevated serum levels of triglycerides and high-density lipoprotein cholesterol, demonstrating a critical role of FXR in lipid metabolism. In an opposite manner, activation of FXR by bile acids (BAs) or nonsteroidal synthetic FXR agonists lowers plasma triglycerides by a mechanism that may involve the repression of hepatic SREBP-1c expression and/or the modulation of glucose-induced lipogenic genes. A cross-talk between BA and glucose metabolism was recently identified, implicating both FXR-dependent and FXR-independent pathways. The first indication for a potential role of FXR in diabetes came from the observation that hepatic FXR expression is reduced in animal models of diabetes. While FXR(-/-) mice display both impaired glucose tolerance and decreased insulin sensitivity, activation of FXR improves hyperglycemia and dyslipidemia in vivo in diabetic mice. Finally, a recent report also indicates that BA may regulate energy expenditure in a FXR-independent manner in mice, via activation of the G protein-coupled receptor TGR5. Taken together, these findings suggest that modulation of FXR activity and BA metabolism may open new attractive pharmacological approaches for the treatment of the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Institut National de la Sante et de la Recherche Medicale, Lille, France
| | | | | | | | | |
Collapse
|
47
|
Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108:225-46. [PMID: 19131563 DOI: 10.1093/toxsci/kfn268] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfotransferase-2A1 catalyzes the formation of bile acid-sulfates (BA-sulfates). Sulfation of BAs increases their solubility, decreases their intestinal absorption, and enhances their fecal and urinary excretion. BA-sulfates are also less toxic than their unsulfated counterparts. Therefore, sulfation is an important detoxification pathway of BAs. Major species differences in BA sulfation exist. In humans, only a small proportion of BAs in bile and serum are sulfated, whereas more than 70% of BAs in urine are sulfated, indicating their efficient elimination in urine. The formation of BA-sulfates increases during cholestatic diseases. Therefore, sulfation may play an important role in maintaining BA homeostasis under pathologic conditions. Farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor are potential nuclear receptors that may be involved in the regulation of BA sulfation. This review highlights current knowledge about the enzymes and transporters involved in the formation and elimination of BA-sulfates, the effect of sulfation on the pharmacologic and toxicologic properties of BAs, the role of BA sulfation in cholestatic diseases, and the regulation of BA sulfation.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
48
|
Abstract
Cholesterol 24-hydroxylase is a highly conserved cytochrome P450 that is responsible for the majority of cholesterol turnover in the vertebrate central nervous system. The enzyme is expressed in neurons, including hippocampal and cortical neurons that are important for learning and memory formation. Disruption of the cholesterol 24-hydroxylase gene in the mouse reduces both cholesterol turnover and synthesis in the brain but does not alter steady-state levels of cholesterol in the tissue. The decline in synthesis reduces the flow of metabolites through the cholesterol biosynthetic pathway, of which one, geranylgeraniol diphosphate, is required for learning in the whole animal and for synaptic plasticity in vitro. This review focuses on how the link between cholesterol metabolism and higher-order brain function was experimentally established.
Collapse
Affiliation(s)
- David W. Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rebekkah W. Halford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Denise M.O. Ramirez
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rahul Shah
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tiina Kotti
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
49
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Chan J, Donalson LM, Kushwaha RS, Ferdinandusse S, VandeBerg JF, VandeBerg JL. Differential expression of hepatic genes involved in cholesterol homeostasis in high- and low-responding strains of laboratory opossums. Metabolism 2008; 57:718-24. [PMID: 18442639 PMCID: PMC2465809 DOI: 10.1016/j.metabol.2008.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Plasma very low-density lipoprotein and low-density lipoprotein (VLDL+LDL) cholesterol levels of 2 partially inbred strains of opossums (Monodelphis domestica) differ markedly when they are fed a high-cholesterol and low-fat (HCLF) diet. High-responding opossums exhibit a dramatic increase (>10-fold) in VLDL+LDL cholesterol, whereas low-responding opossums exhibit a minimal increase (<2-fold) in VLDL+LDL cholesterol. The genes responsible for the accumulation of high levels of plasma VLDL+LDL cholesterol in high-responding opossums have not yet been identified. In this study, we analyzed the expression of genes encoding for (1) 4 bile acid synthesis enzymes (CYP7A1, CYP27A1, CYP8B1, and CYP7B1); (2) 3 cholesterol synthesis enzymes (HMGCR, HMGCS1, and SQLE); (3) the LDL receptor (LDLR); (4) 2 sterol transporters (ABCG5 and ABCG8); and (5) 2 bile acid transporters (ABCB11 and SLC10A1) to determine how the expression of these genes was affected by dietary cholesterol in the 2 strains of opossums. We found differences between high and low responders in the expression of cholesterol synthesis genes on the basal diet, as well as differences in the expression of the CYP27A1, ABCG5, ABCG8, and SLC10A1 genes on the HCLF diet. CYP27A1 messenger RNA levels were lower in the livers of high responders compared with low responders, whereas CYP27A1 messenger RNA levels in extrahepatic tissues were similar in high and low responders on the HCLF diet. Low levels of CYP27A1, ABCG5, and ABCG8 expression in the liver may contribute to hypercholesterolemia in high-responding opossums.
Collapse
Affiliation(s)
- Jeannie Chan
- Southwest National Primate Research Center, Department of Genetics, Southwest Foundation for Biomedical Research, PO Box 760549, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | |
Collapse
|