1
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:2653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
2
|
Munford RS, Weiss JP, Lu M. Biochemical transformation of bacterial lipopolysaccharides by acyloxyacyl hydrolase reduces host injury and promotes recovery. J Biol Chem 2020; 295:17842-17851. [PMID: 33454018 DOI: 10.1074/jbc.rev120.015254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Indexed: 12/26/2022] Open
Abstract
Animals can sense the presence of microbes in their tissues and mobilize their own defenses by recognizing and responding to conserved microbial structures (often called microbe-associated molecular patterns (MAMPs)). Successful host defenses may kill the invaders, yet the host animal may fail to restore homeostasis if the stimulatory microbial structures are not silenced. Although mice have many mechanisms for limiting their responses to lipopolysaccharide (LPS), a major Gram-negative bacterial MAMP, a highly conserved host lipase is required to extinguish LPS sensing in tissues and restore homeostasis. We review recent progress in understanding how this enzyme, acyloxyacyl hydrolase (AOAH), transforms LPS from stimulus to inhibitor, reduces tissue injury and death from infection, prevents prolonged post-infection immunosuppression, and keeps stimulatory LPS from entering the bloodstream. We also discuss how AOAH may increase sensitivity to pulmonary allergens. Better appreciation of how host enzymes modify LPS and other MAMPs may help prevent tissue injury and hasten recovery from infection.
Collapse
Affiliation(s)
- Robert S Munford
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland, USA.
| | - Jerrold P Weiss
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| | - Mingfang Lu
- Department of Immunology and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Finethy R, Dockterman J, Kutsch M, Orench‐Rivera N, Wallace GD, Piro AS, Luoma S, Haldar AK, Hwang S, Martinez J, Kuehn MJ, Taylor GA, Coers J. Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock. EMBO Rep 2020; 21:e50830. [PMID: 33124745 PMCID: PMC7645254 DOI: 10.15252/embr.202050830] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Jacob Dockterman
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
| | - Miriam Kutsch
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | | | - Graham D Wallace
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Anthony S Piro
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Sarah Luoma
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Arun K Haldar
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Present address:
Division of BiochemistryCentral Drug Research Institute (CDRI)Council of Scientific and Industrial Research (CSIR)LucknowIndia
| | - Seungmin Hwang
- Department of PathologyThe University of ChicagoChicagoILUSA
- Present address:
VIR BiotechnologySan FranciscoCAUSA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease LaboratoryNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke University Medical CenterDurhamNCUSA
| | - Gregory A Taylor
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
- Division of GeriatricsDepartment of MedicineCenter for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNCUSA
- Geriatric Research, Education, and Clinical Center, VA Medical CenterDurhamNCUSA
| | - Jörn Coers
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
- Department of ImmunologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
4
|
Ultrastructural Features of Gold Nanoparticles Interaction with HepG2 and HEK293 Cells in Monolayer and Spheroids. NANOMATERIALS 2020; 10:nano10102040. [PMID: 33081137 PMCID: PMC7650816 DOI: 10.3390/nano10102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Use of multicellular spheroids in studies of nanoparticles (NPs) has increased in the last decade, however details of NPs interaction with spheroids are poorly known. We synthesized AuNPs (12.0 ± 0.1 nm in diameter, transmission electron microscopy (TEM data) and covered them with bovine serum albumin (BSA) and polyethyleneimine (PEI). Values of hydrodynamic diameter were 17.4 ± 0.4; 35.9 ± 0.5 and ±125.9 ± 2.8 nm for AuNPs, AuBSA-NPs and AuPEI-NPs, and Z-potential (net charge) values were −33.6 ± 2.0; −35.7 ± 1.8 and 39.9 ± 1.3 mV, respectively. Spheroids of human hepatocarcinoma (HepG2) and human embryo kidney (HEK293) cells (Corning ® spheroid microplates CLS4515-5EA), and monolayers of these cell lines were incubated with all NPs for 15 min–4 h, and fixed in 4% paraformaldehyde solution. Samples were examined using transmission and scanning electron microscopy. HepG2 and HEK2893 spheroids showed tissue-specific features and contacted with culture medium by basal plasma membrane of the cells. HepG2 cells both in monolayer and spheroids did not uptake of the AuNPs, while AuBSA-NPs and AuPEI-NPs readily penetrated these cells. All studied NPs penetrated HEK293 cells in both monolayer and spheroids. Thus, two different cell cultures maintained a type of the interaction with NPs in monolayer and spheroid forms, which not depended on NPs Z-potential and size.
Collapse
|
5
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 779] [Impact Index Per Article: 155.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
6
|
Wolf-Grosse S, Mollnes TE, Ali S, Stenvik J, Nilsen AM. Iron oxide nanoparticles enhance Toll-like receptor-induced cytokines in a particle size- and actin-dependent manner in human blood. Nanomedicine (Lond) 2018; 13:1773-1785. [PMID: 30084726 DOI: 10.2217/nnm-2017-0362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: To assess the effects of different-sized iron oxide nanoparticles (IONPs) on inflammatory responses in human whole blood. Materials & methods: Human whole blood with and without 10 and 30 nm IONPs was incubated with Toll-like receptor (TLR) ligands. Cytokine levels, complement activation, reactive oxygen species and viability were determined. Results: The 10 nm IONPs enhanced the TLR2/6, TLR4 and partly TLR8-mediated cytokine production, whereas the 30 nm IONPs partly enhanced TLR2/6 and decreased TLR8-mediated cytokine production. Particle-mediated enhancement of TLR4-induced cytokines could not be explained by complement activation, but was dependent on TLR4/MD2 and CD14, as well as actin polymerization. Conclusion: The IONPs differentially affected the TLR ligand-induced cytokines, which has important implications for biomedical applications of IONPs.
Collapse
Affiliation(s)
- Susann Wolf-Grosse
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science & Technology, 7491 Trondheim, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodø, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research & Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Syed Ali
- Division of Neurotoxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 501, USA
| | - Jørgen Stenvik
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science & Technology, 7491 Trondheim, Norway
| | - Asbjørn M Nilsen
- Department of Clinical & Molecular Medicine, Norwegian University of Science & Technology, 7491 Trondheim, Norway
| |
Collapse
|
7
|
Fink C, Gaudet JM, Fox MS, Bhatt S, Viswanathan S, Smith M, Chin J, Foster PJ, Dekaban GA. 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep 2018; 8:590. [PMID: 29330541 PMCID: PMC5766492 DOI: 10.1038/s41598-017-19031-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
A 19Fluorine (19F) perfluorocarbon cell labeling agent, when employed with an appropriate cellular MRI protocol, allows for in vivo cell tracking. 19F cellular MRI can be used to non-invasively assess the location and persistence of cell-based cancer vaccines and other cell-based therapies. This study was designed to determine the feasibility of labeling and tracking peripheral blood mononuclear cells (PBMC), a heterogeneous cell population. Under GMP-compliant conditions human PBMC were labeled with a 19F-based MRI cell-labeling agent in a manner safe for autologous re-injection. Greater than 99% of PBMC labeled with the 19F cell-labeling agent without affecting functionality or affecting viability. The 19F-labeled PBMC were detected in vivo in a mouse model at the injection site and in a draining lymph node. A clinical cellular MR protocol was optimized for the detection of PBMC injected both at the surface of a porcine shank and at a depth of 1.2 cm, equivalent to depth of a human lymph node, using a dual 1H/19F dual switchable surface radio frequency coil. This study demonstrates it is feasible to label and track 19F-labeled PBMC using clinical MRI protocols. Thus, 19F cellular MRI represents a non-invasive imaging technique suitable to assess the effectiveness of cell-based cancer vaccines.
Collapse
Affiliation(s)
- Corby Fink
- Molecular Medicine Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Jeffrey M Gaudet
- Imaging Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Matthew S Fox
- Imaging Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Shashank Bhatt
- 200 Elizabeth Street, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Sowmya Viswanathan
- IBBME, University of Toronto, University Health Network, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada
| | - Michael Smith
- Molecular Medicine Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Joseph Chin
- Division Of Surgery, Division of Surgical Oncology, London Health Sciences Centre, 800 Commissioners Rd E, London, Ontario, N6A 5W9, Canada
| | - Paula J Foster
- Imaging Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
8
|
Claessens YE, Trabattoni E, Grabar S, Quinquis L, Der Sahakian G, Anselmo M, Schmidt J, de la Coussaye JE, Plaisance P, Casalino E, Potel G, Lecomte F, Borderie D, Chenevier-Gobeaux C. Plasmatic presepsin (sCD14-ST) concentrations in acute pyelonephritis in adult patients. Clin Chim Acta 2016; 464:182-188. [PMID: 27889429 DOI: 10.1016/j.cca.2016.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Presepsin (sCD14-ST) is an emerging biomarker for infection. We hypothesized that presepsin could specifically increase during acute pyelonephritis and correlate with severity. METHODS We compared presepsin values in patients with acute pyelonephritis and controls, and we assessed its capacity to predict bacteraemia and admission in patients. RESULTS In 312 patients with acute pyelonephritis (median age 33years), presepsin concentrations were higher than in controls (476 vs 200ng/L, p<0.001). ROC curve indicated an AUC at 0.90 [for presepsin (vs. 0.99 and 0.98 for CRP and PCT, respectively; p<0.05) and an optimal threshold at 340ng/L (74% sensitivity, 94% specificity). Presepsin concentrations increased in acute pyelonephritis patients with bacteraemia (614 vs. 461ng/L, p,=0.001) and in those requiring admission (614ng/L vs. 320ng/L, p<0.001). Performance of presepsin to predict bacteraemia [AUC=0.63, 95%CI: 0.55-0.72] was similar to CRP (AUC=0.64, p=0.87) and less accurate than PCT (AUC=0.78, p<0.001). AUC for presepsin to detect the need for admission was 0.67, and comparable to CRP (p=0.26) and PCT (p=0.18). CONCLUSION Presepsin is a valuable biomarker to detect patients with acute pyelonephritis. However, it presents mild performance to predict bacteraemia and the need for admission, and offers no advantage as compared to CRP and PCT.
Collapse
Affiliation(s)
- Yann-Erick Claessens
- Centre Hospitalier Princesse Grace, Department of Emergency Medicine, 1 avenue Pasteur BP489 MC-98012, Monaco; Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP). Department of Emergency Medicine, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - Eloise Trabattoni
- Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP). Department of Emergency Medicine, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France; Faculté de Médecine, Université Paris Descartes, 10 rue de l'école de médecine, 75006 Paris, France
| | - Sophie Grabar
- Hôpital Hôtel-Dieu, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Biostatistics and Epidemiology, 1, place du Parvis de Notre-Dame, 75181 Paris Cedex 04, France; Faculté de Médecine, Université Paris Descartes, 10 rue de l'école de médecine, 75006 Paris, France
| | - Laurent Quinquis
- Hôpital Hôtel-Dieu, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Biostatistics and Epidemiology, 1, place du Parvis de Notre-Dame, 75181 Paris Cedex 04, France; Faculté de Médecine, Université Paris Descartes, 10 rue de l'école de médecine, 75006 Paris, France
| | - Guillaume Der Sahakian
- Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP). Department of Emergency Medicine, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - Marine Anselmo
- Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Automated Biological Diagnosis, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - Jeannot Schmidt
- Hôpital d'Estaing, Department of Emergency Medicine, 58 rue Montalembert, 63003 Clermont-Ferrand Cedex 1, France
| | - Jean-Emmanuel de la Coussaye
- Hôpital Caremeau, Department of Anaesthesiology, Emergency Medicine and Pain Management, Place Robert Debré, 31000 Nîmes, France
| | - Patrick Plaisance
- Hôpital Lariboisière, Groupe Hospitalier Saint-Louis Lariboisière Fernand-Widal, Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Emergency Medicine, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| | - Enrique Casalino
- Hôpital Bichat-Claude Bernard, Hôpitaux Universitaires Paris-Nord Val-de-Seine (HUPNVS), Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Emergency Medicine, Rue Henri Huchard, 75651 Paris Cedex 13, France; Faculté de Médecine, Université René Diderot, 10 rue de Valmy, 75011 Paris, France
| | - Gilles Potel
- Hôtel-Dieu, Department of Emergency Medicine, 1 place Alexis-Ricordeau, 44093, Nantes, France
| | - François Lecomte
- Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP). Department of Emergency Medicine, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - Didier Borderie
- Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Automated Biological Diagnosis, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France; Paris Descartes University, Sorbonne Paris Cité University, University Paris Descartes UMR-S 1124 INSERM, Paris, France
| | - Camille Chenevier-Gobeaux
- Hôpital Cochin, Hôpitaux Universitaires Paris Centre (HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Automated Biological Diagnosis, 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France.
| |
Collapse
|
9
|
Józefowski S, Śróttek M. Lipid raft-dependent endocytosis negatively regulates responsiveness of J774 macrophage-like cells to LPS by down regulating the cell surface expression of LPS receptors. Cell Immunol 2016; 312:42-50. [PMID: 27908440 DOI: 10.1016/j.cellimm.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
Abstract
Acting through CD14 and TLR4/MD-2, lipopolysaccharide (LPS) triggers strong pro-inflammatory activation of macrophages, which, if not appropriately controlled, may lead to lethal septic shock. Therefore, numerous mechanisms of negative regulation of responses to LPS exist, but whether they include down-regulation of LPS receptors is not clear. We have found that in J774 cells, the clathrin-dependent endocytic pathway enables activation of TRIF-dependent TLR4 signaling within endosomes, but is not associated with the down-regulation of TLR4 or CD14 surface expression. In contrast, lipid raft-dependent endocytosis negatively regulates the basal cell surface expression of LPS receptors and, consequently, responsiveness to LPS. Together with observations that treatments, known to selectively disrupt lipid rafts, do not inhibit LPS-stimulated cytokine production, our results suggest that lipid rafts may serve as sites in which LPS receptors are sorted for endocytosis, rather than being platforms for the assembly of TLR4-centered signaling complexes, as suggested previously.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland.
| | - Małgorzata Śróttek
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland
| |
Collapse
|
10
|
Tapping RI, Tobias PS. Cell surface binding of LBP—LPS complexes to a protein component distinct from CD14. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide (LPS) binding protein (LBP) is a serum molecule that mediates cellular activation in response to endotoxin by ensuring the delivery of LPS to either soluble or membrane bound forms of CD14. Aside from this activating role, previous work has shown that LBP and LPS can bind to cells by forming large aggregates which are anchored by mCD14. This binding phenomenon does not correlate with cellular activation. To further characterize these events, we have generated a biologically active radiolabeled LBP ligand with high specific activity. Through the use of this ligand in whole cell binding assays, we have confirmed that the binding of LBP to CHO cells expressing mCD14 is LPS dependent, blocked by the anti-LBP antibodies 18G4 and 2B5, and appears to involve the self aggregation of LBP—LPS complexes on the cell surface. Moreover, we discovered that non-transfected CHO cells also exhibit a binding phenomenon with all the above characteristics of CHO-mCD14 cells. Binding through this latter receptor(s) is distinct from that mediated by mCD14 in that it is not inhibited by anti-CD14 antibodies 28C5 or 18E12. In addition, unlike binding to mCD14, binding of LBP—LPS complexes to this novel receptor is abolished by pretreatment of cells with trypsin. Using proteinase K we found that LBP—LPS complexes bound either by mCD14 or this new receptor are subsequently internalized. Pretreatment of cells with trypsin also abolishes their ability to internalize mCD14 bound LBP—LPS complexes. The novel receptor for LBP—LPS complexes has been detected on many cell types and may be a receptor required for the cellular clearance of LPS.
Collapse
Affiliation(s)
- Richard I. Tapping
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA,
| | - Peter S. Tobias
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
11
|
Stief TW. Thrombin Generation by Exposure of Blood to Endotoxin: A Simple Model to Study Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2016; 12:137-61. [PMID: 16708116 DOI: 10.1177/107602960601200202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pathologic disseminated intravascular coagulation (PDIC) is a serious complication in sepsis. In an in-vitro system consisting of incubation of fresh citrated blood with lipopolysaccharides (LPS) or glucans and subsequent plasma recalcification plasmatic thrombin was quantified. Five hundred microliters of freshly drawn citrated blood of healthy donors were incubated with up to 800 ng/mL LPS ( Escherichia coli) or up to 80 μg/mL Zymosan A (ZyA; Candida albicans) for 30 minutes at room temperature (RT). The samples were centrifuged, and 30 μL plasma were recalcified with 1 volume or less of CaCl2 (25 μmoles Ca2+/mL plasma). After 0 to 12 minutes (37°C), 20 μL 2.5 M arginine, pH 8.6, were added. Thirty microliters 0.9 m M HD-CHG-Ala-Arg-pNA in 2.3 M arginine were added, and the absorbance increase at 405 nm was determined. Fifty microliters plasma were also incubated with 5 μL 250 m M CaCl2 for 5, 10, or 15 minutes (37°C). Fifty microliters 2.5 M arginine stops coagulation, and 50 μL 0.77 m M HD-CHG-Ala-Arg-pNA in 2.3 M arginine starts the thrombin detection. The standard was 1 IU/mL thrombin in 7% human albumin instead of plasma. Arginine was also added in the endotoxin exposure time (EET) or in the plasma coagulation reaction time (CRT). Tissue factor (TF)-antigen and soluble CD14 were determined. LPS at blood concentrations greater than 10 ng/mL or ZyA at greater than 1 μg/mL severalfold enhance thrombin generation, when the respective plasmas are recalcified. After 30 minutes EET at RT, the thrombin activity at 12 minutes CRT generated by the addition of 200 ng/mL LPS or 20 μg/mL ZyA is approximately 200 mIU/mL compared to approximately 20 mIU/mL without addition of endotoxin, or compared to about 7 mIU/mL thrombin at 0 minutes CRT. Arginine added to blood or to plasma inhibits thrombin generation; the inhibitory concentration 50% (IC 50) is approximately 15 m M plasma concentration. Endotoxin incubation of blood increases neither TF nor sCD14. This assay allows the study of the hemostasis alteration in PDIC, particularly in PDIC by sepsis. The thrombin generated by blood plus endotoxin incubation and plasma recalcification suggests that the contact phase of coagulation; e.g., triggered by cell components of (phospholipase-) lysed cells such as monocyte or endothelium DNA or phospholipid-vesicles (microparticles), is of primary pathologic importance in sepsis-PDIC. Arginine at plasma concentrations of 10 to 50 m M might be a new therapeutic for sepsis-PDIC.
Collapse
Affiliation(s)
- T W Stief
- Department of Clinical Chemistry, University Hospital Giessen/Marburg, Germany.
| |
Collapse
|
12
|
He Z, Riva M, Björk P, Swärd K, Mörgelin M, Leanderson T, Ivars F. CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes. PLoS One 2016; 11:e0156377. [PMID: 27228163 PMCID: PMC4881898 DOI: 10.1371/journal.pone.0156377] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/13/2016] [Indexed: 01/23/2023] Open
Abstract
The cytosolic Ca2+-binding S100A9 and S100A8 proteins form heterodimers that are primarily expressed in human neutrophils and monocytes. We have recently shown that S100A9 binds to TLR4 in vitro and induces TLR4-dependent NF-κB activation and a pro-inflammatory cytokine response in monocytes. In the present report we have further investigated the S100A9-mediated stimulation of TLR4 in monocytes. Using transmission immunoelectron microscopy, we detected focal binding of S100A9 to monocyte membrane subdomains containing the caveolin-1 protein and TLR4. Furthermore, the S100A9 protein was detected in early endosomes of the stimulated cells, indicating that the protein could be internalized by endocytosis. Although stimulation of monocytes with S100A9 was strictly TLR4-dependent, binding of S100A9 to the plasma membrane and endocytosis of S100A9 was still detectable and coincided with CD14 expression in TLR4-deficient cells. We therefore investigated whether CD14 would be involved in the TLR4-dependent stimulation and could show that the S100A9-induced cytokine response was inhibited both in CD14-deficient cells and in cells exposed to CD14 blocking antibodies. Further, S100A9 was not internalized into CD14-deficient cells suggesting a direct role of CD14 in endocytosis of S100A9. Finally, we could detect satiable binding of S100A9 to CD14 in surface plasmon resonance experiments. Taken together, these results indicate that CD14 is a co-receptor of TLR4 in the S100A9-induced cytokine response.
Collapse
Affiliation(s)
- Zhifei He
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matteo Riva
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | | | - Karl Swärd
- Section for Cell and Tissue Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Section for Infection Biology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
13
|
Biedroń R, Peruń A, Józefowski S. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS One 2016; 11:e0153558. [PMID: 27073833 PMCID: PMC4830570 DOI: 10.1371/journal.pone.0153558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.
Collapse
Affiliation(s)
- Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Angelika Peruń
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
14
|
Jans J, elMoussaoui H, de Groot R, de Jonge MI, Ferwerda G. Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus. Virol J 2016; 13:52. [PMID: 27004689 PMCID: PMC4802911 DOI: 10.1186/s12985-016-0506-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/14/2016] [Indexed: 12/02/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause recurrent and severe respiratory tract infections. Cytoskeletal proteins are often involved during viral infections, either for cell entry or the initiation of the immune response. The importance of actin and clathrin dynamics for cell entry and the initiation of the cellular immune response against RSV in human immune cells is not known yet. The aim of this study was to investigate the role of actin and clathrin on cell entry of RSV and the subsequent effect on T cell activation and interferon gamma release in human immune cells. Methods Peripheral blood mononuclear cells and purified monocytes were isolated from healthy adults and stimulated in vitro with RSV. Actin and clathrin dynamics were inhibited with respectively cytochalasin D and chlorpromazine. T cell receptor signaling was inhibited with cyclosporin A. Flow cytometry was used to determine the role of actin and clathrin on cell entry and T cell activation by RSV. Enzyme-linked immunosorbent assays were used to investigate the contribution of actin and clathrin on the release of interferon gamma. Results Cell entry, virus gene transcription and interferon gamma release are actin-dependent. Post-endocytic processes like the increased expression of major histocompatibility complex II on monocytes , T cell activation and the release of interferon gamma are clathrin-dependent. Finally, T cell receptor signaling affects T cell activation, whereas soluble interleukin 18 is dispensable. Conclusion Analysis of cell entry and interferon gamma release after infection with RSV reveals the importance of actin- and clathrin-dependent signaling in human immune cells. Insights into the cellular biology of the human immune response against respiratory syncytial virus will provide a better understanding of disease pathogenesis and may prove useful in the development of preventive strategies.
Collapse
Affiliation(s)
- Jop Jans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hicham elMoussaoui
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Kolter J, Feuerstein R, Spoeri E, Gharun K, Elling R, Trieu-Cuot P, Goldmann T, Waskow C, Chen ZJ, Kirschning CJ, Deshmukh SD, Henneke P. Streptococci Engage TLR13 on Myeloid Cells in a Site-Specific Fashion. THE JOURNAL OF IMMUNOLOGY 2016; 196:2733-41. [PMID: 26873993 DOI: 10.4049/jimmunol.1501014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Streptococci are common human colonizers with a species-specific mucocutaneous distribution. At the same time, they are among the most important and most virulent invasive bacterial pathogens. Thus, site-specific cellular innate immunity, which is predominantly executed by resident and invading myeloid cells, has to be adapted with respect to streptococcal sensing, handling, and response. In this article, we show that TLR13 is the critical mouse macrophage (MΦ) receptor in the response to group B Streptococcus, both in bone marrow-derived MΦs and in mature tissue MΦs, such as those residing in the lamina propria of the colon and the dermis, as well as in microglia. In contrast, TLR13 and its chaperone UNC-93B are dispensable for a potent cytokine response of blood monocytes to group B Streptococcus, although monocytes serve as the key progenitors of intestinal and dermal MΦs. Furthermore, a specific role for TLR13 with respect to MΦ function is supported by the response to staphylococci, where TLR13 and UNC-93B limit the cytokine response in bone marrow-derived MΦs and microglia, but not in dermal MΦs. In summary, TLR13 is a critical and site-specific receptor in the single MΦ response to β-hemolytic streptococci.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Reinhild Feuerstein
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Evelyne Spoeri
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Kourosh Gharun
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Roland Elling
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Patrick Trieu-Cuot
- Institute Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS ERL3526, 75724 Paris Cedex 15, France
| | - Tobias Goldmann
- Institute of Neuropathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models of Hematopoiesis, Faculty of Medicine, Technical University, 01307 Dresden, Germany
| | - Zhijian J Chen
- Southwestern Medical School, University of Texas, Dallas, TX 75390
| | - Carsten J Kirschning
- Institute of Medical Microbiology, Medical Center, University of Essen, 45147 Essen, Germany
| | - Sachin D Deshmukh
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Sepsis Control and Care, Medical Center, University of Jena, 07747 Jena, Germany; and
| | - Philipp Henneke
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
16
|
White AFB, Demchenko AV. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv Carbohydr Chem Biochem 2015; 71:339-89. [PMID: 25480508 DOI: 10.1016/b978-0-12-800128-8.00005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis, defined as a clinical syndrome brought about by an amplified and dysregulated inflammatory response to infections, is one of the leading causes of death worldwide. Despite persistent attempts to develop treatment strategies to manage sepsis in the clinical setting, the basic elements of treatment have not changed since the 1960s. As such, the development of effective therapies for reducing inflammatory reactions and end-organ dysfunction in critically ill patients with sepsis remains a global priority. Advances in understanding of the immune response to sepsis provide the opportunity to develop more effective pharmaceuticals. This article details current information on the modulation of the lipopolysaccharide (LPS) receptor complex with synthetic Lipid A mimetics. As the initial and most critical event in sepsis pathophysiology, the LPS receptor provides an attractive target for antisepsis agents. One of the well-studied approaches to sepsis therapy involves the use of derivatives of Lipid A, the membrane-anchor portion of an LPS, which is largely responsible for its endotoxic activity. This article describes the structural and conformational requirements influencing the ability of Lipid A analogues to compete with LPS for binding to the LPS receptor complex and to inhibit the induction of the signal transduction pathway by impairing LPS-initiated receptor dimerization.
Collapse
Affiliation(s)
- Aileen F B White
- Dextra Laboratories Ltd., Science and Technology Centre, Earley Gate, Reading, United Kingdom.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, USA.
| |
Collapse
|
17
|
Chenevier-Gobeaux C, Borderie D, Weiss N, Mallet-Coste T, Claessens YE. Presepsin (sCD14-ST), an innate immune response marker in sepsis. Clin Chim Acta 2015; 450:97-103. [PMID: 26164388 DOI: 10.1016/j.cca.2015.06.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023]
Abstract
Innate immunity is the first barrier to fight off bacteria, and partly relies on the engagement of the membrane coreceptor CD14. A product of cleavage of CD14, the soluble subtype of CD14 (sCD14-ST) or presepsin, is released in circulation after activation of defense mechanisms. Presepsin can be detected by biochemical methods and therefore appears as an emergent biomarker of infection. Here we present the rationale for presepsin development and recent data supporting its use at bedside. Presepsin may be worthwhile for early diagnosis and prognostic assessment of patients with systemic infections. This biomarker shows high specificity, and results from experimental and clinical studies are reinforcing the proof of concept. Performances place presepsin at the level of PCT who is used as a comparator. Biomarkers of infection are futile to diagnose infection with direct access to bacteria (as urinary tract infection, meningitis), but their use can be advocated to ascertain unclear diagnosis. Future developments of presepsin will probably use clinical models with a Bayesian approach to ascertain the additional value of the biomarker at bedside.
Collapse
Affiliation(s)
- Camille Chenevier-Gobeaux
- Service de Diagnostic Biologique Automatisé, Hôpital Cochin (Hôpitaux Universitaires Paris Centre, HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France.
| | - Didier Borderie
- Service de Diagnostic Biologique Automatisé, Hôpital Cochin (Hôpitaux Universitaires Paris Centre, HUPC), Assistance Publique des Hôpitaux de Paris (AP-HP), 27 rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France; UMR 1124 Pharmacologie, Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Nicolas Weiss
- Département de Médicine d'Urgence, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur BP489 MC-98012, Monaco
| | - Thomas Mallet-Coste
- Département de Médicine d'Urgence, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur BP489 MC-98012, Monaco
| | - Yann-Erick Claessens
- Département de Médicine d'Urgence, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur BP489 MC-98012, Monaco.
| |
Collapse
|
18
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
19
|
Sachdeva R, Li Y, Shilpi RY, Simm M. Human X-DING-CD4 mediates resistance to HIV-1 infection through novel paracrine-like signaling. FEBS J 2015; 282:937-50. [PMID: 25581464 DOI: 10.1111/febs.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Abstract
X-DING-CD4 is a novel phosphatase mediating antiviral responses to HIV-1 infection. This protein is constitutively expressed and secreted by HIV-1 resistant CD4(+) T cells and its mRNA transcription is up-regulated in peripheral blood mononuclear cells from HIV-1 elite controllers. The secreted/soluble X-DING-CD4 protein form is of particular importance because it blocks virus transcription when added to HIV-1 susceptible cells. The present study aimed to determine the contribution of this factor to the induction of the antiviral response in target cells. We found that soluble X-DING-CD4 enters cells by endocytosis and that influx of this protein induced transcription of interferon-α and endogenous X-DING-CD4 mRNA in transformed CD4(+) T cells and primary macrophages. Treatment of HIV-1 susceptible cells with exogenous X-DING-CD4 caused depletion of phosphorylated p50 and p65 nuclear factor kappa β subunits and a significant reduction in p50/p65 nuclear factor kappa β binding to the HIV-1 long terminal repeat. Taken together, these findings indicate a novel antiviral mechanism mediated by the influx of soluble X-DING-CD4, its signaling to promote self-amplification, and functional duality as an endogenous innate immunity effector and exogenous factor regulating gene expression in bystander cells.
Collapse
Affiliation(s)
- Rakhee Sachdeva
- Protein Chemistry Laboratory, St Luke's/Roosevelt Institute for Health Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2014; 72:557-581. [PMID: 25332099 PMCID: PMC4293489 DOI: 10.1007/s00018-014-1762-5] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Kinga Borzęcka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
21
|
CD14 mediates binding of high doses of LPS but is dispensable for TNF-α production. Mediators Inflamm 2013; 2013:824919. [PMID: 24489448 PMCID: PMC3892557 DOI: 10.1155/2013/824919] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 01/08/2023] Open
Abstract
Activation of macrophages with lipopolysaccharide (LPS) involves a sequential engagement of serum LPS-binding protein (LBP), plasma membrane CD14, and TLR4/MD-2 signaling complex. We analyzed participation of CD14 in TNF-α production stimulated with 1-1000 ng/mL of smooth or rough LPS (sLPS or rLPS) and in sLPS binding to RAW264 and J744 cells. CD14 was indispensable for TNF-α generation induced by a low concentration, 1 ng/mL, of sLPS and rLPS. At higher doses of both LPS forms (100-1000 ng/mL), TNF-α release required CD14 to much lower extent. Among the two forms of LPS, rLPS-induced TNF-α production was less CD14-dependent and could proceed in the absence of serum as an LBP source. On the other hand, the involvement of CD14 was crucial for the binding of 1000 ng/mL of sLPS judging from an inhibitory effect of the anti-CD14 antibody. The binding of sLPS was also strongly inhibited by dextran sulfate, a competitive ligand of scavenger receptors (SR). In the presence of dextran sulfate, sLPS-induced production of TNF-α was upregulated about 1.6-fold. The data indicate that CD14 together with SR participates in the binding of high doses of sLPS. However, CD14 contribution to TNF α production induced by high concentrations of sLPS and rLPS can be limited.
Collapse
|
22
|
La présepsine (sCD14-ST), nouveau biomarqueur de la réponse anti-infectieuse. ANNALES FRANCAISES DE MEDECINE D URGENCE 2013. [DOI: 10.1007/s13341-013-0347-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Downer EJ, Jones RS, McDonald CL, Greco E, Brennan S, Connor TJ, Robertson IH, Lynch MA. Identifying early inflammatory changes in monocyte-derived macrophages from a population with IQ-discrepant episodic memory. PLoS One 2013; 8:e63194. [PMID: 23671673 PMCID: PMC3646027 DOI: 10.1371/journal.pone.0063194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/02/2013] [Indexed: 12/24/2022] Open
Abstract
Background Cells of the innate immune system including monocytes and macrophages are the first line of defence against infections and are critical regulators of the inflammatory response. These cells express toll-like receptors (TLRs), innate immune receptors which govern tailored inflammatory gene expression patterns. Monocytes, which produce pro-inflammatory mediators, are readily recruited to the central nervous system (CNS) in neurodegenerative diseases. Methods This study explored the expression of receptors (CD11b, TLR2 and TLR4) on circulating monocyte-derived macrophages (MDMs) and peripheral blood mononuclear cells (PBMCs) isolated from healthy elderly adults who we classified as either IQ memory-consistent (high-performing, HP) or IQ memory-discrepant (low-performing, LP). Results The expression of CD11b, TLR4 and TLR2 was increased in MDMs from the LP group when compared to HP cohort. MDMs from both groups responded robustly to treatment with the TLR4 activator, lipopolysaccharide (LPS), in terms of cytokine production. Significantly, MDMs from the LP group displayed hypersensitivity to LPS exposure. Interpretation Overall these findings define differential receptor expression and cytokine profiles that occur in MDMs derived from a cohort of IQ memory-discrepant individuals. These changes are indicative of inflammation and may be involved in the prodromal processes leading to the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Eric J Downer
- Trinity College Institute of Neuroscience and Physiology Department, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Czerkies M, Borzęcka K, Zdioruk MI, Płóciennikowska A, Sobota A, Kwiatkowska K. An interplay between scavenger receptor A and CD14 during activation of J774 cells by high concentrations of LPS. Immunobiology 2013; 218:1217-26. [PMID: 23669238 DOI: 10.1016/j.imbio.2013.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
Lipopolysaccharide (LPS) activates macrophages by binding to the TLR4/MD-2 complex and triggers two pro-inflammatory signaling pathways: one relies on MyD88 at the plasma membrane, and the other one depends on TRIF in endosomes. When present in high doses, LPS is internalized and undergoes detoxification. We found that the uptake of a high concentration of LPS (1000ng/ml) in macrophage-like J774 cells was upregulated upon inhibition of clathrin- and dynamin-mediated endocytosis which, on the other hand, strongly reduced the production of pro-inflammatory mediators TNF-α and RANTES. The binding and internalization of high amounts of LPS was mediated by scavenger receptor A (SR-A) with participation of CD14 without an engagement of TLR4. Occupation of SR-A by dextran sulfate or anti-SR-A antibodies enhanced LPS-induced production of TNF-α and RANTES by about 70%, with CD14 as a limiting factor. Dextran sulfate also elevated the cell surface levels of TLR4 and CD14, which could have contributed to the upregulation of the pro-inflammatory responses. Silencing of SR-A expression inhibited the LPS-triggered TNF-α production whereas RANTES release was unchanged. These data indicate that SR-A is required for maximal production of TNF-α in cells stimulated with LPS, possibly by modulating the cell surface levels of TLR4 and CD14.
Collapse
Affiliation(s)
- Maciej Czerkies
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. PLoS One 2013; 8:e60078. [PMID: 23565187 PMCID: PMC3615118 DOI: 10.1371/journal.pone.0060078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/21/2013] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IFN, and RANTES via the activation of IRF-3 and NFκB, and is also important for the induction of adaptive immune responses. CD14 plays a critical role in initiating the TRIF-dependent signaling pathway response to LPS, to support the internalization of LPS via endocytosis. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes) initiate only TRIF-dependent signaling via clathrin-mediated endocytosis, independent of CD14. In fact, LPS-liposomes do not induce the production of TNF-α and IL-6 but induce RANTES production in peritoneal macrophages. Additionally, LPS-liposomes could induce adaptive immune responses effectively in CD14-deficient mice. Collectively, our results strongly suggest that LPS-liposomes are useful as a TRIF-dependent signaling-based immune adjuvant without inducing unnecessary inflammation.
Collapse
|
26
|
Ning BT, Tang YM. Establishment of the cell line, HeLa-CD14, transfected with the human CD14 gene. Oncol Lett 2012; 3:871-874. [PMID: 22741009 DOI: 10.3892/ol.2012.557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/23/2011] [Indexed: 11/06/2022] Open
Abstract
CD14 is the pivotal molecule in the diagnosis and therapy of CD14-associated diseases, and is important in bacteremia. The HeLa cell line is regarded as immortal due to its prolific character. The HeLa cell line is derived from human cervical cancer cells and has been widely used in cancer research and gene transfection. In the present study, we established the expression plasmid pcDNA3.1(+)-CD14, and transfected it into the human cervical cancer cell line HeLa to establish a stable cell line (HeLa-CD14) expressing human CD14 antigen on the membrane. After the human CD14 gene was cloned and sequenced through RT-PCR and T-A cloning techniques, the eukaryotic expression vector pcDNA3.1(+)-CD14 was constructed by cleaving with double restriction endonucleases and ligating with T4 ligase. HeLa cells were transfected with the pcDNA3.1(+)-CD14 recombinant plasmid using Superfect transfection reagent. The cells were selected using G418 and the expression of human CD14 on the transfectant was confirmed by RT-PCR and immunohistochemistry. The expression of CD14 mRNA was significantly different between the blank pcDNA3.1(+)-transfected cell group and the pcDNA3.1(+)-CD14-transfected cell group (p<0.01). The fluorescence was significantly stronger on the established stable cell line than on the transiently transfected HeLa cells, and no visible fluorescence was observed in blank pcDNA3.1(+)-transfected cells. In this study, the human CD14 transfectant, stable cell line HeLa-CD14, was successfully established, which may be used to study CD14 and cervical cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Bo-Tao Ning
- Division of Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine,Hangzhou 310003, P.R. China
| | | |
Collapse
|
27
|
Optimization of a whole blood intracellular cytokine assay for measuring innate cell responses to mycobacteria. J Immunol Methods 2011; 376:79-88. [PMID: 22155193 DOI: 10.1016/j.jim.2011.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/10/2011] [Accepted: 11/23/2011] [Indexed: 02/02/2023]
Abstract
Innate cells are essential for host defense against invading pathogens, and the induction and direction of adaptive immune responses to infection. We developed and optimized a flow cytometric assay that allows measurement of intracellular cytokine expression by monocytes, dendritic cells (DC) and granulocytes, as well as cellular uptake of green-fluorescent protein (GFP)-expressing mycobacteria, in very small volumes of peripheral blood. We show that innate cell stimulation resulted in increased granularity of monocytes and mDC and decreased granulocyte granularity that precluded flow cytometric discernment of granulocytes from monocytes and myeloid DC by forward and side scatter gating. Anti-CD66a/c/e antibody staining allowed reliable identification and exclusion of granulocytes for subsequent delineation of monocytes and myeloid DC. Intracellular cytokine expression by granulocytes, monocytes and mDC was remarkably sensitive to the dose of mycobacterial inoculum. Moreover, activation of monocytes and mDC with live BCG reduced expression levels of CD14 and CD11c, respectively, necessitating optimization of staining conditions to reliably measure these lineage markers. Finally, we characterized expression of IL-12/23p40, TNF-α, IL-6, and IL-10, by GFP(+) and GFP(-) monocytes and mDC from 25 healthy adults. This assay may be applied to the study of innate cell responses to any GFP-expressing pathogen, and can be performed on blood volumes as low as 200 μL per condition, making the assay particularly suitable for pediatric studies.
Collapse
|
28
|
Lipopolysaccharide inhibits the channel activity of the P2X7 receptor. Mediators Inflamm 2011; 2011:152625. [PMID: 21941410 PMCID: PMC3173735 DOI: 10.1155/2011/152625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.
Collapse
|
29
|
Gray P, Dagvadorj J, Michelsen KS, Brikos C, Rentsendorj A, Town T, Crother TR, Arditi M. Myeloid differentiation factor-2 interacts with Lyn kinase and is tyrosine phosphorylated following lipopolysaccharide-induced activation of the TLR4 signaling pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:4331-7. [PMID: 21918188 DOI: 10.4049/jimmunol.1100890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrated that myeloid differentiation factor-2 (MD-2) is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific; it is blocked by the tyrosine kinase inhibitor, herbimycin A, as well as by an inhibitor of endocytosis, cytochalasin D, suggesting that MD-2 phosphorylation occurs during trafficking of MD-2 and not on the cell surface. Furthermore, we identified two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine had reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD-2 coprecipitated and colocalized with Lyn kinase, most likely in the endoplasmic reticulum. A Lyn-binding peptide inhibitor abolished MD-2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phosphorylation. Our study demonstrated that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response.
Collapse
Affiliation(s)
- Pearl Gray
- Division of Pediatric Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Mao M, Xu JC. Cell-surface nucleolin is involved in lipopolysaccharide internalization and signalling in alveolar macrophages. Cell Biol Int 2011; 35:677-85. [PMID: 21309751 DOI: 10.1042/cbi20100625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
C23 (nucleolin) shuttling between the nucleus, cytoplasm and cell surface has been implicated in controlling regulatory processes and may play a role in pathogen infection and autoimmune diseases. It has been reported that cell surface-expressed C23 on THP-1 monocytes is involved in the inflammatory response induced by LPS (lipopolysaccharide). This study investigates whether C23 is a membrane receptor for LPS during LPS-induced AMs (alveolar macrophages) activation. First, using immunofluorescence and microscopy, we detected the expression of C23 on the surface of AMs. Second, using LPS affinity columns, we demonstrated that C23 directly binds to LPS. Third, we found that LPS colocalized with C23 on both the cell surface and in the cytoplasm. Finally, knockdown of C23 expression on the cell surface using siRNA (small interfering RNA) led to significant reductions in the internalization of LPS, in LPS-induced NF-κB (nuclear factor κB)-DNA binding and in the protein expression of TNF (tumour necrosis factor)-α and IL-6 (interleukin-6). These findings provide evidence that cell-surface C23 on AMs may serve as a receptor for LPS and are essential for internalization and transport of LPS. Furthermore, C23 participates in the regulation of LPS-induced inflammation of AMs, which indicates that cell-surface C23 is a new and promising therapeutic target for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yi Wang
- *Institute of Human Respiratory Diseases, No. 2 Hospital/Third Military Medical University, Chongqing, Peoples Republic of China
| | | | | |
Collapse
|
31
|
Shaykhiev R, Sierigk J, Herr C, Krasteva G, Kummer W, Bals R. The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS. FASEB J 2010; 24:4756-66. [DOI: 10.1096/fj.09-151332] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Renat Shaykhiev
- University Hospital Giessen and Marburg, Department of Internal Medicine, Division of Pulmonology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Johannes Sierigk
- University Hospital Giessen and Marburg, Department of Internal Medicine, Division of Pulmonology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Christian Herr
- University Hospital Giessen and Marburg, Department of Internal Medicine, Division of Pulmonology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Internal Medicine V–Pulmonology, Respiratory Intensive Care Medicine, Allergology, Homburg, Germany
| | - Gabriela Krasteva
- Institute for Anatomy and Cell Biology, Excellence Cluster Cardio Pulmonary System, UGMLC, Justus Liebig University, Giessen, Germany; and
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Excellence Cluster Cardio Pulmonary System, UGMLC, Justus Liebig University, Giessen, Germany; and
| | - Robert Bals
- University Hospital Giessen and Marburg, Department of Internal Medicine, Division of Pulmonology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Internal Medicine V–Pulmonology, Respiratory Intensive Care Medicine, Allergology, Homburg, Germany
| |
Collapse
|
32
|
Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res 2010; 70:8617-29. [PMID: 20861190 PMCID: PMC2970734 DOI: 10.1158/0008-5472.can-10-0920] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AS1411 is a first-in-class anticancer agent, currently in phase II clinical trials. It is a quadruplex-forming oligodeoxynucleotide that binds to nucleolin as an aptamer, but its mechanism of action is not completely understood. Mechanistic insights could lead to clinically useful markers for AS1411 response and to novel targeted therapies. Previously, we proposed a model where cell surface nucleolin serves as the receptor for AS1411, leading to selective uptake in cancer cells. Here, we compare uptake of fluorophore-labeled AS1411 (FL-AS1411) in DU145 prostate cancer cells (sensitive to AS1411) and Hs27 nonmalignant skin fibroblasts (resistant to AS1411). Uptake of FL-AS1411 occurred by endocytosis in both cell types and was much more efficient than an inactive, nonquadruplex oligonucleotide. Unexpectedly, uptake of FL-AS1411 was lower in cancer cells compared with Hs27 cells. However, the mechanism of uptake was different, occurring by macropinocytosis in cancer cells, but by a nonmacropinocytic pathway in Hs27 cells. Additionally, treatment of various cancer cells with AS1411 caused hyperstimulation of macropinocytosis, provoking an increase in its own uptake, whereas no stimulation was observed for nonmalignant cells. Nucleolin was not required for initial FL-AS1411 uptake in DU145 cells but was necessary for induced macropinocytosis and FL-AS1411 uptake at later times. Our results are inconsistent with the previous mechanistic model but confirm that nucleolin plays a role in mediating AS1411 effects. The data suggest a new model for AS1411 action as well as a new role for nucleolin in stimulating macropinocytosis, a process with potential applications in drug delivery.
Collapse
Affiliation(s)
- E Merit Reyes-Reyes
- Departments of Medicine and Biochemistry and Molecular Biology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
33
|
Shaykhiev R, Sierigk J, Herr C, Krasteva G, Kummer W, Bals R. The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS. FASEB J 2010. [PMID: 20696857 DOI: 10.1096/fj.09.151332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epithelial cells (ECs) are usually hyporesponsive to various microbial products. Detection of lipopolysaccharide (LPS), the major component of gram-negative bacteria, is impeded, at least in part, by intracellular sequestration of its receptor, Toll-like receptor-4 (TLR4). In this study, using human bronchial ECs (hBECs) as a model of mucosal epithelium, we tested the hypothesis that the human LPS-binding, membrane-active cationic host defense peptide cathelicidin LL-37 augments epithelial response to LPS by facilitating its delivery to TLR4-containing intracellular compartments. We found that LL-37 significantly increases uptake of LPS by ECs with subsequent targeting to cholera toxin subunit B-labeled structures and lysosomes. This uptake is peptide specific, dose and time dependent, and involves the endocytotic machinery, functional lipid rafts, and epidermal growth factor receptor signaling. Cathelicidin-dependent LPS internalization resulted in significant increased release of the inflammatory cytokines IL-6 and IL-8. This indicates that, in ECs, this peptide may replace LPS-binding protein functions. In polarized ECs, the effect of LL-37 was restricted to the basolateral compartment of the epithelial membrane, suggesting that LL-37-mediated activation of ECs by LPS may be relevant to disease conditions associated with damage to the epithelial barrier. In summary, our study identified a novel role of LL-37 in host-microbe interactions as a host factor that licenses mucosal ECs to respond to LPS.
Collapse
Affiliation(s)
- Renat Shaykhiev
- University Hospital Giessen and Marburg, Department of Internal Medicine, Division of Pulmonology, Universities of Giessen and Marburg Lung Center, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Saponaro C, Cianciulli A, Calvello R, Cavallo P, Mitolo V, Panaro MA. First identification of Toll-like receptor-4 in avian brain: evolution of lipopolysaccharide recognition and inflammation-dependent responses. Immunopharmacol Immunotoxicol 2010; 33:64-72. [DOI: 10.3109/08923971003739244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Soluble cell adhesion molecules in monocytes of Alzheimer's disease and mild cognitive impairment. Exp Gerontol 2009; 45:70-4. [PMID: 19836440 DOI: 10.1016/j.exger.2009.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/24/2009] [Accepted: 10/12/2009] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with characteristic neuropathological features that are accompanied by inflammatory processes and release of pro-inflammatory cytokines. There is evidence that microglial cells are a key mediator of damage in AD. The microglial compartment may arise to a greater part from activation and transmigration of circulating monocytes. The aim of the present pilot study was to explore, if different cell adhesion molecules (ICAM-1 and -3, PECAM-1, VCAM-1, P-, L- and E-selectins, E-cadherin), RAGE and CD14 are affected in monocytes of healthy subjects compared to patients suffering from AD or mild cognitive impairment (MCI). Monocytes were isolated by negative magnetic selection (MACS) from EDTA blood samples, and extracts were analyzed by Searchlight Multiplex ELISAs. When compared to healthy subjects, the ratio of monocytic ICAM-3/CD14 was significantly decreased in MCI and AD patients and the ratio of the monocytic P-selectin/CD14 was specifically decreased in AD patients. In conclusion, our data show that monocytic cell adhesion molecules are decreased in AD and MCI patients. Further larger longitudinal studies should then clarify whether any of these parameters may be useful as a diagnostic biomarker.
Collapse
|
36
|
Innate immune sensing and activation of cell surface Toll-like receptors. Semin Immunol 2009; 21:175-84. [DOI: 10.1016/j.smim.2009.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/06/2009] [Indexed: 12/30/2022]
|
37
|
Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 2009; 10:691-712. [PMID: 19416475 DOI: 10.1111/j.1600-0854.2009.00902.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.
Collapse
Affiliation(s)
- Fabien Pinaud
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Macropinocytosis represents a distinct pathway of endocytosis in mammalian cells. This actin-driven endocytic process is not directly co-ordinated by the presence of cargo but can be induced upon activation of growth factor signalling pathways. The capacity to dissect the contribution of macropinocytosis to cellular processes has been hampered by a lack of unique molecular markers and defining features. While aspects of macropinosome formation and maturation are common to those shared by the other endocytic pathways, a number of key differences have recently begun to emerge and will be discussed in this study. It is now well established that macropinocytosis significantly contributes to antigen presentation by the immune system and is exploited by a range of pathogens for cellular invasion and avoidance of immune surveillance.
Collapse
Affiliation(s)
- Markus C Kerr
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
39
|
Cortese K, Sahores M, Madsen CD, Tacchetti C, Blasi F. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS One 2008; 3:e3730. [PMID: 19008962 PMCID: PMC2579578 DOI: 10.1371/journal.pone.0003730] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/24/2008] [Indexed: 01/02/2023] Open
Abstract
Background The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.
Collapse
Affiliation(s)
- Katia Cortese
- Centro di Ricerca MicroSCoBio/IFOM, FIRC Institute of Molecular Oncology, Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Genova, Genova, Italy
| | - Macarena Sahores
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Chris D. Madsen
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Carlo Tacchetti
- Centro di Ricerca MicroSCoBio/IFOM, FIRC Institute of Molecular Oncology, Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Genova, Genova, Italy
- * E-mail: Francesco.Blasi@ hsr.it (FB); (CT)
| | - Francesco Blasi
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
- * E-mail: Francesco.Blasi@ hsr.it (FB); (CT)
| |
Collapse
|
40
|
Patel PC, Harrison RE. Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol Biol Cell 2008; 19:4628-39. [PMID: 18768756 DOI: 10.1091/mbc.e08-02-0223] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A widespread belief in phagocyte biology is that FcgammaR-mediated phagocytosis utilizes membrane pseudopods, whereas Mac-1-mediated phagocytosis does not involve elaborate plasma membrane extensions. Here we report that dynamic membrane ruffles in activated macrophages promote binding of C3bi-opsonized particles. We identify these ruffles as components of the macropinocytosis machinery in both PMA- and LPS-stimulated macrophages. C3bi-particle capture is facilitated by enrichment of high-affinity Mac-1 and the integrin-regulating protein talin in membrane ruffles. Membrane ruffle formation and C3bi-particle binding are cytoskeleton dependent events, having a strong requirement for F-actin and microtubules (MTs). MT disruption blunts ruffle formation and PMA- and LPS-induced up-regulation of surface Mac-1 expression. Furthermore, the MT motor, kinesin participates in ruffle formation implicating a requirement for intracellular membrane delivery to active membrane regions during Mac-1-mediated phagocytosis. We observed colocalization of Rab11-positive vesicles with CLIP-170, a MT plus-end binding protein, at sites of particle adherence using TIRF imaging. Rab11 has been implicated in recycling endosome dynamics and mutant Rab11 expression inhibits both membrane ruffle formation and C3bi-sRBC adherence to macrophages. Collectively these findings represent a novel membrane ruffle "capture" mechanism for C3bi-particle binding during Mac-1-mediated phagocytosis. Importantly, this work also demonstrates a strong functional link between integrin activation, macropinocytosis and phagocytosis in macrophages.
Collapse
Affiliation(s)
- Prerna C Patel
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | | |
Collapse
|
41
|
Niu M, Han Y, Li W. Baculovirus up-regulates antiviral systems and induces protection against infectious bronchitis virus challenge in neonatal chicken. Int Immunopharmacol 2008; 8:1609-15. [PMID: 18707025 DOI: 10.1016/j.intimp.2008.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/28/2008] [Accepted: 07/08/2008] [Indexed: 11/30/2022]
Abstract
In this study, the Antheraea pernyi nuclear polyhedrosis virus (ApNPV), a member of the baculovirus family, is evaluated for its stimulation of chicken peripheral blood mononuclear cells (PBMC) and macrophage cell line HD 11 in vitro, and protection against infectious bronchitis virus (IBV) in neonatal chickens in vivo. This study showed that ApNPV significantly enhanced inflammatory cytokine mRNA expression in chicken PBMC and HD 11 cells through the clathrin-dependent endocytic and endosomal maturation pathway, and up-regulated nitric oxide production in HD 11 cells. Furthermore, it was identified that budded virus (BV) can induce antiviral effects in HD 11 cells contrary to occlusion-derived virus (ODV). These results indicate that immunostimulatory BV of ApNPV can stimulate the innate immune activities and enhance the resistance to infectious virus of neonatal chickens.
Collapse
Affiliation(s)
- Mingshan Niu
- School of Environmental and Biological Science and Technology, Dalian University of Technology, RP116023, Dalian, China
| | | | | |
Collapse
|
42
|
Daly KA, Lefévre C, Nicholas K, Deane E, Williamson P. CD14 and TLR4 are expressed early in tammar (Macropus eugenii) neonate development. ACTA ACUST UNITED AC 2008; 211:1344-51. [PMID: 18375859 DOI: 10.1242/jeb.012013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marsupials are born in a relatively underdeveloped state and develop during a period of intensive maturation in the postnatal period. During this period, the young marsupial lacks a competent immune system, but manages to survive despite the potential of exposure to environmental pathogens. Passive immune transfer via the milk is one well-recognised strategy to compensate the neonate, but there also may be innate immune mechanisms in place. In this study, CD14 and Toll-like receptor 4 (TLR4), integral molecular components of pathogen recognition, were identified and characterised for the first time in a marsupial, the tammar wallaby (Macropus eugenii). Functional motifs of tammar CD14 and the toll/interleukin receptor (TIR) domain of TLR4 were highly conserved. The lipopolysaccharide (LPS) binding residues and the TLR4 interaction site of CD14 were conserved in all marsupials. The TIR signalling domain had 84% identity within marsupials and 77% with eutherians. Stimulation of adult tammar leukocytes resulted in the induction of a biphasic pattern of CD14 and TLR4 expression, and coincided with increased production of the pro-inflammatory cytokine TNF-alpha. Differential patterns of expression of CD14 and TLR4 were observed in tammar pouch young early in development, suggesting that early maturation of the innate immune system in these animals may have developed as an immune survival strategy to protect the marsupial neonate from exposure to microbial pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
43
|
Panaro MA, Cianciulli A, Gagliardi N, Mitolo CI, Acquafredda A, Cavallo P, Mitolo V. CD14 major role during lipopolysaccharide-induced inflammation in chick embryo cardiomyocytes. ACTA ACUST UNITED AC 2008; 53:35-45. [DOI: 10.1111/j.1574-695x.2008.00397.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Jayakumar A, Widenmaier R, Ma X, McDowell MA. Transcriptional inhibition of interleukin-12 promoter activity in Leishmania spp.-infected macrophages. J Parasitol 2008; 94:84-93. [PMID: 18372625 DOI: 10.1645/ge-1153.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12.
Collapse
Affiliation(s)
- Asha Jayakumar
- 215 Galvin Life Sciences, Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
45
|
Hua KF, Hsu HY, Chao LK, Chen ST, Yang WB, Hsu J, Wong CH. Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J Cell Physiol 2007; 212:537-50. [PMID: 17474083 DOI: 10.1002/jcp.21050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously reported that a well-characterized glycoprotein fraction containing fucose residues in an extract of Ganoderma lucidum polysaccharides (EORP) exerts certain immuno-modulation activity by stimulating the expression of inflammatory cytokines via TLR4. Continuing our studies, we have demonstrated that EORP increases the surface expression of CD14 and TLR4 within murine macrophages J774A.1 cells in vitro, and further promotes LPS binding and uptake by J774A.1 cells in a CD14-dependent fashion. Moreover, we observed the co-localization of internalized LPS with lysosome- and Golgi-apparatus markers within 5 min after J774A.1 cells stimulated with LPS. In addition, EORP pretreatment of J774A.1 cells and human blood-derived primary macrophages, followed by LPS stimulation, results in the super-induction of interleukin-1beta (IL-1) expression. Endocytosis inhibitors: such as cytochalasin D and colchicine effectively block EORP-enhanced LPS internalization by J774A.1 cells; yet they fail to decrease the LPS-induced phosphorylation of certain mitogen-activated protein kinases, and IL-1 mRNA and proIL-1 protein expression, indicating that LPS internalization by J774A.1 cells is not associated with LPS-dependent activation. Our current results could provide a potential EORP-associated protection mechanism for bacteria infection by enhancing IL-1 expression and the clearance of contaminated LPS by macrophages.
Collapse
Affiliation(s)
- Kuo-Feng Hua
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Elson G, Dunn-Siegrist I, Daubeuf B, Pugin J. Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood 2006; 109:1574-83. [PMID: 17038528 DOI: 10.1182/blood-2006-06-032961] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Innate recognition of bacteria is a key step in the activation of inflammation and coagulation, and it is dependent on pathogen-associated molecular pattern (PAMP) ligation to Toll-like receptors (TLRs) and CD14. The dominant receptors activated when cells encounter a whole bacterium, which express several PAMPs, are poorly defined. Herein, we have stimulated various human cells with prototypic Gram-negative and Gram-positive bacteria. Receptor-dependent responses to whole bacteria were assessed using both TLR-transfected cells and specific monoclonal antibodies against TLRs, MD-2, and CD14. Enterobacteria-activated leukocytes and endothelial cells in a TLR4/MD-2-dependent manner, most likely via lipopolysaccharide (LPS). TLR2 activation was observed with a high bacterial inoculum, and in epithelial cells expressing TLR2 but not TLR4. Pseudomonas aeruginosa stimulated cells by both TLR2 and TLR4/MD-2. Gram-positive bacteria activated cells only at high concentrations, in a partially TLR2-dependent but TLR4/MD-2-independent manner. Either TLR or CD14 neutralization blocked activation to all bacterial strains tested with the exception of some Gram-positive strains in whole blood in which partial inhibition was noted. This study identifies dominant TLRs involved in responses to whole bacteria. It also validates the concept that host cell activation by bacterial pathogens can be therapeutically reduced by anti-TLR4, -TLR2, and -CD14 mAbs.
Collapse
|
47
|
Kalia M, Kumari S, Chadda R, Hill MM, Parton RG, Mayor S. Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3'-kinase-dependent machinery. Mol Biol Cell 2006; 17:3689-704. [PMID: 16760436 PMCID: PMC1525230 DOI: 10.1091/mbc.e05-10-0980] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.
Collapse
Affiliation(s)
- Manjula Kalia
- *National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India; and
| | - Sudha Kumari
- *National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India; and
| | - Rahul Chadda
- *National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India; and
| | - Michelle M. Hill
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | - Satyajit Mayor
- *National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560065, India; and
| |
Collapse
|
48
|
Manolova V, Kistowska M, Paoletti S, Baltariu GM, Bausinger H, Hanau D, Mori L, De Libero G. Functional CD1a is stabilized by exogenous lipids. Eur J Immunol 2006; 36:1083-92. [PMID: 16598820 DOI: 10.1002/eji.200535544] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Self-glycosphingolipids bind to surface CD1 molecules and are readily displaced by other CD1 ligands. This capacity to exchange antigens at the cell surface is not common to other antigen-presenting molecules and its physiological importance is unclear. Here we show that a large pool of cell-surface CD1a, but not CD1b molecules, is stabilized by exogenous lipids present in serum. Under serum deprivation CD1a molecules are altered and functionally inactive, as they are unable to present lipid antigens to T cells. Glycosphingolipids and phospholipids bind to, and restore functionality to CD1a without the contribution of newly synthesized and recycling CD1a molecules. The dependence of CD1a stability on exogenous lipids is not related to its intracellular traffic and rather to its antigen-binding pockets. These results indicate a functional dichotomy between CD1a and CD1b molecules and provide new information on how the lipid antigenic repertoire is immunologically sampled.
Collapse
Affiliation(s)
- Vania Manolova
- Experimental Immunology, Department of Research University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tang PS, Tsang ME, Lodyga M, Bai XH, Miller A, Han B, Liu M. Lipopolysaccharide accelerates caspase-independent but cathepsin B-dependent death of human lung epithelial cells. J Cell Physiol 2006; 209:457-67. [PMID: 16894574 DOI: 10.1002/jcp.20751] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Caspase-independent cell death has drawn increasing attention. In the present study, we found that lipopolysaccharide (LPS) accelerated spontaneous death of human lung epithelial A549 cells in a serum- and cell density-dependent manner: while serum starvation has been demonstrated to induce apoptosis in the same cell line, LPS-induced cell death was only observed in the presence of serum; in addition, the cell death was not observed when the cells were seeded at 10- or 100-fold lower density. The apoptotic features were demonstrated by TUNEL assay, DNA laddering and Annexin V staining. However, treatment of cells with two commonly used pan-caspase inhibitors, zVAD.fmk or BOC-D.fmk, failed to block cell death. In contrast, two cathepsin B inhibitors, Ca074-Me or N-1845, reduced cell death significantly. A time-dependent activation of cathepsin B, but not caspase 3, was observed in both control and LPS-treated cells. Although LPS did not further activate cathepsin B or its release, it increased expression and translocation of apoptosis inducing factor from mitochondria to the nucleus, and increased release of cytochrome c from mitochondria. LPS-induced cell death was significantly attenuated by either N-acetyl-L-cysteine or pyrrolidine-dithiocarbamate, both free radical scavengers. Disruption of lipid raft formation with filipin or methyl-beta-cyclodextrin also reduced apoptosis significantly, suggesting that lipid raft-dependent signaling is essential. These data imply that confluent cells undergo spontaneous cell death mediated by cathepsin B; LPS may accelerate this caspase-independent cell death through release of mitochondrial contents and reactive oxygen species.
Collapse
Affiliation(s)
- Peter S Tang
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
CD14 is a pattern recognition receptor; its important role in innate immunity is reviewed here. Since its discovery and subsequent classification at the first leucocyte typing workshop in 1982, CD14 has been thought of as a leucocyte differentiation antigen. However, it has become clear that CD14 is also expressed by many non-myeloid cells, and the evidence for this is presented. The possible role of the presence of low copy number CD14 on non-myeloid cells is discussed. It is time to acknowledge CD14 as an ubiquitous molecule and abandon the position that it is expressed by myeloid cells alone.
Collapse
Affiliation(s)
- Hubertus P A Jersmann
- Lung Research Laboratory, Hanson Institute, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|