1
|
Jeong Y, You D, Kang HG, Yu J, Kim SW, Nam SJ, Lee JE, Kim S. Berberine Suppresses Fibronectin Expression through Inhibition of c-Jun Phosphorylation in Breast Cancer Cells. J Breast Cancer 2018; 21:21-27. [PMID: 29628980 PMCID: PMC5880962 DOI: 10.4048/jbc.2018.21.1.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose The exact mechanism regulating fibronectin (FN) expression in breast cancer cells has not been fully elucidated. In this study, we investigated the pharmacological mechanism of berberine (BBR) with respect to FN expression in triple-negative breast cancer (TNBC) cells. Methods The clinical significance of FN mRNA expression was analyzed using the Kaplan-Meier plotter database (http://kmplot.com/breast). FN mRNA and protein expression levels were analyzed by real-time polymerase chain reaction and western blotting, respectively. Results Using publicly available clinical data, we observed that high FN expression was associated with poor prognosis in patients with breast cancer. FN mRNA and protein expression was increased in TNBC cells compared with non-TNBC cells. As expected, recombinant human FN significantly induced cell spreading and adhesion in MDA-MB231 TNBC cells. We also investigated the regulatory mechanism underlying FN expression. Basal levels of FN mRNA and protein expression were downregulated by a specific activator protein-1 (AP-1) inhibitor, SR11302. Interestingly, FN expression in TNBC cells was dose-dependently decreased by BBR treatment. The level of c-Jun phosphorylation was also decreased by BBR treatment. Conclusion Our findings demonstrate that FN expression is regulated via an AP-1–dependent mechanism, and that BBR suppresses FN expression in TNBC cells through inhibition of AP-1 activity.
Collapse
Affiliation(s)
- Yisun Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyun-Gu Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Jonghan Yu
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Won Kim
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.,Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangmin Kim
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Yue Y, Ma K, Li Z, Wang Z. Angiotensin II type 1 receptor-associated protein regulates carotid intimal hyperplasia through controlling apoptosis of vascular smooth muscle cells. Biochem Biophys Res Commun 2018; 495:2030-2037. [DOI: 10.1016/j.bbrc.2017.12.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
|
3
|
van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AHJ. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol 2015; 763:3-14. [PMID: 25987425 DOI: 10.1016/j.ejphar.2015.03.090] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 10/24/2022]
Abstract
The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of many types of cardiovascular diseases including cardiomyopathy, valvular heart disease, aneurysms, stroke, coronary artery disease and vascular injury. Besides the classical regulatory effects on blood pressure and sodium homoeostasis, the RAS is involved in the regulation of contractility and remodelling of the vessel wall. Numerous studies have shown beneficial effect of inhibition of this system in the pathogenesis of cardiovascular diseases. However, dysregulation and overexpression of the RAS, through different molecular mechanisms, also induces, the initiation of vascular damage. The key effector peptide of the RAS, angiotensin II (Ang II) promotes cell proliferation, apoptosis, fibrosis, oxidative stress and inflammation, processes known to contribute to remodelling of the vasculature. In this review, we focus on the components that are under the influence of the RAS and contribute to the development and progression of vascular disease; extracellular matrix defects, atherosclerosis and ageing. Furthermore, the beneficial therapeutic effects of inhibition of the RAS on the vasculature are discussed, as well as the need for additive effects on top of RAS inhibition.
Collapse
Affiliation(s)
- Bibi S van Thiel
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Luuk te Riet
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Wakui H, Dejima T, Tamura K, Uneda K, Azuma K, Maeda A, Ohsawa M, Kanaoka T, Azushima K, Kobayashi R, Matsuda M, Yamashita A, Umemura S. Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension. Cardiovasc Res 2013; 100:511-9. [PMID: 24189624 DOI: 10.1093/cvr/cvt225] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Activation of tissue angiotensin II (Ang II) type 1 receptor (AT1R) plays an important role in the development of vascular remodelling. We have shown that the AT1R-associated protein (ATRAP/Agtrap), a specific binding protein of AT1R, functions as an endogenous inhibitor to prevent pathological activation of the tissue renin-angiotensin system. In this study, we investigated the effects of ATRAP on Ang II-induced vascular remodelling. METHODS AND RESULTS Transgenic (Tg) mice with a pattern of aortic vascular-dominant overexpression of ATRAP were obtained, and Ang II or vehicle was continuously infused into Tg and wild-type (Wt) mice via an osmotic minipump for 14 days. Although blood pressure of Ang II-infused Tg mice was comparable with that of Ang II-infused Wt mice, the Ang II-mediated development of aortic vascular hypertrophy was partially inhibited in Tg mice compared with Wt mice. In addition, Ang II-mediated up-regulation of vascular Nox4 and p22(phox), NADPH oxidase components, and 4-HNE, a marker of reactive oxygen species (ROS) generation, was significantly suppressed in Tg mice, with a concomitant inhibition of activation of aortic vascular p38MAPK and JNK by Ang II. This protection afforded by vascular ATRAP against Ang II-induced activation of NADPH oxidase is supported by in vitro experimental data using adenoviral transfer of recombinant ATRAP. CONCLUSION These results indicate that activation of aortic vascular ATRAP partially inhibits the Nox4/p22(phox)-ROS-p38MAPK/JNK pathway and pathological aortic hypertrophy provoked by Ang II-mediated hypertension, thereby suggesting ATRAP as a novel receptor-binding modulator of vascular pathophysiology.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lan T, Wu T, Gou H, Zhang Q, Li J, Qi C, He X, Wu P, Wang L. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. J Cell Biochem 2013; 114:2562-8. [DOI: 10.1002/jcb.24601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Tian Lan
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Teng Wu
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Hongju Gou
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou; 510515; China
| | - Qianqian Zhang
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Jiangchao Li
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Cuiling Qi
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Xiaodong He
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Pingxiang Wu
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou; 510515; China
| | - Lijing Wang
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| |
Collapse
|
6
|
Lan T, Liu W, Xie X, Huang K, Peng J, Huang J, Shen X, Liu P, Yang H, Huang H. Berberine suppresses high glucose-induced TGF-β1 and fibronectin synthesis in mesangial cells through inhibition of sphingosine kinase 1/AP-1 pathway. Eur J Pharmacol 2012; 697:165-72. [DOI: 10.1016/j.ejphar.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/25/2012] [Accepted: 10/09/2012] [Indexed: 11/16/2022]
|
7
|
Lan T, Liu W, Xie X, Xu S, Huang K, Peng J, Shen X, Liu P, Wang L, Xia P, Huang H. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol 2011; 25:2094-105. [PMID: 21998146 DOI: 10.1210/me.2011-0095] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alreja G, Joseph J. Renin and cardiovascular disease: Worn-out path, or new direction. World J Cardiol 2011; 3:72-83. [PMID: 21499495 PMCID: PMC3077814 DOI: 10.4330/wjc.v3.i3.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the renin angiotensin system has beneficial effects in cardiovascular prevention and treatment. The advent of orally active direct renin inhibitors adds a novel approach to antagonism of the renin-angiotensin system. Inhibition of the first and rate-limiting step of the renin angiotensin cascade offers theoretical advantages over downstream blockade. However, the recent discovery of the (pro)renin receptor which binds both renin and prorenin, and which can not only augment catalytic activity of both renin and prorenin in converting angiotensinogen to angiotensin I, but also signal intracellularly via various pathways to modulate gene expression, adds a significant level of complexity to the field. In this review, we will examine the basic and clinical data on renin and its inhibition in the context of cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Gaurav Alreja
- Gaurav Alreja, Jacob Joseph, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | | |
Collapse
|
9
|
Sugimura K, Fukumoto Y, Nawata J, Wang H, Onoue N, Tada T, Shirato K, Shimokawa H. Hypertension promotes phosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 in rats: implication for the pathogenesis of hypertensive vascular disease. TOHOKU J EXP MED 2011; 222:201-10. [PMID: 21068519 DOI: 10.1620/tjem.222.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is initiated by adhesion and infiltration of inflammatory leukocytes into the intima, where non-receptor protein tyrosine kinases, such as focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), play important roles as intracellular messengers of mechanical and biochemical signals. In the present study, we examined whether FAK and PYK2 are up-regulated by elevated blood pressure or circulating humoral factors in hypertension. We used a rat model of abdominal aortic banding that allows separate evaluation of elevated blood pressure (upper body) and circulating humoral factors (lower body). We obtained the proximal and distal aortas of the banding site, 6 hours, 3 days, and 1 and 4 weeks after the banding procedure, for evaluation of phosphorylation of FAK and PYK2 by Western blotting. Arterial pressure was significantly elevated only in the upper body throughout the experimental period. The expression of FAK and the FAK phosphorylation were significantly increased at 1 and 4 weeks only in the proximal aorta. This was also the case for the expression of total PYK2 and the PYK2 phosphorylation. In contrast, there was no significant change in FAK or PYK2 phosphorylation in the distal aorta, whereas plasma levels of angiotensin II were systemically elevated. In sham-operated rats, no change in FAK or PYK2 phoshorylation was noted in the proximal and distal aortas. These results indicate that phosphorylation of FAK and PYK2 is upregulated by elevated blood pressure but not by humoral factors in the rat aorta, demonstrating novel aspects of atherogenesis in hypertension.
Collapse
Affiliation(s)
- Koichiro Sugimura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29:284-311. [PMID: 20380890 DOI: 10.1016/j.preteyeres.2010.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
11
|
de Cavanagh EMV, Ferder M, Inserra F, Ferder L. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol 2009; 296:H550-8. [DOI: 10.1152/ajpheart.01176.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malfunctioning mitochondria strongly participate in the pathogenesis of cardiovascular damage associated with hypertension and other disease conditions. Eukaryotic cells move, assume their shape, resist mechanical stress, accommodate their internal constituents, and transmit signals by relying on the constant remodeling of cytoskeleton filaments. Mitochondrial ATP is needed to support cytoskeletal dynamics. Conversely, mitochondria need to interact with cytoskeletal elements to achieve normal motility, morphology, localization, and function. Extracellular matrix (ECM) quantity and quality influence cellular growth, differentiation, morphology, survival, and mobility. Mitochondria can sense ECM composition changes, and changes in mitochondrial functioning modify the ECM. Maladaptive ECM and cytoskeletal alterations occur in a number of cardiac conditions and in most types of glomerulosclerosis, leading to cardiovascular and renal fibrosis, respectively. Angiotensin II (ANG II), a vasoactive peptide and growth factor, stimulates cytosolic and mitochondrial oxidant production, eventually leading to mitochondrial dysfunction. Also, by inducing integrin/focal adhesion changes, ANG II regulates ECM and cytoskeletal composition and organization and, accordingly, contributes to the pathogenesis of cardiovascular remodeling. ANG II-initiated integrin signaling results in the release of transforming growth factor-β1 (TGF-β1), a cytokine that modifies ECM composition and structure, induces reorganization of the cytoskeleton, and modifies mitochondrial function. Therefore, it is possible to hypothesize that the depression of mitochondrial energy metabolism brought about by ANG II is preceded by ANG II-induced integrin signaling and the consequent derangement of the cytoskeletal filament network and/or ECM organization. ANG II-dependent TGF-β1 release is a potential link between ANG II, ECM, and cytoskeleton derangements and mitochondrial dysfunction. It is necessary to emphasize that the present hypothesis is among many other plausible explanations for ANG II-mediated mitochondrial dysfunction. A potential limitation of this proposal is that the results compiled here were obtained in different cells, tissues, and/or experimental models.
Collapse
|
12
|
Tamura K, Tanaka Y, Tsurumi Y, Azuma K, Shigenaga AI, Wakui H, Masuda SI, Matsuda M. The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function. Curr Hypertens Rep 2007; 9:121-7. [PMID: 17442223 DOI: 10.1007/s11906-007-0022-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We cloned a novel molecule, AT1 receptor-associated protein (ATRAP), which is expressed in many tissues but specifically interacts with the AT1 receptor carboxyl-terminal. In the kidney, ATRAP was broadly distributed along the renal tubules; salt intake modulated its expression. In cardiovascular cells, angiotensin II (Ang II) stimulation made ATRAP co-localized with AT1 receptor in cytoplasm; ATRAP overexpression decreased cell surface AT1 receptor. In downstream signaling pathways, ATRAP suppressed Ang II-induced phosphorylation of mitogen-activated protein kinase, activation of c-fos gene transcription, and enhancement of amino acid or bromodeoxyuridine incorporation in cardiovascular cells. Thus, cardiovascular ATRAP may promote AT1 receptor internalization and attenuate Ang II-mediated cardiovascular remodeling. We would expect ATRAP to become a new therapeutic target molecule to treat and prevent cardiovascular remodeling in hypertension.
Collapse
Affiliation(s)
- Kouichi Tamura
- Department of Cardiorenal Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Qi W, Chen X, Holian J, Mreich E, Twigg S, Gilbert RE, Pollock CA. Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiol 2006; 291:F1070-7. [PMID: 16720864 DOI: 10.1152/ajprenal.00013.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transforming growth factor-beta(1) (TGF-beta(1)) is not only an important fibrogenic but also immunomodulatory cytokine in the human kidney. We have recently demonstrated that TGF-beta(1) induces interleukin-8 (IL-8), macrophage chemoattractant protein-1 (MCP-1), and fibronectin production in renal proximal tubular (HK-2) cells. However, the unique dependence of IL-8, MCP-1, and fibronectin on TGF-beta(1) expression is unknown. The TGF-beta(1) gene was effectively silenced in HK-2 cells using small-interference (si) RNA. Basal secretion of IL-8 and MCP-1 decreased (both P < 0.05) but, paradoxically, fibronectin increased (P < 0.05) in TGF-beta(1)-silenced cells compared with cells transfected with nonspecific siRNA. Significant increases were observed in mRNA for the TGF-beta(2) (P < 0.05), TGF-beta(3) (P < 0.05) isoforms and pSmad2 (P < 0.05), which were reflected in protein expression. Concurrent exposure to pan-specific TGF-beta antibody reversed the observed increase in fibronectin expression, suggesting that TGF-beta(2) and TGF-beta(3) isoforms mediate the increased fibronectin expression in TGF-beta(1)-silenced cells. An increase in the DNA binding activity of activator protein-1 (AP-1; P < 0.05) was also observed in TGF-beta(1)-silenced cells. In contrast, nuclear factor-kappaB (NF-kappaB) DNA binding activity was significantly decreased (P < 0.0005). These studies demonstrate that TGF-beta(1) is a key regulator of IL-8 and MCP-1, whereas fibronectin expression is regulated by a complex interaction between the TGF-beta isoforms in the HK-2 proximal tubular cell line. Decreased expression of TGF-beta(1) reduces chemokine production in association with reduced NF-kappaB DNA binding activity, suggesting that immunomodulatory pathways in the kidney are specifically dependent on TGF-beta(1). Conversely, decreased expression of TGF-beta(1) results in increased TGF-beta(2), TGF-beta(3), AP-1, and pSmad2 that potentially mediates the observed increase in fibronectin.
Collapse
Affiliation(s)
- Weier Qi
- Dept. of Medicine, Level 3, Wallace Freeborn Professorial Block, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Jane-Lise S, Corda S, Chassagne C, Rappaport L. The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 2005; 5:239-50. [PMID: 16228907 DOI: 10.1023/a:1009857403356] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell characteristics and phenotype depend on the nature of the extracellular matrix, the type and organization of integrins and cytoskeleton. The interactions between these components are poorly known at the myocyte level and during cardiac remodeling associated with cardiac hypertrophy and heart failure. We analyze here the nature and organization of extracellular matrix (ECM) proteins, cytoskeleton and integrins and their regulation by growth factors, such as angiotensin II, in normal myocyte growth and in pathological growth (hypertrophy) of the myocardium and heart failure.
Collapse
|
15
|
Abstract
The effects of growth factors on tissue remodeling and cell differentiation depend on the nature of the extracellular matrix, the type and organization of integrins, the activation of metalloproteinases and the presence of secreted proteins associated to the matrix. These interactions are actually poorly known in the cardiovascular system. We describe here: 1) the main components of extracellular matrix within the cardiovascular system; 2) the role of integrins in the transmission of growth signals; 3) the shift in the expression of the components of the extracellular matrix (fibronectin and collagens) and the stimulation of the synthesis of metalloproteinases during normal and hypertrophic growth of the myocardium; 4) the effects of growth factors, such as Angiotensin II, Fibroblast Growth Factors (FGF), Transforming Growth Factor-beta (TGF-beta), on the synthesis of proteins of the extracellular matrix in the heart.
Collapse
Affiliation(s)
- S Corda
- Hôpital Lariboisière, INSERM U 127, Paris, France
| | | | | |
Collapse
|
16
|
Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol 2005; 38:752-65. [PMID: 16165393 DOI: 10.1016/j.biocel.2005.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/25/2005] [Accepted: 08/10/2005] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy develops in patients with both type 1 and type 2 diabetes and is the major cause of vision loss and blindness in the working population. In diabetes, damage to the retina occurs in the vasculature, neurons and glia resulting in pathological angiogenesis, vascular leakage and a loss in retinal function. The renin-angiotensin system is a causative factor in diabetic microvascular complications inducing a variety of tissue responses including vasoconstriction, inflammation, oxidative stress, cell hypertrophy and proliferation, angiogenesis and fibrosis. All components of the renin-angiotensin system including the angiotensin type 1 and angiotensin type 2 receptors have been identified in the retina of humans and rodents. There is evidence from both clinical and experimental models of diabetic retinopathy and hypoxic-induced retinal angiogenesis that the renin-angiotensin system is up-regulated. In these situations, retinal dysfunction has been linked to angiotensin-mediated induction of growth factors including vascular endothelial growth factor, platelet-derived growth factor and connective tissue growth factor. Evidence to date indicates that blockade of the renin-angiotensin system can confer retinoprotection in experimental models of diabetic retinopathy and ischemic retinopathy. This review examines the role of the renin-angiotensin system in diabetic retinopathy and the potential of its blockade as a treatment strategy for this vision-threatening disease.
Collapse
|
17
|
Otis M, Campbell S, Payet MD, Gallo-Payet N. Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology 2005; 146:633-42. [PMID: 15539557 DOI: 10.1210/en.2004-0935] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (Ang II) is one of the most important stimuli of rat adrenal glomerulosa cells. The aim of the present study was to investigate whether Ang II can stimulate cell proliferation and/or hypertrophy and investigate pathways and intracellular targets. A 3-d treatment with Ang II (5-100 nm), through the Ang II type 1 receptor subtype, abolished cell proliferation observed in control cells but increased protein synthesis. Preincubation with PD98059 (a MAPK kinase inhibitor) abolished basal proliferation and had no effect on basal protein synthesis but did reverse the effect of Ang II on protein synthesis. The p38 MAPK inhibitor SB203580 reversed the inhibitory effect on cell proliferation and abolished the increase in protein synthesis, whereas the c-Jun N-terminal kinase inhibitor SP600125 had no effect. Time-course studies revealed that Ang II stimulated phosphorylation of both p42/p44mapk and p38 MAPK but did not activate c-Jun N-terminal kinase. Ang II had no effect on the level of cyclin E expression but increased the expression of the cyclin-dependent kinase, p27Kip1, an effect abolished in cells preincubated with SB203580 and PD98059. In conclusion, in cultured rat glomerulosa cells, a 3-d treatment with Ang II increases protein synthesis, with a concomitant decrease in proliferation. These effects are mediated by both the p42/p44mapk and p38 MAPK pathways, which increase expression of the steroidogenic enzymes, steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase and p27Kip1, a protein known to block the cell cycle in G1 phase. Together these results support the key role of Ang II as a stimulus of steroid synthesis rather than a proliferating factor.
Collapse
Affiliation(s)
- Mélissa Otis
- Service of Endocrinology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
18
|
Xin X, Khan ZA, Chen S, Chakrabarti S. Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis. J Transl Med 2004; 84:1451-9. [PMID: 15448709 DOI: 10.1038/labinvest.3700178] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increased extracellular matrix protein deposition and basement membrane thickening are important features of diabetic angiopathy. One key matrix protein that has been shown to be instrumental in basement membrane thickening is fibronectin (FN). We have previously demonstrated that glucose-induced increased expression of endothelin-1 (ET-1), may in part, be responsible for increased FN expression via nuclear factor-kappaB (NF-kappaB) and activating protein (AP-1) activation. The present study was aimed at elucidating the mechanism of ET-1 with respect to mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway activation and glucose-induced FN upregulation. Human endothelial cells were exposed to either low (5 mM) or high (25 mM) glucose levels. Cells in low glucose were also treated with ET-1 peptide (5 nM). In addition, we treated cells exposed to high glucose levels with specific MAPK/ERK inhibitor PD098059 (50 microM), dual ET-receptor antagonist, bosentan (10 microM), and PKC blocker, chelerythrine (1 microM). Following incubation period, RNA and total proteins were extracted for RT-PCR for FN and immunoblot analysis of MAPK/ERK activation. Confocal microscopy was performed for analysis of FN protein and nuclear localization of activated Elk. Electrophoretic mobility shift assay was carried out to detect NF-kappaB and AP-1 activation. Our data demonstrates that high glucose-induced upregulation of FN messenger RNA and protein levels occur via activation of MAPK/ERK pathway, which was prevented by treatment of cells with bosentan, PD098059 and PKC blocker chelerythrine. Confocal microscopy demonstrated nuclear localization of phospho-Elk protein. Glucose-induced FN expression was also associated with protein kinase C, NF-kappaB, and AP-1 activation. These results suggested that glucose-induced, ET- and PKC-dependent, upregulation of FN is, in part, mediated via MAPK/ERK activation.
Collapse
Affiliation(s)
- Xiping Xin
- Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Bozec E, Lacolley P, Bergaya S, Boutouyrie P, Meneton P, Herissé-Legrand M, Boulanger CM, Alhenc-Gelas F, Kim HS, Laurent S, Dabiré H. Arterial stiffness and angiotensinogen gene in hypertensive patients and mutant mice. J Hypertens 2004; 22:1299-307. [PMID: 15201545 DOI: 10.1097/01.hjh.0000125450.28861.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether carotid artery stiffness was increased in patients with untreated essential hypertension who are homozygous for the T allele of the M235T polymorphism of the angiotensinogen (AGT) gene and in mutant mice carrying three copies of the angiotensinogen (Agt) gene. METHODS Using echotracking systems, we studied carotid mechanical properties in 98 never-treated hypertensive patients according to their AGT genotype, and in Agt mutant mice. RESULTS Patients homozygous for the T allele had a reduced carotid distensibility and an increased stiffness of the carotid wall material (Young's elastic modulus), independent of blood pressure, compared with patients homozygous for the M allele. In Agt1/2 mice, carotid distensibility was not significantly different from that of Agt1/1 (wild-type). Moreover, the stiffness of the arterial wall material was lower in Agt1/2 mice than in wild-type mice. In Agt1/2 mice, the greater blood pressure was not associated with arterial hypertrophy, resulting in a greater circumferential wall stress. The in-vivo and in-vitro pressor responses to angiotensin II were reduced in Agt1/2 mice, whereas the contractile response to phenylephrine was not significantly different between Agt1/1 and Agt1/2 mice, indicating the integrity of the contractile apparatus and suggesting a dysfunction of the angiotensin II type 1 receptor signalling pathways in Agt1/2 mice. CONCLUSION These data suggest that the angiotensinogen TT genotype at position 235 could be a genetic marker for arterial stiffness in patients with never-treated hypertension, whereas in Agt1/2 mice the dysfunction of the angiotensin II type 1 receptor signalling pathways could explain the lack of arterial wall hypertrophy and stiffness.
Collapse
Affiliation(s)
- Erwan Bozec
- Department of Pharmacology, Hôpital Européen Georges Pompidou and Institut National de la Santé et de la Recherche Médicale EMI 0107, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rupérez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 2003; 108:1499-505. [PMID: 12952842 DOI: 10.1161/01.cir.0000089129.51288.ba] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) participates in the development of fibrosis during vascular damage. Connective tissue growth factor (CTGF) is a novel fibrotic mediator. However, the potential link between CTGF and Ang II has not been investigated. METHODS AND RESULTS In vivo Ang II effects were studied by systemic infusion into normal rats to evaluate CTGF and extracellular matrix protein (ECM) expression by immunohistochemistry. In aorta of Ang II-infused rats, CTGF staining was markedly increased and ECM overexpression was observed. An AT1 antagonist diminished CTGF and ECM. In growth-arrested vascular smooth muscle cells, Ang II induced CTGF mRNA expression after 1 hour, remained elevated up to 24 hours, and increased CTGF protein production, which was increased up to 72 hours. The AT1 antagonist blocked Ang II-induced CTGF gene and protein expression. Early CTGF upregulation is independent of new protein synthesis. Several intracellular signals elicited by Ang II are involved in CTGF synthesis, including protein kinase C activation, reactive oxygen species, and transforming growth factor-beta endogenous production. Incubation with a CTGF antisense oligonucleotide decreased CTGF and fibronectin upregulation caused by Ang II. CONCLUSIONS Our results show that Ang II, via AT1, increases CTGF in vascular cells both in vivo and in vitro. This novel finding suggests that CTGF may be a mediator of the profibrogenic effects of Ang II in vascular diseases.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Aorta/drug effects
- Aorta/pathology
- Cells, Cultured
- Connective Tissue Growth Factor
- Drug Administration Routes
- Drug Administration Schedule
- Extracellular Matrix Proteins/metabolism
- Female
- Fibrosis/chemically induced
- Fibrosis/metabolism
- Fibrosis/pathology
- Gene Expression/drug effects
- Imidazoles/pharmacology
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Immunohistochemistry
- Infusion Pumps, Implantable
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Losartan/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
Collapse
Affiliation(s)
- Mónica Rupérez
- Vascular and Renal Research Laboratory, Autónoma University, Fundación Jiménez Díaz, Avda Reyes Católicos, 2, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Chen S, Khan ZA, Cukiernik M, Chakrabarti S. Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab 2003; 284:E1089-97. [PMID: 12582013 DOI: 10.1152/ajpendo.00540.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increased extracellular matrix protein production leading to structural abnormalities is a characteristic feature of chronic diabetic complications. We previously showed that high glucose in endothelial cell culture leads to the upregulation of basement membrane protein fibronectin (FN) via an endothelin (ET)-dependent pathway involving activation of NF-kappaB and activating protein-1 (AP-1). To delineate the mechanisms of basement membrane thickening, we used an animal model of chronic diabetes and evaluated ET-dependent activation of NF-kappaB and AP-1 and subsequent upregulation of FN in three target organs of chronic diabetic complications. After 3 mo of diabetes, retina, renal cortex, and myocardium demonstrated increased FN mRNA and increased ET-1 mRNA expression. Increased FN expression was shown to be dependent on ET receptor-mediated signaling, as the increase was prevented by the dual ET receptor antagonist bosentan. NF-kappaB activation was most pronounced in the retina, followed by kidney and heart. AP-1 activation was also most pronounced in the retina but was similar in both kidney and heart. Bosentan treatment prevented NF-kappaB activation in the retina and heart and AP-1 activation in the retina and kidney. These data indicate that, although ETs are important in increased FN production due to diabetes, the mechanisms with respect to transcription factor activation may vary depending on the microenvironment of the organ.
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
22
|
Weigert C, Brodbeck K, Brosius FC, Huber M, Lehmann R, Friess U, Facchin S, Aulwurm S, Häring HU, Schleicher ED, Heilig CW. Evidence for a novel TGF-beta1-independent mechanism of fibronectin production in mesangial cells overexpressing glucose transporters. Diabetes 2003; 52:527-35. [PMID: 12540631 DOI: 10.2337/diabetes.52.2.527] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent experimental work indicates that the hyperglycemia-induced increase in mesangial matrix production, which is a hallmark in the development of diabetic nephropathy, is mediated by increased expression of GLUT1. Mesangial cells stably transfected with human GLUT1 mimic the effect of hyperglycemia on the production of the extracellular matrix proteins, particularly fibronectin, when cultured under normoglycemic conditions. Our investigation of the molecular mechanism of this effect has revealed that the enhanced fibronectin production was not mediated by the prosclerotic cytokine transforming growth factor (TGF)-beta1. We found markedly increased nuclear content in Jun proteins, leading to enhanced DNA-binding activity of activating protein 1 (AP-1). AP-1 inhibition reduced fibronectin production in a dosage-dependent manner. Moreover, inhibition of classic protein kinase C (PKC) isoforms prevented both the activation of AP-1 and the enhanced fibronectin production. In contrast to mesangial cells exposed to high glucose, no activation of the hexosamine biosynthetic, p38, or extracellular signal-related kinase 1 and 2 mitogen-activated protein kinase pathways nor any increase in TGF-beta1 synthesis could be detected, which could be explained by the absence of oxidative stress in cells transfected with the human GLUT1 gene. Our data indicate that increased glucose uptake and metabolism induce PKC-dependent AP-1 activation that is sufficient for enhanced fibronectin production, but not for increased TGF-beta1 expression.
Collapse
Affiliation(s)
- Cora Weigert
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Pathobio-Chemistry, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hashimoto T, Kihara M, Yokoyama K, Fujita T, Kobayashi SI, Matsushita K, Tamura K, Hirawa N, Toya Y, Umemura S. Lipoxygenase products regulate nitric oxide and inducible nitric oxide synthase production in interleukin-1beta stimulated vascular smooth muscle cells. Hypertens Res 2003; 26:177-84. [PMID: 12627879 DOI: 10.1291/hypres.26.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cultured vascular smooth muscle cells (VSMCs), interleukin-1beta (IL-1beta) stimulates inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. IL-1beta also activates phospholipase A2 (PLA2), and induces lipoxygenase (LOX) and cyclooxygenase-2 (COX-2). The present study investigated whether these metabolites are involved in the regulation of IL-1beta-induced NO production and iNOS expression. Pretreatment with ONO-RS-082, the secretory PLA2 (sPLA2) inhibitor, at 1 to 10 micromol/l reduced IL-1beta-stimulated nitrite production and iNOS expression. Nordihydroguaiaretic acid (NDGA, 1 to 10 micromol/l), the LOX inhibitor, also reduced IL-1beta (10 ng/ml)-stimulated nitrite production and iNOS expression in a dose-dependent manner. Exogenous 12(S)-hydroxyeicosatetraenoic acids (HETE) enhanced the IL-1beta-stimulated nitrite production and iNOS expression. On the other hand, the COX inhibitors, indomethacin and NS-398, had little effect on nitrite production or iNOS expression. These results suggest that LOX products play important roles in the regulation of stimulus-induced NO production in VSMCs.
Collapse
Affiliation(s)
- Tatsuo Hashimoto
- Second Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep 2003; 5:73-9. [PMID: 12530939 DOI: 10.1007/s11906-003-0014-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Blockers of the renin-angiotensin system are used in the treatment of several cardiovascular and renal diseases, including hypertension, atherosclerosis, and cardiac failure. Angiotensin II plays an essential role in the pathogenesis of these diseases through the regulation of cell growth, inflammation, and fibrosis. There are two main angiotensin II receptors, AT(1) and AT(2). The AT(1) receptor is responsible for most of the pathophysiologic actions of angiotensin II, including cell proliferation, production of growth factors and cytokines, and fibrosis. AT(2) causes antiproliferation and counteracts the cell growth induced by AT(1) activation. We review the mechanisms whereby AT(1) and AT(2) receptors elicit their respective actions. We discuss the current understanding of the signaling mechanisms involved in angiotensin II-induced vascular damage, describing the mediators (growth factors and cytokines) and intracellular signals (activation of protein kinases, transcription factors, and redox pathways) implicated in these processes, with special emphasis on novel information and open questions.
Collapse
Affiliation(s)
- Marta Ruiz-Ortega
- Vascular and Renal Research Laboratory, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
25
|
Chen S, Mukherjee S, Chakraborty C, Chakrabarti S. High glucose-induced, endothelin-dependent fibronectin synthesis is mediated via NF-kappa B and AP-1. Am J Physiol Cell Physiol 2003; 284:C263-72. [PMID: 12388107 DOI: 10.1152/ajpcell.00192.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human endothelial cells cultured under high glucose (HG) conditions were shown before to upregulate several basement membrane proteins, including fibronectin (FN), thus mimicking effects of diabetes. Using human macrovascular (HUVEC) and microvascular (HMEC) endothelial cell lines, we evaluated in the present study some of the key molecular signaling events involved in HG-induced FN overexpression. This expression was shown to be dependent on endogenous endothelin (ET) receptor-mediated signaling. We also examined the roles played by protein kinase C (PKC) and the transcription factors nuclear factor kappaB (NF-kappaB) and activating protein (AP)-1 with respect to such changes. HG, PKC activators, and ETs (ET-1 and ET-3) that increased FN expression also caused activation of NF-kappaB and AP-1. Inhibitors of both NF-kappaB and AP-1 prevented HG- and ET-induced FN production. ET receptor blockade also prevented these HG- and ET-mediated changes. The results of this study indicate that glucose-induced increased FN production in diabetes may be mediated via ET-dependent NF-kappaB and AP-1 activation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Basement Membrane/drug effects
- Basement Membrane/metabolism
- Basement Membrane/physiopathology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Dose-Response Relationship, Drug
- Endothelin Receptor Antagonists
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Fibronectins/genetics
- Fibronectins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glucose/pharmacology
- Humans
- NF-kappa B/metabolism
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Endothelin/metabolism
- Transcription Factor AP-1/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
26
|
Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 2002; 62:58-64. [PMID: 12065755 DOI: 10.1124/mol.62.1.58] [Citation(s) in RCA: 511] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TGF-beta type I receptor [activin receptor-like kinase (ALK)5] and the substrate, Smad3, and determined that SB-431542 is a selective inhibitor of Smad3 phosphorylation with an IC50 of 94 nM. It inhibited TGF-beta1-induced nuclear Smad3 localization. The p38 mitogen-activated protein kinase inhibitors SB-203580 and SB-202190 also inhibit phosphorylation of Smad3 by ALK5 with IC50 values of 6 and 3 microM, respectively. This suggests that these p38 MAPK inhibitors must be used at concentrations of less than 10 microM to selectively address p38 MAPK mechanisms. However, the p38 MAPK inhibitor SB-242235 did not inhibit ALK5. To evaluate the relative contribution of Smad signaling and p38 MAPK signaling in TGF-beta1-induced matrix production, the effect of SB-431542 was compared with that of SB-242235 in renal epithelial carcinoma A498 cells. All compounds inhibited TGF-beta1-induced fibronectin (FN) mRNA, indicating that FN synthesis is mediated in part via the p38 MAPK pathway. In contrast, SB-431542, but not the selective p38 MAPK inhibitor SB-242235, inhibited TGF-beta1-induced collagen Ialpha1 (col Ialpha1). These data indicate that some matrix markers that are stimulated by TGF-beta1 are mediated via the p38 MAPK pathway (i.e., FN), whereas others seem to be activated via ALK5 signaling independent of the p38 MAPK pathway (i.e., col Ialpha1).
Collapse
Affiliation(s)
- N J Laping
- Department of Renal and Urology Research, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, Suganami T, Yahata K, Fujinaga Y, Tanaka I, Nakao K. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis. Am J Physiol Renal Physiol 2002; 282:F933-42. [PMID: 11934704 DOI: 10.1152/ajprenal.00122.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connective tissue growth factor (CTGF) is one of the candidate factors mediating downstream events of transforming growth factor-beta (TGF-beta), but its role in fibrogenic properties of TGF-beta and in tubulointerstitial fibrosis has not yet been clarified. Using unilateral ureteral obstruction (UUO) in rats, we analyzed gene expression of TGF-beta1, CTGF, and fibronectin. We further investigated the effect of blockade of endogenous CTGF on TGF-beta-induced fibronectin expression in cultured rat renal fibroblasts by antisense oligodeoxynucleotide (ODN) treatment. After UUO, CTGF mRNA expression in the obstructed kidney was significantly upregulated subsequent to TGF-beta1, followed by marked induction of fibronectin mRNA. By in situ hybridization, CTGF mRNA was detected mainly in the interstitial fibrotic areas and tubular epithelial cells as well as in parietal glomerular epithelial cells in the obstructed kidney. The interstitial cells expressing CTGF mRNA were also positive for alpha-smooth muscle actin. CTGF antisense ODN transfected into cultured renal fibroblasts significantly attenuated TGF-beta-stimulated upregulation of fibronectin mRNA and protein compared with control ODN transfection, together with inhibited synthesis of type I collagen. With the use of a reporter assay, rat fibronectin promoter activity was increased by 2.5-fold with stimulation by TGF-beta1, and this increase was abolished with antisense CTGF treatment. Thus CTGF plays a crucial role in fibronectin synthesis induced by TGF-beta, suggesting that CTGF blockade could be a possible therapeutic target against tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Hideki Yokoi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nishio T, Haneda M, Koya D, Inoki K, Maeda S, Kikkawa R. Cyclic AMP inhibits stretch-induced overexpression of fibronectin in glomerular mesangial cells. Eur J Pharmacol 2002; 437:113-22. [PMID: 11890898 DOI: 10.1016/s0014-2999(01)01559-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glomerular hypertension is proposed to play an important role in the progression of various glomerular diseases. Glomerular mesangial cells are considered to be exposed to the stretch stress due to glomerular hypertension and are found to produce the excess amount of extracellular matrix (ECM) proteins including fibronectin when exposed to the mechanical stretch. Herein, we provide the evidence that cAMP-generating agents inhibit the stretch-induced overexpression of fibronectin through the inhibition of the stretch-induced activation of mitogen-activated protein kinases (MAPKs) in protein kinase-A-dependent manner. We also found that the mechanical stretch enhanced the binding of nuclear extracts to activator protein-1 (AP-1)-like sequences in the promoter region of rat fibronectin gene and this enhancement was also prevented by the cAMP-generating agent. These results indicate that the agents, which activate cAMP/protein kinase-A axis, may work protectively against the injury from glomerular hypertension in mesangial cells.
Collapse
Affiliation(s)
- Toshiki Nishio
- Third Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Suzuki Y, Lopez-Franco O, Gomez-Garre D, Tejera N, Gomez-Guerrero C, Sugaya T, Bernal R, Blanco J, Ortega L, Egido J. Renal tubulointerstitial damage caused by persistent proteinuria is attenuated in AT1-deficient mice: role of endothelin-1. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1895-904. [PMID: 11696450 PMCID: PMC1867065 DOI: 10.1016/s0002-9440(10)63036-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2001] [Indexed: 11/22/2022]
Abstract
Using angiotensin II (AngII) type 1A receptor-deficient mice [AT1(-/-)], in which we induced protein overload nephropathy, we explored the potential implication of AngII and endothelin-1 (ET-1) in the tubulointerstitial damage because of persistent proteinuria. At day 7, AT1(-/-) showed marked proteinuria to a similar extent to that of wild-type mice (WT). However, at day14, AT1(-/-) had significantly less proteinuria, renal damage, transforming growth factor-beta, and matrix mRNA expression and mortality. AT1(-/-) also showed a significant diminution in the activation of the transcriptional factors nuclear factor-kappaB and AP-1. Unexpectedly, AT1(-/-) had a higher interstitial infiltration than WT. The administration of the angiotensin-converting enzyme inhibitor quinapril to WT caused a marked improvement in proteinuria and renal lesions, resembling that seen in untreated AT1(-/-). However, the interstitial infiltration persisted in AT1(-/-) when treated with quinapril. Because ET-1 may participate in the recruitment of mononuclear cells, we also studied the implication of this peptide. AT1(-/-) had a significantly higher ET-1 expression in tubular epithelial cells than WT. The administration of the dual ETA/ETB antagonist bosentan to AT1(-/-) considerably reduced the interstitial infiltrates. Bosentan also exerted a beneficial effect on proteinuria, renal lesions, and mortality in WT. These data show that in overload nephropathy, proteinuria and renal lesions are, to a large extent, AngII-dependent. The up-regulation of ET-1 in tubular epithelial cells in AT1(-/-), associated with interstitial infiltrates, suggests that the combination of drugs interfering with both vasopeptides may be of therapeutic interest in renal diseases with severe proteinuria and tubulointerstitial damage.
Collapse
Affiliation(s)
- Y Suzuki
- Renal and Vascular Laboratory, Fundación Jiménez Díaz, Autonoma University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huszár T, Mucsi I, Antus B, Terebessy T, Jeney C, Masszi A, Hunyady L, Mihalik B, Goldberg HJ, Thekkumkara TJ, Rosivall L. Extracellular signal-regulated kinase and the small GTP-binding protein p21Rac1 are involved in the regulation of gene transcription by angiotensin II. EXPERIMENTAL NEPHROLOGY 2001; 9:142-9. [PMID: 11150863 DOI: 10.1159/000052605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study the role of extracellular-signal-regulated kinase (ERK) cascade and the small GTP-ase proteins in the activation of the c-fos promoter by angiotensin II (AII), transient transfection experiments were performed in CHO cells stably expressing the rat AT(1A) receptor. In this system AII activated ERK in 1 min and also increased the transcriptional activity of the c-fos promoter-luciferase reporter gene construct. The activation of the promoter proved to be dependent on the Ras-Raf-ERK cascade as cotransfection of expression vectors known to specifically inhibit this cascade blocked the effect of AII. Dominant-negative p21Rac1 mutant partially blocked the activation of the c-fos promoter by AII. However, activation of the c-fos promoter was independent of protein kinase C (PKC) as bisindolylmaleimide I, a specific PKC inhibitor did not block the effect of AII. These results suggest that AII activates the transcription of the c-fos through the Ras-Raf-ERK cascade. Furthermore, p21Rac1 is involved in the modulation of the c-fos promoter by AII.
Collapse
Affiliation(s)
- T Huszár
- Department of Pathophysiology, Faculty of Medicine, International Nephrology Training and Research Center, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fiebeler A, Schmidt F, Müller DN, Park JK, Dechend R, Bieringer M, Shagdarsuren E, Breu V, Haller H, Luft FC. Mineralocorticoid receptor affects AP-1 and nuclear factor-kappab activation in angiotensin II-induced cardiac injury. Hypertension 2001; 37:787-93. [PMID: 11230374 DOI: 10.1161/01.hyp.37.2.787] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone is implicated in cardiac hypertrophy and fibrosis. We tested the role of the mineralocorticoid receptor in a model of angiotensin II-induced cardiac injury. We administered spironolactone (SPIRO; 20 mg. kg(-1). d(-1)), valsartan (VAL; 10 mg. kg(-1). d(-1)), or vehicle to rats double transgenic for the human renin and angiotensinogen genes (dTGR). We investigated basic fibroblast growth factor (bFGF), platelet-derived growth factor, transforming growth factor-beta(1), and the transcription factors AP-1 and nuclear factor (NF)-kappaB. We used immunohistochemistry, electrophoretic mobility shift assays, and TaqMan RT-PCR. Untreated dTGR developed hypertension, cardiac hypertrophy, vasculopathy, and fibrosis with a 50% mortality rates at 7 weeks. SPIRO and VAL prevented death and reversed cardiac hypertrophy, while only VAL normalized blood pressure. Both drugs prevented vasculopathy. bFGF was markedly upregulated in dTGR, whereas platelet-derived growth factor-B and transforming growth factor-beta(1) were little changed. VAL and SPIRO suppressed this upregulation. Both AP-1 and NF-kappaB were activated in dTGR compared with controls. VAL and SPIRO reduced both transcription factors and reduced bFGF, collagen I, fibronectin, and laminin in the interstitium. These findings show that aldosterone promotes hypertrophy, cardiac remodeling, and fibrosis, independent of blood pressure. The effects involve AP-1, NF-kappaB, and bFGF. Mineralocorticoid receptor blockade downregulates these effectors and reduces angiotensin II-induced cardiac damage.
Collapse
Affiliation(s)
- A Fiebeler
- Franz Volhard Clinic and Max Delbrück Center, Medical Faculty of the Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tamura K, Chen YE, Lopez-Ilasaca M, Daviet L, Tamura N, Ishigami T, Akishita M, Takasaki I, Tokita Y, Pratt RE, Horiuchi M, Dzau VJ, Umemura S. Molecular mechanism of fibronectin gene activation by cyclic stretch in vascular smooth muscle cells. J Biol Chem 2000; 275:34619-27. [PMID: 10930408 DOI: 10.1074/jbc.m004421200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibronectin plays an important role in vascular remodeling. A functional interaction between mechanical stimuli and locally produced vasoactive agents is suggested to be crucial for vascular remodeling. We examined the effect of mechanical stretch on fibronectin gene expression in vascular smooth muscle cells and the role of vascular angiotensin II in the regulation of the fibronectin gene in response to stretch. Cyclic stretch induced an increase in vascular fibronectin mRNA levels that was inhibited by actinomycin D and CV11974, an angiotensin II type 1 receptor antagonist; cycloheximide and PD123319, an angiotensin II type 2 receptor antagonist, did not affect the induction. In transfection experiments, fibronectin promoter activity was stimulated by stretch and inhibited by CV11974 but not by PD123319. DNA-protein binding experiments revealed that cyclic stretch enhanced nuclear binding to the AP-1 site, which was partially supershifted by antibody to c-Jun. Site-directed mutation of the AP-1 site significantly decreased the cyclic stretch-mediated activation of fibronectin promoter. Furthermore, antisense c-jun oligonucleotides decreased the stretch-induced stimulation of the fibronectin promoter activity and the mRNA expression. These results suggest that cyclic stretch stimulates vascular fibronectin gene expression mainly via the activation of AP-1 through the angiotensin II type 1 receptor.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Base Sequence
- Cells, Cultured
- DNA Primers
- Dactinomycin/pharmacology
- Fibronectins/genetics
- Gene Expression Regulation
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Promoter Regions, Genetic
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- Receptors, Angiotensin/metabolism
- Renin-Angiotensin System/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- K Tamura
- Cardiovascular Research, Department of Internal Medicine II, Yokohama City University School of Medicine, Yokohama 236, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T. Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 2000; 36:845-50. [PMID: 11082154 DOI: 10.1161/01.hyp.36.5.845] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we and others have shown that angiotensin II enhances vascular smooth muscle cell extracellular matrix synthesis via stimulation of the angiotensin II type 1 (AT(1)) receptor. Recently, expression of the type 2 (AT(2)) receptor has been confirmed in the adult vasculature, but its role has not yet been fully defined. The aim of the present study was to examine the effects of stimulation of AT(2) receptors on collagen synthesis in vascular smooth muscle cells. Retroviral gene transfer was used to supplement adult vascular smooth muscle cells with AT(2) receptors to mimic the vasculature in vivo. The treatment of these cells with the AT(2) receptor agonist CGP42212A (10(-7) mol/L) alone did not cause a significant change in p42/p44 MAP kinase activity but caused a modest (30% to 50%) decrease in protein tyrosine phosphatase activity. Treatment with CGP42112A also caused a dose- and time-dependent increase in both cell-associated and secretory collagen synthesis (148+/-17% of control at 48 hours, P<0.05), which was completely inhibited by the AT(2) receptor antagonist PD123319, unaffected by the AT(1) receptor antagonist losartan, and attenuated by treatment with pertussis toxin or G(alpha)(i) antisense oligonucleotides. Interestingly, studies in other cell lines demonstrated that CGP42112A caused similar results in transfected mesangial cells but had essentially opposite effects in fibroblasts (NIH-3T3-AT(2)). These results suggest that AT(2) receptor stimulation can increase collagen synthesis in vascular smooth muscle cells via a G(alpha)(i)-mediated mechanism and provide evidence for heterogeneity in the effects of AT(2) receptor stimulation in different tissues.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Collagen/biosynthesis
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Losartan/pharmacology
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotides, Antisense/pharmacology
- Oligopeptides/pharmacology
- Protein-Tyrosine Kinases/metabolism
- Rats
- Rats, Wistar
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- M Mifune
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Schmidt-Ott KM, Kagiyama S, Phillips MI. The multiple actions of angiotensin II in atherosclerosis. REGULATORY PEPTIDES 2000; 93:65-77. [PMID: 11033054 DOI: 10.1016/s0167-0115(00)00178-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiotensin II (Ang II), the effector peptide of the renin-angiotensin system, has been implied in the pathogenesis of atherosclerosis on various levels. There is abundant experimental evidence that pharmacological antagonism of Ang II formation by angiotensin converting enzyme inhibition or blockade of the cellular effects of Ang II by angiotensin type 1 receptor blockade inhibits formation and progression of atherosclerotic lesions. Angiotensin promotes generation of oxidative stress in the vasculature, which appears to be a key mediator of Ang II-induced endothelial dysfunction, endothelial cell apoptosis, and lipoprotein peroxidation. Ang II also induces cellular adhesion molecules, chemotactic and proinflammatory cytokines, all of which participate in the induction of an inflammatory response in the vessel wall. In addition, Ang II triggers responses in vascular smooth muscle cells that lead to proliferation, migration, and a phenotypic modulation resulting in production of growth factors and extracellular matrix. While all of these effects contribute to neointima formation and development of atherosclerotic lesions, Ang II may also be involved in acute complications of atherosclerosis by promoting plaque rupture and a hyperthrombotic state. Accordingly, Ang II appears to have a central role in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- K M Schmidt-Ott
- Department of Physiology, College of Medicine, Box 100274, University of Florida, 32610, Gainesville, FL, USA
| | | | | |
Collapse
|
35
|
Wang D, Yu X, Cohen RA, Brecher P. Distinct effects of N-acetylcysteine and nitric oxide on angiotensin II-induced epidermal growth factor receptor phosphorylation and intracellular Ca(2+) levels. J Biol Chem 2000; 275:12223-30. [PMID: 10766859 DOI: 10.1074/jbc.275.16.12223] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
These studies describe inhibitory effects of N-acetylcysteine on several biochemical events associated with the activation of extracellular signal-regulated kinases (ERK) by angiotensin II in the cardiac fibroblast and compare these effects with those of the nitric oxide donor, S-nitroso-N-acetylpenicillamine, an agent we showed previously to inhibit angiotensin II-induced ERK activation and the concomitant phosphorylation of proline-rich tyrosine kinase 2 (Wang, D., Yu, X., and Brecher, P. (1999) J. Biol. Chem. 274, 24342-24348). The transactivation of the epidermal growth factor receptor by angiotensin II, a process required for the activation of ERK, was inhibited by N-acetylcysteine but not by nitric oxide. The transactivation of the epidermal growth factor receptor by angiotensin II was shown to be independent of intracellular calcium increases. Nitric oxide, but not N-acetylcysteine, inhibited the angiotensin II-induced increase in intracellular Ca(2+). Neither nitric oxide nor N-acetylcysteine inhibited either phospholipase C activation or inositol triphosphate generation in response to angiotensin II. N-Acetylcysteine did inhibit the phosphorylation of the calcium sensitive tyrosine kinases PYK2 and Src, effects that also occurred using nitric oxide. These studies describe a novel effect of N-acetylcysteine on cross-talk between a G protein-linked receptor and a tyrosine kinase receptor and offer additional molecular insight to explain how N-acetylcysteine and nitric oxide act at different sites and might have an additive effect on specific hormonal responses.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry and Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
36
|
Lee BH, Kim MS, Rhew JH, Park RW, de Crombrugghe B, Kim IS. Transcriptional regulation of fibronectin gene by phorbol myristate acetate in hepatoma cells: a negative role for NF-kappaB. J Cell Biochem 2000; 76:437-51. [PMID: 10649441 DOI: 10.1002/(sici)1097-4644(20000301)76:3<437::aid-jcb11>3.0.co;2-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The transcriptional regulation of the fibronectin (FN) gene in hepatoma cells by phorbol myristate acetate (PMA) was investigated. PMA increased the synthesis and mRNA levels of FN and its promoter activity in Hep3B hepatoma cells. The PMA-induced activation of FN expression was blocked by a protein kinase C (PKC) inhibitor and did not require a new protein synthesis. Deletion analysis revealed that the sequence between positions -69 and +136 of the FN gene was responsible for the PMA induction. Two PMA-inducible nuclear protein complexes were found to bind to a putative NF-kappaB site at -41 and were identified as a p65/p50 heterodimer and a p50/50 homodimer of NF-kappaB family. Mutations in the -41 NF-kappaB site, however, did not block the PMA induction of the FN promoter but rather enhanced it. Overexpression of p65 increased the FN promoter activity. While overexpression of p50 alone did not affect the promoter activity, it decreased the p65-induced activation of the FN promoter. Mutations in the -41 NF-kappaB site attenuated the p50-mediated suppression of the p65 transactivation of the FN promoter. Deletion of the sequence between +1 and +136 decreased the basal and PMA-induced activities of the FN promoter. This study shows that PMA induces the transcription of the FN gene in hepatoma cells via the PKC pathway. The DNA sequence between +1 and +136 is responsible, at least in part, for the PMA-induced activation of the FN gene, while the -41 NF-kappaB binding site plays as a negative regulatory element for it. In addition, this study is the first to show a role for NF-kappaB p65 in the transcriptional activation of the FN gene.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cycloheximide/pharmacology
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Fibronectins/biosynthesis
- Fibronectins/genetics
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Humans
- Molecular Sequence Data
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- Protein Kinase C/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sequence Deletion
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B H Lee
- Department of Biochemistry, School of Medicine, Dongguk University, Kyongju, Kyongbuk 780-714, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Kaiura TL, Itoh H, Kent KC. The role of mitogen-activated protein kinase and protein kinase C in fibronectin production in human vascular smooth muscle cells. J Surg Res 1999; 84:212-7. [PMID: 10357922 DOI: 10.1006/jsre.1999.5646] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND After evaluating various growth factors, cytokines, and extracellular matrix (ECM) proteins, we found that the most potent agonists of smooth muscle cell (SMC) fibronectin (Fn) production were transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF). To determine the possible signaling pathways involved in the production of this matrix protein, we investigated the role of the intracellular proteins, protein kinase C (PKC) and mitogen-activated protein kinase (MAP-K), in TGF-beta- and EGF-induced human vascular SMC Fn production. MATERIALS AND METHODS After stimulation of human SMCs with TGF-beta (10 ng/ml) and EGF (100 ng/ml), Fn in the cell medium was assayed by immunoblotting using a specific antibody. PKC was activated by brief stimulation of SMC with phorbol 12,13-dibutyrate (PDBu) and inhibited by downregulation with PDBu or the inhibitor, GF109203X. MAP-K was inhibited with PD098059. RESULTS PKC activation increased basal and synergistically enhanced TGF-beta- and EGF-induced Fn production. However, inhibition of PKC by downregulation and GF109203X did not diminish Fn production by TGF-beta and EGF. Surprisingly, these two methods of inhibition slightly increased basal and agonist-induced Fn production. The MAP-K kinase inhibitor, PD098059, produced an almost complete inhibition of EGF and a partial inhibition of TGF-beta-induced Fn production. CONCLUSIONS Activation of PKC stimulates Fn production; however, neither TGF-beta nor EGF produce Fn through a PKC-dependent pathway. EGF and TGF-beta both stimulate Fn production at least in part through the intracellular signaling protein MAP-K. Understanding the signaling pathways involved in extracellular matrix protein production will allow the design of specific inhibitors of intimal hyperplasia.
Collapse
Affiliation(s)
- T L Kaiura
- Division of Vascular Surgery, New York Hospital/Cornell University Medical Center, New York, New York, 10021, USA
| | | | | |
Collapse
|
38
|
Tamura K, Chiba E, Yokoyama N, Sumida Y, Yabana M, Tamura N, Takasaki I, Takagi N, Ishii M, Horiuchi M, Umemura S. Renin-angiotensin system and fibronectin gene expression in Dahl Iwai salt-sensitive and salt-resistant rats. J Hypertens 1999; 17:81-9. [PMID: 10100098 DOI: 10.1097/00004872-199917010-00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The tissue renin-angiotensin system and extracellular matrix are involved in the cardiovascular hypertrophy and remodeling induced by hypertension. In this study, we examined the gene expression of the tissue renin-angiotensin system and fibronectin in inbred Dahl Iwai salt-sensitive and salt-resistant rats. MATERIALS AND METHODS Eight pairs of 6-week-old male Dahl Iwai salt-sensitive and salt-resistant rats were fed either a low- or high-salt diet (0.3% or 8% NaCl, respectively) for 4 weeks. Activities of the circulating renin-angiotensin system were measured by radioimmunoassay and the gene expression of tissue angiotensinogen, the angiotensin II type 1 receptor (AT1) and fibronectin were analyzed by Northern blot analysis. RESULTS Salt loading significantly increased blood pressure and produced cardiovascular hypertrophy and nephrosclerosis in the salt-sensitive rats. Activities of the circulating renin-angiotensin system were lower in salt-sensitive rats than in salt-resistant rats fed the low-salt diet, and salt loading lowered these activities in salt-resistant rats but not in salt-sensitive rats. In salt-resistant rats, salt loading increased renal, cardiac and aortic angiotensinogen, AT1 and fibronectin messenger (m)RNA expression except for aortic fibronectin mRNA expression. In contrast, in the salt-sensitive rats, salt loading stimulated the expression of cardiac fibronectin and aortic angiotensinogen, AT1 and fibronectin mRNAs. Furthermore, the cardiac and aortic fibronectin mRNA levels in salt-sensitive rats were higher than those in salt-resistant rats when both strains were fed the high-salt diet. CONCLUSIONS These results demonstrate that the expression of tissue angiotensinogen, AT1 and fibronectin mRNAs is regulated differently in Dahl Iwai salt-sensitive and salt-resistant rats, and indicate that salt-mediated hypertension activates the cardiac fibronectin gene independently of the tissue renin-angiotensin system and stimulates the aortic fibronectin gene with activation of the tissue renin-angiotensin system.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensinogen/genetics
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Blood Pressure
- Blotting, Northern
- Fibronectins/genetics
- Gene Expression
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- RNA, Messenger/biosynthesis
- Radioimmunoassay
- Rats
- Rats, Inbred Dahl
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Renin-Angiotensin System/genetics
- Sodium, Dietary/administration & dosage
Collapse
Affiliation(s)
- K Tamura
- Department of Internal Medicine II, Yokohama City University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|