1
|
Ali M, Kumari T, Gupta A, Akhtar S, Verma RD, Ghosh JK. Identification of a 10-mer peptide from the death domain of MyD88 which attenuates inflammation and insulin resistance and improves glucose metabolism. Biochem J 2024; 481:191-218. [PMID: 38224573 DOI: 10.1042/bcj20230369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.
Collapse
Affiliation(s)
- Mehmood Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Tripti Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
| | - Rahul Dev Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 India
| |
Collapse
|
2
|
Abstract
Viruses have evolved to exploit the vast complexity of cellular processes for their success within the host cell. The entry mechanisms of enveloped viruses (viruses with a surrounding outer lipid bilayer membrane) are usually classified as being either endocytotic or fusogenic. Different mechanisms have been proposed for Alphavirus entry and genome delivery. Indirect observations led to a general belief that enveloped viruses can infect cells either by protein-assisted fusion with the plasma membrane in a pH-independent manner or by endocytosis and fusion with the endocytic vacuole in a low-pH environment. The mechanism of Alphavirus penetration has been recently revisited using direct observation of the processes by electron microscopy under conditions of different temperatures and time progression. Under conditions nonpermissive for endocytosis or any vesicular transport, events occur which allow the entry of the virus genome into the cells. When drug inhibitors of cellular functions are used to prevent entry, only ionophores are found to significantly inhibit RNA delivery. Arboviruses are agents of significant human and animal disease; therefore, strategies to control infections are needed and include development of compounds which will block critical steps in the early infection events. It appears that current evidence points to an entry mechanism, in which alphaviruses infect cells by direct penetration of cell plasma membranes through a pore structure formed by virus and, possibly, host proteins.
Collapse
|
3
|
Lee JK, Park SC, Hahm KS, Park Y. Antimicrobial HPA3NT3 peptide analogs: placement of aromatic rings and positive charges are key determinants for cell selectivity and mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:443-54. [PMID: 22982494 DOI: 10.1016/j.bbamem.2012.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022]
Abstract
In an earlier study, we determined that HP(2-20) (residues 2-20 of parental HP derived from the N-terminus of the Helicobacter pylori ribosomal protein L1) and its analog, HPA3NT3, had potent antimicrobial effects. However, HPA3NT3 also showed undesirable cytotoxicity against HaCaT cells. In the present study, we designed peptide analogs including HPA3NT3-F1A (-F1A), HPA3NT3-F8A (-F8A), HPA3NT3-F1AF8A (-F1AF8A), HPA3NT3-A1 (-A1) and HPA3NT3-A2 (-A2) in an effort to investigate the effects of amino acid substitutions in reducing their hydrophobicity or increasing their cationicity, and any resulting effects on their selectivity in their interactions with human cells and pathogens, as well as their mechanism of antimicrobial action. With the exception of HPA3NT3-A1, all of these peptides showed potent antimicrobial activity. Moreover, substitution of Ala for Phe at positions 1 and/or 8 of the HPA3NT3 peptides (-F1A, -F8A and -F1AF8A) dramatically reduced their cytotoxicity. Thus the cytotoxicity of HPA3NT3 appears to be related to its Phe residues (positions 1 and 8), which strongly interact with sphingomyelin in the mammalian cell membrane. HPA3NT3 exerted its bactericidal effects through membrane permeabilization mediated by pore formation. In contrast, fluorescent dye leakage and nucleic acid gel retardation assays showed that -A2 acted by penetrating into the cytoplasm, where it bound to nucleic acids and inhibited protein synthesis. Notably, Staphylococcus aureus did not develop resistance to -A2 as it did with rifampin. These results suggest that the -A2 peptide could potentially serve as an effective antibiotic agent against multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
4
|
Verma R, Ghosh JK. Phospholipid membrane-interaction of a peptide from S4 segment of KvAP K+ channel and the influence of the positive charges and an identified heptad repeat in its interaction with a S3 peptide. Biochimie 2011; 93:1001-11. [DOI: 10.1016/j.biochi.2011.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 02/11/2011] [Indexed: 11/27/2022]
|
5
|
Verma R, Malik C, Azmi S, Srivastava S, Ghosh S, Ghosh JK. A synthetic S6 segment derived from KvAP channel self-assembles, permeabilizes lipid vesicles, and exhibits ion channel activity in bilayer lipid membrane. J Biol Chem 2011; 286:24828-41. [PMID: 21592970 DOI: 10.1074/jbc.m110.209676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KvAP is a voltage-gated tetrameric K(+) channel with six transmembrane (S1-S6) segments in each monomer from the archaeon Aeropyrum pernix. The objective of the present investigation was to understand the plausible role of the S6 segment, which has been proposed to form the inner lining of the pore, in the membrane assembly and functional properties of KvAP channel. For this purpose, a 22-residue peptide, corresponding to the S6 transmembrane segment of KvAP (amino acids 218-239), and a scrambled peptide (S6-SCR) with rearrangement of only hydrophobic amino acids but without changing its composition were synthesized and characterized structurally and functionally. Although both peptides bound to the negatively charged phosphatidylcholine/phosphatidylglycerol model membrane with comparable affinity, significant differences were observed between these peptides in their localization, self-assembly, and aggregation properties onto this membrane. S6-SCR also exhibited reduced helical structures in SDS micelles and phosphatidylcholine/phosphatidylglycerol lipid vesicles as compared with the S6 peptide. Furthermore, the S6 peptide showed significant membrane-permeabilizing capability as evidenced by the release of calcein from the calcein-entrapped lipid vesicles, whereas S6-SCR showed much weaker efficacy. Interestingly, although the S6 peptide showed ion channel activity in the bilayer lipid membrane, despite having the same amino acid composition, S6-SCR was significantly inactive. The results demonstrated sequence-specific structural and functional properties of the S6 wild type peptide. The selected S6 segment is probably an important structural element that could play an important role in the membrane interaction, membrane assembly, and functional property of the KvAP channel.
Collapse
Affiliation(s)
- Richa Verma
- Molecular and Structural Biology Division, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil Palace, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
6
|
Gopal R, Kim YJ, Seo CH, Hahm KS, Park Y. Reversed sequence enhances antimicrobial activity of a synthetic peptide. J Pept Sci 2011; 17:329-34. [DOI: 10.1002/psc.1369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/10/2022]
|
7
|
A plausible mode of action of pseudin-2, an antimicrobial peptide from Pseudis paradoxa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:171-82. [PMID: 20826126 DOI: 10.1016/j.bbamem.2010.08.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/23/2010] [Accepted: 08/30/2010] [Indexed: 01/07/2023]
Abstract
The search for new antibiotic agents is continuous, reflecting the continuous emergence of antibiotic-resistant pathogens. Among the new agents are the antimicrobial peptides (AMPs), which have the potential to become a leading alternative to conventional antibiotics. Studies for the mechanisms of action of the naturally occurring parent peptides can provide the structural and functional information needed for the development of effective new antibiotic agents. We therefore characterized pseudin-2, an AMP isolated from the skin of the South American paradoxical frog Pseudis paradoxa. We found that pseudin-2 organized to an aggregated state in aqueous solution, but that it dissociated into monomers upon binding to lipopolysaccharide (LPS), even though it did not neutralize LPS in Gram-negative bacteria. In addition, pseudin-2 assumed an α-helical structure in the presence of biological membranes and formed pores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to RNA. Thus, the potent antimicrobial activity of pseudin-2 likely results from both the formation of pores capable of collapsing the membrane potential and releasing intracellular materials and its inhibition of macromolecule synthesis through its binding to RNA.
Collapse
|
8
|
Kim JY, Park SC, Yoon MY, Hahm KS, Park Y. C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids 2010; 40:183-95. [PMID: 20512598 DOI: 10.1007/s00726-010-0632-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/21/2010] [Indexed: 01/09/2023]
Abstract
PMAP-23 is a member of the cathelicidin family derived from pig myeloid cells and has potent antimicrobial activity. Amidation of the carboxyl terminus (C-terminus) of an antimicrobial peptide generally enhances its structural stability and antimicrobial activity or decreases its cytotoxicity. The aim of the present study was to investigate the effect of amidation on the mode of action in PMAP-23. Irrespective of amidation, PMAP-23 adopts a helix-hinge-helix structure in a membrane-mimetic environment. The antibacterial activities of PMAP-23C, which had a free C-terminus, and PMAP-23N, which had an amidated C-terminus, were similar against Gram-negative bacteria, reflecting a similar ability to neutralize lipopolysaccharide. However, PMAP-23N assumed a perpendicular orientation across the outer to the inner leaflet of the bacterial inner membrane, while PMAP-23C was orientated parallel to the lipid bilayer, as determined by following the blue shift in tryptophan fluorescence, as well as calcein release from liposomes and SYTOX Green uptake assays. These results suggest that N-terminal amidation of PMAP-23 provides structural stability and increases the peptide's cationic charge, facilitating translocation into the bacterial inner membrane.
Collapse
Affiliation(s)
- Jin-Young Kim
- Research Center for Proteineous Materials (RCPM), Chosun University, Kwangju, Korea
| | | | | | | | | |
Collapse
|
9
|
Mudhakir D, Harashima H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS JOURNAL 2009; 11:65-77. [PMID: 19194803 DOI: 10.1208/s12248-009-9080-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/24/2008] [Indexed: 02/06/2023]
Abstract
Viruses deliver their genome into host cells where they subsequently replicate and multiply. A variety of relevant strategies have evolved by which viruses gain intracellular access and utilize cellular machinery for the synthesis of their genome. Therefore, the viral journey provides insight into the cell's trafficking machinery and how it can be best exploited to improve nonviral gene delivery systems. This review summarizes viral internalization pathways and intracellular trafficking of viruses, with an emphasis on the endosomal escape processes of nonenveloped viruses. Intracellular events from viral entry through nuclear delivery of the viral complementary DNA are also discussed.
Collapse
Affiliation(s)
- Diky Mudhakir
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | | |
Collapse
|
10
|
Guillén J, Kinnunen PKJ, Villalaín J. Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2765-74. [PMID: 18721794 PMCID: PMC7157930 DOI: 10.1016/j.bbamem.2008.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/09/2008] [Accepted: 07/23/2008] [Indexed: 12/02/2022]
Abstract
In order to complete the fusion process of SARS-CoV virus, several regions of the S2 virus envelope glycoprotein are necessary. Recent studies have identified three membrane-active regions in the S2 domain of SARS-CoV glycoprotein, one situated downstream of the minimum furin cleavage, which is considered the fusion peptide (SARSFP), an internal fusion peptide located immediately upstream of the HR1 region (SARSIFP) and the pre-transmembrane domain (SARSPTM). We have explored the capacity of these selected membrane-interacting regions of the S2 SARS-CoV fusion protein, alone or in equimolar mixtures, to insert into the membrane as well as to perturb the dipole potential of the bilayer. We show that the three peptides interact with lipid membranes depending on lipid composition and experiments using equimolar mixtures of these peptides show that different segments of the protein may act in a synergistic way suggesting that several membrane-active regions could participate in the fusion process of the SARS-CoV.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
11
|
Guillén J, Pérez-Berná AJ, Moreno MR, Villalaín J. A second SARS-CoV S2 glycoprotein internal membrane-active peptide. Biophysical characterization and membrane interaction. Biochemistry 2008; 47:8214-24. [PMID: 18616295 DOI: 10.1021/bi800814q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. The S2 domain of protein S has been suggested to have two fusion peptides, one located at its N-terminus, downstream of the furin cleavage, and another, more internal, located immediately upstream of the HR1. Therefore, we have carried out a study of the binding and interaction with model membranes of a peptide corresponding to segment 873-888 of the SARS-CoV S glycoprotein, peptide SARS IFP, as well as the structural changes taking place in both the phospholipid and the peptide induced by the binding of the peptide to the membrane. We demonstrate that SARS IFP peptide binds to and interacts with phospholipid model membranes and shows a higher affinity for negatively charged phospholipids than for zwitterionic ones. SARS IFP peptide specifically decreases the mobility of the phospholipid acyl chains of negatively charged phospholipids and adopts different conformations in the membrane depending upon their composition. These data support its role in SARS-mediated membrane fusion and suggest that the regions where this peptide resides might assist the fusion peptide and/or the pretransmembrane segment of the SARS-CoV spike glycoprotein in the fusion process.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | | | |
Collapse
|
12
|
Wu R, McMahon TB. Infrared Multiple Photon Dissociation Spectra of Proline and Glycine Proton-Bound Homodimers. Evidence for Zwitterionic Structure. J Am Chem Soc 2007; 129:4864-5. [PMID: 17394317 DOI: 10.1021/ja068715a] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ronghu Wu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
13
|
Seth S, Skountzou I, Gernert KM, Compans RW. Fusogenic variants of a noncytopathic paramyxovirus. J Virol 2007; 81:4286-97. [PMID: 17287262 PMCID: PMC1866114 DOI: 10.1128/jvi.01623-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SER virus is a type 5 parainfluenza virus that does not exhibit syncytium formation, in contrast to most other paramyxoviruses. This property has been attributed, at least in part, to the presence of an extension of the cytoplasmic tail (CT) of the SER F protein, as truncations or mutations of this region resulted in enhanced fusion. In this study we used repeated passage to select for mutant SER viruses, which were found to be fusogenic. The mutant viruses replicated at levels comparable to or higher than the wild-type SER virus and caused plaque formation, in contrast to the wild-type virus which does not form plaques. The mutants differed strikingly in their plaque sizes. The F genes of mutant viruses were cloned and sequenced and shared some mutations, including a proline-to-leucine change at position 22 and an isoleucine-to-leucine substitution at position 191; other changes that were specific to each mutant were also found. The HN proteins of mutant viruses also showed mutations spanning the length of the protein whereas the M protein showed a consistent mutation, threonine to isoleucine, at position 129. The structure of the F protein was used to identify residues involved in the mutant phenotypes in terms of their location and proximity to heptad repeat domains.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
14
|
Lai SC, Chong PCS, Yeh CT, Liu LSJ, Jan JT, Chi HY, Liu HW, Chen A, Wang YC. Characterization of neutralizing monoclonal antibodies recognizing a 15-residues epitope on the spike protein HR2 region of severe acute respiratory syndrome coronavirus (SARS-CoV). J Biomed Sci 2005; 12:711-27. [PMID: 16132115 PMCID: PMC7089214 DOI: 10.1007/s11373-005-9004-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/14/2005] [Indexed: 11/12/2022] Open
Abstract
The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268–1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143–1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.
Collapse
Affiliation(s)
- Szu-Chia Lai
- Institute of Preventive Medicine, National Defense Medical Center, 90048-700, San-Hsia, Taipei Taiwan
| | - Pele Choi-Sing Chong
- Vaccine Research and Development Center, National Health Research Institutes, , Taiwan
| | - Chia-Tsui Yeh
- Institute of Preventive Medicine, National Defense Medical Center, 90048-700, San-Hsia, Taipei Taiwan
| | - Levent Shih-Jen Liu
- Vaccine Research and Development Center, National Health Research Institutes, , Taiwan
| | - Jia-Tsrong Jan
- Institute of Preventive Medicine, National Defense Medical Center, 90048-700, San-Hsia, Taipei Taiwan
| | - Hsiang-Yun Chi
- Vaccine Research and Development Center, National Health Research Institutes, , Taiwan
| | - Hwan-Wun Liu
- Institute of Preventive Medicine, National Defense Medical Center, 90048-700, San-Hsia, Taipei Taiwan
| | - Ann Chen
- Institute of Preventive Medicine, National Defense Medical Center, 90048-700, San-Hsia, Taipei Taiwan
| | - Yeau-Ching Wang
- Institute of Preventive Medicine, National Defense Medical Center, 90048-700, San-Hsia, Taipei Taiwan
| |
Collapse
|
15
|
Wang XJ, Bai YD, Zhang GZ, Zhao JX, Wang M, Gao GF. Structure and function study of paramyxovirus fusion protein heptad repeat peptides. Arch Biochem Biophys 2005; 436:316-22. [PMID: 15797244 PMCID: PMC7094221 DOI: 10.1016/j.abb.2005.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/31/2005] [Indexed: 02/01/2023]
Abstract
Paramyxovirus might adopt a molecular mechanism of membrane fusion similar to that of other class I viruses in which the heptad repeat (HR) regions of fusion protein (F) HR1 and HR2 form a six-helix bundle structure inducing membrane fusion. In this study, we examined the structure and function of HR1 and HR2 from the avian paramyxovirus-2 (APMV-2) F protein. The study showed that APMV-2 HR1 and HR2 formed a stable six-helix bundle. Only a soluble APMV-2 HR2 peptide showed potent and specific virus-cell fusion inhibition activity. Cross-inhibiting activity with APMV-1 (Newcastle disease virus, NDV) was not found. A possible mechanism of membrane fusion inhibition by the paramyxovirus HR2 peptide is discussed.
Collapse
Affiliation(s)
- Xiao-Jia Wang
- College of Animal Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
16
|
Tripet B, Howard MW, Jobling M, Holmes RK, Holmes KV, Hodges RS. Structural characterization of the SARS-coronavirus spike S fusion protein core. J Biol Chem 2004; 279:20836-49. [PMID: 14996844 PMCID: PMC8060857 DOI: 10.1074/jbc.m400759200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spike (S) glycoprotein of coronaviruses mediates viral entry into host cells. It is a type 1 viral fusion protein that characteristically contains two heptad repeat regions, denoted HR-N and HR-C, that form coiled-coil structures within the ectodomain of the protein. Previous studies have shown that the two heptad repeat regions can undergo a conformational change from their native state to a 6-helix bundle (trimer of dimers), which mediates fusion of viral and host cell membranes. Here we describe the biophysical analysis of the two predicted heptad repeat regions within the severe acute respiratory syndrome coronavirus S protein. Our results show that in isolation the HR-N region forms a stable α-helical coiled coil that associates in a tetrameric state. The HR-C region in isolation formed a weakly stable trimeric coiled coil. When mixed together, the two peptide regions (HR-N and HR-C) associated to form a very stable α-helical 6-stranded structure (trimer of heterodimers). Systematic peptide mapping showed that the site of interaction between the HR-N and HR-C regions is between residues 916–950 of HR-N and residues 1151–1185 of HR-C. Additionally, interchain disulfide bridge experiments showed that the relative orientation of the HR-N and HR-C helices in the complex was antiparallel. Overall, the structure of the hetero-stranded complex is consistent with the structures observed for other type 1 viral fusion proteins in their fusion-competent state.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yadav SP, Kundu B, Ghosh JK. Identification and Characterization of an Amphipathic Leucine Zipper-like Motif in Escherichia coli Toxin Hemolysin E. J Biol Chem 2003; 278:51023-34. [PMID: 14525984 DOI: 10.1074/jbc.m310052200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemolysin E (HlyE) is a 34 kDa protein toxin, recently isolated from a pathogenic strain of Escherichia coli, which is believed to exert its toxic activity via formation of pores in the target cell membrane. With the goal of understanding the involvement of different segments of hemolysin E in the membrane interaction and assembly of the toxin, a conserved, amphipathic leucine zipper-like motif has been identified. In order to evaluate the possible structural and functional roles of this segment in HlyE, a 30-residue peptide (H-205) corresponding to the leucine zipper motif (amino acid 205-234) and two mutant peptides of the same size were synthesized and labeled by fluorescent probes at their N termini. The results show that the wild-type H-205 binds to both zwitterionic (PC/Chol) and negatively charged (PC/PG/Chol) phospholipid vesicles and also self-assemble therein. Detailed membrane-binding experiments revealed that this synthetic motif (H-205) formed large aggregates and inserted into the bilayer of only negatively charged lipid vesicles but not of zwitterionic membrane. Although both the mutants bound to zwitterionic and negatively charged lipid vesicles, neither of them inserted into the lipid bilayers nor assembled in any of these lipid vesicles. Furthermore, H-205 adopted a significant helical structure in membrane mimetic environments and induced the permeation of monovalent ions and release of entrapped calcein across the phospholipid vesicles more efficiently than the mutant peptides. The results presented here indicate that this H-205 (amino acid 205-234) segment may be an important structural element in hemolysin E, which could play a significant role in the binding and assembly of the toxin in the target cell membrane and its destabilization.
Collapse
Affiliation(s)
- Sharada Prasad Yadav
- Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
18
|
Carneiro FA, Stauffer F, Lima CS, Juliano MA, Juliano L, Da Poian AT. Membrane fusion induced by vesicular stomatitis virus depends on histidine protonation. J Biol Chem 2003; 278:13789-94. [PMID: 12571240 DOI: 10.1074/jbc.m210615200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.
Collapse
Affiliation(s)
- Fabiana A Carneiro
- Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Tomasi M, Pasti C, Manfrinato C, Dallocchio F, Bellini T. Peptides derived from the heptad repeat region near the C-terminal of Sendai virus F protein bind the hemagglutinin-neuraminidase ectodomain. FEBS Lett 2003; 536:56-60. [PMID: 12586338 DOI: 10.1016/s0014-5793(03)00010-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previously, we showed that Sendai virus fusion protein (F) acts as an inhibitor of neuraminidase activity of hemagglutinin-neuraminidase (HN) protein. Here we report that synthetic peptides derived from the heptad repeat region proximal to the transmembrane domain (HR2) of Sendai virus F inhibit fusion and enhance the enzymatic activity of the HN. This occurs on the virus-bound HN and on its soluble globular head. The enhancing effect on virus-bound HN is reversible and depends on the presence of F. The data indicate that, by binding to the HN ectodomain, the HR2 peptides abolish the F inhibition of HN and disrupt the communication between the F and HN essential to promote virus-cell fusion.
Collapse
Affiliation(s)
- Maurizio Tomasi
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
20
|
Seth S, Vincent A, Compans RW. Mutations in the cytoplasmic domain of a paramyxovirus fusion glycoprotein rescue syncytium formation and eliminate the hemagglutinin-neuraminidase protein requirement for membrane fusion. J Virol 2003; 77:167-78. [PMID: 12477822 PMCID: PMC140627 DOI: 10.1128/jvi.77.1.167-178.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SER virus is closely related to the paramyxovirus simian virus 5 (SV5) but is defective in syncytium formation. The SER virus F protein has a long cytoplasmic tail (CT) domain that has been shown to inhibit membrane fusion, and this inhibitory effect could be eliminated by truncation of the C-terminal sequence (S. Tong, M. Li, A. Vincent, R. W. Compans, E. Fritsch, R. Beier, C. Klenk, M. Ohuchi, and H.-D. Klenk, Virology 301:322-333, 2002). To study the sequence requirements for regulation of fusion, codons for SER virus F protein residues spanning amino acids 535 to 542 and 548 were mutated singly to alanines, and the two leucine residues at positions 539 and 548 were mutated doubly to alanines. We found that leu-539 and leu-548 in the CT domain played a critical role in the inhibition of fusion, as mutation of the two leucines singly to alanines partially rescued fusion, and the double mutation L539, 548A completely rescued syncytium formation. Mutation of charged residues to alanines had little effect on the suppression of fusion activity, whereas the mutation of serine residues to alanines enhanced fusion activity significantly. The L539, 548A mutant also showed extensive syncytium formation when expressed without the SER virus HN protein. By constructing a chimeric SV5-SER virus F CT protein, we also found that the inhibitory effect of the long CT of the SER virus F protein could be partially transferred to the SV5 F protein. These results demonstrate that an elongated CT of a paramyxovirus F protein interferes with membrane fusion in a sequence-dependent manner.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
21
|
San Román K, Villar E, Muñoz-Barroso I. Mode of action of two inhibitory peptides from heptad repeat domains of the fusion protein of Newcastle disease virus. Int J Biochem Cell Biol 2002; 34:1207-20. [PMID: 12127571 DOI: 10.1016/s1357-2725(02)00045-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptides derived from heptad repeat (HR) sequences of viral fusion proteins from several enveloped viruses have been shown to inhibit virus-mediated membrane fusion but the mechanism remains unknown. To further investigate this, the inhibition mechanism of two HR-derived peptides from the fusion protein of the paramyxovirus Newcastle disease virus (NDV) was investigated. Peptide N24 (residues 145-168) derived from HR1 was found to be 145-fold more inhibitory in a syncytium assay than peptide C24 (residues 474-496), derived from HR2. Both peptides failed to block lipid-mixing between R18-labeled virus and cells. None of the peptides interfered with the binding of hemagglutinin-neuraminidase (HN) protein to the target cells, as demonstrated by hemagglutining assays. When both peptides were mixed at equimolar concentrations, their inhibitory effect was abolished. In addition, both peptides induced the aggregation of negatively charged and zwitterionic phospholipid membranes. The ability of the peptides to interact with each other in solution suggests that these peptides may bind to the opposite HR region on the protein whereas their ability to interact with membranes as well as their failure to block lipid transfer suggest a second binding site. Taken together these results, suggest a mode of action for C24 and N24 in which both peptides have two different targets on the F protein: the opposite HR sequence and their corresponding domains.
Collapse
Affiliation(s)
- K San Román
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 109, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
22
|
Gerber D, Shai Y. Chirality-independent protein-protein recognition between transmembrane domains in vivo. J Mol Biol 2002; 322:491-5. [PMID: 12225743 DOI: 10.1016/s0022-2836(02)00807-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stereospecificity in protein-protein recognition and docking is an unchallenged dogma. Soluble proteins provide the main source of evidence for stereospecificity. In contrast, within the membrane little is known about the role of stereospecificity in the recognition process. Here, we have reassessed the stereospecificity of protein-protein recognition by testing whether it holds true for the well-defined glycophorin A (GPA) transmembrane domain in vivo. We found that the all-D amino acid GPA transmembrane domain and two all-D mutants specifically associated with an all-L GPA transmembrane domain, within the membrane milieu of Escherichia coli. Molecular dynamics techniques reveal a possible structural explanation to the observed interaction between all-D and all-L transmembrane domains. A very strong correlation was found between amino acid residues at the interface of both the all-L homodimer structure and the mixed L/D heterodimer structure, suggesting that the original interactions are conserved. The results suggest that GPA helix-helix recognition within the membrane is chirality-independent.
Collapse
Affiliation(s)
- Doron Gerber
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
23
|
Yu M, Wang E, Liu Y, Cao D, Jin N, Zhang CWH, Bartlam M, Rao Z, Tien P, Gao GF. Six-helix bundle assembly and characterization of heptad repeat regions from the F protein of Newcastle disease virus. J Gen Virol 2002; 83:623-629. [PMID: 11842257 DOI: 10.1099/0022-1317-83-3-623] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paramyxoviruses may adopt a similar fusion mechanism to other enveloped viruses, in which an anti-parallel six-helix bundle structure is formed post-fusion in the heptad repeat (HR) regions of the envelope fusion protein. In order to understand the fusion mechanism and identify fusion inhibitors of Newcastle disease virus (NDV), a member of the Paramyxoviridae family, we have developed an E. coli system that separately expresses the F protein HR1 and HR2 regions as GST fusion proteins. The purified cleaved HR1 and HR2 have subsequently been assembled into a stable six-helix bundle heterotrimer complex. Furthermore, both the GST fusion protein and the cleaved HR2 show virus-cell fusion inhibition activity (IC(50) of 1.07-2.93 microM). The solubility of the GST-HR2 fusion protein is much higher than that of the corresponding peptide. Hence this provides a plausible method for large-scale production of HR peptides as virus fusion inhibitors.
Collapse
Affiliation(s)
- Ming Yu
- Dept of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China1
| | - Enxiu Wang
- Dept of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China1
| | - Youfang Liu
- Dept of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China1
| | - Dianjun Cao
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China2
| | - Ningyi Jin
- Dept of Virus Research, University of Military Supplies, Changchun 130062, People's Republic of China3
| | - Catherine W-H Zhang
- Laboratory of Immunobiology, Dana-Farber Cancer Institute and Dept of Medicine, Harvard Medical School, Boston, MA 02115, USA4
| | - Mark Bartlam
- Laboratory of Structural Biology and MOE Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, People's Republic of China5
| | - Zihe Rao
- Laboratory of Structural Biology and MOE Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, People's Republic of China5
| | - Po Tien
- Dept of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China1
| | - George F Gao
- Laboratory of Molecular Medicine, Children's Hospital, Dept of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, and Dept of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA6
- Dept of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China1
| |
Collapse
|
24
|
Martínez-Senac MDM, Corbalán-García S, Gómez-Fernández JC. The structure of the C-terminal domain of the pro-apoptotic protein Bak and its interaction with model membranes. Biophys J 2002; 82:233-43. [PMID: 11751312 PMCID: PMC1302465 DOI: 10.1016/s0006-3495(02)75390-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bak is a pro-apoptotic protein widely distributed in different cell types that is associated with the mitochondrial outer membrane, apparently through a C-terminal hydrophobic domain. We used infrared spectroscopy to study the secondary structure of a synthetic peptide ((+)(3)HN-(188)ILNVLVVLGVVLLGQFVVRRFFKS(211)-COO(-)) with the same sequence as the C-terminal domain of Bak. The spectrum of this peptide in D(2)O buffer shows an amide I' band with a maximum at 1636 cm(-1), which clearly indicates the predominance of an extended beta-structure in aqueous solvent. However, the peptide incorporated in multilamellar dimyristoylphosphatidylcholine (DMPC) membranes shows a different amide I' band spectrum, with a maximum at 1658 cm(-1), indicating a predominantly alpha-helical structure induced by its interaction with the membrane. It was observed that through differential scanning calorimetry the transition of the phospholipid model membrane was broadened in the presence of the peptide. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in fluid DMPC vesicles showed that increasing concentrations of the peptide produced increased polarization values, which is compatible with the peptide being inserted into the membrane. High concentrations of the peptide considerably broaden the phase transition of DMPC multilamellar vesicles, and DPH polarization increased, especially at temperatures above the T(c) transition temperature of the pure phospholipid. The addition of peptide destabilized unilamellar vesicles and released encapsulated carboxyfluorescein. These results indicate that this domain is able to insert itself into membranes, where it adopts an alpha-helical structure and considerably perturbs the physical properties of the membrane.
Collapse
Affiliation(s)
- María del Mar Martínez-Senac
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | | | | |
Collapse
|
25
|
McGinnes LW, Sergel T, Chen H, Hamo L, Schwertz S, Li D, Morrison TG. Mutational analysis of the membrane proximal heptad repeat of the newcastle disease virus fusion protein. Virology 2001; 289:343-52. [PMID: 11689056 DOI: 10.1006/viro.2001.1123] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Paramyxovirus fusion proteins have two heptad repeat domains, HR1 and HR2, that have been implicated in the fusion activity of the protein. Peptides from these two domains form a six-stranded, coiled-coil with the HR1 sequences forming a central trimer and three molecules of the HR2 helix located within the grooves in the central trimer (Baker et al., 1999, Mol. Cell 3, 309; Zhao et al. 2000, Proc. Natl. Acad. Sci. USA 97, 14172). Nonconservative mutations were made in the HR2 domain of the Newcastle disease virus fusion protein in residues that are likely to form contacts with the HR1 core trimer. These residues form the hydrophobic face of the helix and adjacent residues ("a" and "g" positions in the HR2 helical wheel structure). Mutant proteins were characterized for effects on synthesis, steady-state levels, proteolytic cleavage, and surface expression as well as fusion activity as measured by syncytia formation, content mixing, and lipid mixing. While all mutant proteins were transport competent and proteolytically cleaved, these mutations did variously affect fusion activity of the protein. Nonconservative mutations in the "g" position had no effect on fusion. In contrast, single changes in the middle "a" position of HR2 inhibited lipid mixing, content mixing, and syncytia formation. A single mutation in the more carboxyl-terminal "a" position had minimal effects on lipid mixing but did inhibit content mixing and syncytia formation. These results are consistent with the idea that the HR2 domain is involved in posttranslational interactions with HR1 that mediate the close approach of membranes. These results also suggest that the HR2 domain, particularly the carboxyl-terminal region, plays an additional role in fusion, a role related to content mixing and syncytia formation.
Collapse
Affiliation(s)
- L W McGinnes
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01532, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tsurudome M, Ito M, Nishio M, Kawano M, Komada H, Ito Y. Hemagglutinin-neuraminidase-independent fusion activity of simian virus 5 fusion (F) protein: difference in conformation between fusogenic and nonfusogenic F proteins on the cell surface. J Virol 2001; 75:8999-9009. [PMID: 11533163 PMCID: PMC114468 DOI: 10.1128/jvi.75.19.8999-9009.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion (F) protein of simian virus 5 (SV5) strain W3A is known to induce cell fusion in the absence of hemagglutinin-neuraminidase (HN) protein. In contrast, the F protein of SV5 strain WR induces cell fusion only when coexpressed with the HN protein, the same as do other paramyxovirus F proteins. When Leu-22 in the subunit F2 of the WR F protein is replaced with the counterpart (Pro) in the W3A F protein, the resulting mutant L22P induces extensive cell fusion by itself. In the present study, we obtained anti-L22P monoclonal antibodies (MAbs) 21-1 and 6-7, whose epitopes were located in the middle (amino acids [aa] 227 to 320) of subunit F1. The amino-terminal region (aa 20 to 47) of subunit F2 was also involved in the formation of MAb 21-1 epitope. Flow cytometric analysis revealed that both the MAbs reacted very faintly with native WR F protein that was expressed on the cell surface whereas they reacted efficiently with native L22P irrespective of whether it is cleaved into F1 and F2. However, by heating the cells at 47 degrees C after mild formaldehyde fixation, the epitopes for MAb 6-7 and mAb 21-1 in the WR F protein were exposed and the reactivity of the MAbs with the WR F protein became comparable to their reactivity with L22P. Thus, the two MAbs seem to distinguish the difference in native conformation between fusogenic mutant L22P and its parental nonfusogenic WR F protein. The native conformation of L22P may represent an intermediate between native and postfusion conformations of a typical paramyxovirus F protein.
Collapse
Affiliation(s)
- M Tsurudome
- Department of Microbiology, Mie University School of Medicine, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Nakayama T, Komase K, Uzuka R, Hoshi A, Okafuji T. Leucine at position 278 of the AIK-C measles virus vaccine strain fusion protein is responsible for reduced syncytium formation. J Gen Virol 2001; 82:2143-2150. [PMID: 11514723 DOI: 10.1099/0022-1317-82-9-2143] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The live measles virus (MV) vaccine strain AIK-C was attenuated from the wild-type strain Edmonston by plaque purification at 33 degrees C. Strain AIK-C grew well at 33 degrees C with a mixture of small-and medium-sized plaques in Vero cells, but did not grow well at 40 degrees C. To investigate fusion inducibility, expression plasmids for the fusion (F) and haemagglutinin (H) protein regions of MV strains AIK-C (pAIK-F01 and pAIK-H) and Edmonston (pEdm-F and pEdm-H) were constructed. pEdm-F induced extensive cell fusion in B95a and Vero cells under the control of T7 RNA polymerase, whereas a sharp reduction in syncytium formation was observed when pAIK-F01 was used. Six amino acid differences were determined between pAIK-F01 and pEdm-F. Direct sequencing showed that the seed strain AIK-C contained either Leu or Phe at position 278 of the F protein. Experiments using recombinant F protein plasmids demonstrated that those with Leu at position 278 induced poor syncytium formation, while those with Phe at position 278 (Edmonston type) induced extensive cell fusion. Replacement of Phe with Leu at position 278 of pEdm-F reduced fusion-inducing capability. A full-length infectious clone of AIK-C with Leu at position 278 of the F protein was constructed. The rescued virus produced small plaques in Vero cells. However, the same rescued virus with Phe at position 278 produced large plaques. It was concluded that Leu at position 278 of the F protein of the MV vaccine strain AIK-C is responsible for the formation of small plaques.
Collapse
Affiliation(s)
- Tetsuo Nakayama
- Department of Virology, Center for Basic Research1, and Division of Research and Development, Research Center for Biologicals2, The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Katsuhiro Komase
- Department of Virology, Center for Basic Research1, and Division of Research and Development, Research Center for Biologicals2, The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Rina Uzuka
- Department of Pediatrics, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan3
| | - Akiyoshi Hoshi
- Department of Pediatrics, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan3
| | - Takao Okafuji
- Department of Virology, Center for Basic Research1, and Division of Research and Development, Research Center for Biologicals2, The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| |
Collapse
|
28
|
Sergel TA, McGinnes LW, Morrison TG. Mutations in the fusion peptide and adjacent heptad repeat inhibit folding or activity of the Newcastle disease virus fusion protein. J Virol 2001; 75:7934-43. [PMID: 11483738 PMCID: PMC115037 DOI: 10.1128/jvi.75.17.7934-7943.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Paramyxovirus fusion proteins have two heptad repeat domains, HR1 and HR2, which have been implicated in the fusion activity of the protein. Peptides with sequences from these two domains form a six-stranded coiled coil, with the HR1 sequences forming a central trimer (K. A. Baker, R. E. Dutch, R. A. Lamb, and T. S. Jardetzky, Mol. Cell 3:309-319, 1999; X. Zhao, M. Singh, V. N. Malashkevich, and P. S. Kim, Proc. Natl. Acad. Sci. USA 97:14172-14177, 2000). We have extended our previous mutational analysis of the HR1 domain of the Newcastle disease virus fusion protein, focusing on the role of the amino acids forming the hydrophobic core of the trimer, amino acids in the "a" and "d" positions of the helix from amino acids 123 to 182. Both conservative and nonconservative point mutations were characterized for their effects on synthesis, stability, proteolytic cleavage, and surface expression. Mutant proteins expressed on the cell surface were characterized for fusion activity by measuring syncytium formation, content mixing, and lipid mixing. We found that all mutations in the "a" position interfered with proteolytic cleavage and surface expression of the protein, implicating the HR1 domain in the folding of the F protein. However, mutation of five of seven "d" position residues had little or no effect on surface expression but, with one exception at residue 175, did interfere to various extents with the fusion activity of the protein. One of these "d" mutations, at position 154, interfered with proteolytic cleavage, while the rest of the mutants were cleaved normally. That most "d" position residues do affect fusion activity argues that a stable HR1 trimer is required for formation of the six-stranded coiled coil and, therefore, optimal fusion activity. That most of the "d" position mutations do not block folding suggests that formation of the core trimer may not be required for folding of the prefusion form of the protein. We also found that mutations within the fusion peptide, at residue 128, can interfere with folding of the protein, implicating this region in folding of the molecule. No characterized mutation enhanced fusion.
Collapse
Affiliation(s)
- T A Sergel
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
29
|
Matthews JM, Young TF, Tucker SP, Mackay JP. The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil. J Virol 2000; 74:5911-20. [PMID: 10846072 PMCID: PMC112087 DOI: 10.1128/jvi.74.13.5911-5920.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into the host cell by enveloped viruses is mediated by fusion (F) or transmembrane glycoproteins. Many of these proteins share a fold comprising a trimer of antiparallel coiled-coil heterodimers, where the heterodimers are formed by two discontinuous heptad repeat motifs within the proteolytically processed chain. The F protein of human respiratory syncytial virus (RSV; the major cause of lower respiratory tract infections in infants) contains two corresponding regions that are predicted to form coiled coils (HR1 and HR2), together with a third predicted heptad repeat (HR3) located in a nonhomologous position. In order to probe the structures of these three domains and ascertain the nature of the interactions between them, we have studied the isolated HR1, HR2, and HR3 domains of RSV F by using a range of biophysical techniques, including circular dichroism, nuclear magnetic resonance spectroscopy, and sedimentation equilibrium. HR1 forms a symmetrical, trimeric coiled coil in solution (K(3) approximately 2.2 x 10(11) M(-2)) which interacts with HR2 to form a 3:3 hexamer. The HR1-HR2 interaction domains have been mapped using limited proteolysis, reversed-phase high-performance liquid chromatography, and electrospray-mass spectrometry. HR2 in isolation exists as a largely unstructured monomer, although it exhibits a tendency to form aggregates with beta-sheet-like characteristics. Only a small increase in alpha-helical content was observed upon the formation of the hexamer. This suggests that the RSV F glycoprotein contains a domain that closely resembles the core structure of the simian parainfluenza virus 5 fusion protein (K. A. Baker, R. E. Dutch, R. A. Lamb, and T. S. Jardetzky, Mol. Cell 3:309-319, 1999). Finally, HR3 forms weak alpha-helical homodimers that do not appear to interact with HR1, HR2, or the HR1-HR2 complex. The results of these studies support the idea that viral fusion proteins have a common core architecture.
Collapse
Affiliation(s)
- J M Matthews
- Department of Biochemistry, University of Sydney, New South Wales Australia. j,
| | | | | | | |
Collapse
|
30
|
Peisajovich SG, Samuel O, Shai Y. Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion. J Mol Biol 2000; 296:1353-65. [PMID: 10698638 PMCID: PMC7127493 DOI: 10.1006/jmbi.2000.3543] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses.
Collapse
Key Words
- fusion peptide
- membrane fusion
- paramyxoviridae
- fluorescence
- viral entry
- boc, butyloxycarbonyl
- cd, circular dichroism
- dmso, dimethyl sulfoxide
- hf, hydrogen fluoride
- hiv, human immunodeficiency virus
- luv, large unilamellar vesicles
- nbd-f, 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole
- nmr, nuclear magnetic resonance
- pam, phenylacetamido-methyl
- pbs, phosphate-buffered saline
- pc, egg phosphatidylcholine
- pe, phosphatidylethanolamine
- pg, phosphatidylglycerol
- rp-hplc, reverse phase high-performance liquid chromatography
- rho, tetra-methylrhodamine
- ret, resonance energy transfer
- rsv, respiratory syncytial virus
- siv, simian immunodeficiency virus
- suv, small unilamellar vesicles
- tfa, trifluoroacetic acid
Collapse
Affiliation(s)
| | - Orit Samuel
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- Corresponding author
| |
Collapse
|
31
|
Ghosh JK, Shai Y. Direct evidence that the N-terminal heptad repeat of Sendai virus fusion protein participates in membrane fusion. J Mol Biol 1999; 292:531-46. [PMID: 10497019 DOI: 10.1006/jmbi.1999.3097] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated the importance of heptad repeat regions within envelope proteins of viruses in mediating conformational changes at various stages of viral infection. However, it is not clear if heptad repeats have a direct role in the actual fusion event. Here we have synthesized, fluorescently labeled and functionally and structurally characterized a wild-type 70 residue peptide (SV-117) composed of both the fusion peptide and the N-terminal heptad repeat of Sendai virus fusion protein, two of its mutants, as well as the fusion peptide and heptad repeat separately. One mutation was introduced in the fusion peptide (G119K) and another in the heptad repeat region (I154K). Similar mutations have been shown to drastically reduce the fusogenic ability of the homologous fusion protein of Newcastle disease virus. We found that only SV-117 was active in inducing lipid mixing of egg phosphatidylcholine/phosphatidyiglycerol (PC/PG) large unilamellar vesicles (LUV), and not the mutants nor the mixture of the fusion peptide and the heptad repeat. Functional characterization revealed that SV-117, and to a lesser extent its two mutants, were potent inhibitors of Sendai virus-mediated hemolysis of red blood cells, while the fusion peptide and SV-150 were negligibly active alone or in a mixture. Hemagglutinin assays revealed that none of the peptides disturb the binding of virions to red blood cells. Further studies revealed that SV-117 and its mutants oligomerize similarly in solution and in membrane, and have similar potency in inducing vesicle aggregation. Circular dichroism and FTIR spectroscopy revealed a higher helical content for SV-117 compared to its mutants in 40 % tifluorethanol and in PC/PG multibilayer membranes, respectively, ATR-FTIR studies indicated that SV-117 lies more parallel with the surface of the membrane than its mutants. These observations suggest a direct role for the N-terminal heptad repeat in assisting the fusion peptide in mediating membrane fusion.
Collapse
Affiliation(s)
- J K Ghosh
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
32
|
Young JK, Li D, Abramowitz MC, Morrison TG. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J Virol 1999; 73:5945-56. [PMID: 10364347 PMCID: PMC112656 DOI: 10.1128/jvi.73.7.5945-5956.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typical of many viral fusion proteins, the sequence of the Newcastle disease virus (NDV) fusion protein has several heptad repeat regions. One, HR1, is located just carboxyl terminal to the fusion peptide, while the other, HR2, is located adjacent to the transmembrane domain. The structure and function of a synthetic peptide with a sequence from the region of the NDV HR1 region (amino acids 150 to 173) were characterized. The peptide inhibited fusion with a half-maximal concentration of approximately 2 microM; however, inhibition was observed only if the peptide was added prior to protease activation of the fusion protein. This inhibition was virus specific since the peptide had minimal effect on fusion directed by the Sendai virus glycoproteins. To explore the mechanism of action, the potential HR1 peptide interaction with a previously characterized fusion inhibitory peptide with a sequence from the HR2 domain (J. K. Young, R. P. Hicks, G. E. Wright, and T. G. Morrison, Virology 238:291-304, 1997) was characterized. The results demonstrated an interaction between the two peptides both functionally and directly. First, while the individual peptides each inhibit fusion, equimolar mixtures of the two peptides had minimal effect on fusion, suggesting that the two peptides form a complex preventing their interaction with a target protein. Second, an HR2 peptide covalently linked with biotin was found to bind specifically to HR1 peptide in a Western blot. The structure of the HR1 peptide was analyzed by nuclear magnetic resonance spectroscopy and found to be an alpha helix.
Collapse
Affiliation(s)
- J K Young
- Department of Chemistry, Colgate University, Hamilton, New York, USA
| | | | | | | |
Collapse
|
33
|
Ben-Efraim I, Kliger Y, Hermesh C, Shai Y. Membrane-induced step in the activation of Sendai virus fusion protein. J Mol Biol 1999; 285:609-25. [PMID: 9878433 DOI: 10.1006/jmbi.1998.2370] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptides derived from conserved heptad-repeat regions of several viruses have been shown recently to inhibit virus-cell fusion. To find out their possible role in the fusion process, two biologically active heptad-repeat segments of the fusion protein (F) of Sendai virus, SV-150 (residues 150-186), and SV-473 (residues 473-495) were synthesized, fluorescently labeled and spectroscopically characterized for their structure and organization in solution and within the membrane. SV-150 was found to be 50-fold less active than SV-473 in inhibiting Sendai virus-cell fusion. Circular dichroism (CD) spectroscopy revealed that in aqueous solution, the peptides are self-associated and adopt low alpha-helical structure. However, when the two peptides are mixed together, their alpha-helical content significantly increases. Fluorescence studies, CD, and polarized attenuated total reflection infrared (ATR-FTIR) spectroscopy showed that both peptides, alone or as a complex, bind strongly to negatively charged and zwitterionic phospholipid membranes, dissociate therein into alpha-helical monomers, but do not perturb the lipid packing of the membrane. The ability of the peptides to interact with each other in solution may be correlated with antiviral activity, whereas their ability to interact with the membrane, together with their location near the fusion peptide and the transmembrane domain, suggests a revision to the currently accepted model for viral-induced membrane fusion. In the revised model, in the sequence of events associated with viral entry, the two heptad-repeat sequences may assist in bringing the viral and cellular membranes closer, thus facilitating membrane fusion.
Collapse
Affiliation(s)
- I Ben-Efraim
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|