1
|
Srivastava V, Harsulkar A, Aphale S, Märtson A, Kõks S, Kulkarni P, Deshpande S. Functional Attributes of Synovial Fluid from Osteoarthritic Knee Exacerbate Cellular Inflammation and Metabolic Stress, and Fosters Monocyte to Macrophage Differentiation. Biomedicines 2025; 13:878. [PMID: 40299511 PMCID: PMC12024712 DOI: 10.3390/biomedicines13040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Besides conventional norms that recognize synovial fluid (SF) as a joint lubricant, nutritional channel, and a diagnostic tool in knee osteoarthritis (kOA), based on the authors previous studies, this study aims to define functional role of SF in kOA. Methods: U937, a monocytic, human myeloid cell line, was induced with progressive grades of kOA SF, and the induction response was assessed on various pro-inflammatory parameters. This 'SF challenge test model' was further extended to determine the impact of SF on U937 differentiation using macrophage-specific markers and associated transcription factor genes. Mitochondrial membrane potential changes in SF-treated cells were evaluated with fluorescent JC-1 probe. Results: a significant increase in nitric oxide, matrix metalloproteinase (MMP) 1, 13, and vascular endothelial growth factor (VEGF)-1 was noted in the induced cells. A marked increase was seen in CD68, CD86, and the transcription factors -activator protein (AP)-1, interferon regulatory factor (IRF)-1, and signal transducer and activator of transcription (STAT)-6 in the SF-treated cells indicating active monocytes to macrophage differentiation. Reduced mitochondrial membrane potential was reflected by a reduced red-to-green ratio in JC-1 staining. Conclusions: these results underline the active role of OA SF in stimulating and maintaining inflammation in joint cells, fostering monocyte differentiation into pro-inflammatory macrophages. The decline in the membrane potential suggestive of additional inflammatory pathway in OA via the release of pro-apoptotic factors and damaged associated molecular patterns (DAMPs) within the cells. Overall, biochemical modulation of SF warrants a potential approach to intervene inflammatory cascade in OA and mitigate its progression.
Collapse
Affiliation(s)
- Vanshika Srivastava
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Abhay Harsulkar
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Shama Aphale
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India; (V.S.); (A.H.); (S.A.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, L Puusepa 8, 51014 Tartu, Estonia;
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, L Puusepa 8, 51014 Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| | - Priya Kulkarni
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive JG56, P.O. Box 116131, Gainesville, FL 32611, USA
| | - Shantanu Deshpande
- Department of Orthopaedics, Bharati Hospital, Pune-Satara Road, Pune 411043, India
| |
Collapse
|
2
|
Dong D, Zhang Y, Li W, Zhang H, Cheng X, Feng M. The macrophage polarization in Entamoeba histolytica infection modulation by the C fragment of the intermediate subunit of Gal/GalNAc-inhibitable lectin. Front Immunol 2024; 15:1430057. [PMID: 39100678 PMCID: PMC11294158 DOI: 10.3389/fimmu.2024.1430057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis, with clinical outcomes ranging from asymptomatic infections to severe invasive diseases. The innate immune system, particularly macrophages, is of paramount importance in resisting the invasion of host tissues and organs by the trophozoites of E. histolytica. Parasite-derived pathogenic factors, such as lectins, play a pivotal role in the promotion of macrophage polarization phenotypes that have undergone alteration. Nevertheless, the precise mechanisms by which E. histolytica modulates immune polarization remain largely unknown. The current study focused on the immunomodulatory effects of the Igl-C fragment of E. histolytica Gal/GalNAc lectin on macrophage polarization. These results demonstrated that Igl-C could induce the secretion of IL-1β, IL-6, and other cytokines, activating a mixed M1/M2 polarization state. M1 polarization of macrophages occurs in the early stages and gradually transitions to M2 polarization in the later stages, which may contribute to the persistence of the infection. Igl-C induces the macrophage M1 phenotype and causes the release of immune effector molecules, including iNOS and cytokines, by activating the NF-κB p65 and JAK-STAT1 transcription factor signaling pathways. Furthermore, Igl-C supports the macrophage M2 phenotype via JAK-STAT3 and IL-4-STAT6 pathways, which activate arginase expression in later stages, contributing to the tissue regeneration and persistence of the parasite. The involvement of distinct signaling pathways in mediating this response highlights the complex interplay between the parasite and the host immune system. These findings enhance our understanding of the Igl-C-mediated pathogenic mechanisms during E. histolytica infection.
Collapse
Affiliation(s)
- Dai Dong
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Wenjie Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongze Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhao P, Cai Z, Zhang X, Liu M, Xie F, Liu Z, Lu S, Ma X. Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing. Pharmaceuticals (Basel) 2023; 16:885. [PMID: 37375833 DOI: 10.3390/ph16060885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and anti-inflammatory effects, has been shown to promote M2 polarization in injury and disease. However, more in vivo time series studies of the role of M1-to-M2 polarization in wound healing are needed. In the current study, we performed time series experiments on a dorsal full-thickness skin defect mouse model in the inflammatory stage to examine the effects of H2 inhalation. Our results revealed that H2 could promote very early M1-to-M2 polarization (on days 2-3 post wounding, 2-3 days earlier than in conventional wound healing), without disturbing the functions of the M1 phenotype. Time series analysis of the transcriptome, blood cell counts, and multiple cytokines further indicated that peripheral blood monocytes were a source of H2-induced M2 macrophages and that the functions of H2 in macrophage polarization were not only dependent on its antioxidant effects. Therefore, we believe that H2 could reduce inflammation in wound care by shifting early macrophage polarization in clinical settings.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Zisong Cai
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Ziyi Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Shidong Lu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| |
Collapse
|
4
|
Davuluri GVN, Chan CH. Regulation of intrinsic and extrinsic metabolic pathways in tumour-associated macrophages. FEBS J 2023; 290:3040-3058. [PMID: 35486022 PMCID: PMC10711806 DOI: 10.1111/febs.16465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023]
Abstract
Tumour-associated macrophages (TAMs) are highly plastic and are broadly grouped into two major functional states, namely the pro-inflammatory M1-type and the pro-tumoural M2-type. Conversion of the functional states of TAMs is regulated by various cytokines, chemokines growth factors and other secreted factors in the microenvironment. Dysregulated metabolism is a hallmark of cancer. Emerging evidence suggests that metabolism governs the TAM differentiation and functional conversation in support of tumour growth and metastasis. Aside from the altered metabolism reprogramming in TAMs, extracellular metabolites secreted by cancer, stromal and/or other cells within the tumour microenvironment have been found to regulate TAMs through passive competition for metabolite availability and direct regulation via receptor/transporter-mediated signalling reaction. In this review, we focus on the regulatory roles of different metabolites and metabolic pathways in TAM conversion and function. We also discuss if the dysregulated metabolism in TAMs can be exploited for the development of new therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Chia-Hsin Chan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
5
|
Caratti G, Stifel U, Caratti B, Jamil AJM, Chung KJ, Kiehntopf M, Gräler MH, Blüher M, Rauch A, Tuckermann JP. Glucocorticoid activation of anti-inflammatory macrophages protects against insulin resistance. Nat Commun 2023; 14:2271. [PMID: 37080971 PMCID: PMC10119112 DOI: 10.1038/s41467-023-37831-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Insulin resistance (IR) during obesity is linked to adipose tissue macrophage (ATM)-driven inflammation of adipose tissue. Whether anti-inflammatory glucocorticoids (GCs) at physiological levels modulate IR is unclear. Here, we report that deletion of the GC receptor (GR) in myeloid cells, including macrophages in mice, aggravates obesity-related IR by enhancing adipose tissue inflammation due to decreased anti-inflammatory ATM leading to exaggerated adipose tissue lipolysis and severe hepatic steatosis. In contrast, GR deletion in Kupffer cells alone does not alter IR. Co-culture experiments show that the absence of GR in macrophages directly causes reduced phospho-AKT and glucose uptake in adipocytes, suggesting an important function of GR in ATM. GR-deficient macrophages are refractory to alternative ATM-inducing IL-4 signaling, due to reduced STAT6 chromatin loading and diminished anti-inflammatory enhancer activation. We demonstrate that GR has an important function in macrophages during obesity by limiting adipose tissue inflammation and lipolysis to promote insulin sensitivity.
Collapse
Affiliation(s)
- Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX37LE, UK
| | - Ulrich Stifel
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Bozhena Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Ali J M Jamil
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Michael Kiehntopf
- SG Sepsis Research Clinic for Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Matthias Blüher
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Steno Diabetes Center Odense, Odense, Denmark.
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany.
| |
Collapse
|
6
|
Zuiderwijk-Sick EA, van der Putten C, Timmerman R, Veth J, Pasini EM, van Straalen L, van der Valk P, Amor S, Bajramovic JJ. Exposure of Microglia to Interleukin-4 Represses NF-κB-Dependent Transcription of Toll-Like Receptor-Induced Cytokines. Front Immunol 2021; 12:771453. [PMID: 34880868 PMCID: PMC8645606 DOI: 10.3389/fimmu.2021.771453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Interleukin (IL)-4 is a cytokine that affects both adaptive and innate immune responses. In the central nervous system, microglia express IL-4 receptors and it has been described that IL-4-exposed microglia acquire anti-inflammatory properties. We here demonstrate that IL-4 exposure induces changes in the cell surface protein expression profile of primary rhesus macaque microglia and enhances their potential to induce proliferation of T cells with a regulatory signature. Moreover, we show that Toll like receptor (TLR)-induced cytokine production is broadly impaired in IL-4-exposed microglia at the transcriptional level. IL-4 type 2 receptor-mediated signaling is shown to be crucial for the inhibition of microglial innate immune responses. TLR-induced nuclear translocalization of NF-κB appeared intact, and we found no evidence for epigenetic modulation of target genes. By contrast, nuclear extracts from IL-4-exposed microglia contained significantly less NF-κB capable of binding to its DNA consensus site. Further identification of the molecular mechanisms that underlie the inhibition of TLR-induced responses in IL-4-exposed microglia may aid the design of strategies that aim to modulate innate immune responses in the brain, for example in gliomas.
Collapse
Affiliation(s)
| | | | - Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Linda van Straalen
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Paul van der Valk
- Department of Pathology, Vrije Universiteit (VU) Medical Centre, Amsterdam, Netherlands
| | - Sandra Amor
- Department of Pathology, Vrije Universiteit (VU) Medical Centre, Amsterdam, Netherlands
| | - Jeffrey J Bajramovic
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
7
|
Kim E, Kim Y, Lee J, Shin JH, Seok PR, Kim Y, Yoo SH. Leucrose, a natural sucrose isomer, suppresses dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization via JAK1/STAT6 signaling. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
8
|
Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation 2020; 17:240. [PMID: 32799887 PMCID: PMC7477856 DOI: 10.1186/s12974-020-01897-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background Excessive inflammation within damaged tissue usually leads to delayed or insufficient regeneration, and nerves in the peripheral nervous system (PNS) generally do not recover fully following damage. Consequently, there is growing interest in whether modulation of the inflammatory response could help to promote nerve regeneration in the PNS. However, to date, there are no practical therapeutic strategies for manipulating inflammation after nerve injury. Thrombomodulin (TM) is a transmembrane glycoprotein containing five domains. The lectin-like domain of TM has the ability to suppress the inflammatory response. However, whether TM can modulate inflammation in the PNS during nerve regeneration has yet to be elucidated. Methods We investigated the role of TM in switching proinflammatory type 1 macrophages (M1) to anti-inflammatory type 2 macrophages (M2) in a human monocytic cell line (THP-1) and evaluated the therapeutic application of TM in transected sciatic nerve injury in rats. Results The administration of TM during M1 induction significantly reduced the expression levels of inflammatory cytokines, including TNF-a (p < 0.05), IL-6 (p < 0.05), and CD86 (p < 0.05), in THP-1 cells. Simultaneously, the expression levels of M2 markers, including IL-10 (p < 0.05) and CD206 (p < 0.05), were significantly increased in TM-treated THP-1 cells. Inhibition of IL-4R-c-Myc-pSTAT6-PPARγ signaling abolished the expression levels of IL-10 (p < 0.05) and CD206 (p < 0.05). The conditioned medium (CM) collected from M1 cells triggered an inflammatory response in primary Schwann cells, while CM collected from M1 cells treated with TM resulted in a dose-dependent reduction in inflammation. TM treatment led to better nerve regeneration when tested 6 weeks after injury and preserved effector muscle function. In addition, TM treatment reduced macrophage infiltration at the site of injury and led to potent M1 to M2 transition, thus indicating the anti-inflammatory capacity of TM. Conclusions Collectively, our findings demonstrate the anti-inflammatory role of TM during nerve regeneration. Therefore, TM represents a potential drug for the promotion and modulation of functional recovery in peripheral nerves that acts by regulating the M1/M2 ratio.
Collapse
Affiliation(s)
- Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ting Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, Eichmüller SB, König R. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol 2020; 16:e1007657. [PMID: 32097424 PMCID: PMC7059956 DOI: 10.1371/journal.pcbi.1007657] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/06/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.
Collapse
Affiliation(s)
- Franziska Hörhold
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Marcus Oswald
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Amol Kolte
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Daniela Röll
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer König
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| |
Collapse
|
10
|
Nepal S, Tiruppathi C, Tsukasaki Y, Farahany J, Mittal M, Rehman J, Prockop DJ, Malik AB. STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proc Natl Acad Sci U S A 2019; 116:16513-16518. [PMID: 31363052 PMCID: PMC6697797 DOI: 10.1073/pnas.1821601116] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efferocytosis of apoptotic neutrophils (PMNs) by alveolar macrophages (AMФs) is vital for resolution of inflammation and tissue injury. Here, we investigated the role of AMФ polarization and expression of the efferocytic ligand Gas6 in restoring homeostasis. In the murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI), we observed augmented temporal generation of cytokines IL-4 and TSG6 in bronchoalveolar fluid (BALF). Interestingly, we also observed increased expression of antiinflammatory markers consistent with a phenotype shift in AMФs. In particular, AMФs expressed the efferocytic ligand Gas6. In vitro priming of bone marrow-derived macrophages (BMMФs) with IL-4 or TSG6 also induced MФ transition and expression of Gas6. TSG6- or IL-4-primed BMMФs induced efferocytosis of apoptotic PMNs compared with control BMMФs. Adoptive transfer of TSG6- or IL-4-primed BMMФs i.t. into LPS-challenged mice more rapidly and effectively cleared PMNs in lungs compared with control BMMФs. We demonstrated that expression of Gas6 during AMФ transition was due to activation of the transcription factor signal transducer and activator of transcription-6 (STAT6) downstream of IL-4 or TSG6 signaling. Adoptive transfer of Gas6-depleted BMMФs failed to clear PMNs in lungs following LPS challenge and mice showed severely defective resolution of lung injury. Thus, activation of STAT6-mediated Gas6 expression during macrophage phenotype transition resulting in efferocytosis of PMNs plays a crucial role in the resolution of inflammatory lung injury.
Collapse
Affiliation(s)
- Saroj Nepal
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Yoshikazu Tsukasaki
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Joseph Farahany
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Manish Mittal
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Darwin J Prockop
- Institute for Regenerative Medicine, College of Medicine, Health Science Center, Texas A & M University, Bryan, TX 77807
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612;
- Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
11
|
Wang J, Liu M, Wu Q, Li Q, Gao L, Jiang Y, Deng B, Huang W, Bi W, Chen Z, Chin YE, Paul C, Wang Y, Yang HT. Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages via Activation of Signal Transducer and Activator of Transcription 6. Antioxid Redox Signal 2019; 31:369-386. [PMID: 30854870 PMCID: PMC6602123 DOI: 10.1089/ars.2018.7688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: Human embryonic stem cell derived-cardiovascular progenitor cells (hESC-CVPCs) are a promising cell source for cardiac repair, while the underlying mechanisms need to be elucidated. We recently observed cardioprotective effects of human pluripotent stem cell (hPSC)-CVPCs in infarcted nonhuman primates, but their effects on inflammation during early phase of myocardial infarction (MI) and the contribution of such effect to the cardioprotection are unclear. Results: Injection of hESC-CVPCs into acutely infarcted myocardium significantly ameliorated the functional worsening and scar formation, concomitantly with reduced inflammatory reactions and cardiomyocyte apoptosis as well as increased vascularization. Moreover, hESC-CVPCs modulated cardiac macrophages toward a reparative phenotype in the infarcted hearts, and such modulation was further confirmed in vitro using human cardiovascular progenitor cell (hCVPC)-conditioned medium (hCVPC-CdM) and highly contained interleukin (IL)-4/IL-13. Furthermore, signal transducer and activator of transcription 6 (STAT6) was activated in hCVPC-CdM- and IL-4/IL-13-treated macrophages in vitro and in hESC-CVPC-implanted MI hearts, resulting in the polarization of macrophages toward a reparative phenotype in the post-MI hearts. However, hESC-CVPC-mediated modulation on macrophages and cardioprotection were abolished in STAT6-deficient MI mice. Innovation: This is the first report about the immunoregulatory role played by hESC-CVPCs in the macrophage polarization in the infarcted hearts, its importance for the infarct repair, and the underlying signaling pathway. The findings provide new insight into the mechanism of microenvironmental regulation of stem cell-based therapy during acute MI. Conclusions: Implantion of hESC-CVPCs during the early phase of MI promotes infarct repair via the modulation of macrophage polarization through secreted cytokine-mediated STAT6 activation. The findings suggest a therapeutic potential by modulating macrophage polarization during acute phase of MI.
Collapse
Affiliation(s)
- Jinxi Wang
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Meilan Liu
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qiang Wu
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qiang Li
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ling Gao
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yun Jiang
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Boxiong Deng
- 3 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Tumor and Stem Cell, SIBS, Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Wei Huang
- 4 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Wei Bi
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhongyan Chen
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Y Eugene Chin
- 3 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Tumor and Stem Cell, SIBS, Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Christian Paul
- 4 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Yigang Wang
- 4 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Huang-Tian Yang
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
12
|
Ayaub EA, Tandon K, Padwal M, Imani J, Patel H, Dubey A, Mekhael O, Upagupta C, Ayoub A, Dvorkin-Gheva A, Murphy J, Kolb PS, Lhotak S, Dickhout JG, Austin RC, Kolb MRJ, Richards CD, Ask K. IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages. Immunol Cell Biol 2018; 97:203-217. [PMID: 30298952 PMCID: PMC7379543 DOI: 10.1111/imcb.12212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Although recent evidence has shown that IL-6 is involved in enhanced alternative activation of macrophages toward a profibrotic phenotype, the mechanisms leading to their increased secretory capacity are not fully understood. Here, we investigated the effect of IL-6 on endoplasmic reticulum (ER) expansion and alternative activation of macrophages in vitro. An essential mediator in this ER expansion process is the IRE1 pathway, which possesses a kinase and endoribonuclease domain to cleave XBP1 into a spliced bioactive molecule. To investigate the IRE1-XBP1 expansion pathway, IL-4/IL-13 and IL-4/IL-13/IL-6-mediated alternative programming of murine bone marrow-derived and human THP1 macrophages were assessed by arginase activity in cell lysates, CD206 and arginase-1 expression by flow cytometry, and secreted CCL18 by ELISA, respectively. Ultrastructural intracellular morphology and ER biogenesis were examined by transmission electron microscopy and immunofluorescence. Transcription profiling of 128 genes were assessed by NanoString and Pharmacological inhibition of the IRE1-XBP1 arm was achieved using STF-083010 and was verified by RT-PCR. The addition of IL-6 to the conventional alternative programming cocktail IL-4/IL-13 resulted in increased ER and mitochondrial expansion, profibrotic profiles and unfolded protein response-mediated induction of molecular chaperones. IRE1-XBP1 inhibition substantially reduced the IL-6-mediated hyperpolarization and normalized the above effects. In conclusion, the addition of IL-6 enhances ER expansion and the profibrotic capacity of IL-4/IL-13-mediated activation of macrophages. Therapeutic strategies targeting IL-6 or the IRE1-XBP1 axis may be beneficial to prevent the profibrotic capacity of macrophages.
Collapse
Affiliation(s)
- Ehab A Ayaub
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karun Tandon
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Manreet Padwal
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jewel Imani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Hemisha Patel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anisha Dubey
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Chandak Upagupta
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anmar Ayoub
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - James Murphy
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Philipp S Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sarka Lhotak
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Jeffrey G Dickhout
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Rick C Austin
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Carl D Richards
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Arndt L, Dokas J, Gericke M, Kutzner CE, Müller S, Jeromin F, Thiery J, Burkhardt R. Tribbles homolog 1 deficiency modulates function and polarization of murine bone marrow-derived macrophages. J Biol Chem 2018; 293:11527-11536. [PMID: 29899113 DOI: 10.1074/jbc.ra117.000703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Macrophages are essential for innate immunity and inflammatory responses and differentiate into various functional phenotypes. Tribbles homolog 1 (Trib1), a member of the mammalian Tribbles homolog pseudokinase family, has been implicated in regulation of cell differentiation, proliferation, and metabolism, but its role in macrophage biology has not been fully elucidated. Here, we investigated the consequences of Trib1 deficiency on macrophage functions and M1/M2 polarization. Bone marrow-derived macrophages (BMDMs) from Trib1-deficient (Trib1-/-) mice exhibited elevated phagocytic capacity, correlating with up-regulation of several scavenger receptors. Concomitantly, uptake of modified low-density lipoprotein was increased in Trib1-/- BMDMs. Trib1-/- macrophages also exhibited diminished migration in the presence of the chemokine MCP-1, associated with reduced expression of the MCP-1 receptor Ccr2 Furthermore, Trib1 deficiency attenuated the response of BMDMs to both M1 and M2 stimuli; induction of the M1-marker genes Il6, Il1b, and Nos2 upon LPS/IFNγ stimulation and of the M2-marker genes Cd206, Fizz1, and Arg1 upon IL-4 stimulation was reduced. Functionally, Trib1 deficiency decreased secretion of proinflammatory cytokines (IL-6, TNFα, IL-1β, and CXCL1) and reduced nitric oxide and reactive oxygen species production in M1-polarized macrophages. Supporting the attenuated M2 phenotype, IL-4-stimulated Trib1-/- macrophages secreted less IL-10 and TGFβ. Mechanistically, Trib1-/- BMDMs displayed lower levels of Janus kinase 1 (JAK1), resulting in reduced activation of LPS/IFNγ-mediated STAT1 signaling. Likewise, decreased levels of JAK1 along with lower activation of STAT6 and STAT3 were observed in M2-polarized Trib1-/- BMDMs. Our findings suggest that Trib1 extensively controls macrophage M1/M2 polarization via the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Carl Elias Kutzner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
14
|
Abstract
Diabetes is a chronic metabolic disorder that poses a global burden to healthcare. Increasing incidence of diabetes-related complications in the affected population includes a delay in wound healing that often results in non-traumatic limb amputations. Owing to the intricacies of the healing process and crosstalk between the multitude of participating cells, the identification of hyperglycaemia-induced changes at both cellular and molecular levels poses a challenge. Macrophages are one of the key participants in wound healing and continue to exert functional changes at the wound site since the time of injury. In the present review, we discuss the role of these cells and their aberrant functions in diabetic wounds. We have extensively studied the process of macrophage polarization (MP) and its modulation through epigenetic modifications. Data from both pre-clinical and clinical studies on diabetes have co-related hyperglycaemia induced changes in gene expression to an increased incidence of diabetic complications. Hyperglycaemia and oxidative stress, create an environment prone to changes in the epigenetic code, that is manifested as an altered inflammatory gene expression. Here, we have attempted to understand the different epigenetic modulations that possibly contribute towards dysregulated MP, resulting in delayed wound healing.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (formerly Manipal University), Manipal 576104, Karnataka, India
| | - B S Jayashree
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (formerly Manipal University), Manipal 576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (formerly Manipal University), Manipal 576104, Karnataka, India.
| |
Collapse
|
15
|
Lee S, Kivimäe S, Dolor A, Szoka FC. Macrophage-based cell therapies: The long and winding road. J Control Release 2016; 240:527-540. [PMID: 27422609 PMCID: PMC5064880 DOI: 10.1016/j.jconrel.2016.07.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
In the quest for better medicines, attention is increasingly turning to cell-based therapies. The rationale is that infused cells can provide a targeted therapy to precisely correct a complex disease phenotype. Between 1987 and 2010, autologous macrophages (MΦs) were used in clinical trials to treat a variety of human tumors; this approach provided a modest therapeutic benefit in some patients but no lasting remissions. These trials were initiated prior to an understanding of: the complexity of MΦ phenotypes, their ability to alter their phenotype in response to various cytokines and/or the environment, and the extent of survival of the re-infused MΦs. It is now known that while inflammatory MΦs can kill tumor cells, the tumor environment is able to reprogram MΦs into a tumorigenic phenotype; inducing blood vessel formation and contributing to a cancer cell growth-promoting milieu. We review how new information enables the development of large numbers of ex vivo generated MΦs, and how conditioning and gene engineering strategies are used to restrict the MΦ to an appropriate phenotype or to enable production of therapeutic proteins. We survey applications in which the MΦ is loaded with nanomedicines, such as liposomes ex vivo, so when the drug-loaded MΦs are infused into an animal, the drug is released at the disease site. Finally, we also review the current status of MΦ biodistribution and survival after transplantation into an animal. The combination of these recent advances opens the way for improved MΦ cell therapies.
Collapse
Affiliation(s)
- Simon Lee
- The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA
| | - Saul Kivimäe
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA
| | - Aaron Dolor
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA
| | - Francis C Szoka
- The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA; Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA.
| |
Collapse
|
16
|
Kim JE, Go J, Koh EK, Song SH, Sung JE, Lee HA, Kim DS, Son HJ, Lee HS, Lee CY, Hong JT, Hwang DY. Diosgenin effectively suppresses skin inflammation induced by phthalic anhydride in IL-4/Luc/CNS-1 transgenic mice. Biosci Biotechnol Biochem 2016; 80:891-901. [PMID: 26998565 DOI: 10.1080/09168451.2015.1135040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To quantitatively evaluate the therapeutic effects of diosgenin (DG) and investigate the role of IL-4 on skin inflammation, alterations in luciferase-derived signal and general phenotype biomarkers were measured in IL-4/Luc/CNS-1 transgenic mice with phthalic anhydride (PA)-induced skin inflammation after treatment with DG for 4 weeks. High levels of luciferase-derived signal detected in the abdominal region and submandibular lymph node (SL) of the PA treated group was significantly decreased by 67-88% in the PA + DG cotreated group. Furthermore, the weight of the lymph node and spleen, IgE concentration, epidermis thickness, and number of infiltrated mast cells were lower in the PA + DG treated group than the PA + Vehicle treated group. Moreover, expression of IL-6 and vascular endothelial growth factor (VEGF) also decreased in the PA + DG cotreated group. These results suggest that PA-induced skin inflammation could be successfully suppressed by DG treatment in IL-4/Luc/CNS-1 Tg mice through attenuation of IL-4 and IL-6 expression, as well as decreased IgE concentration and mast cells infiltration.
Collapse
Affiliation(s)
- Ji Eun Kim
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Jun Go
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Eun Kyoung Koh
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Sung Hwa Song
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Ji Eun Sung
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Hyun Ah Lee
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Dong Seob Kim
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Hong Joo Son
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| | - Hee Seob Lee
- b College of Human Ecology, Pusan National University , Busan , Korea
| | | | - Jin Tae Hong
- d College of Pharmacy , Chungbuk National University , Chungju , Korea
| | - Dae Youn Hwang
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University , Miryang , Korea
| |
Collapse
|
17
|
Fleming BD, Chandrasekaran P, Dillon LAL, Dalby E, Suresh R, Sarkar A, El-Sayed NM, Mosser DM. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling. J Leukoc Biol 2015; 98:395-407. [PMID: 26048978 PMCID: PMC4541501 DOI: 10.1189/jlb.2a1114-560r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022] Open
Abstract
Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1β, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4.
Collapse
Affiliation(s)
- Bryan D Fleming
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Prabha Chandrasekaran
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Laura A L Dillon
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth Dalby
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Rahul Suresh
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Arup Sarkar
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Najib M El-Sayed
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - David M Mosser
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
18
|
Allen JE, Sutherland TE, Rückerl D. IL-17 and neutrophils: unexpected players in the type 2 immune response. Curr Opin Immunol 2015; 34:99-106. [PMID: 25794823 DOI: 10.1016/j.coi.2015.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The study of immunity to helminth infection has been central to understanding the function of type 2 cytokines and their targets. Although type 2 cytokines are considered anti-inflammatory and promote tissue repair, they also contribute to allergy and fibrosis. Here, we utilise data from helminth infection models, to illustrate that IL-17 and neutrophils, typically associated with pro-inflammatory responses, are intimately linked with type 2 immunity. Neutrophils work with IL-4Rα-activated macrophages to control incoming larvae but this comes at a cost of enhanced tissue damage. Chitinase like proteins (CLPs) bridge these diverse outcomes, inducing both protective IL-17 and reparative Th2 responses. Dysregulation of CLPs, IL-17 and neutrophils likely contribute to disease severity and pathology associated with type 2 immunity.
Collapse
Affiliation(s)
- Judith E Allen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Tara E Sutherland
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom
| | - Dominik Rückerl
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
19
|
Gorbachev AV, Fairchild RL. Regulation of chemokine expression in the tumor microenvironment. Crit Rev Immunol 2015; 34:103-20. [PMID: 24940911 DOI: 10.1615/critrevimmunol.2014010062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemokines are chemotactic cytokines critical for homeostatic and inflammation-induced trafficking of leukocytes during immune responses, hematopoesis, wound healing, and tumorigenesis. Despite three decades of intensive study of the chemokine network, the molecular mechanisms regulating chemokine expression during tumor growth are not well understood. In this review, we focus on the role of chemokines in both tumor growth and anti-tumor immune responses and on molecular mechanisms employed by tumor cells to regulate chemokine expression in the tumor microenvironment. Multiple mechanisms used by tumors to regulate chemokine production, including those revealed by very recent studies (such as DNA methylation or post-translational nitrosylation of chemokines) are discussed. Concluding the review, we discuss how understanding of these regulatory mechanisms can be used in cancer therapy to suppress tumor growth and/or to promote immune-mediated eradication of tumors.
Collapse
Affiliation(s)
| | - Robert L Fairchild
- Department of Immunology and Urological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
20
|
Hwang I, Yang J, Hong S, Ju Lee E, Lee SH, Fernandes-Alnemri T, Alnemri ES, Yu JW. Non-transcriptional regulation of NLRP3 inflammasome signaling by IL-4. Immunol Cell Biol 2015; 93:591-9. [PMID: 25601272 DOI: 10.1038/icb.2014.125] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/01/2014] [Accepted: 12/24/2014] [Indexed: 12/12/2022]
Abstract
Th2 cytokine IL-4 has been previously shown to suppress the production of proinflammatory cytokines in monocytes. However, the underlying molecular mechanism by which IL-4 signaling antagonizes proinflammatory responses is poorly characterized. In particular, whether IL-4 can modulate inflammasome signaling remains unknown. Here, we provide evidence that IL-4 suppresses NLRP3-dependent caspase-1 activation and the subsequent IL-1β secretion but does not inhibit absent in melanoma 2 (AIM2)- or NLRC4 (NOD-like receptor family, CARD domain-containing 4)-dependent caspase-1 activation in THP-1 and mouse bone marrow-derived macrophages. Upon lipopolysaccharide (LPS) or LPS/ATP stimulation, IL-4 markedly inhibited the assembly of NLRP3 inflammasome, including NLRP3-dependent ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) oligomerization, NLRP3-ASC interaction and NLRP3 speck-like oligomeric structure formation. The negative regulation of NLRP3 inflammasome by IL-4 was not due to the impaired mRNA or protein production of NLRP3 and proinflammatory cytokines. Supporting this observation, IL-4 attenuated NLRP3 inflammasome activation even in reconstituted NLRP3-expressing macrophages in which NLRP3 expression is not transcriptionally regulated by TLR-NF-κB signaling. Furthermore, the IL-4-mediated suppression of NLRP3 inflammasome was independent of STAT6-dependent transcription and mitochondrial reactive oxygen species (ROS). Instead, IL-4 inhibited subcellular redistribution of NLRP3 into mitochondria and microtubule polymerization upon NLRP3-activating stimulation. Our results collectively suggest that IL-4 could suppress NLRP3 inflammasome activation in a transcription-independent manner, thus providing an endogenous regulatory machinery to prevent excessive inflammasome activation.
Collapse
Affiliation(s)
- Inhwa Hwang
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jungmin Yang
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sujeong Hong
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Je-Wook Yu
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Anti-inflammatory cytokine interleukin-4 inhibits inducible nitric oxide synthase gene expression in the mouse macrophage cell line RAW264.7 through the repression of octamer-dependent transcription. Mediators Inflamm 2013; 2013:369693. [PMID: 24459328 PMCID: PMC3891534 DOI: 10.1155/2013/369693] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a signature molecule involved in the classical activation of M1 macrophages and is induced by the Nos2 gene upon stimulation with Th1-cell derived interferon-gamma (IFNγ) and bacterial lipopolysaccharide (LPS). Although the anti-inflammatory cytokine IL-4 is known to inhibit Nos2 gene expression, the molecular mechanism involved in the negative regulation of Nos2 by IL-4 remains to be fully elucidated. In the present study, we investigated the mechanism of IL-4-mediated Nos2 transcriptional repression in the mouse macrophage-like cell line RAW264.7. Signal transducer and activator of transcription 6 (Stat6) knockdown by siRNA abolished the IL-4-mediated inhibition of Nos2 induced by IFNγ/LPS. Transient transfection of a luciferase reporter gene containing the 5′-flanking region of the Nos2 gene demonstrated that an octamer transcription factor (OCT) binding site in the promoter region is required for both positive regulation by IFNγ/LPS and negative regulation by IL-4. Although IL-4 had no inhibitory effect on the DNA-binding activity of constitutively expressed Oct-1, IL-4-induced Nos2-reporter transcriptional repression was partially attenuated by overexpression of the coactivator CREB-binding protein (CBP). These results suggest that a coactivator/cofactor that functionally interacts with Oct-1 is a molecular target for the IL-4-mediated inhibition of Nos2 and that IL-4-activated Stat6 represses Oct-1-dependent transcription by competing with this coactivator/cofactor.
Collapse
|
22
|
Persistent STAT5 phosphorylation and epigenetic dysregulation of GM-CSF and PGS2/COX2 expression in Type 1 diabetic human monocytes. PLoS One 2013; 8:e76919. [PMID: 24204704 PMCID: PMC3799903 DOI: 10.1371/journal.pone.0076919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/04/2013] [Indexed: 01/22/2023] Open
Abstract
STAT5 proteins are adaptor proteins for histone acetylation enzymes. Histone acetylation at promoter and enhancer chromosomal regions opens the chromatin and allows access of transcription enzymes to specific genes in rapid response cell signals, such as in inflammation. Histone acetylation-mediated gene regulation is involved in expression of 2 key inflammatory response genes: CSF2, encoding granulocyte-macrophage colony stimulating factor (GM-CSF), and PTGS2, encoding prostaglandin synthase 2/cyclooxygenase 2 (PGS2/COX2). Prolonged CSF2 expression, high GM-CSF production, and GM-CSF activation of PTGS2 gene expression all are seen in type 1 diabetes (T1D) monocytes. Persistent phosphorylation activation of monocyte STAT5 (STAT5Ptyr) is also found in individuals with or at-risk for T1D. To examine whether elevated T1D monocyte STAT5Ptyr may be associated with aberrant inflammatory gene expression in T1D, blood monocytes from non-autoimmune controls and T1D patients were analyzed by flow cytometry for STAT5Ptyr activation, and by chromatin immuno-precipitation (ChIP) analyses for STAT5Ptyr’s ability to bind at CSF2 and PTGS2 regulatory sites in association with histone acetylation. In unstimulated monocytes, STAT5Ptyr was elevated in 59.65% of T1D, but only 2.44% of control subjects (p<0.0001). Increased STAT5Ptyr correlated with T1D disease duration (p = 0.0030, r2 = 0.0784). Unstimulated (p = 0.140) and GM-CSF-stimulated (p = 0.0485) T1D monocytes, had greater STAT5Ptyr binding to epigenetic regulatory sites upstream of CSF2 than control monocytes. Increased STAT5Ptyr binding in T1D monocytes was concurrent with binding at these sites of STAT6Ptyr (p = 0.0283), CBP/P300 histone acetylase, acetylated histones H3, SMRT/NCoR histone deacetylase (p = 0.0040), and RNA Polymerase II (p = 0.0040). Our study indicates that in T1D monocytes, STAT5Ptyr activation is significantly higher and that STAT5Ptyr is found bound to CSF2 promoter and PTGS2 enhancer regions coincident with histone acetylation and RNA polymerase II. These findings suggest that the persistent activation of STAT5 by GM-CSF may be involved in altering the epigenetic regulation of these inflammatory response genes in T1D monocytes.
Collapse
|
23
|
Abstract
Macrophages are key regulators of many organ systems, including innate and adaptive immunity, systemic metabolism, hematopoiesis, vasculogenesis, malignancy, and reproduction. The pleiotropic roles of macrophages are mirrored by similarly diverse cellular phenotypes. A simplified schema classifies macrophages as M1, classically activated macrophages, or M2, alternatively activated macrophages. These cells are characterized by their expression of cell surface markers, secreted cytokines and chemokines, and transcription and epigenetic pathways. Transcriptional regulation is central to the differential speciation of macrophages, and several major pathways have been described as essential for subset differentiation. In this review, we discuss the transcriptional regulation of macrophages.
Collapse
Affiliation(s)
- Derin Tugal
- Department of Medicine, University Hospitals Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospital Case Medical Center, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
24
|
Mendonça VRR, Queiroz ATL, Lopes FM, Andrade BB, Barral-Netto M. Networking the host immune response in Plasmodium vivax malaria. Malar J 2013; 12:69. [PMID: 23433077 PMCID: PMC3598348 DOI: 10.1186/1475-2875-12-69] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/18/2013] [Indexed: 02/02/2023] Open
Abstract
Background Plasmodium vivax malaria clinical outcomes are a consequence of the interaction of multiple parasite, environmental and host factors. The host molecular and genetic determinants driving susceptibility to disease severity in this infection are largely unknown. Here, a network analysis of large-scale data from a significant number of individuals with different clinical presentations of P. vivax malaria was performed in an attempt to identify patterns of association between various candidate biomarkers and the clinical outcomes. Methods A retrospective analysis of 530 individuals from the Brazilian Amazon, including P. vivax-infected individuals who developed different clinical outcomes (148 asymptomatic malaria, 187 symptomatic malaria, 13 severe non-lethal malaria, and six severe lethal malaria) as well as 176 non-infected controls, was performed. Plasma levels of liver transaminases, bilirubins, creatinine, fibrinogen, C-reactive protein, superoxide dismutase (SOD)-1, haem oxygenase (HO)-1 and a panel composed by multiple cytokines and chemokines were measured and compared between the different clinical groups using network analysis. Results Non-infected individuals displayed several statistically significant interactions in the networks, including associations between the levels of IL-10 and IL-4 with the chemokine CXCL9. Individuals with asymptomatic malaria displayed multiple significant interactions involving IL-4. Subjects with mild or severe non-lethal malaria displayed substantial loss of interactions in the networks and TNF had significant associations more frequently with other parameters. Cases of lethal P. vivax malaria infection were associated with significant interactions between TNF ALT, HO-1 and SOD-1. Conclusions The findings imply that clinical immunity to P. vivax malaria is associated with multiple significant interactions in the network, mostly involving IL-4, while lethality is linked to a systematic reduction of complexity of these interactions and to an increase in connections between markers linked to haemolysis-induced damage.
Collapse
Affiliation(s)
- Vitor R R Mendonça
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | | | | |
Collapse
|
25
|
Yang W, Lu Y, Xu Y, Xu L, Zheng W, Wu Y, Li L, Shen P. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs). J Biol Chem 2012; 287:40140-9. [PMID: 22908233 DOI: 10.1074/jbc.m112.348763] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocarcinoma cancer (HCC) occurs more often in men than in women, and little is known about its underlying molecular mechanisms. RESULTS We identify that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. CONCLUSION Estrogen functions as a suppressor for macrophage alternative activation. SIGNIFICANCE These studies introduce a novel mechanism for suppressing male-predominant HCC. Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC.
Collapse
Affiliation(s)
- Weiwei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Woodward EA, Kolesnik TB, Nicholson SE, Prêle CM, Hart PH. The anti-inflammatory actions of IL-4 in human monocytes are not mediated by IL-10, RP105 or the kinase activity of RIPK2. Cytokine 2012; 58:415-23. [PMID: 22484241 DOI: 10.1016/j.cyto.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/23/2012] [Accepted: 03/12/2012] [Indexed: 01/03/2023]
Abstract
The anti-inflammatory actions of IL-4 in activated human monocytes may reflect transcriptional regulation of genes involved in TLR signaling pathways. Tailored gene arrays were conducted to profile the expression of 84 genes central to TLR-mediated signal transduction in human monocytes treated with the TLR4 ligand, LPS, with or without IL-4. In the first 3h, IL-4 down-regulated mRNA levels of LPS-induced inflammatory cytokines and chemokines, without altering mRNA levels of TLRs, TLR-related signaling molecules or multiple transcription factors. The down-regulation of inflammatory genes by IL-4 was preceded by an early up-regulation of IL-10 mRNA and protein and mRNA for receptor-interacting serine-threonine kinase 2 (RIPK2), the TLR homolog, RP105, and c-Maf, a transcription factor required for IL-10 gene expression. However, IL-4 still suppressed LPS-induced TNFα production in bone-marrow derived macrophages from IL10(-/-) mice, and in the presence of a neutralizing antibody to IL-10 in human monocytes. The up-regulation of RIPK2 and RP105 mRNA by IL-4 occurred independently of IL-10. IL-4 maintained the ability to suppress LPS-induced TNFα and enhance IL-10 production in the presence of RIPK2 kinase inhibitors. Further, IL-4 failed to up-regulate expression of RP105 at the cell surface. In conclusion, the anti-inflammatory actions of IL-4 occur independently of IL-10, RP105, and the kinase activity of RIPK2.
Collapse
Affiliation(s)
- Eleanor A Woodward
- Inflammation Laboratory, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, GPO Box 855, West Perth 6872, Australia
| | | | | | | | | |
Collapse
|
27
|
Interleukin-4 and interleukin-13 inhibit the expression of leukemia inhibitory factor and interleukin-11 in fibroblasts. Mol Immunol 2012; 49:601-10. [DOI: 10.1016/j.molimm.2011.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022]
|
28
|
Interleukin-13 protects mouse intestine from ischemia and reperfusion injury through regulation of innate and adaptive immunity. Transplantation 2011; 91:737-43. [PMID: 21311412 DOI: 10.1097/tp.0b013e31820c861a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major factor leading to intestinal dysfunction or graft loss after intestinal surgery or transplantation. This study investigated the cytoprotective effects and putative mechanisms of interleukin (IL)-13 after intestinal I/R injury in the mouse. METHODS Mouse warm intestinal I/R injury induced by clamping the superior mesenteric artery for 100 min with tissue analysis at 4 and 24 hr after reperfusion. Treated animals received intravenous recombinant murine IL-13 (rIL-13) and anti-IL-13 antibody, whereas controls received saline. RESULTS rIL-13 administration markedly prolonged animal survival (100% vs. 50% in saline controls) and resulted in near normal histopathological architecture. rIL-13 treatment also significantly decreased myeloperoxidase activity. Mice conditioned with rIL-13 had a markedly depressed Toll-like receptor-4 expression and increased the expression of Stat6, antioxidant hemeoxygenase-1, and antiapoptotic A20, Bcl-2/Bcl-xl, compared with that of controls. Unlike in controls, the expression of mRNA coding for IL-2/interferon-γ, and interferon-γ-inducible protein (IP)-10/monocyte chemotactic protein-1 remained depressed, whereas that of IL-13/IL-4 reciprocally increased in the mice treated with rIL-13. Administration of anti-IL13 antibody alone or in combination with rIL-13 resulted in outcomes similar to that seen in controls. CONCLUSIONS This study demonstrates for the first time that IL-13 plays a protective role in intestinal warm I/R injury and a critical role in the regulation of Stat6 and Toll-like receptor-4 signaling. The administration of IL-13 exerts cytoprotective effects in this model by regulating innate and adaptive immunity while the removal of IL-13 using antibody therapy abrogates this effect.
Collapse
|
29
|
Pechkovsky DV, Prasse A, Kollert F, Engel KMY, Dentler J, Luttmann W, Friedrich K, Müller-Quernheim J, Zissel G. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 2010; 137:89-101. [PMID: 20674506 DOI: 10.1016/j.clim.2010.06.017] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 02/06/2023]
Abstract
Activated macrophages have been characterized as M1 and M2 according to their inflammatory response pattern. Here we analyzed the M2 marker expression and intracellular signal transduction in the course of cytokine-driven differentiation. We found elevated spontaneous production of the chemokines CCL17, CCL18 and CCL22 and increased expression of CD206 by alveolar macrophages from patients with lung fibrosis. Stimulation of normal human AM with Th2 cytokines IL-4 and/or IL-10 in vitro revealed IL-4 as the most powerful inducer of M2-phenotype in AM and monocytes. Importantly, IL-10 enhanced IL-4-induced expression of CCL18 and IL-1RA in a synergistic fashion. IL-4/IL-10 stimulation induces a strong activation of STAT3 in AM from fibrosis patients. These results suggest an important role for M2 polarized AM in the pathogenesis of pulmonary fibrosis and indicate that both IL-4 and IL-10 account for human AM phenotype shift to M2, as seen in patients with fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Dmitri V Pechkovsky
- Department of Pneumology, Medical Center, Albert-Ludwigs University, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Woodward EA, Prêle CM, Nicholson SE, Kolesnik TB, Hart PH. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 2010; 131:118-27. [PMID: 20406299 DOI: 10.1111/j.1365-2567.2010.03281.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-alpha production by IL-4. IL-4 suppressed LPS-induced TNF-alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-alpha production by bone-marrow derived macrophages from wild-type mice, Ifngamma(-/-) mice and mice lacking SOCS1 (Socs1(-/-)Ifngamma(-/-)). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-alpha production by IL-4.
Collapse
Affiliation(s)
- Eleanor A Woodward
- Inflammation Laboratory, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
31
|
Klotz L, Hucke S, Thimm D, Classen S, Gaarz A, Schultze J, Edenhofer F, Kurts C, Klockgether T, Limmer A, Knolle P, Burgdorf S. Increased antigen cross-presentation but impaired cross-priming after activation of peroxisome proliferator-activated receptor gamma is mediated by up-regulation of B7H1. THE JOURNAL OF IMMUNOLOGY 2009; 183:129-36. [PMID: 19535643 DOI: 10.4049/jimmunol.0804260] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dendritic cells are able to take up exogenous Ags and present Ag-derived peptides on MHC class I molecules, a process termed cross-presentation. The mannose receptor (MR), an endocytic receptor expressed on a variety of APCs, has been demonstrated to target soluble Ags exclusively toward cross-presentation. In this study, we investigated the role of the murine nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor with immunomodulatory properties, in MR-mediated endocytosis and cross-presentation of the model Ag OVA. We could demonstrate both in vitro and in vivo that activation of PPARgamma resulted in increased MR expression, which in consequence led to enhanced MR-mediated endocytosis and elevated cross-presentation of soluble OVA. Concomitantly, activation of PPARgamma in dendritic cells induced up-regulation of the coinhibitory molecule B7H1, which, despite enhanced cross-presentation, caused an impaired activation of naive OVA-specific CD8(+) T cells and the induction of T cell tolerance. These data provide a mechanistic basis for the immunomodulatory action of PPARgamma which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune responses, e.g., in T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Luisa Klotz
- Institutes of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Santini SM, Lapenta C, Santodonato L, D'Agostino G, Belardelli F, Ferrantini M. IFN-alpha in the generation of dendritic cells for cancer immunotherapy. Handb Exp Pharmacol 2008:295-317. [PMID: 19031032 DOI: 10.1007/978-3-540-71029-5_14] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity, by virtue of their unique ability to take up and process antigens in the peripheral blood and tissues and, upon migration to draining lymph nodes, to present antigen to resting lymphocytes. Notably, these DC functions are modulated by cytokines and chemokines controlling the activation and maturation of these cells, thus shaping the response towards either immunity or tolerance.An ensemble of recent studies have emphasized an important role of type I IFNs in the DC differentiation/activation, suggesting the existence of a natural alliance between these cytokines and DCs in linking innate and adaptive immunity. Herein, we will review how type I IFNs can promote the ex vivo differentiation of human DCs and orient DC functions towards the priming and expansion of protective antitumor immune responses. We will also discuss how the knowledge on type I IFN-DC interactions could be exploited for the design of more selective and effective strategies of cancer immunotherapy.
Collapse
Affiliation(s)
- Stefano Maria Santini
- Section of Experimental Immunotherapy, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, 299, 00161 Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Tian D, Fu Z, Liu E, He Y, Wang X, Wang L. Therapeutic effect of intratracheal administration of murine IL-4 receptor antagonist on asthmatic airway inflammation. J Asthma 2008; 45:715-21. [PMID: 18951266 DOI: 10.1080/02770900802252085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE It is well known that IL-4 and IL-13 play critical roles in the pathogenesis of asthma. In this study, by overexpressing murine IL-4 receptor antagonist (mIL-4RA), a competitive antagonist for both IL-4 and IL-13, we investigated the therapeutic effects of mIL-4RA on mouse asthmatic airway inflammation. MATERIAL AND METHODS BALB/c mice were randomly divided into four groups: healthy control mice; ovalbumin (OVA) sensitized/challenged mice; OVA sensitized/challenged mice intratracheally administered with mIL-4RA plasmid (mIL-4RA group); and OVA sensitized/challenged mice intratracheally administered with control plasmid (control plasmid group). The airway inflammation was determined by histopathological examinations. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to analyze CD4 and CD8 T-lymphocyte subsets. RESULTS Compared to the control plasmid-treated mice, intratracheal administration of mIL-4RA expressing plasmid on the sensitization phase protected the mice from the subsequent induction of asthmatic airway inflammation. The eosinophilic infiltration in bronchoalveolar lavage fluid (BALF) was significantly reduced compared to that of the control (p < 0.01). Interestingly, intratracheal administration of mIL-4RA regulated the Th1/Th2 cytokine imbalance in local airway with increased IL-13 levels and decreased IFN-gamma levels compared to the control plasmid group. However, although we did see the decreased level of IL-4 and IL-13 in serum, the serum level of IFN-gamma is not changed in the mIL-4RA group, suggesting that mIL-4RA could not correct the imbalance of Th1/Th2 cytokines in serum. In addition, intratracheal administration of mIL-4RA had no effect on the ratio of CD4/CD8 T-lymphocyte subsets in the peripheral blood, lung, or spleen. CONCLUSIONS This study demonstrated that intratracheal administration of mIL-4RA attenuated the asthmatic inflammation and regulated the Th1/Th2 cytokine imbalance in local airway with minimal systemic effects. This method may serve as a potential therapeutic option for treating asthma.
Collapse
Affiliation(s)
- Daiyin Tian
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, ChongQing, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Rachakonda PS, Rai MF, Schmidt MFG. Application of inflammation‐responsive promoter for an in vitro arthritis model. ACTA ACUST UNITED AC 2008; 58:2088-97. [DOI: 10.1002/art.23598] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Wormald S, Hilton DJ, Smyth GK, Speed TP. Proximal genomic localization of STAT1 binding and regulated transcriptional activity. BMC Genomics 2006; 7:254. [PMID: 17032459 PMCID: PMC1618399 DOI: 10.1186/1471-2164-7-254] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 10/11/2006] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) proteins are key regulators of gene expression in response to the interferon (IFN) family of anti-viral and anti-microbial cytokines. We have examined the genomic relationship between STAT1 binding and regulated transcription using multiple tiling microarray and chromatin immunoprecipitation microarray (ChIP-chip) experiments from public repositories. RESULTS In response to IFN-gamma, STAT1 bound proximally to regions of the genome that exhibit regulated transcriptional activity. This finding was consistent between different tiling microarray platforms, and between different measures of transcriptional activity, including differential binding of RNA polymerase II, and differential mRNA transcription. Re-analysis of tiling microarray data from a recent study of IFN-gamma-induced STAT1 ChIP-chip and mRNA expression revealed that STAT1 binding is tightly associated with localized mRNA transcription in response to IFN-gamma. Close relationships were also apparent between STAT1 binding, STAT2 binding, and mRNA transcription in response to IFN-alpha. Furthermore, we found that sites of STAT1 binding within the Encyclopedia of DNA Elements (ENCODE) region are precisely correlated with sites of either enhanced or diminished binding by the RNA polymerase II complex. CONCLUSION Together, our results indicate that STAT1 binds proximally to regions of the genome that exhibit regulated transcriptional activity. This finding establishes a generalized basis for the positioning of STAT1 binding sites within the genome, and supports a role for STAT1 in the direct recruitment of the RNA polymerase II complex to the promoters of IFN-gamma-responsive genes.
Collapse
Affiliation(s)
- Samuel Wormald
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Douglas J Hilton
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Gordon K Smyth
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Terence P Speed
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Statistics, University of California, Berkeley, California, USA
| |
Collapse
|
36
|
Sakaeda Y, Hiroi M, Shimojima T, Iguchi M, Kanegae H, Ohmori Y. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-gamma-induced expression of the chemokine CXCL9 gene in mouse macrophages. Biochem Biophys Res Commun 2006; 350:339-44. [PMID: 17010317 DOI: 10.1016/j.bbrc.2006.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/08/2006] [Indexed: 11/17/2022]
Abstract
Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNgamma)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNgamma-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNgamma-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNgamma-induced STAT1 activation; however, constitutive nuclear factor kappaB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNgamma-inducible gene expression without inhibiting STAT1 activation.
Collapse
Affiliation(s)
- Yoshiichi Sakaeda
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Bonaparte KL, Hudson CA, Wu C, Massa PT. Inverse regulation of inducible nitric oxide synthase (iNOS) and arginase I by the protein tyrosine phosphatase SHP-1 in CNS glia. Glia 2006; 53:827-35. [PMID: 16565987 DOI: 10.1002/glia.20344] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously shown that the SH2 domain-containing protein tyrosine phosphatase SHP-1 plays a critical role in controlling virus infection in CNS glia in vivo and in vitro. The present study addressed whether increased virus replication in SHP-1-deficient glia in vitro may be a result of altered expression of inducible nitric oxide synthase (iNOS/NOS2). First, we observed a profound reduction in iNOS protein expression and production of nitric oxide (NO) in response to the viral mimic double-stranded RNA (dsRNA), despite the induction of high levels of iNOS mRNA, in SHP-1-deficient motheaten mouse compared to wild type littermate mouse glia. Because both iNOS expression and NO production are suppressed by multiple pathways involving arginase I activity, it was important that we observed abnormally high constitutive expression of arginase I in cultured glia of SHP-1-deficient compared to wild type mice. Further, both constitutive and IL-4/IL-10-induced expression of arginase I correlated with elevated STAT6 nuclear binding activity, decreased NO production, and increased virus replication in motheaten compared to wild type astrocytes. These findings provide the first evidence of an inverse relationship between NO and arginase I activity regulated by SHP-1 in CNS glia that is relevant to modulation of innate anti-viral responses. Thus, we propose that SHP-1 is a critical regulator of innate immunity to virus infections in CNS cells.
Collapse
Affiliation(s)
- Kathryn L Bonaparte
- Department of Neurology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
38
|
Hirayama T, Dai S, Abbas S, Yamanaka Y, Abu-Amer Y. Inhibition of inflammatory bone erosion by constitutively active STAT-6 through blockade of JNK and NF-kappaB activation. ACTA ACUST UNITED AC 2005; 52:2719-29. [PMID: 16142755 DOI: 10.1002/art.21286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE NF-kappaB and JNK signaling pathways play key roles in the pathogenesis of inflammatory arthritis. Both factors are also activated in response to osteoclastogenic factors, such as RANKL and tumor necrosis factor alpha. Inflammatory arthritis and bone erosion subside in the presence of antiinflammatory cytokines such as interleukin-4 (IL-4). We have previously shown that IL-4 inhibits osteoclastogenesis in vitro through inhibition of NF-kappaB and JNK activation in a STAT-6-dependent manner. This study was undertaken to investigate the potential of constitutively active STAT-6 to arrest the activation of NF-kappaB and JNK and to subsequently ameliorate the bone erosion associated with inflammatory arthritis in mice. METHODS Inflammatory arthritis was induced in wild-type and STAT-6-null mice by intraperitoneal injection of arthritis-eliciting serum derived from K/BxN mice. Bone erosion was assessed in the joints by histologic and immunostaining techniques. Cell-permeable Tat-STAT-6 fusion proteins were administered intraperitoneally. Cells were isolated from bone marrow and from joints for the JNK assay, the DNA-binding assays (electrophoretic mobility shift assays), and for in vitro osteoclastogenesis. RESULTS Activation of NF-kappaB and JNK in vivo was increased in extracts of cells retrieved from the joints of arthritic mice. Cell-permeable, constitutively active STAT-6 (i.e., STAT-6-VT) was effective in blocking NF-kappaB and JNK activation in RANKL-treated osteoclast progenitors. More importantly, STAT-6-VT protein significantly inhibited the in vivo activation of NF-kappaB and JNK, attenuated osteoclast recruitment in the inflamed joints, and decreased bone destruction. CONCLUSION Our findings indicate that the administration of STAT-6-VT presents a novel approach to the alleviation of bone erosion in inflammatory arthritis.
Collapse
Affiliation(s)
- Teruhisa Hirayama
- Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
39
|
Namiki S, Nakamura T, Oshima S, Yamazaki M, Sekine Y, Tsuchiya K, Okamoto R, Kanai T, Watanabe M. IRF-1 mediates upregulation of LMP7 by IFN-gamma and concerted expression of immunosubunits of the proteasome. FEBS Lett 2005; 579:2781-7. [PMID: 15907481 DOI: 10.1016/j.febslet.2005.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/30/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
An immunoproteasome subunit low molecular weight protein 7 (LMP7) plays critical roles in major histocompatibility complex class I antigen processing; however, the mechanism for its expression has remained unclear. We demonstrate that interferon (IFN) regulatory factor-1 (IRF-1) has a pivotal role in IFN-gamma-dependent LMP7 expression, as was shown for the other two immunosubunits. A tetracycline-inducible system for IRF-1 revealed its function in the LMP7 expression, and a genomic region functionally interacting with IRF-1 was also determined. Furthermore, the role of IRF-1 in IFN-gamma-inducible LMP7 transcription was confirmed by employing small interfering RNA experiments and IRF-1-/- mice. These results suggest that IRF-1 acts as a master regulator for the concerted expression of immunoproteasome components.
Collapse
Affiliation(s)
- Shin Namiki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fulkerson PC, Zimmermann N, Hassman LM, Finkelman FD, Rothenberg ME. Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. THE JOURNAL OF IMMUNOLOGY 2005; 173:7565-74. [PMID: 15585884 DOI: 10.4049/jimmunol.173.12.7565] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of distinct chemokines within the asthmatic lung suggests that specific regulatory mechanisms may mediate various stages of asthmatic disease. Global transcript expression profiling was used to define the spectrum and kinetics of chemokine involvement in an experimental murine model of asthma. Seventeen chemokines were induced in the lungs of allergen-inoculated mice, as compared with saline-treated mice. Two (CXCL13 and CCL9) of the 17 identified chemokines have not previously been associated with allergic airway disease. Seven (7 of 17; CCL2, CCL7, CCL9, CCL11, CXCL1, CXCL5, CXCL10) of the allergen-induced chemokines were induced early after allergen challenge and remained induced throughout the experimental period. Three chemokines (CXCL2, CCL3, and CCL17) were induced only during the early phase of the inflammatory response after the initial allergen challenge, while seven chemokines (CCL6, CCL8, CCL12, CCL22, CXCL9, CXCL12, and CXCL13) were increased only after a second allergen exposure. Unexpectedly, expression of only three chemokines, CCL11, CCL17, and CCL22, was STAT6 dependent, and many of the identified chemokines were overexpressed in STAT6-deficient mice, providing an explanation for the enhanced neutrophilic inflammation seen in these mice. Notably, IFN-gamma and STAT1 were shown to contribute to the induction of two STAT6-independent chemokines, CXCL9 and CXCL10. Taken together, these results show that only a select panel of chemokines (those targeting Th2 cells and eosinophils) is positively regulated by STAT6; instead, many of the allergen-induced chemokines are negatively regulated by STAT6. Collectively, we demonstrate that allergen-induced inflammation involves coordinate regulation by STAT1, STAT6, and IFN-gamma.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | | | | | | | | |
Collapse
|
41
|
Välineva T, Yang J, Palovuori R, Silvennoinen O. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J Biol Chem 2005; 280:14989-96. [PMID: 15695802 DOI: 10.1074/jbc.m410465200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT6 is a critical regulator of transcription for interleukin-4 (IL-4)-induced genes. Activation of gene expression involves recruitment of coactivator proteins that function as bridging factors connecting sequence-specific transcription factors to the basal transcription machinery, and as chromatin-modifying enzymes. Coactivator proteins CBP/p300 have been implicated in regulation of transcription in all STATs. CBP is also required for STAT6-mediated gene activation, but the underlying molecular mechanisms are still elusive. In this study we investigated the mechanisms by which STAT6 recruits CBP and chromatin-modifying activities to the promoter. Our results indicate that while STAT1-interacted directly with CBP, the interaction between STAT6 and CBP was found to be mediated through p100 protein, a coactivator protein that has previously been shown to stimulate the transcription of IL-4-induced genes. The staphylococcal nuclease-like (SN)-domains of p100 directly interacted with amino acids 1099-1758 of CBP, while p100 did not associate with SRC-1, another coactivator of STAT6. p100 was found to recruit histone acetyltransferase (HAT) activity to STAT6 in vivo. Chromatin immunoprecipitation studies demonstrated that p100 increases the STAT6-p100-CBP ternary complex formation in the human Igepsilon promoter. p100 also increased the amount of acetylated histone H4 at the Igepsilon promoter, and siRNAs directed against p100 effectively inhibited Igepsilon reporter gene expression. Our results suggest that p100 has an important role in the assembly of STAT6 transcriptosome, and that p100 stimulates IL-4-dependent transcription by mediating interaction between STAT6 and CBP and recruiting chromatin modifying activities to STAT6-responsive promoters.
Collapse
Affiliation(s)
- Tuuli Välineva
- Institute of Medical Technology, University of Tampere, FIN-33014 Tampere, Finland
| | | | | | | |
Collapse
|
42
|
Dai Y, Major J, Novotny M, Hamilton TA. IL-4 Inhibits Expression of the Formyl Peptide Receptor Gene in Mouse Peritoneal Macrophages. J Interferon Cytokine Res 2005; 25:11-9. [PMID: 15684618 DOI: 10.1089/jir.2005.25.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of leukocyte recruitment is an important determinant of the host response to microbial infection. Because tissue infiltration by inflammatory cells represents a potential source of unnecessary tissue damage, the process may be controlled by modulating the expression of chemoattractants and the receptors through which they promote directed leukocyte migration. In the present report, we show that expression of the receptor for chemotactic formylated peptides (FPR1)is negatively regulated in both macrophages and neutrophils by interleukin-4 (IL-4). The reduction of FPR1 mRNA occurs rapidly in response to both IL-4 and IL-13 but endures for <4 h after the removal of IL-4. As with many other responses to IL-4 and IL-13, suppression of FPR1 expression is dependent on the activation of Stat6. The inhibitory effect exhibits relative stimulus specificity in that other Stat-activating cytokines, such as interferon-gamma (IFN-gamma), IFN-beta, and IL-10, have no effect. Using nuclear run-on analysis, the rate of FPR1 gene transcription is high but is not suppressed by IL-4. Moreover, IL-4 does not appear to alter the rate of FPR mRNA decay. Nevertheless, FPR mRNA exhibits a short half-life (< or =2 h), and this appears to be a critical feature of the ability of IL-4 to reduce expression. Taken together, the data suggest that IL-4 and IL-13 suppress the expression of FPR1 mRNA via a mechanism that operates to eliminate primary transcripts prior to maturation and depends on the constitutive instability of preexisiting mRNA.
Collapse
Affiliation(s)
- Yalei Dai
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
43
|
Hiroi M, Ohmori Y. Transcriptional Synergism between NF-.KAPPA.B and STAT1. J Oral Biosci 2005. [DOI: 10.2330/joralbiosci.47.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Hiroi M, Ohmori Y. Transcriptional Synergism between NF-κB and STAT1. J Oral Biosci 2005. [DOI: 10.1016/s1349-0079(05)80029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Galka E, Thompson JL, Zhang WJ, Poritz LS, Koltun WA. Stat6null phenotype human lymphocytes exhibit increased apoptosis. J Surg Res 2004; 122:14-20. [PMID: 15522309 DOI: 10.1016/j.jss.2004.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with altered apoptosis and increased levels of Th1 cytokines (IL-12, TNF-alpha, and IFN-gamma). These proinflammatory events may result from dysfunctional IL-4/Stat6 signal transduction that normally promotes Th2 lymphocyte differentiation and consequential down-regulation of the immune response. The goal of the present study was to measure apoptosis, levels of relevant cytokines, and the effects of cytokine manipulation on apoptosis in cell lines derived from IBD patients that express dysfunctional Stat6 (Stat6(null phenotype)) and wild-type Stat6 (Stat6(high phenotype)). MATERIALS AND METHODS Lymphocytes with Stat6(null phenotype) (n = 5) or wild-type (n = 5) status were cultured with and without the addition of exogenous cytokines or neutralizing antibodies (IL-12, TNF-alpha, and IFN-gamma). Apoptosis was determined by flow cytometry using Annexin V-PE dual staining. Cytokine levels were determined by ELISA. RESULTS Stat6(null phenotype) cells exhibited increased apoptosis compared with wild-type cell lines (13.3% +/- 2.9 versus 4.5% +/- 0.4, P < 0.0001). Four of five Stat6(null phenotype) cell lines expressed 5- to 10-fold elevations in IL-12 and IFN-gamma. Addition of exogenous cytokines or neutralizing antibodies had no effect on apoptosis. CONCLUSIONS Apoptotic cell death is elevated in Stat6(null phenotype) cell lines suggesting a role for Stat6 in apoptosis regulation, a previously unrecognized observation. Increased levels of IL-12 and IFN-gamma were found in the Stat6(null phenotype) cell lines; however, the apoptosis observed is not the consequence of increased IL-12, IFN-gamma, or TNF-alpha. Stat6(null phenotype) cell lines exhibit variably increased levels of these Th1 cytokines, consistent with their human source, and may be a valid source for investigations into IBD pathophysiology.
Collapse
Affiliation(s)
- Eva Galka
- Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Section of Colon and Rectal Surgery, MCH137, Hershey, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
46
|
Datta S, Novotny M, Li X, Tebo J, Hamilton TA. Toll IL-1 Receptors Differ in Their Ability to Promote the Stabilization of Adenosine and Uridine-Rich Elements Containing mRNA. THE JOURNAL OF IMMUNOLOGY 2004; 173:2755-61. [PMID: 15294994 DOI: 10.4049/jimmunol.173.4.2755] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several ligands for Toll IL-1R (TIR) family are known to promote stabilization of a subset of short-lived mRNAs containing AU-rich elements (AREs) in their 3' untranslated regions. It is now evident however, that members of the TIR family may use distinct intracellular signaling pathways to achieve a spectrum of biological end points. Using human embryonic kidney 293 cells transfected to express different TIRs we now report that signals initiated through IL-1R1 or TLR4 but not TLR3 can promote the stabilization of unstable chemokine mRNAs. Similar results were obtained when signaling from endogenous receptors was examined using a mouse endothelial cell line (H5V). The ability of TIR family members to stabilize ARE-containing mRNAs results from their differential use of signaling adaptors MyD88, MyD88 adaptor-like protein, Toll receptor IFN-inducing factor (Trif), and Trif-related adaptor molecule. Overexpression of MyD88 or MyD88 adaptor-like protein was able to promote enhanced stability of ARE-containing mRNA, whereas Trif and Trif-related adaptor molecule exhibited markedly reduced capacity. Hence the ability of TIRs to signal stabilization of mRNA appears to be linked to the MyD88-dependent signaling pathway.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Vesicular Transport/metabolism
- Adenosine/metabolism
- Animals
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Blotting, Western
- Cell Line
- Chemokines/biosynthesis
- Chemokines/genetics
- Humans
- In Situ Hybridization
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Myeloid Differentiation Factor 88
- RNA, Messenger
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-1/immunology
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1 Type I
- Signal Transduction/physiology
- Toll-Like Receptor 3
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transfection
- Uridine/metabolism
Collapse
Affiliation(s)
- Shyamasree Datta
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
47
|
Ke B, Shen XD, Gao F, Busuttil RW, Kupiec-Weglinski JW. Interleukin 13 Gene Transfer in Liver Ischemia and Reperfusion Injury: Role of Stat6 and TLR4 Pathways in Cytoprotection. Hum Gene Ther 2004; 15:691-8. [PMID: 15242529 DOI: 10.1089/1043034041361244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ischemia and reperfusion injury (IRI) represents the major problem in clinical liver transplantation. We have shown that transcription of signal transducer and activator of transcription 4 (Stat4) plays a key role in the mechanism of hepatic IRI, whereas local induction of interleukin 13 (IL-13) is cytoprotective. The disruption of innate Toll-like receptor 4 (TLR4) signaling prevents mouse livers from undergoing fulminant IRI. This study analyzes in vivo interplay between innate (TLR4) and adaptive (Stat6) immunity in Ad-IL-13 (recombinant adenovirus encoding IL-13) cytoprotection in hepatic IRI. Using a partial 90-min lobar warm ischemia model, groups of wild-type and Stat6-deficient knockout mice were assessed for the severity of hepatocellular damage at 6 hr postreperfusion. Unlike in wild-type mice, treatment of Stat6 knockout recipients with Ad-IL-13 failed to improve hepatic function/histology. The expression of mRNAs encoding tumor necrosis factor alpha/IL-1 beta and IL-2/interferon gamma remained depressed in the wild-type plus Ad-IL-13 group, but not in the Stat6 knockout plus Ad-IL-13 group. Ad-IL-13 increased antioxidant heme oxygenase 1 (HO-1) expression and prevented TLR4 activation in livers of Stat6-competent (wild-type) mice. In contrast, low HO-1 expression and enhanced TLR4 expression were recorded in Stat6 knockout recipients despite Ad-IL-13 therapy. Thus (1) Stat6 is required for Ad-IL-13 to prevent IRI, and (2) depression of TLR4 activation is Stat6 dependent. In conclusion, the Stat6 pathway operates as a key negative regulator in the hepatic inflammatory ischemia-reperfusion response. This study outlines requirements for Ad-IL-13 use to maximize the organ donor pool through the use of liver transplants despite prolonged ischemia.
Collapse
Affiliation(s)
- Bibo Ke
- Division of Liver and Pancreas Transplantation, Dumont-UCLA Transplant Center, Department of Surgery, and David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
48
|
Jacob CO, Zang S, Li L, Ciobanu V, Quismorio F, Mizutani A, Satoh M, Koss M. Pivotal role of Stat4 and Stat6 in the pathogenesis of the lupus-like disease in the New Zealand mixed 2328 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1564-71. [PMID: 12874250 DOI: 10.4049/jimmunol.171.3.1564] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed novel genetically lupus-prone (NZB x NZW)F(1)-derived congenic New Zealand mixed (NZM) 2328 lines, which are either Stat4- or Stat6-deficient. Our studies show that the deficiency of Stat4 and Stat6 significantly alters the phenotype of the lupus-like disease in NZM 2328 congenic mice. Specifically, Stat4-deficient NZM mice develop accelerated nephritis and increased mortality in the absence of high levels of autoantibodies including anti-dsDNA Abs, and in the presence of relatively reduced levels of IFN-gamma. In contrast, Stat6-deficient NZM mice display a significant reduction in incidence of kidney disease, with a dramatic increase in survival, despite the presence of high levels of anti-dsDNA Abs. The lack of correlation between levels of these autoantibodies and kidney disease raises the question of the direct cause-effect relationships between the presence of autoantibodies and kidney disease. Furthermore, these results also question the apparent equation of the effect of Stat deficiency with loss of secretion or response to particular cytokines.
Collapse
Affiliation(s)
- Chaim O Jacob
- Department of Medicine, University of Southern California School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Elliott DE, Li J, Blum A, Metwali A, Qadir K, Urban JF, Weinstock JV. Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2003; 284:G385-91. [PMID: 12431903 DOI: 10.1152/ajpgi.00049.2002] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease results from dysregulated T helper (Th)1-type mucosal inflammation. Crohn's disease is rare in tropical countries but prevalent in developed countries with temperate climates, in which its incidence rose after 1940. In contrast, exposure to helminthic parasites is common in tropical countries but is rare in developed countries. Helminthic parasites induce immunomodulatory T cell responses in the host. We hypothesize that immunomodulatory responses due to helminths may attenuate excessive Th1-type inflammation. To test that hypothesis, mice were exposed to eggs of the helminth Schistosoma mansoni and then challenged rectally with trinitrobenzesulfonic acid (TNBS) to induce colitis. Schistosome egg exposure attenuated TNBS colitis and protected mice from lethal inflammation. Schistosome egg exposure diminished IFN-gamma and enhanced IL-4 production from alphaCD3-stimulated spleen and mesenteric lymph node cells of TNBS-treated mice. Schistosome egg exposure decreased colonic IFN-gamma but increased IL-10 mRNA expression in TNBS-treated mice. Intact signal transducer and activator of transcription 6 was required for attenuation of colitis. Exposure to helminths can decrease murine colonic inflammation.
Collapse
Affiliation(s)
- David E Elliott
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Xiong H, Zhu C, Li H, Chen F, Mayer L, Ozato K, Unkeless JC, Plevy SE. Complex formation of the interferon (IFN) consensus sequence-binding protein with IRF-1 is essential for murine macrophage IFN-gamma-induced iNOS gene expression. J Biol Chem 2003; 278:2271-7. [PMID: 12429737 DOI: 10.1074/jbc.m209583200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes the role of the interferon (IFN) consensus sequence-binding protein (ICSBP or IRF-8) in iNOS gene expression by murine macrophages. An ICSBP binding site in the iNOS promoter region (-923 to -913) was identified using an electrophoretic mobility shift assay and chromatin co-immunoprecipitation. Overexpression of ICSBP greatly enhanced IFN-gamma-induced iNOS promoter activation in RAW264.7 cells, and IFN-gamma-induced iNOS promoter activation was abolished in ICSBP-/- macrophages. Furthermore, transduction of retrovirus-ICSBP in ICSBP-/- macrophages rescued IFN-gamma-induced iNOS gene expression. However, transduction of retrovirus-ICSBP in the absence of IFN-gamma activation did not induce iNOS expression in either RAW264.7 cells or ICSBP-/- macrophages. Interestingly, ICSBP alone transduced into ICSBP-/- macrophages did not bind to IFN-stimulated response element site (-923 to -913) of the iNOS promoter region, although following activation with IFN-gamma, a DNA.protein complex was formed that contains ICSBP and IRF-1. Co-transduction of ICSBP with IRF-1 clearly induces nitric oxide production. In addition, interleukin-4 inhibits IFN-gamma-induced iNOS gene expression by attenuating the physical interaction of ICSBP with IRF-1. Complex formation of ICSBP with IRF-1 is essential for iNOS expression, and interleukin-4 attenuates the physical interaction of ICSBP with IRF-1 resulting in the inhibition of INOS gene expression.
Collapse
Affiliation(s)
- Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|