1
|
Li J, Zhao X, Wang Y, Wang J. Non-Coding RNAs in Regulating Fat Deposition in Farm Animals. Animals (Basel) 2025; 15:797. [PMID: 40150326 PMCID: PMC11939817 DOI: 10.3390/ani15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Fat deposition represents a crucial feature in the expenditure of physical energy and affects the meat quality of farm animals. It is regulated by multiple genes and regulators. Of them, non-coding RNAs (ncRNAs) play a critical role in modulating the fat deposition process. As well as being an important protein source, farm animals can be used as medical models, so many researchers worldwide have explored their mechanism of fat deposition. This article summarizes the transcription factors, regulatory genes, and signaling pathways involved in the molecular regulation process of fat deposition; outlines the progress of researching the roles of microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) in fat deposition in common farm animals including pigs, cattle, sheep, ducks, and chickens; and identifies scientific problems in the field that must be further investigated. It has been demonstrated that ncRNAs play a critical role in regulating the fat deposition process and have great potential in improving meat quality traits.
Collapse
Affiliation(s)
- Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
2
|
Lee D, Jung K, Lee J, Kang HJ, Lee JY, Kim J, Ham D, Cho J, Eom DW, Kang KS. Role of 11β-hydroxysteroid dehydrogenase type 1 inhibition in the antiobesity effect of J2H-1702 on adipocytes and a high-fat diet-induced NASH model. Eur J Pharmacol 2025; 989:177272. [PMID: 39809350 DOI: 10.1016/j.ejphar.2025.177272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored. This study compared the antiadipogenic effects of J2H-1702, elafibranor (PPARα/δ agonist), and BVT14225 (selective 11β-HSD1 inhibitor) using mouse 3T3-L1 pre-adipocytes. J2H-1702, elafibranor, and BVT14225 inhibited adipocyte differentiation and intracellular lipid accumulation in 3T3-L1 cells by downregulating phospho-extracellular signal-regulated kinase, extracellular signal-regulated kinase, phospho-c-Jun-N-terminal Kinase, c-Jun-N-terminal Kinase, phospho-P38 (P-P38), P38, CCAAT/enhancer-binding proteins alpha and β, peroxisome proliferator-activated receptor γ, and glucocorticoid receptor. Additionally, J2H-1702, elafibranor, and BVT14225 treatments effectively inhibited 11β-HSD1 activity, as revealed by cortisol concentrations, and inhibited cortisone-induced adipocyte differentiation and intracellular lipid accumulation in 3T3-L1 cells. These effects were associated with 11β-HSD1 protein inhibition. Furthermore, J2H-1702 and BVT14225 increased the expression of Akt and phosphoinositide 3-kinase involved in insulin resistance in 3T3L-1 adipocytes. In the LX-2 human hepatic stellate cell line, the relative expression of N-cadherin, 11β-HSD1, collagen1α (COLA1), α-actin of smooth muscle (α-SMA) genes in LX-2 activated with TGF-β increased significantly, and after treatment with J2H-1702, it was significantly reduced. The expression of E-cadherin is decreased in TGF-β-treated LX-2 cells and increased after treatment with J2H-1702. We tested the potential of J2H-1702 as a therapeutic agent for NASH using a high-fat diet-induced NASH model, with obeticholic acid, an FXR agonist, and elafibranor as reference drugs. All drugs significantly decreased the elevated triglyceride levels in the livers of high-fat, high-carbohydrate (HFHC-fed mice. The results may add to the benefits of targeting 11β-HSD1 inhibitors with antiadipogenic activity in developing a therapeutic agent for obesity treatment.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea
| | - Kiwon Jung
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Jaemin Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea
| | - Hyo Jin Kang
- J2H Biotech, B-210ho,142-10, Saneop-ro 156, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Ju Young Lee
- J2H Biotech, B-210ho,142-10, Saneop-ro 156, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Jason Kim
- J2H Biotech, B-210ho,142-10, Saneop-ro 156, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Dayeon Ham
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, South Korea; Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Dae-Woon Eom
- Department of Pathology, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, 210-711, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea.
| |
Collapse
|
3
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Xu J, Huang Z, Shi S, Xia J, Chen G, Zhou K, Zhang Y, Bian C, Shen Y, Yin X, Lu L, Gu H. Glial maturation factor-β deficiency prevents oestrogen deficiency-induced bone loss by remodelling the actin network to suppress adipogenesis of bone marrow mesenchymal stem cells. Cell Death Dis 2024; 15:829. [PMID: 39543090 PMCID: PMC11564563 DOI: 10.1038/s41419-024-07234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
An imbalance between the adipogenesis and osteogenesis of bone marrow mesenchymal stem cells (BMSCs) is considered the basic pathogenesis of osteoporosis. Although actin cytoskeleton remodelling plays a crucial role in the differentiation of BMSCs, the role of actin cytoskeleton remodelling in the adipogenesis of BMSCs and postmenopausal osteoporosis (PMOP) has remained elusive. Glia maturation factor-beta (GMFB) has a unique role in remodelling the polymerization/depolymerization cycles of actin. We observed that GMFB expression was increased in bone tissue from both ovariectomized (OVX) rats and PMOP patients. GMFB knockout inhibited the accumulation of bone marrow adipocytes and increased bone mass in the OVX rat model. The inhibition of adipocyte differentiation in GMFB knockout BMSCs was mediated via actin cytoskeleton remodelling and the Ca2+-calcineurin-NFATc2 axis. Furthermore, we found that GMFB shRNA treatment in vivo had favourable effects on osteoporosis induced by OVX. Together, these findings suggest a pathological association of the GMFB with PMOP and highlight the potential of the GMFB as a therapeutic target for osteoporosis patients.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Si Shi
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China
| | - Jiangni Xia
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yiming Zhang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Chong Bian
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yuqin Shen
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China
| | - Xiaofan Yin
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Lixia Lu
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of medicine, Shanghai, PR China.
- Department of Biochemistry and Molecular Biology, Tongji University School of medicine, Shanghai, PR China.
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Ao X, Rong Y, Han M, Wang X, Xia Q, Shang F, Liu Y, Lv Q, Wang Z, Su R, Zhang Y, Wang R. Combined Genome-Wide Association Study and Haplotype Analysis Identifies Candidate Genes Affecting Growth Traits of Inner Mongolian Cashmere Goats. Vet Sci 2024; 11:428. [PMID: 39330807 PMCID: PMC11435611 DOI: 10.3390/vetsci11090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, genome-wide association analysis was performed on the growth traits (body height, body length, chest circumference, chest depth, chest width, tube circumference, and body weight) of Inner Mongolian cashmere goats (Erlangshan type) based on resequencing data. The population genetic parameters were estimated, haplotypes were constructed for the significant sites, and association analysis was conducted between the haplotypes and phenotypes. A total of two hundred and eighty-four SNPs and eight candidate genes were identified by genome-wide association analysis, gene annotation, and enrichment analysis. The phenotypes of 16 haplotype combinations were significantly different by haplotype analysis. Combined with the above results, the TGFB2, BAG3, ZEB2, KCNJ12, MIF, MAP2K3, HACD3, and MEGF11 functional candidate genes and the haplotype combinations A2A2, C2C2, E2E2, F2F2, I2I2, J2J2, K2K2, N2N2, O2O2, P2P2, R1R1, T1T1, W1W1, X1X1, Y1Y1, and Z1Z1 affected the growth traits of the cashmere goats and could be used as molecular markers to improve the accuracy of early selection and the economic benefits of breeding.
Collapse
Affiliation(s)
- Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Mingxuan Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Qincheng Xia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| |
Collapse
|
6
|
Sun JL, Kim YJ, Cho W, Park SS, Abd El-Aty A, Mobarak EH, Jung TW, Jeong JH. The Extract of Humulus japonicus Inhibits Lipogenesis and Promotes Lipolysis via PKA/p38 Signaling. Obes Facts 2024; 17:513-523. [PMID: 39102791 PMCID: PMC11458159 DOI: 10.1159/000540699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Previous research has shown that an aqueous extract of Humulus japonicus (EH) can ameliorate hypertension, nonalcoholic fatty liver disease, and oxidative stress in adipocytes by activating the thermogenic pathway. However, the effects of an ethanol (30%) extract of EH on obesity are unknown. METHODS Various protein expression levels in fully differentiated 3T3-L1 adipocytes were assessed by Western blotting. Lipid deposition in 3T3-L1 adipocytes was examined by oil red O staining. The MTT assay was used to evaluate adipocyte viability. Caspase 3 activity and glycerol release were determined using commercial assay kits. RESULTS In this study, we discovered that EH treatment inhibited lipogenesis and promoted lipolysis in both differentiated 3T3-L1 adipocytes and adipose tissue of mice fed a high-fat diet. EH treatment also increased phosphorylated protein kinase A (PKA) levels while reducing p38 phosphorylation. When H89, a PKA inhibitor, was used, the effects of EH on lipogenic lipid accumulation and lipolysis in 3T3-L1 adipocytes were eliminated. Treatment with luteolin 7-O-β-d-glucoside (LU), the major active compound in EH, also suppressed lipid deposition and p38 phosphorylation but enhanced lipolysis in 3T3-L1 adipocytes. These changes were abrogated by H89. CONCLUSION These findings indicate that EH containing LU reduces lipogenesis and stimulates lipolysis via the PKA/p38 signaling pathway, leading to an improvement in obesity in mice. Therefore, our study suggested that EH could be a promising therapeutic agent for treating obesity.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Su Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Enas H. Mobarak
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Xu C, Wei Z, Dong X, Xing J, Meng X, Qiu Y, Zhou H, Zheng W, Xu Z, Huang S, Xia W, Lv L, Jiang H, Wang W, Zhao X, Liu Z, Akimoto Y, Zhao B, Wang S, Hu Z. A p38 MAP kinase inhibitor suppresses osteoclastogenesis and alleviates ovariectomy-induced bone loss through the inhibition of bone turnover. Biochem Pharmacol 2024; 226:116391. [PMID: 38914317 DOI: 10.1016/j.bcp.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Inhibition of excessive osteoclastic activity is an efficient therapeutic strategy for many bone diseases induced by increased bone resorption, such as osteoporosis. BMS-582949, a clinical p38α inhibitor, is a promising drug in Phase II studies for treating rheumatoid arthritis. However, its function on bone resorption is largely unknown. In this study, we find that BMS-582949 represses RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, BMS-582949 inhibits osteoclastic F-actin ring formation and osteoclast-specific gene expression. Mechanically, BMS-582949 treatment attenuates RANKL-mediated osteoclastogenesis through mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) signaling pathways without disturbing nuclear factor-κB (NF-κB) signaling. Interestingly, BMS-582949 impairs osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation (OXPHOS). Furthermore, BMS-582949 administration prevents bone loss in ovariectomized mouse mode by inhibiting both bone resorption and bone formation in vivo. Taken together, these findings indicate that BMS-582949 may be a potential and effective drug for the therapy of osteolytic diseases.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China.
| | - Zhixin Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Xiaoyu Dong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Junqiao Xing
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Xiangrui Meng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Yaxuan Qiu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Huimei Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Wenrui Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Zhenyu Xu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Shanhua Huang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Wenwen Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Longfei Lv
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Haochen Jiang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Weihua Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Xue Zhao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Zixuan Liu
- Gogdel Cranleigh High School, Wuhan, Hubei 430312, China
| | | | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
| | - Zhangfeng Hu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.
| |
Collapse
|
8
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
9
|
Sun Z, Liu Z, Xi J, Liu Y, Zheng Z, Li N, Li Z, Liang S, Li Q, Zhang H, Yan J, Sun C, Mu S. Effects of myonectin on porcine intramuscular adipocyte differentiation and exogenous free fatty acid utilization. Anim Biotechnol 2023; 34:3757-3764. [PMID: 37382421 DOI: 10.1080/10495398.2023.2224838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
As an important factor secreted by skeletal muscle, myonectin can regulate lipid metabolism and energy metabolism, but its role in the utilization of peripheral free fatty acids (FFAs) by porcine intramuscular fat cells remains to be further investigated. In this study, porcine intramuscular adipocytes were treated with recombinant myonectin and palmitic acid (PA), either alone or in combination, and then were examined for their uptake of exogenous FFAs, intracellular lipid synthesis and catabolism, and mitochondrial oxidation of fatty acids. The results showed that myonectin decreased the area of lipid droplets in intramuscular adipocytes (p < 0.05) and significantly increased (p < 0.05) the expression levels of hormone-sensitive lipase (HSL) and lipoprotein lipase (LPL). Moreover, myonectin can up-regulate the expression of p38 mitogen-activated protein kinase (p38 MAPK). Myonectin significantly promoted the uptake of peripheral FFAs (p < 0.01), improved (p < 0.05) the expression of fatty transport protein 1 (FATP1) and fatty acid binding protein 4 (FABP4) in intramuscular adipocytes. Myonectin also significantly increased (p < 0.05) the expression levels of fatty acid oxidation markers: transcription factor (TFAM), uncoupling protein-2 (UCP2) and oxidative respiratory chain marker protein complex I (NADH-CoQ) in mitochondria of intramuscular adipocytes. In summary, myonectin promoted the absorption, transport, and oxidative metabolism of exogenous FFAs in mitochondria, thereby inhibiting lipid deposition in porcine intramuscular adipocytes.
Collapse
Affiliation(s)
- Zhuwen Sun
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingning Xi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zeqing Li
- Tianjin Agricultural Development Service Cent, Tianjin, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qianjun Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuqin Mu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
10
|
Terziev D, Terzieva D. Experimental Data on the Role of Melatonin in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:1722. [PMID: 37371817 DOI: 10.3390/biomedicines11061722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide, its complex pathogenesis remains incompletely understood. The currently stated hypotheses cannot fully clarify the interrelationships between individual pathogenetic mechanisms of the disease. No appropriate health strategies have been developed for treating NAFLD. NAFLD is characterized by an accumulation of triglycerides in hepatic cells (steatosis), with the advanced form known as nonalcoholic steatohepatitis. In the latter, superimposed inflammation can lead to fibrosis. There are scientific data on NAFLD's association with components of metabolic syndrome. Hormonal factors are thought to play a role in the development of metabolic syndrome. Endogenous melatonin, an indoleamine hormone synthesized by the pineal gland mainly at night, is a powerful chronobiotic that probably regulates metabolic processes and has antioxidant, anti-inflammatory, and genomic effects. Extrapineal melatonin has been found in various tissues and organs, including the liver, pancreas, and gastrointestinal tract, where it likely maintains cellular homeostasis. Melatonin exerts its effects on NAFLD at the cellular, subcellular, and molecular levels, affecting numerous signaling pathways. In this review article, we discuss the experimental scientific data accumulated on the involvement of melatonin in the intimate processes of the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Dimitar Terziev
- Second Department of Internal Medicine, Gastroenterology Section, Faculty of Medicine, Medical University, 4002 Plovdiv, Bulgaria
| | - Dora Terzieva
- MDL "Bioiv", Medical University, 4002 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Wojciechowicz T, Kolodziejski PA, Billert M, Strowski MZ, Nowak KW, Skrzypski M. The Effects of Neuropeptide B on Proliferation and Differentiation of Porcine White Preadipocytes into Mature Adipocytes. Int J Mol Sci 2023; 24:ijms24076096. [PMID: 37047072 PMCID: PMC10094185 DOI: 10.3390/ijms24076096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Neuropeptide B (NPB) affects energy homeostasis and metabolism by binding and activating NPBWR1 and NPBWR2 in humans and pigs. Recently, we reported that NPB promotes the adipogenesis of rat white and brown preadipocytes as well as 3T3-L1 cells. In the present study, we evaluated the effects of NPB on the proliferation and differentiation of white porcine preadipocytes into mature adipocytes. We identified the presence of NPB, NPBWR1, and NPBWR2 on the mRNA and protein levels in porcine white preadipocytes. During the differentiation process, NPB increased the mRNA expression of PPARγ, C/EBPβ, C/EBPα, PPARγ, and C/EBPβ protein production in porcine preadipocytes. Furthermore, NPB stimulated lipid accumulation in porcine preadipocytes. Moreover, NPB promoted the phosphorylation of the p38 kinase in porcine preadipocytes, but failed to induce ERK1/2 phosphorylation. NPB failed to stimulate the expression of C/EBPβ in the presence of the p38 inhibitor. Taken together, we report that NPB promotes the differentiation of porcine preadipocytes via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353 Berlin, Germany
- Medical Clinic III, 15236 Frankfurt, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| |
Collapse
|
12
|
Li Y, Lee SH, Piao M, Kim HS, Lee KY. Metallothionein 3 Inhibits 3T3-L1 Adipocyte Differentiation via Reduction of Reactive Oxygen Species. Antioxidants (Basel) 2023; 12:antiox12030640. [PMID: 36978888 PMCID: PMC10045306 DOI: 10.3390/antiox12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Metallothionein 3 (MT3), also known as a neuronal growth-inhibitory factor, is a member of the metallothionein family and is involved in a variety of biological functions, including protection against metal toxicity and reactive oxygen species (ROS). However, less is known about the role of MT3 in the differentiation of 3T3-L1 cells into adipocytes. In this study, we observed that MT3 levels were downregulated during 3T3-L1 adipocyte differentiation. Mt3 overexpression inhibited adipocyte differentiation and reduced the levels of the adipogenic transcription factors C/EBPα and PPARγ. Further analyses showed that MT3 also suppressed the transcriptional activity of PPARγ, and this effect was not mediated by a direct interaction between MT3 with PPARγ. In addition, Mt3 overexpression resulted in a decrease in ROS levels during early adipocyte differentiation, while treatment with antimycin A, which induces ROS generation, restored the ROS levels. Mt3 knockdown, on the other hand, elevated ROS levels, which were suppressed upon treatment with the antioxidant N-acetylcysteine. Our findings indicate a previously unknown role of MT3 in the differentiation of 3T3-L1 cells into adipocytes and provide a potential novel target that might facilitate obesity treatment.
Collapse
Affiliation(s)
- Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| |
Collapse
|
13
|
Wang YL, Hou YH, Ling ZJ, Zhao HL, Zheng XR, Zhang XD, Yin ZJ, Ding YY. RNA sequencing analysis of the longissimus dorsi to identify candidate genes underlying the intramuscular fat content in Anqing Six-end-white pigs. Anim Genet 2023; 54:315-327. [PMID: 36866648 DOI: 10.1111/age.13308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Intramuscular fat (IMF) is a significant marker for pork quality. The Anqing Six-end-white pig has the characteristics of high meat quality and IMF content. Owing to the influence of European commercial pigs and a late start in resource conservation, the IMF content within local populations varies between individuals. This study analyzed the longissimus dorsi transcriptome of purebred Anqing Six-end-white pigs with varying IMF content to recognize differentially expressed genes. We identified 1528 differentially expressed genes between the pigs with high (H) and low (L) IMF content. Based on these data, 1775 Gene Ontology terms were significantly enriched, including lipid metabolism, modification and storage, and regulation of lipid biosynthesis. Pathway analysis revealed 79 significantly enriched pathways, including the Peroxisome proliferator-activated receptor and mitogen-activated protein kinase signaling pathways. Moreover, gene set enrichment analysis indicated that the L group had increased the expression of genes related to ribosome function. Additionally, the protein-protein interaction network analyses revealed that VEGFA, KDR, LEP, IRS1, IGF1R, FLT1 and FLT4 were promising candidate genes associated with the IMF content. Our study identified the candidate genes and pathways involved in IMF deposition and lipid metabolism and provides data for developing local pig germplasm resources.
Collapse
Affiliation(s)
- Y L Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Anhui Key Laboratory of livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Y H Hou
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Z J Ling
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - H L Zhao
- Anhui Key Laboratory of livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - X R Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - X D Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Z J Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Y Y Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
14
|
Rungsa P, San HT, Sritularak B, Böttcher C, Prompetchara E, Chaotham C, Likhitwitayawuid K. Inhibitory Effect of Isopanduratin A on Adipogenesis: A Study of Possible Mechanisms. Foods 2023; 12:foods12051014. [PMID: 36900533 PMCID: PMC10000982 DOI: 10.3390/foods12051014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
The root of Boesenbergia rotunda, a culinary plant commonly known as fingerroot, has previously been reported to possess anti-obesity activity, with four flavonoids identified as active principles, including pinostrobin, panduratin A, cardamonin, and isopanduratin A. However, the molecular mechanisms underlying the antiadipogenic potential of isopanduratin A remain unknown. In this study, isopanduratin A at non-cytotoxic concentrations (1-10 μM) significantly suppressed lipid accumulation in murine (3T3-L1) and human (PCS-210-010) adipocytes in a dose-dependent manner. Downregulation of adipogenic effectors (FAS, PLIN1, LPL, and adiponectin) and adipogenic transcription factors (SREBP-1c, PPARγ, and C/EBPα) occurred in differentiated 3T3-L1 cells treated with varying concentrations of isopanduratin A. The compound deactivated the upstream regulatory signals of AKT/GSK3β and MAPKs (ERK, JNK, and p38) but stimulated the AMPK-ACC pathway. The inhibitory trend of isopanduratin A was also observed with the proliferation of 3T3-L1 cells. The compound also paused the passage of 3T3-L1 cells by inducing cell cycle arrest at the G0/G1 phase, supported by altered levels of cyclins D1 and D3 and CDK2. Impaired p-ERK/ERK signaling might be responsible for the delay in mitotic clonal expansion. These findings revealed that isopanduratin A is a strong adipogenic suppressor with multi-target mechanisms and contributes significantly to anti-obesogenic activity. These results suggest the potential of fingerroot as a functional food for weight control and obesity prevention.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Htoo Tint San
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Eakachai Prompetchara
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (C.C.); (K.L.)
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (C.C.); (K.L.)
| |
Collapse
|
15
|
Wojciechowicz T, Szczepankiewicz D, Strowski MZ, Nowak KW, Skrzypski M. Neuropeptide B promotes differentiation of rodent white preadipocytes into mature adipocytes. Mol Cell Endocrinol 2023; 562:111850. [PMID: 36623583 DOI: 10.1016/j.mce.2023.111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Neuropeptide B (NPB) modulates energy homeostasis and metabolism through activation of NPBWR1 and NPBWR2 in humans and NPBWR1 in rodents. Recently, we reported that NPB promotes adipogenesis in rat brown preadipocytes. In the present study, we evaluated the effects of NPB on proliferation and differentiation into mature adipocytes of white rat preadipocytes and 3T3-L1 cells. We found the expression of NPBWR1 and NPB on mRNA and protein level in rat white preadipocytes and 3T3-L1 cells. NPB increased expression of mRNA and protein production of adipogenic genes (PPARγ, C/EBPβ, CEBPα and FABP4) in rat preadipocytes and 3T3-L1 cells during the differentiation process. Furthermore, NPB stimulated lipid accumulation in rat preadipocytes and 3T3-L1 cells. In addition, we found that NPB promotes phosphorylation of p38 kinase in rat preadipocytes and 3T3-L1 cells. NPB failed to stimulate expression of proadipogenic genes in the presence of p38 inhibitor. NPB failed to modulate viability and proliferation of rat preadipocytes and 3T3-L1 cells. Taken together, we report that NPB promotes differentiation of rodent preadipocytes via p38-dependent mechanism. NPB does not modulate viability and proliferation of rat preadipocytes and 3T3-L1 cells.
Collapse
Affiliation(s)
- T Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| | - D Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - M Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353, Berlin, Germany; Medical Clinic III, 15236, Frankfurt (Oder), Germany
| | - K W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - M Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637, Poznań, Poland
| |
Collapse
|
16
|
Fungal antitumor protein D1 is internalized via endocytosis and inhibits non-small cell lung cancer proliferation through MAPK signaling pathway. Int J Biol Macromol 2023; 227:45-57. [PMID: 36521713 DOI: 10.1016/j.ijbiomac.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lung cancer has the highest mortality among cancer-related deaths worldwide. Among lung cancers, non-small cell lung cancer (NSCLC) is the most common histological type. In the previous research, we isolated a protein (D1) from Boletus bicolor that inhibits the proliferation of NSCLC cell lines. In this study, we elucidated the internalization mechanism and antitumor mechanism of protein D1 in A549 cells. Protein D1 has a strong inhibitory effect on A549 cells. It binds to secretory carrier membrane protein 3 on the A549 cell membrane and enters A549 cells by clathrin-mediated endocytosis. In vitro, protein D1 activates mitogen-activated protein kinase (MAPK) signaling pathway. JNK and p38MAPK are the biological targets for protein D1. In vivo, protein D1 inhibits the tumor growth of NSCLC xenografts by inducing apoptosis and inhibiting cell proliferation. Protein D1 alters the expression of genes related to apoptosis, cell cycle, and MAPK signaling pathway in tumor cells.
Collapse
|
17
|
Suppression of Lipid Accumulation in the Differentiation of 3T3-L1 Preadipocytes and Human Adipose Stem Cells into Adipocytes by TAK-715, a Specific Inhibitor of p38 MAPK. Life (Basel) 2023; 13:life13020412. [PMID: 36836769 PMCID: PMC9965126 DOI: 10.3390/life13020412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Excessive preadipocyte differentiation is linked with obesity. Although previous studies have shown that p38 MAPK is associated with adipogenesis, the regulation of preadipocyte differentiation by TAK-715, an inhibitor of p38 mitogen-activated protein kinase (MAPK), remains unclear. Interestingly, TAK-715 at 10 μM vastly suppressed the accumulation of lipid and intracellular triglyceride (TG) content with no cytotoxicity during 3T3-L1 preadipocyte differentiation. On mechanistic levels, TAK-715 significantly decreased the expressions of the CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and perilipin A. Similarly, the phosphorylation of the signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells was also reduced with TAK-715 treatment. Moreover, TAK-715 significantly blocked the phosphorylation of activating transcription factor-2 (ATF-2), a p38 MAPK downstream molecule, during 3T3-L1 preadipocyte differentiation. Of importance, TAK-715 also markedly impeded the phosphorylation of p38 MAPK and suppressed lipid accumulation during the adipocyte differentiation of human adipose stem cells (hASCs). Concisely, this is the first report that TAK-715 (10 μM) has potent anti-adipogenic effects on the adipogenesis process of 3T3-L1 cells and hASCs through the regulation of the expression and phosphorylation of p38 MAPK, C/EBP-α, PPAR-γ, STAT-3, FAS, and perilipin A.
Collapse
|
18
|
Choi SW, Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Jung TW. Myokine musclin alleviates lipid accumulation in 3T3-L1 adipocytes through PKA/p38-mediated upregulation of lipolysis and suppression of lipogenesis. Biochem Biophys Res Commun 2023; 642:113-117. [PMID: 36566562 DOI: 10.1016/j.bbrc.2022.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Musclin (MUS), an exercise-responsive myokine, has been documented to attenuate inflammation and enhance physical endurance. However, the effects of MUS on differentiation and related molecular mechanisms in adipocytes have not yet been studied. In this study, we found that treatment with MUS attenuated lipid accumulation in fully differentiated 3T3-L1 cells. Furthermore, MUS treatment enhanced lipolysis assessed by glycerol release, and caused apoptosis, whereas it reduced the expression of lipogenic proteins, such as PPARγ and processed SREBP1. Treatment with MUS augmented phosphorylated PKA expression, whereas suppressed p38 phosphorylation in 3T3-L1 adipocytes. H89, a selective PKA inhibitor reduced the effects of MUS on lipogenic lipid accumulation as well as lipolysis except for apoptosis. These results suggest that MUS promotes lipolysis and suppresses lipogenesis through a PKA/p38-dependent pathway, thereby ameliorating lipid deposition in cultured adipocytes. The current study offers the potential of MUS as a therapeutic approach for treating obesity with few side effects.
Collapse
Affiliation(s)
- Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey; Vaccine Development Application and Research Center, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Suppressive Effect of Fraxetin on Adipogenesis and Reactive Oxygen Species Production in 3T3-L1 Cells by Regulating MAPK Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11101893. [PMID: 36290616 PMCID: PMC9598290 DOI: 10.3390/antiox11101893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified obesity as one of the world’s most serious chronic disorders. Adipogenesis, in which preadipocytes are differentiated into mature adipocytes, has a decisive role in establishing the number of adipocytes and determining the lipid storage capacity of adipose tissue and fat mass in adults. Fat accumulation in obesity is implicated with elevated oxidative stress in adipocytes induced by reactive oxygen species (ROS). Adipogenesis regulation by inhibiting adipogenic differentiation and ROS production has been selected as the strategy to treat obesity. The conventional anti-obesity drugs allowed by the U.S. Food and Drug Administration have severe adverse effects. Therefore, various natural products have been developed as a solution for obesity, suppressing adipogenic differentiation. Fraxetin is a major component extracted from the stem barks of Fraxinus rhynchophylla, with various bioactivities, including anti-inflammatory, anticancer, antioxidant, and antibacterial functions. However, the effect of fraxetin on adipogenesis is still not clearly understood. We studied the pharmacological functions of fraxetin in suppressing lipid accumulation and its underlying molecular mechanisms involving 3T3-L1 preadipocytes. Moreover, increased ROS production induced by a mixture of insulin, dexamethasone, and 3-isobutylmethylxanthine (MDI) in 3T3-L1 was attenuated by fraxetin during adipogenesis. These effects were regulated by mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, our findings imply that fraxetin possesses inhibitory roles in adipogenesis and can be a potential anti-obesity drug.
Collapse
|
20
|
Oh JM, Chun S. Ginsenoside CK Inhibits the Early Stage of Adipogenesis via the AMPK, MAPK, and AKT Signaling Pathways. Antioxidants (Basel) 2022; 11:1890. [PMID: 36290613 PMCID: PMC9598147 DOI: 10.3390/antiox11101890] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Obesity is considered a health hazard in part due to the associated multiple diseases. As rates of obesity continue to increase, a new strategy for its prevention and treatment is required. Compound-K, an active ingredient in ginseng, possesses antioxidant, anti-inflammatory, and anti-cancer properties. Although ginseng has used as various therapeutics, its potential ability to alleviate metabolic diseases by regulating adipocyte differentiation is still unknown. In this study, we found that CK treatment significantly inhibited lipid droplet and adipogenesis by downregulating the mRNA expression of C/ebpα, Ppar-γ, Fabp4, Srebp1, and adiponectin as well as protein levels of C/EBPα, PPAR-γ, and FABP4. CK also decreased the production of reactive oxygen species (ROS), while it increased endogeneous antioxidant enzymes such as catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) 3 and SOD2. We observed that CK treatment suppressed the expression of cyclin-dependent kinase 1 (CDK1) and cyclin B1 during the mitotic clonal expansion (MCE) of adipocyte differentiation, and it arrested adipocytes at the G2/M stage due to the increased expression of p21 and p27. CK decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 and protein kinase B (AKT) in early-stage adipogenesis. In addition, the inhibition of adipogenesis by CK significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). Interestingly, AMPK pharmacological inhibition with Dorsomorphin limited the effect of CK on suppressing PPAR-γ expression in differentiated 3T3-L1 cells. Our results suggest that CK exerts anti-adipogenic effects in 3T3-L1 cells through the activation of AMPK and inhibition of ERK/p38 and AKT signaling pathways.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Korea
- Institute of Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
21
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
23
|
Ghodsian N, Yeandle A, Hock BD, Gieseg SP. CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin through modulation of PPAR-γ activity. Free Radic Res 2022; 56:366-377. [PMID: 36017639 DOI: 10.1080/10715762.2022.2114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CD36 is the key scavenger receptor driving the formation of cholesterol loaded foam cells, the principal cellular component of atherosclerotic plaques. CD36 is down regulated by 7,8-dihydroneopterin, a potent superoxide and hypochlorite scavenging antioxidant generated by interferon-γ stimulated macrophages. 7,8-dihydroneopterin down regulates CD36 mRNA and protein levels so inhibiting macrophage foam cell formation in vitro.We examined the mechanism of 7,8-dihydroneopterin down regulation of CD36 by measuring CD36 and PPAR-γ levels by western blot analysis, in the monocyte-like U937 cells with a range of PPAR-γ stimulants and inhibitors. Lipoxygenase activity was measured by monitoring linoleic acid oxidation at 234 nm for diene formation.Between 100 and 200 μM, 7,8-dihydroneopterin decreased CD36 levels by 50% within 12 hours with levels dropping below 25% by 24 hours. CD36 levels returned to basal levels after 24 hours. Inhibition of protein synthesis by cycloheximide show 7,8-dihydroneopterin had no effect on CD36 degradation rates. PPAR-γ levels were not altered by the addition of 7,8-dihydroneopterin. MAP Kinase, P38 and NF-κB pathways inhibitors SP600125, PD98059, SB202190 and BAY 11-7082 respectively, did not restore the CD36 levels in the presence of 7,8-dihydroneopterin. The addition the lipophilic PPAR-γ activators rosiglitazone and azelaoyl-PAF prevented the CD36 down regulation by 7,8-dihydroneopterin. 7,8-dihydroneopterin inhibited soybean lipoxygenase and reduced U937 cell basal levels of cellular lipid oxides as measured by HPLC-TBARS analysis.The data shows 7,8-dihydroneopterin down regulates CD36 expression by decreasing the level of lipid oxide stimulation of PPAR-γ promotor activity, potentially through lipoxygenase inhibition.
Collapse
Affiliation(s)
- Nooshin Ghodsian
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anthony Yeandle
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Barry D Hock
- Haematology Research Group, Christchurch Hospital, New Zealand
| | - Steven P Gieseg
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Radiology, University of Otago Christchurch, New Zealand.,MARS Bioimaging Ltd., 29a Clyde Rd, Christchurch 8140, New Zealand
| |
Collapse
|
24
|
Sasazaki S, Yamamoto R, Toyomoto S, Kondo H, Akiyama T, Kohama N, Yoshida E, Kawaguchi F, Oyama K, Mannen H. Verification of Candidate SNP Effects Reveals Two QTLs on BTA7 for Beef Marbling in Two Japanese Black Cattle Populations. Genes (Basel) 2022; 13:genes13071190. [PMID: 35885973 PMCID: PMC9320647 DOI: 10.3390/genes13071190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023] Open
Abstract
In our previous study, we used genome resequencing to detect all candidate polymorphisms within a quantitative trait loci (QTL) region for beef marbling reported previously at 10–30 Mbp on bovine chromosome 7, and we selected 6044 polymorphisms as candidate quantitative trait nucleotides (QTNs). In the present study, we aimed to identify quantitative trait genes (QTGs) and QTNs in this QTL region by verifying the effect of SNPs on beef marbling in two Japanese Black cattle populations using a Dynamic Array integrated fluidic circuit. In total, 96 selected SNPs were genotyped in 441 and 529 animals in Hyogo and Miyazaki cattle populations, respectively. The most significant p-values were detected in a SNP in a splice region of ALDH7A1 (SNP93_ALDH7A1; p = 3.46 × 10−5) in Hyogo cattle and a missense polymorphism of intercellular adhesion molecule-1 (ICAM1) (SNP37_ICAM1; p = 3.33 × 10−4) in Miyazaki cattle. Interestingly, SNP93_ALDH7A1 was not significant (p = 0.459) in Miyazaki cattle, and SNP37_ICAM1 showed a weakly significant association (p = 0.043) in Hyogo cattle. Thus, each population would likely have different QTGs and QTNs for beef marbling in the QTL region. In the Hyogo population, it was not possible to determine the accurate range of the linkage disequilibrium (LD) block in LD block analysis because of a strong LD structure throughout the assessed region. In Miyazaki cattle, however, an LD block containing SNP37_ICAM1 had a range of 15.8–16.1 Mbp, suggesting that QTNs would be located within this region. The functions of 19 genes in the LD block were investigated. ICAM1 is known to play an important role in adipocyte differentiation; given this function and the effect of amino acid substitution, SNP37_ICAM1 was identified as a promising candidate QTN for beef marbling. Further research on the effect of SNP37_ICAM1 on adipocyte differentiation is expected to provide insights into the mechanism underlying beef marbling formation.
Collapse
Affiliation(s)
- Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (R.Y.); (S.T.); (H.K.); (F.K.); (H.M.)
- Correspondence:
| | - Raito Yamamoto
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (R.Y.); (S.T.); (H.K.); (F.K.); (H.M.)
| | - Shintaro Toyomoto
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (R.Y.); (S.T.); (H.K.); (F.K.); (H.M.)
| | - Hina Kondo
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (R.Y.); (S.T.); (H.K.); (F.K.); (H.M.)
| | - Takayuki Akiyama
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry & Fisheries, Asago 669-5254, Japan; (T.A.); (N.K.)
| | - Namiko Kohama
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry & Fisheries, Asago 669-5254, Japan; (T.A.); (N.K.)
| | - Emi Yoshida
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Kasai 679-0198, Japan;
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (R.Y.); (S.T.); (H.K.); (F.K.); (H.M.)
| | - Kenji Oyama
- Food Resources Education & Research Center, Kobe University, Kasai 675-2103, Japan;
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; (R.Y.); (S.T.); (H.K.); (F.K.); (H.M.)
| |
Collapse
|
25
|
Anti-adipogenic and Pro-lipolytic Effects on 3T3-L1 Preadipocytes by CX-4945, an Inhibitor of Casein Kinase 2. Int J Mol Sci 2022; 23:ijms23137274. [PMID: 35806278 PMCID: PMC9266649 DOI: 10.3390/ijms23137274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 μM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug’s anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug’s pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug’s ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.
Collapse
|
26
|
Expression and Role of β3-Adrenergic Receptor during the Differentiation of 3T3-L1 Preadipocytes into Adipocytes. BIOLOGY 2022; 11:biology11050772. [PMID: 35625499 PMCID: PMC9138837 DOI: 10.3390/biology11050772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The β3-adrenergic receptor (β3-AR) has long been viewed as a potential therapeutic target for dealing with obesity. Although the lipolytic and thermogenic role of β3-AR in brown/beige adipocytes is well defined, the β3-AR’s adipogenic role in white adipocytes remains unclear at present. In this study, we investigated the expression and function of β3-AR in 3T3-L1 murine white preadipocytes. Knockdown of β3-AR led to less lipid accumulation and triglyceride (TG) content as well as less expression and phosphorylation levels of CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) during 3T3-L1 preadipocyte differentiation. These findings reveal that the β3-AR inhibitor or antagonist could be a promising candidate for potential preventive and therapeutics against obesity. Abstract β3-adrenergic receptor (β3-AR) is expressed predominantly in mature white and brown/beige adipocytes. Although the lipolytic and thermogenic role of β3-AR in brown/beige adipocytes is well defined, the adipogenic role of β3-AR in white adipocytes remains unclear at present. In this study, we investigated the expression and function of β3-AR in differentiating 3T3-L1 cells, murine white preadipocytes. Of note, the expression of β3-AR at the protein and mRNA levels was highly induced in a time-dependent manner during 3T3-L1 preadipocyte differentiation. Interestingly, the results of the pharmacological inhibition study demonstrated the roles of p38 MAPK and PKC in the induction of β3-AR expression in differentiating 3T3-L1 cells. Knockdown of β3-AR led to less lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, knockdown of β3-AR resulted in a decrease in not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FASN), perilipin A, and leptin but also phosphorylation levels of signal transducer and activator of transcription-5 (STAT-5) during 3T3-L1 preadipocyte differentiation. In summary, these results demonstrate firstly that β3-AR expression is highly up-regulated in p38 MAPK and PKC-dependent manners, and the up-regulated β3-AR plays a crucial role in lipid accumulation in differentiating 3T3-L1 cells, which is mediated through control of expression and phosphorylation levels of C/EBP-α, PPAR-γ, STAT-5, FASN, and perilipin A.
Collapse
|
27
|
Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022; 148:112785. [PMID: 35272138 DOI: 10.1016/j.biopha.2022.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Juglone (5 - hydroxy - 1, 4 - naphthalene diketone) is a kind of natural naphthoquinone, present in the roots, leaves, nut-hulls, bark and wood of walnut trees. Recent studies have found that Juglone has special significance in the treatment of cancer, which plays a significant role in the resistance of cancer cell proliferation, induction of cancer cell apoptosis, induction of autophagy, anti-angiogenesis and inhibition of cancer cell migration and invasion, etc. Additionally, its derivatives also play a tumor suppressive effect. In conclusion, Juglone and its derivatives have been identified as effective anticancer drugs. This paper reviews action mechanisms of Juglone and its derivatives in cancer treatment.
Collapse
|
28
|
Gu H, An HJ, Gwon MG, Bae S, Leem J, Lee SJ, Han SM, Zouboulis CC, Park KK. Bee Venom and Its Major Component Melittin Attenuated Cutibacterium acnes- and IGF-1-Induced Acne Vulgaris via Inactivation of Akt/mTOR/SREBP Signaling Pathway. Int J Mol Sci 2022; 23:3152. [PMID: 35328573 PMCID: PMC8953527 DOI: 10.3390/ijms23063152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Acne vulgaris is the most common disease of the pilosebaceous unit. The pathogenesis of this disease is complex, involving increased sebum production and perifollicular inflammation. Understanding the factors that regulate sebum production is important in identifying novel therapeutic targets for the treatment of acne. Bee Venom (BV) and melittin have multiple effects including antibacterial, antiviral, and anti-inflammatory activities in various cell types. However, the anti-lipogenic mechanisms of BV and melittin have not been elucidated. We investigated the effects of BV and melittin in models of Insulin-like growth factor-1 (IGF-1) or Cutibacterium acnes (C. acnes)-induced lipogenic skin disease. C. acnes or IGF-1 increased the expression of sterol regulatory element-binding protein-1 (SREBP-1) and proliferator-activated receptor gamma (PPAR-γ), transcription factors that regulate numerous genes involved in lipid biosynthesis through the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/SREBP signaling pathway. In this study using a C. acnes or IGF-1 stimulated lipogenic disease model, BV and melittin inhibited the increased expression of lipogenic and pro-inflammatory factor through the blockade of the Akt/mTOR/SREBP signaling pathway. This study suggests for the first time that BV and melittin could be developed as potential natural anti-acne agents with anti-lipogenesis, anti-inflammatory, and anti-C. acnes activity.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Mi-Gyeong Gwon
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Seongjae Bae
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea;
| | - Sun-Jae Lee
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Sang-Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 54875, Korea;
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Faculty of Health Sciences Brandenburg, Auenweg 38, 06847 Dessau, Germany;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| |
Collapse
|
29
|
Wang S, Mi R, Cai Z, Wang Z, Zeng C, Xie Z, Li J, Ma M, Liu W, Su H, Cen S, Wu Y, Shen H. DAPK1 Interacts with the p38 isoform MAPK14, Preventing its Nuclear Translocation and Stimulation of Bone Marrow Adipogenesis. Stem Cells 2022; 40:508-522. [PMID: 35403694 DOI: 10.1093/stmcls/sxac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Bone marrow (BM) adipose tissue (BMAT), a unique adipose depot, plays an important role in diseases such as osteoporosis and bone metastasis. Precise control of mesenchymal stem cell (MSC) differentiation is critical for BMAT formation and regeneration. Here, we show that death associated protein kinase 1 (DAPK1) negatively regulates BM adipogenesis in vitro and in vivo. Prx1 creDapk1 loxp/loxp mice showed more adipocytes in the femur than Dapk1 loxp/loxp mice. Further mechanistic analyses revealed that DAPK1 inhibits p38 mitogen-activated protein kinase (MAPK) signaling in the nucleus by binding the p38 isoform MAPK14, decreasing p38 nuclear activity, which subsequently inhibits BM adipogenesis. The inhibitory effect of DAPK1 against MAPK14 was independent of its kinase activity. In addition, the decreased DAPK1 was observed in the BM-MSCs of ageing mice. Our results reveal a previously undescribed function for DAPK1 in the regulation of adipogenesis, and may also reveal the underlying mechanism of BMAT formation in ageing.
Collapse
Affiliation(s)
- Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Rujia Mi
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zhaopeng Cai
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenjie Liu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
30
|
Perico ME, Maluta T, Conti G, Vella A, Provezza L, Cestari T, De Cao G, Segalla L, Tecchio C, Benedetti F, Santini F, Bronte V, Magnan B, Sbarbati A, Ramarli D. The Cross-Talk between Myeloid and Mesenchymal Stem Cells of Human Bone Marrow Represents a Biomarker of Aging That Regulates Immune Response and Bone Reabsorption. Cells 2021; 11:cells11010001. [PMID: 35011569 PMCID: PMC8750773 DOI: 10.3390/cells11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
One of the mechanisms that characterizes the aging process of different organs is the accumulation of fat. Different authors have demonstrated that adipose tissue replaces the loss of other cell types, deriving from mesenchymal cells. During aging, there is substitution or trans-differentiation of mesenchymal cells with other cells having the same embryological origin. Newly formed adipocytes were also observed in the trabecular matrix of elderly people’s bones, associated with myeloid cells. In this study, we have investigated the relationship between immature myeloid-derived suppressor cells (I-MDSCs) and mesenchymal stem cells (MSCs) in bone marrow (BM) samples harvested from 57 patients subjected to different orthopedic surgeries. Patients aged from 18 to 92 years were considered in order to compare the cellular composition of bone marrow of young and elderly people, considered a biomarker of immunity, inflammation, and bone preservation. The I-MDSC percentage was stable during aging, but in elderly people, it was possible to observe a strong basal immunosuppression of autologous and heterologous T cells’ proliferation. We hypothesized that this pattern observed in elders depends on the progressive accumulation in the BM of activating stimuli, including cell–cell contact, or the production of different cytokines and proteins that induce the differentiation of bone marrow mesenchymal stem cells in adipocytes. The collected data provided underline the importance of specific biomarkers of aging that promote a reduction in immune response and incremented inflammatory pathways, leading to bone reabsorption in elderly people.
Collapse
Affiliation(s)
- Maria Elisa Perico
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
- Correspondence: ; Tel.: +39-045-8027266
| | - Tommaso Maluta
- Orthopedic and Traumatology Clinic, Department of Surgery, University of Verona, 37134 Verona, Italy; (T.M.); (G.D.C.); (B.M.)
| | - Giamaica Conti
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (G.C.); (L.S.); (A.S.)
| | - Antonio Vella
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Lisa Provezza
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Tiziana Cestari
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Giulia De Cao
- Orthopedic and Traumatology Clinic, Department of Surgery, University of Verona, 37134 Verona, Italy; (T.M.); (G.D.C.); (B.M.)
| | - Lydia Segalla
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (G.C.); (L.S.); (A.S.)
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (C.T.); (F.B.)
| | - Fabio Benedetti
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (C.T.); (F.B.)
| | - Francesco Santini
- Section of Cardio Surgery, Department of Surgery, University of Verona, 37134 Verona, Italy;
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (A.V.); (L.P.); (T.C.); (V.B.)
| | - Bruno Magnan
- Orthopedic and Traumatology Clinic, Department of Surgery, University of Verona, 37134 Verona, Italy; (T.M.); (G.D.C.); (B.M.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, 37134 Verona, Italy; (G.C.); (L.S.); (A.S.)
| | - Dunia Ramarli
- Section of Immunology, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy;
| |
Collapse
|
31
|
Wu W, Xu K, Li M, Zhang J, Wang Y. MicroRNA-29b/29c targeting CTRP6 influences porcine adipogenesis via the AKT/PKA/MAPK Signalling pathway. Adipocyte 2021; 10:264-274. [PMID: 33938394 PMCID: PMC8096332 DOI: 10.1080/21623945.2021.1917811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Porcine fat deposition is an important economic trait of pig breeds, and understanding the gene regulatory network in adipocytes is essential for modern pig breeding. In a previous study, we demonstrated that miR-29a negatively regulates the differentiation of porcine adipocytes. In this study, we investigated the roles of miR-29b/c in porcine adipocytes and the underlying mechanisms. Using EdU staining and the CCK-8 assay, we observed that transfection with the miR-29b/c agomir promoted the proliferation of porcine intramuscular (IM) and subcutaneous (SC) adipocytes by altering the expression of cell-cycle-related genes. According to the results of oil red O staining and western blot analysis, transfection with the miR-29b/c agomir suppressed the differentiation of porcine SC and IM adipocytes via the AKT/PKA/MAPK signalling pathway. Furthermore, we proved that miR-29b/c regulates porcine adipocytes by directly targeting the 3ʹ-untranslated region (3ʹUTR) of CTRP6 using a dual-luciferase reporter assay. Finally, co-transfection with miR-29b/c and CTRP6 partially restored the changes of phenotype and gene expression induced by miR-29b/c overexpression in 3T3-L1 adipocytes. Taken together, our data demonstrate that both miR-29b and miR-29 c negatively regulate porcine adipogenesis by targeting CTRP6, which furthers our understanding of the gene network that regulates fat deposition in pigs.
Collapse
Affiliation(s)
- Wenjing Wu
- Key Laboratory of Animal Nutrition & Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Biological and Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Ke Xu
- Key Laboratory of Animal Nutrition & Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Biological and Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Meng Li
- College of Biological and Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological and Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition & Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Qian Y, Chen H, Pan T, Li T, Zhang Z, Lv X, Wang J, Ji Z, He Y, Li L, Lin M. Autologous decellularized extracellular matrix promotes adipogenic differentiation of adipose derived stem cells in low serum culture system by regulating the ERK1/2-PPARγ pathway. Adipocyte 2021; 10:174-188. [PMID: 33825675 PMCID: PMC8032248 DOI: 10.1080/21623945.2021.1906509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
High viability and further adipogenic differentiation of adipose-derived stem cells (ADSCs) are fundamental for engraftment and growth of the transplanted adipose tissue. It has been demonstrated that extracellular matrix (ECM) regulates cell proliferation and differentiation by interacting with ERK1/2 signalling pathway. In this study, we prepared autologous decellularized extracellular matrix (d-ECM) and explored its effect on the proliferation and adipogenic ability of ADSCs in low serum culture. We found that 2% foetal bovine serum (FBS) in growth medium inhibited cell viability and DNA replication, and decreased mRNA and protein levels of PPARγ and C/EPBα compared with 10% FBS. Correspondingly, after 14-days adipogenic induction, cells cultured in 2% FBS possessed lower efficiency of adipogenesis and expressed less adipocyte differentiation markers ADIPOQ and aP2. On the contrary, the d-ECM-coated substrate continuously promoted the expression of PPARγ, and regulated the phosphorylation of ERK1/2 in different manners during differentiation. Pretreatment with ERK1/2 inhibitor PD98059 neutralized the effects of d-ECM, which suggested d-ECM might regulate the adipogenesis of ADSCs through ERK1/2-PPARγ pathway. In addition, d-ECM was revealed to regulate the transcription and expression of stemness-associated genes, such as OCT4, NANOG and SOX2, in the undifferentiated ADSCs, which might be related to the initiation of differentiation.
Collapse
Affiliation(s)
- Yao Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou City, China
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Hao Chen
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Tianyun Pan
- Department of Pathology, Huzhou Hospital of Traditional Chinese Medicine, Huzhou City, China
| | - Tian Li
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Zikai Zhang
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Xuling Lv
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Jingping Wang
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Ziwan Ji
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Yucang He
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Liqun Li
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Ming Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou City, China
| |
Collapse
|
33
|
Li Y, Fu C, Liu L, Liu Y, Li F. mTOR and ERK1/2 signaling participate in the process of acetate regulating lipid metabolism and HSL expression. Anim Biosci 2021; 35:1444-1453. [PMID: 34727637 PMCID: PMC9449403 DOI: 10.5713/ab.21.0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. Methods The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. Results It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. Conclusion Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chunyan Fu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Lei Liu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., LTD., Qingdao, Shandong 266555, China
| | - Fuchang Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
34
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
35
|
Yadav AK, Jang BC. Inhibition of Lipid Accumulation and Cyclooxygenase-2 Expression in Differentiating 3T3-L1 Preadipocytes by Pazopanib, a Multikinase Inhibitor. Int J Mol Sci 2021; 22:ijms22094884. [PMID: 34063048 PMCID: PMC8125232 DOI: 10.3390/ijms22094884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pazopanib is a multikinase inhibitor with anti-tumor activity. As of now, the anti-obesity effect and mode of action of pazopanib are unknown. In this study, we investigated the effects of pazopanib on lipid accumulation, lipolysis, and expression of inflammatory cyclooxygenase (COX)-2 in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte. Of note, pazopanib at 10 µM markedly decreased lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, pazopanib inhibited not only expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and perilipin A but also phosphorylation of signal transducer and activator of transcription (STAT)-3 during 3T3-L1 preadipocyte differentiation. In addition, pazopanib treatment increased phosphorylation of cAMP-activated protein kinase (AMPK) and its downstream effector ACC during 3T3-L1 preadipocyte differentiation. However, in differentiated 3T3-L1 adipocytes, pazopanib treatment did not stimulate glycerol release and hormone-sensitive lipase (HSL) phosphorylation, hallmarks of lipolysis. Moreover, pazopanib could inhibit tumor necrosis factor (TNF)-α-induced expression of COX-2 in both 3T3-L1 preadipocytes and differentiated cells. In summary, this is the first report that pazopanib has strong anti-adipogenic and anti-inflammatory effects in 3T3-L1 cells, which are mediated through regulation of the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT-3, ACC, perilipin A, AMPK, and COX-2.
Collapse
|
36
|
Liu L, Fu C, Liu Y, Li F. Acetate stimulates lipogenesis via AMPKα signaling in rabbit adipose-derived stem cells. Gen Comp Endocrinol 2021; 303:113715. [PMID: 33444628 DOI: 10.1016/j.ygcen.2021.113715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Acetate plays an important role in host lipid metabolism. However, the regulatory network underlying acetate-regulated lipometabolism remains unclear. The aim of this study was to determine whether any cross talk occurs among adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPKs) and acetate in regulating lipid metabolism. The compound C (an AMPK inhibitor), and SB203580 (a p38 MAPK inhibitor) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. It indicated that acetate (6 mM) for 6 h increased the lipid deposition in rabbit ADSCs. Besides, acetate treatment (6 mM) increased significantly phosphorylated protein level of AMPKα and p38 MAPK, but not altered significantly the phosphorylated protein level of extracellular signaling-regulated kinase (ERK) and c-Jun aminoterminal kinase (JNK). The blocking of AMPKα signaling attenuated acetate-induced lipid accumulation, but not that of p38 MAPK signaling. In conclusion, our findings suggest that AMPKα signaling pathway is associated with acetate-induced lipogenesis.
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chunyan Fu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Poultry Institute, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., LTD., Qingdao 266555, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
37
|
Park TJ, Park A, Kim J, Kim JY, Han BS, Oh KJ, Lee EW, Lee SC, Bae KH, Kim WK. Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway. BMB Rep 2021. [PMID: 33407993 PMCID: PMC7907746 DOI: 10.5483/bmbrep.2021.54.2.262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, β and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity.
Collapse
Affiliation(s)
- Tae-Jun Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Anna Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eun Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
38
|
Kwon HS, Jeong GS, Jang BC. Cudratricusxanthone A Inhibits Lipid Accumulation and Expression of Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes. Int J Mol Sci 2021; 22:ijms22020505. [PMID: 33419132 PMCID: PMC7825570 DOI: 10.3390/ijms22020505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Cudratricusxanthone A (CTXA) is a natural bioactive compound extracted from the roots of Cudrania tricuspidata Bureau and has been shown to possess anti-inflammatory, anti-proliferative, and hepatoprotective activities. However, at present, anti-adipogenic and anti-inflammatory effects of CTXA on adipocytes remain unclear. In this study, we investigated the effects of CTXA on lipid accumulation and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, two known inflammatory enzymes, in 3T3-L1 preadipocytes. Strikingly, CTXA at 10 µM markedly inhibited lipid accumulation and reduced triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. On mechanistic levels, CTXA at 10 µM suppressed not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A, but also phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during 3T3-L1 preadipocyte differentiation. In addition, CTXA at 10 µM up-regulated phosphorylation levels of cAMP-activated protein kinase (AMPK) while down-regulating expression and phosphorylation levels of acetyl-CoA carboxylase (ACC) during 3T3-L1 preadipocyte differentiation. Moreover, CTXA at 10 µM greatly attenuated tumor necrosis factor (TNF)-α-induced expression of iNOS, but not COX-2, in 3T3-L1 preadipocytes. These results collectively demonstrate that CTXA has strong anti-adipogenic and anti-inflammatory effects on 3T3-L1 cells through control of the expression and phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3/5, AMPK, and iNOS.
Collapse
Affiliation(s)
- Hyo-Shin Kwon
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Korea;
- Correspondence: ; Tel.: +82-53-258-7404
| |
Collapse
|
39
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
40
|
Zhang T, Qin X, Cao Y, Zhang J, Zhao J. Sea buckthorn ( Hippophae rhamnoides L.) oil enhances proliferation, adipocytes differentiation and insulin sensitivity in 3T3-L1 cells. Food Sci Biotechnol 2020; 29:1511-1518. [PMID: 33088600 DOI: 10.1007/s10068-020-00817-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
The objective of this study is to investigate the effects of sea buckthorn oil (SBO) on proliferation, adipogenic differentiation and insulin sensitivity of 3T3-L1 cells. Results showed that SBO increased cell proliferation ability, accompanied by up-regulated proliferating cell nuclear antigen content (p < 0.05) and p38 activity (p < 0.05). SBO also promoted adipogenesis and enhanced adipogenic transcriptional factors expression. Mitochondrial biogenesis related gene expressions were elevated in SBO treated cells (p < 0.05). Of note, SBO also increased glucose uptake and glucose transporter 4 abundance (p < 0.05). Cells treated with SBO exhibited greater phosphorylated insulin receptor substrate 1 (p < 0.05), phosphorylated-Akt (p < 0.05) and phosphorylated AMP-activated protein kinase (p < 0.01) contents. When taken together, these results suggest that SBO promotes 3T3-L1 cells proliferation, adipogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Ting Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Xuze Qin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Yuxin Cao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Jianxin Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi People's Republic of China
| |
Collapse
|
41
|
Kassouf T, Sumara G. Impact of Conventional and Atypical MAPKs on the Development of Metabolic Diseases. Biomolecules 2020; 10:biom10091256. [PMID: 32872540 PMCID: PMC7563211 DOI: 10.3390/biom10091256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, β, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic β-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.
Collapse
|
42
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
43
|
Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int J Mol Sci 2020; 21:E4283. [PMID: 32560163 PMCID: PMC7349855 DOI: 10.3390/ijms21124283] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
The formation of adipocytes during embryogenesis has been largely understudied. However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation (adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists of two phases, namely commitment and terminal differentiation. This review discusses the role of signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and differentiation into mature adipocytes, as well as limitations in our understanding of these processes. To date, a limited number of transcription factors, genes and signalling pathways have been described to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis have used preadipocytes already committed to the adipogenic lineage, which are therefore not suitable for studying preadipocyte commitment. Conversely, over a dozen molecular players including transcription factors, genes, signalling pathways, epigenetic regulators, and microRNAs have been described to be involved in the differentiation of preadipocytes to adipocytes; however, only peroxisome proliferator-activated receptor gamma has proven to be clinically relevant. A detailed understanding of how the molecular players underpinning adipogenesis relate to adipose tissue function could provide new therapeutic approaches for addressing obesity without compromising adipose tissue function.
Collapse
Affiliation(s)
- Melvin A. Ambele
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Priyanka Dhanraj
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Rachel Giles
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Michael S. Pepper
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| |
Collapse
|
44
|
Olivieri BF, Braz CU, Brito Lopes F, Peripolli E, Medeiros de Oliveira Silva R, Ruegger Pereira da Silva Corte R, Albuquerque LGD, Pereira ASC, Stafuzza NB, Baldi F. Differentially expressed genes identified through RNA-seq with extreme values of principal components for beef fatty acid in Nelore cattle. J Anim Breed Genet 2020; 138:80-90. [PMID: 32424857 DOI: 10.1111/jbg.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/13/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to identify differentially expressed genes (DEG) in the Longissimus thoracis muscle of Nelore cattle related to fatty acid (FA) profile through RNA sequencing and principal component analysis (PCA). Two groups of 10 animals each were selected containing PC1 and PC2 extreme DEG values (HIGH × LOW) for each FA group. The intramuscular fat (IMF) was compared between cluster groups by ANOVA, and only the sum of monounsaturated FA (MUFA) and ω3 showed significant differences (p < .05). Interestingly, the highest percentage (95%) of phenotypic variation explained by the sum of the first two PC was observed for ω3, which also displayed the lowest number of DEG (n = 1). The lowest percentage (59%) was observed for MUFA, which also revealed the largest number of DEG (n = 66). Since only MUFA and ω3 exhibited significant differences between cluster groups, we can conclude that the differences observed for the remaining groups are not due to the percentage of IMF. Several genes that have been previously associated with meat quality and FA traits were identified as DEG in this study. The functional analysis revealed one KEGG pathway and eight GO terms as significant (p < .05), in which we highlighted the purine metabolism, glycolytic process, adenosine triphosphate binding and bone development. These results strongly contribute to the knowledge of the biological mechanisms involved in meat FA profile of Nelore cattle.
Collapse
Affiliation(s)
- Bianca Ferreira Olivieri
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| | - Camila Urbano Braz
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| | - Fernando Brito Lopes
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil.,Embrapa Cerrados, Brasilia, Brazil
| | - Elisa Peripolli
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| | | | | | - Lucia Galvão de Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| | - Angélica Simone Cravo Pereira
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Nutrição e Produção Animal, Universidade de São Paulo (USP), Pirassununga, Brazil
| | | | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| |
Collapse
|
45
|
Karadeniz F, Oh JH, Lee JI, Kim H, Seo Y, Kong CS. 6-Acetyl-2,2-Dimethylchroman-4-One Isolated from Artemisia princeps Suppresses Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells via Activation of AMPK. J Med Food 2020; 23:250-257. [DOI: 10.1089/jmf.2019.4653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Hojun Kim
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, Korea
| |
Collapse
|
46
|
Jeong YU, Park YJ. Ergosterol Peroxide from the Medicinal Mushroom Ganoderma lucidum Inhibits Differentiation and Lipid Accumulation of 3T3-L1 Adipocytes. Int J Mol Sci 2020; 21:ijms21020460. [PMID: 31936890 PMCID: PMC7014426 DOI: 10.3390/ijms21020460] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ergosterol peroxide is a natural compound of the steroid family found in many fungi, and it possesses antioxidant, anti-inflammatory, anticancer and antiviral activities. The anti-obesity activity of several edible and medicinal mushrooms has been reported, but the effect of mushroom-derived ergosterol peroxide on obesity has not been studied. Therefore, we analyzed the effect of ergosterol peroxide on the inhibition of triglyceride synthesis at protein and mRNA levels and differentiation of 3T3-L1 adipocytes. Ergosterol peroxide inhibited lipid droplet synthesis of differentiated 3T3-L1 cells, expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAT/enhancer-binding protein alpha (C/EBPα), the major transcription factors of differentiation, and also the expression of sterol regulatory element-binding protein-1c (SREBP-1c), which promotes the activity of PPARγ, resulting in inhibition of differentiation. It further inhibited the expression of fatty acid synthase (FAS), fatty acid translocase (FAT), and acetyl-coenzyme A carboxylase (ACC), which are lipogenic factors. In addition, it inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) involved in cell proliferation and activation of early differentiation transcription factors in the mitotic clonal expansion (MCE) stage. As a result, ergosterol peroxide significantly inhibited the synthesis of triglycerides and differentiation of 3T3-L1 cells, and is, therefore, a possibile prophylactic and therapeutic agent for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yong-Un Jeong
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea;
| | - Young-Jin Park
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea;
- Research Institute for Biomedical & Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
47
|
Leiva M, Matesanz N, Pulgarín-Alfaro M, Nikolic I, Sabio G. Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Front Endocrinol (Lausanne) 2020; 11:572089. [PMID: 33424765 PMCID: PMC7786386 DOI: 10.3389/fendo.2020.572089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.
Collapse
|
48
|
Acetate Affects the Process of Lipid Metabolism in Rabbit Liver, Skeletal Muscle and Adipose Tissue. Animals (Basel) 2019; 9:ani9100799. [PMID: 31615062 PMCID: PMC6826666 DOI: 10.3390/ani9100799] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Lots of short-chain fatty acids (SCFAs) are produced in the rabbit cecum after dietary fiber fermentation. In addition to supplying energy, SCFAs could regulate lipid metabolism, but the related mechanism is still unknown. In our experiment, we study the effect of acetate (major SCFAs, 70–80%) on rabbit lipid metabolism. The present study found that acetate alters the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue, and inferred some signaling pathways related to the process. A mechanism of acetate-regulating lipid metabolism is useful to identify the function in fat metabolism of microbiological products from rabbit and rabbit processes for nutrition metabolism. Abstract Short-chain fatty acids (SCFAs) (a microbial fermentation production in the rabbit gut) have an important role in many physiological processes, which may be related to the reduced body fat of rabbits. In the present experiment, we study the function of acetate (a major SCFA in the rabbit gut) on fat metabolism. Ninety rabbits (40 days of age) were randomly divided into three groups: a sham control group (injection of saline for four days); a group experiencing subcutaneous injection of acetate for four days (2 g/kg BM per day, one injection each day, acetate); and a pair-fed sham treatment group. The results show that acetate-inhibited lipid accumulation by promoting lipolysis and fatty acid oxidation and inhibiting fatty acid synthesis. Activated G protein-coupled receptor 41/43, adenosine monophosphate activated protein kinase (AMPK) and extracellular-signal-regulated kinase (ERK) 1/2 signal pathways were likely to participate in the regulation in lipid accumulation of acetate. Acetate reduced hepatic triglyceride content by inhibiting fatty acid synthesis, enhancing fatty acid oxidation and lipid output. Inhibited peroxisome proliferator-activated receptor α (PPARα) and activated AMPK and ERK1/2 signal pathways were related to the process in liver. Acetate reduced intramuscular triglyceride level via increasing fatty acid uptake and fatty acid oxidation. PPARα was associated with the acetate-reduced intracellular fat content.
Collapse
|
49
|
Oh JH, Karadeniz F, Lee JI, Seo Y, Kong CS. Artemisia princeps Inhibits Adipogenic Differentiation of 3T3-L1 Pre-Adipocytes via Downregulation of PPARγ and MAPK Pathways. Prev Nutr Food Sci 2019; 24:299-307. [PMID: 31608255 PMCID: PMC6779088 DOI: 10.3746/pnf.2019.24.3.299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
Artemisia princeps, the Korean mugwort, is an edible plant that has various beneficial effects on health, and which has been used as a part of traditional folk medicine. The current study investigated the possible effects of solvent (H2O, n-BuOH, 85% aq. MeOH, and n-hexane) partitioned fractions of A. princeps crude extract (APE) on adipogenic differentiation of 3T3-L1 mouse pre-adipocytes. Characteristics of the differentiated adipocytes were evaluated by Oil red O staining of intracellular lipid droplets, analyzing mRNA and protein levels of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein (SREBP)-1c, and immunoblotting of phosphorylated mitogen-activated protein kinase (MAPK) pathway proteins such as p38, extracellular-signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Introduction of APE fractions to differentiating adipocytes resulted in lowered lipid accumulation and downregulation of the PPARγ pathway. APE fractions significantly decreased mRNA and protein expression of PPARγ, C/EBPα, and SREBP-1c. Analysis of MAPK pathway activation showed similar results since treatment with the APE fraction treatment decreased levels of phosphorylated p38, ERK, and JNK. Overall, the n-BuOH and n-hexane fractions were observed to be the most active fractions to suppress adipogenesis-related signaling in 3T3-L1 cells. The promising ability of APE fractions to inhibit adipocyte differentiation of 3T3-L1 cells suggest that A. princeps has potential to be utilized as a source of anti-obesity compounds.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.,Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Fatih Karadeniz
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.,Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.,Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.,Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
50
|
Lertsooksawat W, Wongnoppavich A, Chairatvit K. Up-regulation of interferon-stimulated gene 15 and its conjugation machinery, UbE1L and UbcH8 expression by tumor necrosis factor-α through p38 MAPK and JNK signaling pathways in human lung carcinoma. Mol Cell Biochem 2019; 462:51-59. [PMID: 31428903 DOI: 10.1007/s11010-019-03609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/10/2019] [Indexed: 11/30/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a member of the family of ubiquitin-like proteins. Similar to ubiquitin, conjugation of ISG15 to cellular proteins requires cascade reactions catalyzed by at least 2 enzymes, UbE1L and UbcH8. Expression of ISG15 and its conjugates is up-regulated in many cancer cells, yet the underlying mechanism of up-regulation is still unclear. In this study, we showed that TNF-α, similar to the response by IFN-β, could directly induce expression of ISG15 and its conjugation machinery, UbE1L and UbcH8, in human lung carcinoma, A549. The early response of their expression was effectively blocked by specific inhibitors of p38 MAPK (SB202190) and JNK (SP600125), but not by B18R, a soluble type-I IFN receptor. In addition, luciferase reporter assay together with serial deletions and site-directed mutagenesis identified a putative C/EBPβ binding element in the ISG15 promoter, which is necessary to the response by TNF-α. Taken together, expression of ISG15 and ISG15 conjugation machinery in cancer cells is directly up-regulated by TNF-α via p38 MAPK and JNK pathways through the activation of C/EBPβ binding element in the ISG15 promoter. This study provides a new insight toward understanding the molecular mechanism of ISG15 system and inflammatory response in cancer progression.
Collapse
Affiliation(s)
- Wannee Lertsooksawat
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.,Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|