1
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Huang XH, Wang Y, Wu LY, Jiang YL, Ma LJ, Shi XF, Wang X, Zheng MM, Tang L, Lou YL, Xie DL. mTORC2 is crucial for regulating the recombinant Mycobacterium tuberculosis CFP-10 protein-induced phagocytosis in macrophages. BMC Immunol 2025; 26:36. [PMID: 40340685 PMCID: PMC12063350 DOI: 10.1186/s12865-025-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis, Mtb) is a pathogenic bacterial species in the family Mycobacteriaceae and the causative agent of most cases of tuberculosis. Macrophages play essential roles in defense against invading pathogens, including M. tuberculosis. The study of M. tuberculosis-associated antigens is one of the hotspots of current research. The secreted proteins of M. tuberculosis, including early secretory antigen target 6 (ESTA6) and culture filtrate protein 10 (CFP-10), are crucial for the immunological diagnosis of tuberculosis. However, the relationship of CFP-10 alone with macrophages is still not well understood. In the present study, we report that the purified recombinant protein CFP-10 (rCFP-10) significantly enhanced the phagocytic capacity of murine macrophages. rCFP-10 induces both TNF-α and IL-6 production. Additionally, RNASeq analysis revealed that rCFP10 triggers multiple pathways involved with macrophage activation. Interestingly, neither mitochondrial reactive oxygen species nor lysosomal content had a significant difference treated with rCFP-10 in macrophages. Moreover, inhibition of the mammalian target of rapamycin (mTOR) activity was shown to significantly reverse the rCFP10-induced phagocytosis, various genes involved in lysosome acidification and TLR signaling. These findings highlight that the CFP-10 plays an essential role in the invasion of macrophages by M. tuberculosis, which is partly regulated by the mTORC2 signal pathway.
Collapse
Affiliation(s)
- Xian-Hui Huang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Yu Wang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Liu-Ying Wu
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China
| | - Ye-Lin Jiang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Ling-Jie Ma
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Feng Shi
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Xing Wang
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China
| | - Meng-Meng Zheng
- Scientific Research Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Tang
- Department of Urology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yong-Liang Lou
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China.
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, 325035, China.
| | - Dan-Li Xie
- The School of Laboratory Medicine & Life Sciences, Key Laboratory of Laboratory Medicine, Wenzhou Medical University, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China.
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
4
|
Bianco E, Bonassera M, Uliana F, Tilma J, Winkler M, Zencir S, Gossert A, Oborská-Oplová M, Dechant R, Hugener J, Panse VG, Pilhofer M, Albert B, Kimmig P, Peter M. Stm1 regulates Ifh1 activity revealing crosstalk between ribosome biogenesis and ribosome dormancy. Mol Cell 2025; 85:1806-1823.e17. [PMID: 40315826 DOI: 10.1016/j.molcel.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/26/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Nutrient abundance boosts ribosome biogenesis, whereas ribosome dormancy factors limit ribosome degradation upon starvation. The equilibrium between the two pathways governs cell growth. In this study, we identified suppressor of Tom1 (Stm1) as a molecular link between ribosome protection and biogenesis in Saccharomyces cerevisiae. While Stm1 was previously described as a dormancy factor, we show that it activates Ifh1, a transcriptional activator of ribosomal protein genes. Stm1 transiently localizes to the nucleolus, where it interacts with pre-ribosomes and directly binds RNA and Ifh1 through its C-terminal intrinsically disordered region (IDR). Although the IDR is dispensable for ribosome protection, its loss compromises cell growth. The IDR is phosphorylated upon nutrient starvation, which disrupts its interaction with Ifh1. Our findings reveal a molecular pathway sensing and adjusting ribosome abundance in response to nutrient availability, reinforcing the relevance of regulated ribosome homeostasis in physiology and disease.
Collapse
Affiliation(s)
- Eliana Bianco
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| | - Martina Bonassera
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Janny Tilma
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Martin Winkler
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Sevil Zencir
- Department of Cell Biology Sciences III, Université de Genève, 1211 Geneva, Switzerland
| | - Alvar Gossert
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Biomolecular NMR Spectroscopy Platform (BNSP), Department of Biology, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | | | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Jannik Hugener
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Philipp Kimmig
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Thanthrige N, Bhowmik SD, Williams B. 'Friend versus foe'-does autophagy help regulate symbiotic plant-microbe interactions and can it be manipulated to improve legume cultivation? FEBS Lett 2025; 599:645-655. [PMID: 39582243 DOI: 10.1002/1873-3468.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
Autophagy is a genetically regulated, eukaryotic catabolic pathway that responds to internal and external cellular signals. In plants, it plays crucial roles in development, and responses to abiotic and biotic stresses. Due to its role in limiting the hypersensitive response, research on the molecular mechanisms of autophagic signalling pathways in plant-microbe interactions has primarily focused on plant-pathogen responses. Although there is substantially less information on the role of autophagy signalling in symbiotic plant-microbe interactions, there is accumulating evidence that it is also a key regulator of mutualistic plant-microbe interactions. Here, we review recent progress on the roles of autophagy in symbiotic plant interactions and discuss potential future research directions. Once understood, the central role that autophagy plays within pathogenic and symbiotic plant-microbe interactions has significant potential application for crop improvement. Manipulating autophagy in legume crops could help support crop growth with reduced levels of fertiliser application while maintaining yields with increased protein content in the harvest.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Australia
| | - Brett Williams
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Lin Q, Gajan A, Nguyen I, Sharma S, Nangia-Makker P, Firestine S, Shekhar MP. Synthesis and Biological Evaluation of Novel Triazine Analogs as Rad6 Inhibitors. Pharm Res 2025; 42:511-527. [PMID: 40021546 DOI: 10.1007/s11095-025-03838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
Rad6 is an E2 ubiquitin-conjugating enzyme that plays critical roles in genome maintenance and proteostasis. Rad6 is frequently overexpressed in many cancers and promotes cancer development, progression, and chemotherapy resistance. PURPOSE Given its role in cancer development and progression, Rad6 is an underexplored therapeutic target. Previous research identified compound SMI#9 as a small molecule inhibitor of Rad6. Despite its potency, SMI#9 has limited efficacy in vivo due to its limiting water solubility and the presence of a labile ester group. METHODS To address these limitations, we prepared a series of SMI#9 analogs in which the ester group was replaced with a secondary amine, and their effects on Rad6B-mediated ubiquitination of histone H2A were evaluated. In vivo interaction with Rad6 was assessed using cellular thermal shift assays. SMI#9 analog effects on cell survival and migration of triple negative and endocrine-resistant breast cancer, and melanoma cells were measured using MTT and Boyden chamber assays. Autophagy, mitochondrial function, and β-catenin localization were measured using CytoID, Mitotracker, and immunostaining, respectively. Cellular uptakes of analogs were determined by mass spectroscopy. RESULTS Analogs #4 and #6 inhibited H2A ubiquitination, induced autophagy and mitochondrial dysfunction, downregulated intracellular β-catenin, and inhibited proliferation. #6 targets Rad6 in vivo. #4 and #6 are chemically related, and #4 undergoes in vivo conversion to #6. CONCLUSIONS #6 retains all the properties of SMI#9 but with lesser potency. However, its improved water solubility and metabolic stability allows for in vivo studies that were previously precluded due to the poor physicochemical properties of SMI#9.
Collapse
Affiliation(s)
- Qian Lin
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Ambikai Gajan
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Ignatius Nguyen
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Shiv Sharma
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Steven Firestine
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| | - Malathy P Shekhar
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Chen Y, Hu J, Zhao P, Fang J, Kuang Y, Liu Z, Dong S, Yao W, Ding Y, Wang X, Pan Y, Wu J, Zhao J, Yang J, Xu Z, Liu X, Zhang Y, Wu C, Zhang L, Fan M, Feng S, Hong Z, Yan Z, Xia H, Tang K, Yang B, Liu W, Sun Q, Mei K, Zou W, Huang Y, Feng D, Yi C. Rpl12 is a conserved ribophagy receptor. Nat Cell Biol 2025; 27:477-492. [PMID: 39934334 DOI: 10.1038/s41556-024-01598-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025]
Abstract
Ribophagy is a selective autophagic process that regulates ribosome turnover. Although NUFIP1 has been identified as a mammalian receptor for ribophagy, its homologues do not exist in yeast and nematodes. Here we demonstrate that Rpl12, a ribosomal large subunit protein, functions as a conserved ribophagy receptor in multiple organisms. Disruption of Rpl12-Atg8s binding leads to significant accumulation of ribosomal proteins and rRNA, while Atg1-mediated Rpl12 phosphorylation enhances its association with Atg11, thus triggering ribophagy during starvation. Ribophagy deficiency accelerates cell death induced by starvation and pathogen infection, leading to impaired growth and development and a shortened lifespan in both Caenorhabditis elegans and Drosophila melanogaster. Moreover, ribophagy deficiency results in motor impairments associated with ageing, while the overexpression of RPL12 significantly improves movement defects induced by starvation, ageing and Aβ accumulation in fly models. Our findings suggest that Rpl12 functions as a conserved ribophagy receptor vital for ribosome metabolism and cellular homeostasis.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingqi Kuang
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaojie Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuling Dong
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Weijing Yao
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Ding
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinhui Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbin Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenzhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodi Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Mingzhu Fan
- Mass Spectrometry and Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry and Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, China
| | - Zhi Hong
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Zhangming Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongguang Xia
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaiyue Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Du Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Cong Yi
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Licheva M, Pflaum J, Babic R, Mancilla H, Elsässer J, Boyle E, Hollenstein DM, Jimenez-Niebla J, Pleyer J, Heinrich M, Wieland FG, Brenneisen J, Eickhorst C, Brenner J, Jiang S, Hartl M, Welsch S, Hunte C, Timmer J, Wilfling F, Kraft C. Phase separation of initiation hubs on cargo is a trigger switch for selective autophagy. Nat Cell Biol 2025; 27:283-297. [PMID: 39774270 PMCID: PMC11821514 DOI: 10.1038/s41556-024-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid-liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor. Phase separation of cargo has been observed, but its regulation and impact on selective autophagy are poorly understood. Here, we find that key autophagy biogenesis factors phase separate into initiation hubs at cargo surfaces in yeast, subsequently maturing into sites that drive phagophore nucleation. This phase separation is dependent on multivalent, low-affinity interactions between autophagy receptors and cargo, creating a dynamic cargo surface. Notably, high-affinity interactions between autophagy receptors and cargo complexes block initiation hub formation and autophagy progression. Using these principles, we converted the mammalian reovirus nonstructural protein µNS, which accumulates as particles in the yeast cytoplasm that are not degraded, into a neo-cargo that is degraded by selective autophagy. We show that initiation hubs also form on the surface of different cargoes in human cells and are key to establish the connection to the endoplasmic reticulum, where the phagophore assembly site is formed to initiate phagophore biogenesis. Overall, our findings suggest that regulated phase separation underscores the initiation of both bulk and selective autophagy in evolutionarily diverse organisms.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jana Elsässer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Emily Boyle
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - David M Hollenstein
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Jorge Jimenez-Niebla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jonas Pleyer
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
| | - Mio Heinrich
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Franz-Georg Wieland
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Joachim Brenneisen
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Shan Jiang
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Markus Hartl
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jens Timmer
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Haq SIU, Tariq F, Sama NU, Jamal H, Mohamed HI. Role of autophagy in plant growth and adaptation to salt stress. PLANTA 2025; 261:49. [PMID: 39885016 DOI: 10.1007/s00425-025-04615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
MAIN CONCLUSION Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na+. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage. While autophagy has traditionally been viewed as a response to nutrient starvation, recent research has highlighted its importance under various environmental stresses, particularly salt stress. Under such conditions, plants activate autophagy through distinct signaling pathways involving autophagy-related genes (ATGs), Target of Rapamycin (TOR) proteins, and reactive oxygen species (ROS). Salt stress induces the expression of ATG genes and promotes the formation of autophagosomes, which facilitate the degradation of damaged organelles, denatured proteins, and the sequestration of Na+ into vacuoles, thereby improving stress tolerance. Recent studies have also suggested that autophagy may play a direct role in salt stress signaling, linking it to the regulation of metabolic processes. This review discusses the molecular mechanisms underlying autophagy induction in plants under salt stress, including the roles of ATGs and TOR, as well as the physiological significance of autophagy in mitigating oxidative damage, maintaining ion balance, and enhancing overall salt tolerance. In addition, we discussed the metabolic changes related to autophagy in stressed plants and examined the broader implications for managing plant stress and improving crops.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Faheem Tariq
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Noor Us Sama
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Hadiqa Jamal
- Department of Microbiology, Women University Swabi, Swabi, 23430, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
10
|
FUJIOKA Y, N. NODA N. Mechanisms of autophagosome formation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:32-40. [PMID: 39805588 PMCID: PMC11808202 DOI: 10.2183/pjab.101.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum. This process is driven by the collaboration of lipid transfer (Atg2) and scrambling (Atg9) proteins. The IM assumes a cup shaped morphology and undergoes closure, resulting in the formation of a double membrane-bound autophagosome. The Atg8 lipidation system is hypothesized to be a pivotal factor in this process. This review presents an overview of the current understanding of these processes and discusses the basic mechanisms of autophagosome formation.
Collapse
Affiliation(s)
- Yuko FUJIOKA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo N. NODA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
11
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
12
|
Lee YG, Jang SA, Song HS, Kwon JE, Ko M, Hong W, Gwon A, Park SE, Jeong Y, Kim H, Kang SC. Bakuchiol from Cullen corylifolium and its efficacy on apoptosis and autophagy in HepG2 cells. Heliyon 2024; 10:e40758. [PMID: 39717592 PMCID: PMC11664279 DOI: 10.1016/j.heliyon.2024.e40758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Bakuchiol (4), a component of Cullen corylifolium, has been reported to have estrogenic, antimicrobial, and anti-inflammatory activities. Nonetheless, its anticancer mechanisms and effectiveness against hepatocellular carcinoma remain unexplored. This study sought to elucidate the mechanism of apoptosis, autophagy, and cell cycle arrest caused by bakuchiol (4) and three flavonoids (1-3) with similar structures to compound 4 in hepatocellular carcinoma. Among the evaluated components (1-4), bakuchiol (4) exhibited a significant potential to induce apoptosis in HepG2 cells. This compound facilitates apoptotic processes by engaging both intrinsic and extrinsic signaling cascades, as evidenced by the enhanced ratios of Bax to Bcl-2 and tBid to Bid. In addition, bakuchiol (4) induced a dose-dependent cell cycle arrest, as assessed using a TaliⓇ image-based cytometer. Since bakuchiol decreased CDK2 and CDK4, while increasing p53, p21, and p27, these data suggest that bakuchiol regulated early cell cycle progression. It also promotes the activity of AMPK and the LC3Ⅱ/LC3Ⅰ ratio, while suppressing Akt and mTOR. In conclusion, these results demonstrate that bakuchiol (4), a major component of C. corylifolium, has an anticancer effect in hepatocarcinoma cells by inducing both apoptosis and autophagy. This significant finding enlightens us about the potential of bakuchiol in cancer research, particularly in liver cancer treatment.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seon-A Jang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae Seong Song
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
- Kolmar Korea R&D Complex, Kolmar Korea Co. Ltd, Seoul, 06500, Republic of Korea
| | - Jeong Eun Kwon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Minsung Ko
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woojae Hong
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ahyeong Gwon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
- Mbiometherapeutics Co., Ltd., Seongnam, 13488, Republic of Korea
| | - Se-Eun Park
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
- Mbiometherapeutics Co., Ltd., Seongnam, 13488, Republic of Korea
| | - Yujin Jeong
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
13
|
Han X, Zhang B, Gong Q, Liu T, Wang C, Sun Y, Jia H, Pu Y, Hou Q, Yang X. The tolerable upper intake level of manganese alleviates Parkinson-like motor performance and neuronal loss by activating mitophagy. Free Radic Biol Med 2024; 225:665-676. [PMID: 39401732 DOI: 10.1016/j.freeradbiomed.2024.10.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Manganese (Mn2+) is among the indispensable trace elements required by the human body, but high-dose Mn2+ exposure can lead to Mn poisoning. Therefore, the tolerable upper intake level (UL) for Mn2+ has been established for normal individuals in different countries. However, whether the UL of Mn2+ is suitable for the patients of Parkinson's disease (PD) is unclear. Here, we found unexpectedly that the dietary UL of Mn2+ supplement enhanced mitophagy through the PINK1/Parkin-mediated ubiquitin-dependent pathway in MPTP- induced mice and cells. Mn2+ promoted mitochondrial biogenesis and dynamics, thereby increased the activity of the mitochondrial respiratory chain with restored mitochondrial function. Additionally, Mn2+ directly elevated the activity of mitochondrial superoxide dismutase (MnSOD), which contributed to the clearance of reactive oxygen species (ROS), restored dopaminergic and motor functions in the MPTP-induced PD mouse model. Similar results were also observed in SH-SY5Y cells, whereas knockdown parkin using siRNA or application of mitophagy inhibitors (Mdivi-1 or Cyclosporine A), abolished the neuroprotective effects of Mn2+. These findings demonstrate that the dietary UL of Mn2+ is protective for the MPTP-induced Parkinson-like lesions with the mechanisms involving the activation of mitophagy, suggesting potential intervention of PD by moderately increasing dietary Mn2+ intake.
Collapse
Affiliation(s)
- Xiao Han
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bingge Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tiansu Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuguo Sun
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongyi Jia
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Jinan University College of Pharmacy, Guangzhou, China
| | - Yinyan Pu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Preventive Medicine, School of public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinghua Hou
- The Clinical Neuroscience Center, Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, 518107, China.
| | - Xifei Yang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
14
|
Chu L, Liu A, Chang J, Zhang J, Hou X, Zhu X, Xing Q, Bao Z. TORC1 Regulates Thermotolerance via Modulating Metabolic Rate and Antioxidant Capacity in Scallop Argopecten irradians irradians. Antioxidants (Basel) 2024; 13:1359. [PMID: 39594501 PMCID: PMC11591371 DOI: 10.3390/antiox13111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a key regulator of metabolism in eukaryotes across multiple pathways. Although TORC1 has been extensively studied in vertebrates and some invertebrates, research on this complex in scallops is limited. In this study, we identified the genes encoding TORC1 complex subunits in the scallop Argopecten irradians irradians through genome-wide in silico scanning. Five genes, including TOR, RAPTOR, LST8, DEPTOR, and PRAS40, that encode the subunits of TORC1 complex were identified in the bay scallop. We then conducted structural characterization and phylogenetic analysis of the A. i. irradians TORC1 (AiTORC1) subunits to determine their structural features and evolutionary relationships. Next, we analyzed the spatiotemporal expressions of AiTORC1-coding genes during various embryo/larvae developmental stages and across different tissues in healthy adult scallops. The results revealed stage- and tissue-specific expression patterns, suggesting diverse roles in development and growth. Furthermore, the regulation of AiTORC1-coding genes was examined in temperature-sensitive tissues (the mantle, gill, hemocyte, and heart) of bay scallops exposed to high-temperature (32 °C) stress over different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, and 10 d). The expression of AiTORC1-coding genes was predominantly suppressed in the hemocyte but was generally activated in the mantle, gill, and heart, indicating a tissue-specific response to heat stress. Finally, functional validation was performed using the TOR inhibitor rapamycin to suppress AiTORC1, leading to an enhanced catabolism, a decreased antioxidant capacity, and a significant reduction in thermotolerance in bay scallops. Collectively, this study elucidates the presence, structural features, evolutional relationships, expression profiles, and roles in antioxidant capacity and metabolism regulation of AiTORC1 in the bay scallop, providing a preliminary understanding of its versatile functions in response to high-temperature challenges in marine mollusks.
Collapse
Affiliation(s)
- Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
15
|
Sun F, Ali NN, Londoño-Vásquez D, Simintiras CA, Qiao H, Ortega MS, Agca Y, Takahashi M, Rivera RM, Kelleher AM, Sutovsky P, Patterson AL, Balboula AZ. Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation. Nat Commun 2024; 15:9463. [PMID: 39487138 PMCID: PMC11530536 DOI: 10.1038/s41467-024-53559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Unlike mild DNA damage exposure, DNA damage repair (DDR) is reported to be ineffective in full-grown mammalian oocytes exposed to moderate or severe DNA damage. The underlying mechanisms of this weakened DDR are unknown. Here, we show that moderate DNA damage in full-grown oocytes leads to aneuploidy. Our data reveal that DNA-damaged oocytes have an altered, closed, chromatin state, and suggest that the failure to repair damaged DNA could be due to the inability of DDR proteins to access damaged loci. Our data also demonstrate that, unlike somatic cells, mouse and porcine oocytes fail to activate autophagy in response to DNA double-strand break-inducing treatment, which we suggest may be the cause of the altered chromatin conformation and inefficient DDR. Importantly, autophagy activity is further reduced in maternally aged oocytes (which harbor severe DNA damage), and its induction is correlated with reduced DNA damage in maternally aged oocytes. Our findings provide evidence that reduced autophagy activation contributes to weakened DDR in oocytes, especially in those from aged females, offering new possibilities to improve assisted reproductive therapy in women with compromised oocyte quality.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nourhan Nashat Ali
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Kilinç G, Boland R, Heemskerk MT, Spaink HP, Haks MC, van der Vaart M, Ottenhoff THM, Meijer AH, Saris A. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Microbiol Spectr 2024; 12:e0016724. [PMID: 38916320 PMCID: PMC11302041 DOI: 10.1128/spectrum.00167-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) as well as nontuberculous mycobacteria are intracellular pathogens whose treatment is extensive and increasingly impaired due to the rise of mycobacterial drug resistance. The loss of antibiotic efficacy has raised interest in the identification of host-directed therapeutics (HDT) to develop novel treatment strategies for mycobacterial infections. In this study, we identified amiodarone as a potential HDT candidate that inhibited both intracellular Mtb and Mycobacterium avium in primary human macrophages without directly impairing bacterial growth, thereby confirming that amiodarone acts in a host-mediated manner. Moreover, amiodarone induced the formation of (auto)phagosomes and enhanced autophagic targeting of mycobacteria in macrophages. The induction of autophagy by amiodarone is likely due to enhanced transcriptional regulation, as the nuclear intensity of the transcription factor EB, the master regulator of autophagy and lysosomal biogenesis, was strongly increased. Furthermore, blocking lysosomal degradation with bafilomycin impaired the host-beneficial effect of amiodarone. Finally, amiodarone induced autophagy and reduced bacterial burden in a zebrafish embryo model of tuberculosis, thereby confirming the HDT activity of amiodarone in vivo. In conclusion, we have identified amiodarone as an autophagy-inducing antimycobacterial HDT that improves host control of mycobacterial infections. IMPORTANCE Due to the global rise in antibiotic resistance, there is a strong need for alternative treatment strategies against intracellular bacterial infections, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria. Stimulating host defense mechanisms by host-directed therapy (HDT) is a promising approach for treating mycobacterial infections. This study identified amiodarone, an antiarrhythmic agent, as a potential HDT candidate that inhibits the survival of Mtb and Mycobacterium avium in primary human macrophages. The antimycobacterial effect of amiodarone was confirmed in an in vivo tuberculosis model based on Mycobacterium marinum infection of zebrafish embryos. Furthermore, amiodarone induced autophagy and inhibition of the autophagic flux effectively impaired the host-protective effect of amiodarone, supporting that activation of the host (auto)phagolysosomal pathway is essential for the mechanism of action of amiodarone. In conclusion, we have identified amiodarone as an autophagy-inducing HDT that improves host control of a wide range of mycobacteria.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralf Boland
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Matthias T. Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Holzer E, Martens S, Tulli S. The Role of ATG9 Vesicles in Autophagosome Biogenesis. J Mol Biol 2024; 436:168489. [PMID: 38342428 DOI: 10.1016/j.jmb.2024.168489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Autophagy mediates the degradation and recycling of cellular material in the lysosomal system. Dysfunctional autophagy is associated with a plethora of diseases including uncontrolled infections, cancer and neurodegeneration. In macroautophagy (hereafter autophagy) this material is encapsulated in double membrane vesicles, the autophagosomes, which form upon induction of autophagy. The precursors to autophagosomes, referred to as phagophores, first appear as small flattened membrane cisternae, which gradually enclose the cargo material as they grow. The assembly of phagophores during autophagy initiation has been a major subject of investigation over the past decades. A special focus has been ATG9, the only conserved transmembrane protein among the core machinery. The majority of ATG9 localizes to small Golgi-derived vesicles. Here we review the recent advances and breakthroughs regarding our understanding of how ATG9 and the vesicles it resides in serve to assemble the autophagy machinery and to establish membrane contact sites for autophagosome biogenesis. We also highlight open questions in the field that need to be addressed in the years to come.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| |
Collapse
|
18
|
Chen L, Zhang J, Xu W, Chen J, Tang Y, Xiong S, Li Y, Zhang H, Li M, Liu Z. Cholesterol-rich lysosomes induced by respiratory syncytial virus promote viral replication by blocking autophagy flux. Nat Commun 2024; 15:6311. [PMID: 39060258 PMCID: PMC11282085 DOI: 10.1038/s41467-024-50711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.
Collapse
Affiliation(s)
- Lifeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Weibin Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yujun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Si Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Manmei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine & College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
19
|
Selarka K, Shravage BV. Illuminating intercellular autophagy: A comprehensive review of cell non-autonomous autophagy. Biochem Biophys Res Commun 2024; 716:150024. [PMID: 38701555 DOI: 10.1016/j.bbrc.2024.150024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Macro-autophagy (autophagy hereafter) is an evolutionarily conserved cellular process that has long been recognized as an intracellular mechanism for maintaining cellular homeostasis. It involves the formation of a membraned structure called the autophagosome, which carries cargo that includes toxic protein aggregates and dysfunctional organelles to the lysosome for degradation and recycling. Autophagy is primarily considered and studied as a cell-autonomous mechanism. However, recent studies have illuminated an underappreciated facet of autophagy, i.e., non-autonomously regulated autophagy. Non-autonomously regulated autophagy involves the degradation of autophagic components, including organelles, cargo, and signaling molecules, and is induced in neighboring cells by signals from primary adjacent or distant cells/tissues/organs. This review provides insight into the complex molecular mechanisms governing non-autonomously regulated autophagy, highlighting the dynamic interplay between cells within tissue/organ or distinct cell types in different tissues/organs. Emphasis is placed on modes of intercellular communication that include secreted molecules, including microRNAs, and their regulatory roles in orchestrating this phenomenon. Furthermore, we explore the multidimensional roles of non-autonomously regulated autophagy in various physiological contexts, spanning tissue development and aging, as well as its importance in diverse pathological conditions, including cancer and neurodegeneration. By studying the complexities of non-autonomously regulated autophagy, we hope to gain insights into the sophisticated intercellular dynamics within multicellular organisms, including mammals. These studies will uncover novel avenues for therapeutic intervention to modulate intercellular autophagic pathways in altered human physiology.
Collapse
Affiliation(s)
- Karan Selarka
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India; Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
20
|
Khatun A, Nasrin T, Hassan MS, Hoque M, Hoda M, Ali S. A review on the nexus of autophagy genes from the perspective of polycystic ovary syndrome. Biol Cell 2024; 116:e2300069. [PMID: 38679788 DOI: 10.1111/boc.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Polycystic ovary syndrome or PCOS is an endocrine disorder in women of reproductive age. It is a diversified multi factorial disorder and diagnosis is very complicated because of its overlapping symptoms some of which are irregular menstrual cycle, acne in face, excess level of androgen (AE), insulin resistance, obesity, cardiovascular disease, mood disorder and type 2 diabetes (T2DM). PCOS may be caused by hormonal imbalance, genetic and epigenetic vulnerability, hypothalamic and ovarian troubles. PCOS is essentially hyperandrogenimia with oligo-anovulation. This review explains the abnormal regulation of autophagy related genes and proteins in different cells at various stages which leads to the genesis of PCOS. During nutrient starvation cells face stress condition, which it tries to overcome by activating its macroautophagy mechanism and by degrading the cytoplasmic material. This provides energy to the cell facilitating its survival. Downregulation of autophagy related genes in endometria has been observed in PCOS women. PCOS can be managed by maintaining proper lifestyle and medical treatment. Healthy meals and regular exercise can prevent the excessive weight and also reduce the PCOS complications. Medicines such as metformin, clomiphene, and the oral contraceptive pill can also balance the hormonal level. The imbalance in regulation of autophagy genes has been discussed with correlation to PCOS. The different management strategies for PCOS have also been summarized.
Collapse
Affiliation(s)
- Arifa Khatun
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Taslima Nasrin
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Md Samim Hassan
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Muddasarul Hoda
- Nanotechnology and Applied Phytochemistry (NAP) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| |
Collapse
|
21
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
22
|
Yao W, Feng Y, Zhang Y, Yang H, Yi C. The molecular mechanisms regulating the assembly of the autophagy initiation complex. Bioessays 2024; 46:e2300243. [PMID: 38593284 DOI: 10.1002/bies.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The autophagy initiation complex is brought about via a highly ordered and stepwise assembly process. Two crucial signaling molecules, mTORC1 and AMPK, orchestrate this assembly by phosphorylating/dephosphorylating autophagy-related proteins. Activation of Atg1 followed by recruitment of both Atg9 vesicles and the PI3K complex I to the PAS (phagophore assembly site) are particularly crucial steps in its formation. Ypt1, a small Rab GTPase in yeast cells, also plays an essential role in the formation of the autophagy initiation complex through multiple regulatory pathways. In this review, our primary focus is to discuss how signaling molecules initiate the assembly of the autophagy initiation complex, and highlight the significant roles of Ypt1 in this process. We end by addressing issues that need future clarification.
Collapse
Affiliation(s)
- Weijing Yao
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Feng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yi Zhang
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Li R, Xue C, Pan Y, Li G, Huang Z, Xu J, Zhang J, Chen X, Hou L. Research on different compound combinations of Realgar-Indigo naturalis formula to reverse acute promyelocytic leukemia arsenic resistance by regulating autophagy through mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117778. [PMID: 38310990 DOI: 10.1016/j.jep.2024.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.
Collapse
Affiliation(s)
- Ruibai Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China; Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 100091, China
| | - Chengyuan Xue
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Yiming Pan
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Ziming Huang
- Department of Medical & Strategic Planning, Techpool Bio-Pharma Co., Ltd, 510520, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Jingfang Zhang
- School of Life Science, Beijing University of Chinese Medicine, 102488, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China
| | - Li Hou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China.
| |
Collapse
|
24
|
Leclerc NR, Dunne TM, Shrestha S, Johnson CP, Kelley JB. TOR signaling regulates GPCR levels on the plasma membrane and suppresses the Saccharomyces cerevisiae mating pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593412. [PMID: 38798445 PMCID: PMC11118302 DOI: 10.1101/2024.05.09.593412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Saccharomyces cerevisiae respond to mating pheromone through the GPCRs Ste2 and Ste3, which promote growth of a mating projection in response to ligand binding. This commitment to mating is nutritionally and energetically taxing, and so we hypothesized that the cell may suppress mating signaling during starvation. We set out to investigate negative regulators of the mating pathway in nutritionally depleted environments. Here, we report that nutrient deprivation led to loss of Ste2 from the plasma membrane. Recapitulating this effect with nitrogen starvation led us to hypothesize that it was due to TORC1 signaling. Rapamycin inhibition of TORC1 impacted membrane levels of all yeast GPCRs. Inhibition of TORC1 also dampened mating pathway output. Deletion analysis revealed that TORC1 repression leads to α-arrestin-directed CME through TORC2-Ypk1 signaling. We then set out to determine whether major downstream effectors of the TOR complexes also downregulate pathway output during mating. We found that autophagy contributes to pathway downregulation through analysis of strains lacking ATG8 . We also show that Ypk1 significantly reduced pathway output. Thus, both autophagy machinery and TORC2-Ypk1 signaling serve as attenuators of pheromone signaling during mating. Altogether, we demonstrate that the stress-responsive TOR complexes coordinate GPCR endocytosis and reduce the magnitude of pheromone signaling, in ligand-independent and ligand-dependent contexts. One Sentence Summary TOR signaling regulates the localization of all Saccharomyces cerevisiae GPCRs during starvation and suppress the mating pathway in the presence and absence of ligand.
Collapse
|
25
|
Wang J, Cao Y, Shi D, Zhang Z, Li X, Chen C. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum. Int J Mol Sci 2024; 25:5268. [PMID: 38791308 PMCID: PMC11120706 DOI: 10.3390/ijms25105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (Y.C.); (D.S.); (Z.Z.); (X.L.)
| |
Collapse
|
26
|
Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, Zhao J. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab 2024; 36:947-968. [PMID: 38718757 DOI: 10.1016/j.cmet.2024.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Zhenyu Yao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
| |
Collapse
|
27
|
Steinmetz T, Thomas J, Reimann L, Himmelreich AK, Schulz SR, Golombek F, Castiglione K, Jäck HM, Brodesser S, Warscheid B, Mielenz D. Identification of TFG- and Autophagy-Regulated Proteins and Glycerophospholipids in B Cells. J Proteome Res 2024; 23:1615-1633. [PMID: 38649144 PMCID: PMC11077586 DOI: 10.1021/acs.jproteome.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.
Collapse
Affiliation(s)
- Tobit
D. Steinmetz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Jana Thomas
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Lena Reimann
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ann-Kathrin Himmelreich
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sebastian R. Schulz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Florian Golombek
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Kathrin Castiglione
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Susanne Brodesser
- Cologne
Excellence Cluster on Cellular Stress Responses in Aging-associated
Diseases (CECAD), University of Köln, D-50931 Köln, Germany
| | - Bettina Warscheid
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
- Department
of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Mielenz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| |
Collapse
|
28
|
Feng R, Liu F, Li R, Zhou Z, Lin Z, Lin S, Deng S, Li Y, Nong B, Xia Y, Li Z, Zhong X, Yang S, Wan G, Ma W, Wu S, Songyang Z. The rapid proximity labeling system PhastID identifies ATP6AP1 as an unconventional GEF for Rheb. Cell Res 2024; 34:355-369. [PMID: 38448650 PMCID: PMC11061317 DOI: 10.1038/s41422-024-00938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Rheb is a small G protein that functions as the direct activator of the mechanistic target of rapamycin complex 1 (mTORC1) to coordinate signaling cascades in response to nutrients and growth factors. Despite extensive studies, the guanine nucleotide exchange factor (GEF) that directly activates Rheb remains unclear, at least in part due to the dynamic and transient nature of protein-protein interactions (PPIs) that are the hallmarks of signal transduction. Here, we report the development of a rapid and robust proximity labeling system named Pyrococcus horikoshii biotin protein ligase (PhBPL)-assisted biotin identification (PhastID) and detail the insulin-stimulated changes in Rheb-proximity protein networks that were identified using PhastID. In particular, we found that the lysosomal V-ATPase subunit ATP6AP1 could dynamically interact with Rheb. ATP6AP1 could directly bind to Rheb through its last 12 amino acids and utilizes a tri-aspartate motif in its highly conserved C-tail to enhance Rheb GTP loading. In fact, targeting the ATP6AP1 C-tail could block Rheb activation and inhibit cancer cell proliferation and migration. Our findings highlight the versatility of PhastID in mapping transient PPIs in live cells, reveal ATP6AP1's role as an unconventional GEF for Rheb, and underscore the importance of ATP6AP1 in integrating mTORC1 activation signals through Rheb, filling in the missing link in Rheb/mTORC1 activation.
Collapse
Affiliation(s)
- Ran Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhifen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuoheng Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengcheng Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baoting Nong
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Xia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoqin Zhong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhan Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Wan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Su Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Shatz O, Fraiberg M, Isola D, Das S, Gogoi O, Polyansky A, Shimoni E, Dadosh T, Dezorella N, Wolf SG, Elazar Z. Rim aperture of yeast autophagic membranes balances cargo inclusion with vesicle maturation. Dev Cell 2024; 59:911-923.e4. [PMID: 38447569 DOI: 10.1016/j.devcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.
Collapse
Affiliation(s)
- Oren Shatz
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Milana Fraiberg
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shubhankar Das
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Olee Gogoi
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Alexandra Polyansky
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eyal Shimoni
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nili Dezorella
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sharon G Wolf
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
30
|
Gross AS, Ghillebert R, Schuetter M, Reinartz E, Rowland A, Bishop BC, Stumpe M, Dengjel J, Graef M. A metabolite sensor subunit of the Atg1/ULK complex regulates selective autophagy. Nat Cell Biol 2024; 26:366-377. [PMID: 38316984 PMCID: PMC10940145 DOI: 10.1038/s41556-024-01348-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.
Collapse
Affiliation(s)
- A S Gross
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Vienna Biocenter, Vienna, Austria
| | - R Ghillebert
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - M Schuetter
- Max Planck Research Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - E Reinartz
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - A Rowland
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - B C Bishop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - M Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - J Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - M Graef
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
31
|
Janusz-Kaminska A, Brzozowska A, Tempes A, Urbanska M, Blazejczyk M, Miłek J, Kuzniewska B, Zeng J, Wesławski J, Kisielewska K, Bassell GJ, Jaworski J. Rab11 regulates autophagy at dendritic spines in an mTOR- and NMDA-dependent manner. Mol Biol Cell 2024; 35:ar43. [PMID: 38294869 PMCID: PMC10916872 DOI: 10.1091/mbc.e23-02-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Synaptic plasticity is a process that shapes neuronal connections during neurodevelopment and learning and memory. Autophagy is a mechanism that allows the cell to degrade its unnecessary or dysfunctional components. Autophagosomes appear at dendritic spines in response to plasticity-inducing stimuli. Autophagy defects contribute to altered dendritic spine development, autistic-like behavior in mice, and neurological disease. While several studies have explored the involvement of autophagy in synaptic plasticity, the initial steps of the emergence of autophagosomes at the postsynapse remain unknown. Here, we demonstrate a postsynaptic association of autophagy-related protein 9A (Atg9A), known to be involved in the early stages of autophagosome formation, with Rab11, a small GTPase that regulates endosomal trafficking. Rab11 activity was necessary to maintain Atg9A-positive structures at dendritic spines. Inhibition of mTOR increased Rab11 and Atg9A interaction and increased the emergence of LC3 positive vesicles, an autophagosome membrane-associated protein marker, in dendritic spines when coupled to NMDA receptor stimulation. Dendritic spines with newly formed LC3+ vesicles were more resistant to NMDA-induced morphologic change. Rab11 DN overexpression suppressed appearance of LC3+ vesicles. Collectively, these results suggest that initiation of autophagy in dendritic spines depends on neuronal activity and Rab11a-dependent Atg9A interaction that is regulated by mTOR activity.
Collapse
Affiliation(s)
- Aleksandra Janusz-Kaminska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Magdalena Blazejczyk
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Jacek Miłek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Juan Zeng
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Jan Wesławski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Katarzyna Kisielewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| |
Collapse
|
32
|
Kim DH. Contrasting views on the role of AMPK in autophagy. Bioessays 2024; 46:e2300211. [PMID: 38214366 PMCID: PMC10922896 DOI: 10.1002/bies.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Efficient management of low energy states is vital for cells to maintain basic functions and metabolism and avoid cell death. While autophagy has long been considered a critical mechanism for ensuring survival during energy depletion, recent research has presented conflicting evidence, challenging the long-standing concept. This recent development suggests that cells prioritize preserving essential cellular components while restraining autophagy induction when cellular energy is limited. This essay explores the conceptual discourse on autophagy regulation during energy stress, navigating through the studies that established the current paradigm and the recent research that has challenged its validity while proposing an alternative model. This exploration highlights the far-reaching implications of the alternative model, which represents a conceptual departure from the established paradigm, offering new perspectives on how cells respond to energy stress.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
33
|
Xue H, Feng Z, Yuan P, Qiao L, Lou Q, Zhao X, Ma Q, Wang S, Shen Y, Ye H, Cheng J, Wang J, Wan S, Zhang B, Shi P, Sun X. Restrained Mitf-associated autophagy by Mulberroside A ameliorates osteoclastogenesis and counteracts OVX-Induced osteoporosis in mice. Cell Death Discov 2024; 10:80. [PMID: 38360705 PMCID: PMC10869803 DOI: 10.1038/s41420-024-01847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Bone and mineral metabolism homeostasis accounts for the maintenance of normal skeletal remodeling. However, with aging and changes in hormone levels, over-activated osteoclasts disrupt homeostasis, induce osteoporosis, and even cause osteoporotic fractures, leading to an enormous economic burden. Despite the rapid development of pharmacological therapy for osteoporosis, safer and more effective treatments remain to be explored. Here, we demonstrate that Mulberroside A (Mul-A), a natural component extracted from mulberry bark and branches, effectively suppresses osteoclastogenesis in vitro and counteracts bone loss caused by ovariectomy (OVX). The mechanism underlying this effect involves the repression of autophagic flux during osteoclastogenesis by Mul-A, which can be attributed to the restrained expression of microphthalmia-related transcription factor (Mitf) and its nuclear translocation. Importantly, Mitf overexpression partially reverses the inhibitory effects of Mul-A on autophagy and osteoclastogenesis. Moreover, applying two autophagy agonizts, rapamycin and Torin 1, attenuates the osteoclastogenic regulatory role of Mul-A. Collectively, our study demonstrates that Mul-A damages osteoclast differentiation and ameliorates osteoporosis caused by estrogen deficiency by modulation of Mitf-associated autophagy, indicating its therapeutic potential against osteoporosis.
Collapse
Affiliation(s)
- Hong Xue
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qiliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuanglin Wan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
34
|
Kudrna K, Staab EB, Eilers E, Thomes P, Maurya S, Brody SL, Wyatt TA, Bailey KL, Dickinson JD. mTOR signaling regulates aberrant epithelial cell proliferative and migratory behaviors characteristic of airway mucous metaplasia in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579905. [PMID: 38405874 PMCID: PMC10888751 DOI: 10.1101/2024.02.12.579905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In asthma, the airway epithelium is hyperplastic, hypertrophied, and lined with numerous large MUC5AC-containing goblet cells (GC). Furthermore, the normal epithelial architecture is disorganized with numerous, what we here describe as, ectopic goblet cells (eGC) deep within the thickened epithelial layer disconnected from the lumenal surface. mTOR is a highly conserved pathway that regulates cell size and proliferation. We hypothesized that the balance between mTOR and autophagy signaling regulates key features of the asthma epithelial layer. Airway histological sections from subjects with asthma had increased frequency of eGC and increased levels of mTOR phosphorylation target-Ribosomal S6. Using human airway epithelial cells (hAECs) with IL-13 stimulation and timed withdrawal to stimulate resolution, we found that multiple key downstream phosphorylation targets downstream from the mTOR complex were increased during early IL-13-mediated mucous metaplasia, and then significantly declined during resolution. The IL-13-mediated changes in mTOR signaling were paralleled by morphologic changes with airway epithelial hypertrophy, hyperplasia, and frequency of eGC. We then examined the relationship between mTOR and autophagy using mice deficient in autophagy protein Atg16L1. Despite having increased cytoplasmic mucins, mouse AECs from Atg16L1 deficient mice had no significant difference in mTOR downstream signaling. mTOR inhibition with rapamycin led to a loss of IL-13-mediated epithelial hypertrophy, hyperplasia, ectopic GC distribution, and reduction in cytoplasmic MUC5AC levels. mTOR inhibition was also associated with a reduction in aberrant IL-13-mediated hAEC proliferation and migration. Our findings demonstrate that mTOR signaling is associated with mucous metaplasia and is crucial to the disorganized airway epithelial structure and function characteristic of muco-obstructive airway diseases such as asthma. Graphical Abstract Key Concepts The airway epithelium in asthma is disorganized and characterized by cellular proliferation, aberrant migration, and goblet cell mucous metaplasia.mTOR signaling is a dynamic process during IL-13-mediated mucous metaplasia, increasing with IL-13 stimulation and declining during resolution.mTOR signaling is strongly increased in the asthmatic airway epithelium.mTOR signaling is associated with the development of key features of the metaplastic airway epithelium including cell proliferation and ectopic distribution of goblet cells and aberrant cellular migration.Inhibition of mTOR leads to decreased epithelial hypertrophy, reduced ectopic goblet cells, and cellular migration.
Collapse
|
35
|
Zhang B, Sun R, Bai R, Sun Z, Liu R, Li W, Yao L, Sun H, Tang Y. G-quadruplex in mitochondria as a possible biomarker for mitophagy detection. Int J Biol Macromol 2024; 259:129337. [PMID: 38218296 DOI: 10.1016/j.ijbiomac.2024.129337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Mitochondrial autophagy (mitophagy) is a key physiological process that maintains the homeostasis of mitochondrial quality and quantity. Monitoring mitophagy is of great significance for detecting cellular abnormalities and developing therapeutic drugs. However, there are still very few biomarkers specifically developed for monitoring mitophagy. Here, we propose for the first time that mitochondrial G-quadruplex may serve as a biomarker for mitophagy detection, and develope a fluorescent light-up probe AMTC to monitor mitophagy in live cells. During mitophagy, AMTC fluorescence is significantly enhanced, but once mitophagy is inhibited, its fluorescence immediately decreases. The fluorescence behavior of AMTC implicates an increase in the formation of mitochondrial G-quadruplex during mitophagy. This inference has also been supported by the other two G-quadruplex probes. Taken together, this work provides a new possible biomarker and detection tool for the study of mitophagy.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, PR China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiyang Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhicheng Sun
- Beijing Institute of Graphic Communication, Beijing 102600, PR China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, PR China.
| | - Wenchao Li
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
36
|
Bhattacharya A, Torggler R, Reiter W, Romanov N, Licheva M, Ciftci A, Mari M, Kolb L, Kaiser D, Reggiori F, Ammerer G, Hollenstein DM, Kraft C. Decoding the function of Atg13 phosphorylation reveals a role of Atg11 in bulk autophagy initiation. EMBO Rep 2024; 25:813-831. [PMID: 38233718 PMCID: PMC10897315 DOI: 10.1038/s44319-023-00055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood. Here we comprehensively analyze the role of phosphorylation events on Atg13 during nutrient-rich conditions and nitrogen starvation. We identify and functionally characterize 48 in vivo phosphorylation sites on Atg13. By generating reciprocal mutants, which mimic the dephosphorylated active and phosphorylated inactive state of Atg13, we observe that disrupting the dynamic regulation of Atg13 leads to insufficient or excessive autophagy, which are both detrimental to cell survival. We furthermore demonstrate an involvement of Atg11 in bulk autophagy even during nitrogen starvation, where it contributes together with Atg1 to the multivalency that drives phase separation of the phagophore assembly site. These findings reveal the importance of post-translational regulation on Atg13 early during autophagy initiation, which provides additional layers of regulation to control bulk autophagy activity and integrate cellular signals.
Collapse
Affiliation(s)
- Anuradha Bhattacharya
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Raffaela Torggler
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang Reiter
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 7, Vienna, Austria
| | - Natalie Romanov
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Akif Ciftci
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark
| | - Lena Kolb
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Dominik Kaiser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000, Aarhus C, Denmark
| | - Gustav Ammerer
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - David M Hollenstein
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 7, Vienna, Austria.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
37
|
Nguyen HT, Wiederkehr A, Wollheim CB, Park KS. Regulation of autophagy by perilysosomal calcium: a new player in β-cell lipotoxicity. Exp Mol Med 2024; 56:273-288. [PMID: 38297165 PMCID: PMC10907728 DOI: 10.1038/s12276-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 02/02/2024] Open
Abstract
Autophagy is an essential quality control mechanism for maintaining organellar functions in eukaryotic cells. Defective autophagy in pancreatic beta cells has been shown to be involved in the progression of diabetes through impaired insulin secretion under glucolipotoxic stress. The underlying mechanism reveals the pathologic role of the hyperactivation of mechanistic target of rapamycin (mTOR), which inhibits lysosomal biogenesis and autophagic processes. Moreover, accumulating evidence suggests that oxidative stress induces Ca2+ depletion in the endoplasmic reticulum (ER) and cytosolic Ca2+ overload, which may contribute to mTOR activation in perilysosomal microdomains, leading to autophagic defects and β-cell failure due to lipotoxicity. This review delineates the antagonistic regulation of autophagic flux by mTOR and AMP-dependent protein kinase (AMPK) at the lysosomal membrane, and both of these molecules could be activated by perilysosomal calcium signaling. However, aberrant and persistent Ca2+ elevation upon lipotoxic stress increases mTOR activity and suppresses autophagy. Therefore, normalization of autophagy is an attractive therapeutic strategy for patients with β-cell failure and diabetes.
Collapse
Affiliation(s)
- Ha Thu Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
38
|
Li DW, Tan JZ, Li ZF, Ou LJ. Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense. CHEMOSPHERE 2024; 349:140844. [PMID: 38042419 DOI: 10.1016/j.chemosphere.2023.140844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.
Collapse
Affiliation(s)
- Da-Wei Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Jin-Zhou Tan
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Zhuo-Fan Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
39
|
Zeng Q, Araki Y, Noda T. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Rep 2024; 43:113599. [PMID: 38127619 DOI: 10.1016/j.celrep.2023.113599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator that monitors the availability of various amino acids to promote cell growth in Saccharomyces cerevisiae. It is activated via two distinct upstream pathways: the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. This study shows that Ser3 was phosphorylated exclusively in a Pib2-dependent manner. Using Ser3 as an indicator of TORC1 activity, together with the established TORC1 substrate Sch9, we investigated which pathways were employed by individual amino acids. Different amino acids exhibited different dependencies on the Gtr and Pib2 pathways. Cysteine was most dependent on the Pib2 pathway and increased the interaction between TORC1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functions as a sensor for cysteine in TORC1 regulation.
Collapse
Affiliation(s)
- Qingzhong Zeng
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
40
|
Ebstrup ML, Sønder SL, Fogde DL, Heitmann ASB, Dietrich TN, Dias C, Jäättelä M, Maeda K, Nylandsted J. Annexin A7 mediates lysosome repair independently of ESCRT-III. Front Cell Dev Biol 2024; 11:1211498. [PMID: 38348092 PMCID: PMC10860759 DOI: 10.3389/fcell.2023.1211498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024] Open
Abstract
Lysosomes are crucial organelles essential for various cellular processes, and any damage to them can severely compromise cell viability. This study uncovers a previously unrecognized function of the calcium- and phospholipid-binding protein Annexin A7 in lysosome repair, which operates independently of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Our research reveals that Annexin A7 plays a role in repairing damaged lysosomes, different from its role in repairing the plasma membrane, where it facilitates repair through the recruitment of ESCRT-III components. Notably, our findings strongly suggest that Annexin A7, like the ESCRT machinery, is dispensable for membrane contact site formation within the newly discovered phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. Instead, we speculate that Annexin A7 is recruited to damaged lysosomes and promotes repair through its membrane curvature and cross-linking capabilities. Our findings provide new insights into the diverse mechanisms underlying lysosomal membrane repair and highlight the multifunctional role of Annexin A7 in membrane repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Catarina Dias
- Membrane Integrity, Danish Cancer Institute, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Danish Cancer Institute, Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Institute, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Samra S, Sharma M, Vaseghi-Shanjani M, Del Bel KL, Byres L, Lin S, Dalmann J, Salman A, Mwenifumbo J, Modi BP, Biggs CM, Boelman C, Clarke LA, Lehman A, Turvey SE. Gain-of-function MARK4 variant associates with pediatric neurodevelopmental disorder and dysmorphism. HGG ADVANCES 2024; 5:100259. [PMID: 38041405 PMCID: PMC10764283 DOI: 10.1016/j.xhgg.2023.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase that plays a key role in tau phosphorylation and regulation of the mammalian target of rapamycin (mTOR) pathway. Abnormal tau phosphorylation and dysregulation of the mTOR pathway are implicated in neurodegenerative and neurodevelopmental disorders. Here, we report a gain-of-function variant in MARK4 in two siblings with childhood-onset neurodevelopmental disability and dysmorphic features. The siblings carry a germline heterozygous missense MARK4 variant c.604T>C (p.Phe202Leu), located in the catalytic domain of the kinase, which they inherited from their unaffected, somatic mosaic mother. Functional studies show that this amino acid substitution has no impact on protein expression but instead increases the ability of MARK4 to phosphorylate tau isoforms found in the fetal and adult brain. The MARK4 variant also increases phosphorylation of ribosomal protein S6, indicating upregulation of the mTORC1 pathway. In this study, we link a germline monoallelic MARK4 variant to a childhood-onset neurodevelopmental disorder characterized by global developmental delay, intellectual disability, behavioral abnormalities, and dysmorphic features.
Collapse
Affiliation(s)
- Simran Samra
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mehul Sharma
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Maryam Vaseghi-Shanjani
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kate L Del Bel
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Loryn Byres
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan Lin
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Joshua Dalmann
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Areesha Salman
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Jill Mwenifumbo
- Department of Medical Genetics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Bhavi P Modi
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Catherine M Biggs
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Cyrus Boelman
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Lorne A Clarke
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Anna Lehman
- Department of Medical Genetics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
42
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
43
|
Carpo N, Tran V, Biancotti JC, Cepeda C, Espinosa-Jeffrey A. Space Flight Enhances Stress Pathways in Human Neural Stem Cells. Biomolecules 2024; 14:65. [PMID: 38254665 PMCID: PMC10813251 DOI: 10.3390/biom14010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Mammalian cells have evolved to function under Earth's gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth's gravity. We found that most of these cells survived the space flight and self-renewed. Yet, some showed enhanced stress responses as well as autophagy-like behavior. To ascertain if the secretome from SPC-flown NSCs contained molecules inducing these responses, we incubated naïve, non-starved NSCs in a medium containing SPC-NSC secretome. We found a four-fold increase in stress responses. Proteomic analysis of the secretome revealed that the protein of the highest content produced by SPC-NSCs was secreted protein acidic and rich in cysteine (SPARC), which induces endoplasmic reticulum (ER) stress, resulting in the cell's demise. These results offer novel knowledge on the response of neural cells, particularly NSCs, subjected to space microgravity. Moreover, some secreted proteins have been identified as microgravity sensing, paving a new venue for future research aiming at targeting the SPARC metabolism. Although we did not establish a direct relationship between microgravity-induced stress and SPARC as a potential marker, these results represent the first step in the identification of gravity sensing molecules as targets to be modulated and to design effective countermeasures to mitigate intracranial hypertension in astronauts using structure-based protein design.
Collapse
Affiliation(s)
- Nicholas Carpo
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | - Victoria Tran
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | - Juan Carlos Biancotti
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Carlos Cepeda
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | | |
Collapse
|
44
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Dupont N, Claude-Taupin A, Codogno P. A historical perspective of macroautophagy regulation by biochemical and biomechanical stimuli. FEBS Lett 2024; 598:17-31. [PMID: 37777819 DOI: 10.1002/1873-3468.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Macroautophagy is a lysosomal degradative pathway for intracellular macromolecules, protein aggregates, and organelles. The formation of the autophagosome, a double membrane-bound structure that sequesters cargoes before their delivery to the lysosome, is regulated by several stimuli in multicellular organisms. Pioneering studies in rat liver showed the importance of amino acids, insulin, and glucagon in controlling macroautophagy. Thereafter, many studies have deciphered the signaling pathways downstream of these biochemical stimuli to control autophagosome formation. Two signaling hubs have emerged: the kinase mTOR, in a complex at the surface of lysosomes which is sensitive to nutrients and hormones; and AMPK, which is sensitive to the cellular energetic status. Besides nutritional, hormonal, and energetic fluctuations, many organs have to respond to mechanical forces (compression, stretching, and shear stress). Recent studies have shown the importance of mechanotransduction in controlling macroautophagy. This regulation engages cell surface sensors, such as the primary cilium, in order to translate mechanical stimuli into biological responses.
Collapse
Affiliation(s)
- Nicolas Dupont
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Aurore Claude-Taupin
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Patrice Codogno
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| |
Collapse
|
46
|
Perucho-Jaimes L, Do J, Van Elgort A, Kaplan KB. Septins modulate the autophagy response after nutrient starvation. Mol Biol Cell 2024; 35:ar4. [PMID: 37910217 PMCID: PMC10881159 DOI: 10.1091/mbc.e22-11-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The pathways that induce macroautophagy (referred to as autophagy hereafter) in response to the stress of starvation are well conserved and essential under nutrient-limiting conditions. However, less is understood about the mechanisms that modulate the autophagy response. Here we present evidence that after induction of autophagy in budding yeast septin filaments rapidly assemble into discrete patches distributed along the cell cortex. These patches gradually mature over 12 h of nutrient deprivation to form extended structures around Atg9 membranes tethered at the cortical endoplasmic reticulum, a class of membranes that are limiting for autophagosome biogenesis. Loss of cortical septin structures alters the kinetics of autophagy activation and most dramatically extends the duration of the autophagy response. In wild-type cells, diffusion of Atg9 membranes at the cell cortex undergoes transient pauses that are dependent on septins, and septins at the bud neck block the diffusion of Atg9 membranes between mother and daughter cells. We conclude that septins reorganize at the cell cortex during autophagy to locally limit access of Atg9 membranes to autophagosome assembly sites, and thus modulate the autophagy response during nutrient deprivation.
Collapse
Affiliation(s)
- Luis Perucho-Jaimes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Jonathan Do
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Alexandria Van Elgort
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Kenneth B. Kaplan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
47
|
Mallén-Ponce MJ, Pérez-Pérez ME. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 194:359-375. [PMID: 37772945 PMCID: PMC10756753 DOI: 10.1093/plphys/kiad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
48
|
Danieli A, Vucak G, Baccarini M, Martens S. Sequestration of translation initiation factors in p62 condensates. Cell Rep 2023; 42:113583. [PMID: 38096057 DOI: 10.1016/j.celrep.2023.113583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Selective autophagy mediates the removal of harmful material from the cytoplasm. This cargo material is selected by cargo receptors, which orchestrate its sequestration within double-membrane autophagosomes and subsequent lysosomal degradation. The cargo receptor p62/SQSTM1 is present in cytoplasmic condensates, and a fraction of them are constantly delivered into lysosomes. However, the molecular composition of the p62 condensates is incompletely understood. To obtain insights into their composition, we develop a method to isolate these condensates and find that p62 condensates are enriched in components of the translation machinery. Furthermore, p62 interacts with translation initiation factors, and eukaryotic initiation factor 2α (eIF2α) and eIF4E are degraded by autophagy in a p62-dependent manner. Thus, p62-mediated autophagy may in part be linked to down-regulation of translation initiation. The p62 condensate isolation protocol developed here may facilitate the study of their contribution to cellular quality control and their roles in health and disease.
Collapse
Affiliation(s)
- Alberto Danieli
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| | - Georg Vucak
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Manuela Baccarini
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
49
|
Schwarz LV, Sandri FK, Scariot F, Delamare APL, Valera MJ, Carrau F, Echeverrigaray S. High nitrogen concentration causes G2/M arrest in Hanseniaspora vineae. Yeast 2023; 40:640-650. [PMID: 37997429 DOI: 10.1002/yea.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.
Collapse
Affiliation(s)
- Luisa Vivian Schwarz
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Knaach Sandri
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernando Scariot
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Maria Jose Valera
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Francisco Carrau
- Enology and Fermentation Biotechnology Area, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
50
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|