1
|
Cesaro S, Orlando M, Bettin I, Longo C, Spagnoli G, de Laureto PP, Molla G, Bertoldi M. A crucial active site network of titratable residues guides catalysis and NAD + binding in human succinic semialdehyde dehydrogenase. Protein Sci 2025; 34:e70024. [PMID: 39731543 DOI: 10.1002/pro.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD+-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay. Due to the poor characterization of this enzyme, we carried out evolutionary and kinetic investigations to contribute to its functional behavior, a prerequisite to interpreting pathogenic variants. An in silico analysis shows that succinic semialdehyde dehydrogenases belong to two families, one human-like and the other of bacterial origin, differing in the oligomeric state and in a network of active site residues. This information is coupled to the biophysical-biochemical characterization of the human recombinant enzyme uncovering that (i) catalysis proceeds by an ordered bi-bi mechanism with NAD+ binding before the aldehyde that exerts a partial non-competitive inhibition; (ii) a stabilizing complex between the catalytic Cys340 and NAD+ is observed and interpreted as a protective mechanism; and (iii) a concerted non-covalent network assists the action of the catalytic residues Cys340 and Glu306. Through mutational analyses of Lys214, Glu306, Cys340, and Glu515 associated with pH studies, we showed that NAD+ binding is controlled by the dyad Lys214-Glu515. Moreover, catalysis is assured by proton transfer exerted by the same dyad networked with the catalytic Glu306, involved in catalytic Cys340 deprotonation/reprotonation. The identification of this weak bond network essential for cofactor binding and catalysis represents a first step to tackling the molecular basis for its deficiency.
Collapse
Affiliation(s)
- Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Department of Biotechnology e Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
- Department of Biology, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Carmen Longo
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Giulia Spagnoli
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Yu J, Wu B, Dong Y, Lin Z, Yao H. Genome-Wide Identification and Expression Analysis of the ALDH Gene Family in Sinonovacula constricta Bivalve in Response to Acute Hypersaline Stress. Animals (Basel) 2024; 15:64. [PMID: 39795007 PMCID: PMC11718799 DOI: 10.3390/ani15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The razor clam Sinonovacula constricta, a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)+-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism. This study presents the first comprehensive analysis of the ALDH family in S. constricta under acute high salt stress conditions and identifies 16 ScALDH genes across 10 subfamilies. These genes are located on eight chromosomes, with tandem duplications observed on chromosome 10; they encode mostly acidic and hydrophilic proteins. Among them, ScALDH18A1 contains a conserved P5CS domain that is implicated in proline synthesis and osmotic regulation. The expression of 14 ScALDH members were significantly altered under acute salt stress conditions, with ScALDH8 and ScALDH18A1 showing increased expression levels, suggesting their involvement in osmotic pressure regulation. This research provides insights into the characteristics, evolution, and response to salinity stress of the ScALDH gene family while shedding light on ALDH function in bivalves, as well as serving as a foundation for further studies on osmotic stress regulation.
Collapse
Affiliation(s)
- Jianing Yu
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Yinghui Dong
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| | - Zhihua Lin
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| | - Hanhan Yao
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| |
Collapse
|
3
|
Newton MS, Azadeh AL, Morgenthaler AB, Copley SD. Challenging a decades-old paradigm: ProB and ProA do not channel the unstable intermediate in proline synthesis after all. Proc Natl Acad Sci U S A 2024; 121:e2413673121. [PMID: 39514317 PMCID: PMC11573504 DOI: 10.1073/pnas.2413673121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The pathway for synthesis of proline in most forms of life produces a highly unstable intermediate, γ-L-glutamyl 5-phosphate (GP). For nearly 70 y, channeling of this intermediate from the active site of glutamate 5-kinase to the active site of GP reductase has been believed to protect GP from cyclization to a dead-end product. However, the evidence presented in support of this idea is not conclusive. We show that changes in the structures of the kinase or reductase that should preclude a protein-protein interaction do not compromise proline synthesis in Escherichia coli, demonstrating that channeling does not occur. We calculate that the half-life of GP is 320 ms. Although GP is indeed unstable, it should diffuse the length of an E. coli cell in less than 3 ms. Thus, most GP produced by glutamate 5-kinase should encounter the active site of GP reductase before cyclization occurs.
Collapse
Affiliation(s)
- Matilda S. Newton
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
- Royal Society Te Aparangi, Wellington6140, New Zealand
| | - Ashley L. Azadeh
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
- Amyris Inc., Emeryville, CA94608
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
| |
Collapse
|
4
|
Wu G, Li T, Chen Y, Ye S, Zhou S, Tian X, Anwaier A, Zhu S, Xu W, Hao X, Ye D, Zhang H. Deciphering glutamine metabolism patterns for malignancy and tumor microenvironment in clear cell renal cell carcinoma. Clin Exp Med 2024; 24:152. [PMID: 38970690 PMCID: PMC11227463 DOI: 10.1007/s10238-024-01390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer characterized by metabolic reprogramming. Glutamine metabolism is pivotal in metabolic reprogramming, contributing to the significant heterogeneity observed in ccRCC. Consequently, developing prognostic markers associated with glutamine metabolism could enhance personalized treatment strategies for ccRCC patients. This study obtained RNA sequencing and clinical data from 763 ccRCC cases sourced from multiple databases. Consensus clustering of 74 glutamine metabolism related genes (GMRGs)- profiles stratified the patients into three clusters, each of which exhibited distinct prognosis, tumor microenvironment, and biological characteristics. Then, six genes (SMTNL2, MIOX, TMEM27, SLC16A12, HRH2, and SAA1) were identified by machine-learning algorithms to develop a predictive signature related to glutamine metabolism, termed as GMRScore. The GMRScore showed significant differences in clinical prognosis, expression profile of immune checkpoints, abundance of immune cells, and immunotherapy response of ccRCC patients. Besides, the nomogram incorporating the GMRScore and clinical features showed strong predictive performance in prognosis of ccRCC patients. ALDH18A1, one of the GRMGs, exhibited elevated expression level in ccRCC and was related to markedly poorer prognosis in the integrated cohort, validated by proteomic profiling of 232 ccRCC samples from Fudan University Shanghai Cancer Center (FUSCC). Conducting western blotting, CCK-8, transwell, and flow cytometry assays, we found the knockdown of ALDH18A1 in ccRCC significantly promoted apoptosis and inhibited proliferation, invasion, and epithelial-mesenchymal transition (EMT) in two human ccRCC cell lines (786-O and 769-P). In conclusion, we developed a glutamine metabolism-related prognostic signature in ccRCC, which is tightly linked to the tumor immune microenvironment and immunotherapy response, potentially facilitating precision therapy for ccRCC patients. Additionally, this study revealed the key role of ALDH18A1 in promoting ccRCC progression for the first time.
Collapse
Affiliation(s)
- Gengrun Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Teng Li
- Department of Urology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China
| | - Yuanbiao Chen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Siqi Zhou
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China.
| | - Xiaohang Hao
- Department of Urology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Filgueiras JPC, Zámocký M, Turchetto-Zolet AC. Unraveling the evolutionary origin of the P5CS gene: a story of gene fusion and horizontal transfer. Front Mol Biosci 2024; 11:1341684. [PMID: 38693917 PMCID: PMC11061531 DOI: 10.3389/fmolb.2024.1341684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024] Open
Abstract
The accumulation of proline in response to the most diverse types of stress is a widespread defense mechanism. In prokaryotes, fungi, and certain unicellular eukaryotes (green algae), the first two reactions of proline biosynthesis occur through two distinct enzymes, γ-glutamyl kinase (GK E.C. 2.7.2.11) and γ-glutamyl phosphate reductase (GPR E.C. 1.2.1.41), encoded by two different genes, ProB and ProA, respectively. Plants, animals, and a few unicellular eukaryotes carry out these reactions through a single bifunctional enzyme, the Δ1-pyrroline-5-carboxylate synthase (P5CS), which has the GK and GPR domains fused. To better understand the origin and diversification of the P5CS gene, we use a robust phylogenetic approach with a broad sampling of the P5CS, ProB and ProA genes, including species from all three domains of life. Our results suggest that the collected P5CS genes have arisen from a single fusion event between the ProA and ProB gene paralogs. A peculiar fusion event occurred in an ancestral eukaryotic lineage and was spread to other lineages through horizontal gene transfer. As for the diversification of this gene family, the phylogeny of the P5CS gene in plants shows that there have been multiple independent processes of duplication and loss of this gene, with the duplications being related to old polyploidy events.
Collapse
Affiliation(s)
- João Pedro Carmo Filgueiras
- Graduate Program in Genetics and Molecular Biology, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andreia Carina Turchetto-Zolet
- Graduate Program in Genetics and Molecular Biology, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
6
|
Forlani G, Sabbioni G, Barera S, Funck D. A complex array of factors regulate the activity of Arabidopsis thaliana δ 1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. PLANT, CELL & ENVIRONMENT 2024; 47:1348-1362. [PMID: 38223941 DOI: 10.1111/pce.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The first and committed step in proline synthesis from glutamate is catalyzed by δ1 -pyrroline-5-carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro- to millimolar range, and its activity was inhibited by NADP+ , ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simone Barera
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Chang J, Yuan W, Gao C, Zhang B, Liu JL, Chen G, Tan YW. Single-Molecule Fluorescence Imaging Reveals Coassembly of CTPS and P5CS. J Phys Chem B 2024; 128:949-959. [PMID: 38236746 DOI: 10.1021/acs.jpcb.3c06498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The cellular compartmentation induced by self-assembly of natural proteins has recently attracted widespread attention due to its structural-functional significance. Among them, as a highly conserved metabolic enzyme and one of the potential targets for cancers and parasitic diseases in drug development, CTP synthase (CTPS) has also been reported to self-assemble into filamentous structures termed cytoophidia. To elucidate the dynamical mechanism of cytoophidium filamentation, we utilize single-molecule fluorescence imaging to observe the real-time self-assembly dynamics of CTPS and the coordinated assembly between CTPS and its interaction partner, Δ1-pyrroline-5-carboxylate synthase (P5CS). Significant differences exist in the direction of growth and extension when the two proteins self-assemble. The oligomer state distribution analysis of the CTPS minimum structural subunit under different conditions and the stoichiometry statistics of binding CTPS and P5CS by single-molecule fluorescence photobleach counting further confirm that the CTPS cytoophidia are mainly stacked with tetramers. CTPS can act as the nucleation core to induce the subsequent growth of the P5CS filaments. Our work not only provide evidence from the molecular level for the self-assembly and coordinated assembly (coassembly) of CTPS with its interaction partner P5CS in vitro but also offer new experimental perspectives for the dynamics research of coordinated regulation between other protein polymers.
Collapse
Affiliation(s)
- Jian Chang
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| | - Weijie Yuan
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| | - Chendi Gao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Linder SJ, Bernasocchi T, Martínez-Pastor B, Sullivan KD, Galbraith MD, Lewis CA, Ferrer CM, Boon R, Silveira GG, Cho HM, Vidoudez C, Shroff S, Oliveira-Costa JP, Ross KN, Massri R, Matoba Y, Kim E, Rueda BR, Stott SL, Gottlieb E, Espinosa JM, Mostoslavsky R. Inhibition of the proline metabolism rate-limiting enzyme P5CS allows proliferation of glutamine-restricted cancer cells. Nat Metab 2023; 5:2131-2147. [PMID: 37957387 PMCID: PMC11639397 DOI: 10.1038/s42255-023-00919-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
Glutamine is a critical metabolite for rapidly proliferating cells as it is used for the synthesis of key metabolites necessary for cell growth and proliferation. Glutamine metabolism has been proposed as a therapeutic target in cancer and several chemical inhibitors are in development or in clinical trials. How cells subsist when glutamine is limiting is poorly understood. Here, using an unbiased screen, we identify ALDH18A1, which encodes P5CS, the rate-limiting enzyme in the proline biosynthetic pathway, as a gene that cells can downregulate in response to glutamine starvation. Notably, P5CS downregulation promotes de novo glutamine synthesis, highlighting a previously unrecognized metabolic plasticity of cancer cells. The glutamate conserved from reducing proline synthesis allows cells to produce the key metabolites necessary for cell survival and proliferation under glutamine-restricted conditions. Our findings reveal an adaptive pathway that cancer cells acquire under nutrient stress, identifying proline biosynthesis as a previously unrecognized major consumer of glutamate, a pathway that could be exploited for developing effective metabolism-driven anticancer therapies.
Collapse
Affiliation(s)
- Samantha J Linder
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| | - Bárbara Martínez-Pastor
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline A Lewis
- The Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina M Ferrer
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Galapagos de Wittelaan, Mechelen, Belgium
| | - Giorgia G Silveira
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hyo Min Cho
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Stuti Shroff
- Department of Pathology, The Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao P Oliveira-Costa
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Kenneth N Ross
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rami Massri
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Eugene Kim
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shannon L Stott
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Engineering in Medicine and Surgery, The Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- MD Anderson Cancer Center, Houston, TX, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| |
Collapse
|
9
|
Ye W, Xu L, Li Y, Liu L, Ma Z, Sun D, Han B. Single Nucleotide Polymorphisms of ALDH18A1 and MAT2A Genes and Their Genetic Associations with Milk Production Traits of Chinese Holstein Cows. Genes (Basel) 2022; 13:genes13081437. [PMID: 36011348 PMCID: PMC9407996 DOI: 10.3390/genes13081437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Our preliminary work had suggested two genes, aldehyde dehydrogenase 18 family member A1 (ALDH18A1) and methionine adenosyltransferase 2A (MAT2A), related to amino acid synthesis and metabolism as candidates affecting milk traits by analyzing the liver transcriptome and proteome of dairy cows at different lactation stages. In this study, the single nucleotide polymorphisms (SNPs) of ALDH18A1 and MAT2A genes were identified and their genetic effects and underlying causative mechanisms on milk production traits in dairy cattle were analyzed, with the aim of providing effective genetic information for the molecular breeding of dairy cows. By resequencing the entire coding and partial flanking regions of ALDH18A1 and MAT2A, we found eight SNPs located in ALDH18A1 and two in MAT2A. Single-SNP association analysis showed that most of the 10 SNPs of these two genes were significantly associated with the milk yield traits, 305-day milk yield, fat yield, and protein yield in the first and second lactations (corrected p ≤ 0.0488). Using Haploview 4.2, we found that the seven SNPs of ALDH18A1 formed two haplotype blocks; subsequently, the haplotype-based association analysis showed that both haplotypes were significantly associated with 305-day milk yield, fat yield, and protein yield (corrected p ≤ 0.014). Furthermore, by Jaspar and Genomatix software, we found that 26:g.17130318 C>A and 11:g.49472723G>C, respectively, in the 5′ flanking region of ALDH18A1 and MAT2A genes changed the transcription factor binding sites (TFBSs), which might regulate the expression of corresponding genes to affect the phenotypes of milk production traits. Therefore, these two SNPs were considered as potential functional mutations, but they also require further verification. In summary, ALDH18A1 and MAT2A were proved to probably have genetic effects on milk production traits, and their valuable SNPs might be used as candidate genetic markers for dairy cattle’s genomic selection (GS).
Collapse
Affiliation(s)
- Wen Ye
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| |
Collapse
|
10
|
Kaczmarczyk A, Baker M, Diddle J, Yuzyuk T, Valle D, Lindstrom K. A neonate with ornithine aminotransferase deficiency; insights on the hyperammonemia-associated biochemical phenotype of gyrate atrophy. Mol Genet Metab Rep 2022; 31:100857. [PMID: 35782604 PMCID: PMC9248225 DOI: 10.1016/j.ymgmr.2022.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Aneta Kaczmarczyk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, UT, USA
- Corresponding author at: ARUP Laboratories, 500 Chipeta Way, MS115, Salt Lake City, UT 84108, USA.
| | - Mark Baker
- Phoenix Children's Pediatric Residency Program Alliance, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Julianna Diddle
- Phoenix Children's Pediatric Residency Program Alliance, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, UT, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
11
|
Forlani G, Sabbioni G, Ragno D, Petrollino D, Borgatti M. Phenyl-substituted aminomethylene-bisphosphonates inhibit human P5C reductase and show antiproliferative activity against proline-hyperproducing tumour cells. J Enzyme Inhib Med Chem 2021; 36:1248-1257. [PMID: 34107832 PMCID: PMC8205077 DOI: 10.1080/14756366.2021.1919890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10-6 to 10-4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Petrollino
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Kiiskila JD, Sarkar D, Datta R. Differential protein abundance of vetiver grass in response to acid mine drainage. PHYSIOLOGIA PLANTARUM 2021; 173:829-842. [PMID: 34109636 DOI: 10.1111/ppl.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainage (AMD) is an acidic and metalliferous discharge that imposes oxidative stress on living things through bioaccumulation and physical exposure. The abandoned Tab-Simco mining site of Southern Illinois generates highly acidic AMD with elevated sulfate (SO4 2- ) and various metals. Vetiver grass (Chrysopogon zizanioides) is effective for the remediation of Tab-Simco AMD at both mesocosm and microcosm levels over extended periods. In this study, we conducted a proteomic investigation of vetiver shoots under short and long-term exposure to AMD. Our objective was to decipher the physiological responses of vetiver to the combined abiotic stresses of AMD (metal and low pH). Differential regulation was observed for longer-term (56 days) exposure to AMD, which resulted in 17 upregulated and nine downregulated proteins, whereas shorter-term (7 days) exposure led to 14 upregulated and 14 downregulated proteins. There were significant changes to photosynthesis, including upregulation of electron transport chain proteins for light-dependent reactions after 56 days, whereas differential regulation of enzymes relating to C4 carbon fixation was observed after 7 days. Significant changes in amino acid and nitrogen metabolism, including upregulation of ethylene and flavonoid biosynthesis, along with plant response to nitrogen starvation, were observed. Short-term changes also included upregulation of glutathione reductase and methionine sulfoxide reductase, whereas longer-term changes included changes in protein misfolding and ER-associated protein degradation for stress management and acclimation.
Collapse
Affiliation(s)
- Jeffrey D Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
- Department of Natural Sciences, Chadron State College, Chadron, Nebraska, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
13
|
P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int J Mol Sci 2021; 22:ijms222111763. [PMID: 34769188 PMCID: PMC8584052 DOI: 10.3390/ijms222111763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)—the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.
Collapse
|
14
|
A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells. Metab Eng Commun 2021; 13:e00179. [PMID: 34386349 PMCID: PMC8346673 DOI: 10.1016/j.mec.2021.e00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 01/25/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression. We have engineered a proline P5CS metabolism selection system in CHO cells P5CS proline selection was used to engineer lipid metabolism in CHO cells P5CS selection was stable for at least 100 generations P5CS and GS selection systems were used together to engineer lipid and mAb expression Lipid metabolism P5CS engineered CHO cells give enhanced recombinant protein expression
Collapse
|
15
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
16
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
17
|
Zhang Q, Hou Y, Bazer FW, He W, Posey EA, Wu G. Amino Acids in Swine Nutrition and Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:81-107. [PMID: 33770404 DOI: 10.1007/978-3-030-54462-1_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the building blocks of proteins in animals, including swine. With the development of new analytical methods and biochemical research, there is a growing interest in fundamental and applied studies to reexamine the roles and usage of amino acids (AAs) in swine production. In animal nutrition, AAs have been traditionally classified as nutritionally essential (EAAs) or nutritionally nonessential (NEAAs). AAs that are not synthesized de novo must be provided in diets. However, NEAAs synthesized by cells of animals are more abundant than EAAs in the body, but are not synthesized de novo in sufficient amounts for the maximal productivity or optimal health (including resistance to infectious diseases) of swine. This underscores the conceptual limitations of NEAAs in swine protein nutrition. Notably, the National Research Council (NRC 2012) has recognized both arginine and glutamine as conditionally essential AAs for pigs to improve their growth, development, reproduction, and lactation. Results of recent work have also provided compelling evidence for the nutritional essentiality of glutamate, glycine, and proline for young pigs. The inclusion of so-called NEAAs in diets can help balance AAs in diets, reduce the dietary levels of EAAs, and protect the small intestine from oxidative stress, while enhancing the growth performance, feed efficiency, and health of pigs. Thus, both EAAs and NEAAs are needed in diets to meet the requirements of pigs. This notion represents a new paradigm shift in our understanding of swine protein nutrition and is transforming pork production worldwide.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Sabbioni G, Funck D, Forlani G. Enzymology and Regulation of δ 1-Pyrroline-5-Carboxylate Synthetase 2 From Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:672702. [PMID: 34603346 PMCID: PMC8480329 DOI: 10.3389/fpls.2021.672702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/10/2021] [Indexed: 05/16/2023]
Abstract
Under several stress conditions, such as excess salt and drought, many plants accumulate proline inside the cell, which is believed to help counteracting the adverse effects of low water potential. This increase mainly relies upon transcriptional induction of δ1-pyrroline-5-carboxylate synthetase (P5CS), the enzyme that catalyzes the first two steps in proline biosynthesis from glutamate. P5CS mediates both the phosphorylation of glutamate and the reduction of γ-glutamylphosphate to glutamate-5-semialdehyde, which spontaneously cyclizes to δ1-pyrroline-5-carboxylate (P5C). In most higher plants, two isoforms of P5CS have been found, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate the regulation of P5CS at the transcriptional level, to date, the properties of the enzyme have been only poorly studied. As a consequence, the descriptions of post-translational regulatory mechanisms have largely been limited to feedback-inhibition by proline. Here, we report cloning and heterologous expression of P5CS2 from Oryza sativa. The protein has been fully characterized from a functional point of view, using an assay method that allows following the physiological reaction of the enzyme. Kinetic analyses show that the activity is subjected to a wide array of regulatory mechanisms, ranging from product inhibition to feedback inhibition by proline and other amino acids. These findings confirm long-hypothesized influences of both, the redox status of the cell and nitrogen availability, on proline biosynthesis.
Collapse
Affiliation(s)
- Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Plant Physiology and Biochemistry Laboratory, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- *Correspondence: Giuseppe Forlani,
| |
Collapse
|
19
|
Kalmár T, Maróti Z, Zimmermann A, Sztriha L. Tremor as an early sign of hereditary spastic paraplegia due to mutations in ALDH18A1. Brain Dev 2021; 43:144-151. [PMID: 32798076 DOI: 10.1016/j.braindev.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ALDH18A1 gene is located at 10q24.1 and encodes delta-1-pyrroline-5-carboxylate synthetase (P5CS), a mitochondrial bifunctional enzyme that catalyzes the first two steps in de novo biosynthesis of proline, ornithine, citrulline, and arginine. ALDH18A1-related disorders have been classified into four groups, such as autosomal dominant and recessive hereditary spastic paraplegia (SPG9A and SPG9B, respectively), as well as autosomal dominant and recessive cutis laxa (ADCL3 and ARCL3A, respectively). Neurodegeneration is a characteristic feature of all groups. CASE REPORT Here, we report a girl with compound heterozygous disease-causing variants (c.-28-2A>G and c.383G>A, p.Arg128His) in the ALDH18A1 gene, revealed by whole exome sequencing. The c.-28-2A>G variant in intron 1, inherited from the mother, is a novel mutation, while the c.383G>A variant in exon 4, inherited from the father, has already been reported. The patient presented with vigorous infantile tremor preceding progressive spastic paraplegia. Dysmorphic features included elongated face, deep-set ears, upturned nose, long philtrum and pointed chin. Intrauterine and postnatal growth retardation, microcephaly, global developmental delay and profound intellectual disability were also noticed. Blood fasting ammonia level, plasma proline, ornithine and arginine levels were normal, while citrulline level was slightly decreased. Brain MRI revealed moderate hypoplasia of the corpus callosum and reduction of white matter volume. CONCLUSIONS The patient represents SPG9B, a rare form of autosomal recessive hereditary spastic paraplegias. The early onset tremor, preceding lower limb spasticity appears to be a unique early manifestation of neurodegeneration in this case.
Collapse
Affiliation(s)
- Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
20
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|
21
|
Sun T, Kwok WC, Chua KJ, Lo TM, Potter J, Yew WS, Chesnut JD, Hwang IY, Chang MW. Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:1864-1872. [PMID: 32470293 DOI: 10.1021/acssynbio.0c00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chinese hamster ovary (CHO) cells are the superior host cell culture models used for the bioproduction of therapeutic proteins. One of the prerequisites for bioproduction using CHO cell lines is the need to generate stable CHO cell lines with optimal expression output. Antibiotic selection is commonly employed to isolate and select CHO cell lines with stable expression, despite its potential negative impact on cellular metabolism and expression level. Herein, we present a novel proline-based selection system for the isolation of stable CHO cell lines. The system exploits a dysfunctional proline metabolism pathway in CHO cells by using a pyrroline-5-carboxylate synthase gene as a selection marker, enabling selection to be made using proline-free media. The selection system was demonstrated by expressing green fluorescent protein (GFP) and a monoclonal antibody. When GFP was expressed, more than 90% of stable transfectants were enriched within 2 weeks of the selection period. When a monoclonal antibody was expressed, we achieved comparable titers (3.35 ± 0.47 μg/mL) with G418 and Zeocin-based selections (1.65 ± 0.46 and 2.25 ± 0.07 μg/mL, respectively). We further developed a proline-based coselection by using S. cerevisiae PRO1 and PRO2 genes as markers, which enables the generation of 99.5% double-transgenic cells. The proline-based selection expands available selection tools and provides an alternative to antibiotic-based selections in CHO cell line development.
Collapse
Affiliation(s)
- Tao Sun
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Wee Chiew Kwok
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Koon Jiew Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Tat-Ming Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Jonathan D. Chesnut
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - In Young Hwang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
22
|
Marco-Marín C, Escamilla-Honrubia JM, Llácer JL, Seri M, Panza E, Rubio V. Δ 1 -Pyrroline-5-carboxylate synthetase deficiency: An emergent multifaceted urea cycle-related disorder. J Inherit Metab Dis 2020; 43:657-670. [PMID: 32017139 DOI: 10.1002/jimd.12220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
The bifunctional homooligomeric enzyme Δ1 -pyrroline-5-carboxylate synthetase (P5CS) and its encoding gene ALDH18A1 were associated with disease in 1998. Two siblings who presented paradoxical hyperammonemia (alleviated by protein), mental disability, short stature, cataracts, cutis laxa, and joint laxity, were found to carry biallelic ALDH18A1 mutations. They showed biochemical indications of decreased ornithine/proline synthesis, agreeing with the role of P5CS in the biosynthesis of these amino acids. Of 32 patients reported with this neurocutaneous syndrome, 21 familial ones hosted homozygous or compound heterozygous ALDH18A1 mutations, while 11 sporadic ones carried de novo heterozygous ALDH18A1 mutations. In 2015 to 2016, an upper motor neuron syndrome (spastic paraparesis/paraplegia SPG9) complicated with some traits of the neurocutaneous syndrome, although without report of cutis laxa, joint laxity, or herniae, was associated with monoallelic or biallelic ALDH18A1 mutations with, respectively, dominant and recessive inheritance. Of 50 SPG9 patients reported, 14 and 36 (34/2 familial/sporadic) carried, respectively, biallelic and monoallelic mutations. Thus, two neurocutaneous syndromes (recessive and dominant cutis laxa 3, abbreviated ARCL3A and ADCL3, respectively) and two SPG9 syndromes (recessive SPG9B and dominant SPG9A) are caused by essentially different spectra of ALDH18A1 mutations. On the bases of the clinical data (including our own prior patients' reports), the ALDH18A1 mutations spectra, and our knowledge on the P5CS protein, we conclude that the four syndromes share the same pathogenic mechanisms based on decreased P5CS function. Thus, these syndromes represent a continuum of increasing severity (SPG9A < SPG9B < ADCL3 ≤ ARCL3A) of the same disease, P5CS deficiency, in which the dominant mutations cause loss-of-function by dominant-negative mechanisms.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Juan M Escamilla-Honrubia
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - José L Llácer
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Genetics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Emanuele Panza
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| |
Collapse
|
23
|
Marelli C, Badiou S, Genestet S, Larrieu L, Damier P, Camu W, Planes M, Koenig M, Guissart C. Autosomal dominant SPG9: intrafamilial variability and onset during pregnancy. Neurol Sci 2020; 41:1931-1933. [PMID: 32221810 DOI: 10.1007/s10072-020-04341-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The ALDH18A1 gene, encoding delta-1-pyrroline-5-carboxylate synthase (P5CS), is responsible for an autosomal recessive disease with severe developmental delay; more recently, ALDH18A1 was found to be responsible for SPG9, an autosomal dominant (AD) spastic paraplegia. CASE REPORT We report a three-generation family with AD SPG9, initially suspected because of low citrulline on fasting plasma amino acid chromatography (AAC). Interestingly, in two patients, the spastic paraplegia appeared during pregnancy. One subject presented a severe childhood-onset form while another subject had a mild late-onset disease. CONCLUSION The description of this family is of particular interest: it highlights the possibility of transient or permanent aggravation of spastic paraplegia due to SPG9 during pregnancy, suggesting a direct link between neurological symptoms and amino acid defect in a period of higher requirements and the potential benefit of amino acid supplementation; it underscores the value of plasma citrulline on fasting plasma AAC as a biomarker for this disease; it shows the variable expression of the disease.
Collapse
Affiliation(s)
- C Marelli
- Department of Neurology, Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Gui de Chauliac University Hospital Montpellier, 80, Avenue A Fliche, 34295, Montpellier, France. .,Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, Montpellier, France. .,Inserm U1198 MMDN, Montpellier, France.
| | - S Badiou
- Biochemistry Laboratory, Lapeyronie Hospital, Montpellier, France.,PhyMedExp, INSERM, CNRS, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - S Genestet
- Hôpital de la Cavale Blanche, Service d'Explorations Fonctionnelles Neurologiques, CHRU de Brest, 29609, Brest, France
| | - L Larrieu
- Institut Universitaire de Recherche Clinique, Laboratoire de Génétique de Maladies Rares EA7402, Laboratoire de Génétique Moléculaire, University Hospital, Université de Montpellier, Montpellier, France
| | - P Damier
- Service de Neurologie, CHU de Nantes, Nantes, France
| | - W Camu
- Expert Center for Motor Neuron Diseases, Explorations Neurologiques, CHU and Université de Montpellier, Montpellier, France
| | - M Planes
- Service de Genetique Clinique, CHRU Morvan, 29609, Brest, France
| | - M Koenig
- Institut Universitaire de Recherche Clinique, Laboratoire de Génétique de Maladies Rares EA7402, Laboratoire de Génétique Moléculaire, University Hospital, Université de Montpellier, Montpellier, France
| | - C Guissart
- Institut Universitaire de Recherche Clinique, Laboratoire de Génétique de Maladies Rares EA7402, Laboratoire de Génétique Moléculaire, University Hospital, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Zhang B, Tastan ÖY, Zhou X, Guo CJ, Liu X, Thind A, Hu HH, Zhao S, Liu JL. The proline synthesis enzyme P5CS forms cytoophidia in Drosophila. J Genet Genomics 2020; 47:131-143. [PMID: 32317150 DOI: 10.1016/j.jgg.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023]
Abstract
Compartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, △1-pyrroline-5-carboxylate synthase (P5CS). Using the Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ömür Y Tastan
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuyang Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Aaron Thind
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
25
|
Understanding the role of key amino acids in regulation of proline dehydrogenase/proline oxidase (prodh/pox)-dependent apoptosis/autophagy as an approach to targeted cancer therapy. Mol Cell Biochem 2020; 466:35-44. [PMID: 31933109 PMCID: PMC7028810 DOI: 10.1007/s11010-020-03685-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
In stress conditions, as neoplastic transformation, amino acids serve not only as nutrients to maintain the cell survival but also as mediators of several regulatory pathways which are involved in apoptosis and autophagy. Especially, under glucose deprivation, in order to maintain the cell survival, proline and glutamine together with other glutamine-derived products such as glutamate, alpha-ketoglutarate, and ornithine serve as alternative sources of energy. They are substrates for production of pyrroline-5-carboxylate which is the product of conversion of proline by proline dehydrogenase/ proline oxidase (PRODH/POX) to produce ATP for protective autophagy or reactive oxygen species for apoptosis. Interconversion of proline, ornithine, and glutamate may therefore regulate PRODH/POX-dependent apoptosis/autophagy. The key amino acid is proline, circulating between mitochondria and cytoplasm in the proline cycle. This shuttle is known as proline cycle. It is coupled to pentose phosphate pathway producing nucleotides for DNA biosynthesis. PRODH/POX is also linked to p53 and AMP-activated protein kinase (AMPK)-dependent pathways. Proline availability for PRODH/POX-dependent apoptosis/autophagy is regulated at the level of collagen biosynthesis (proline utilizing process) and prolidase activity (proline supporting process). In this review, we suggest that amino acid metabolism linking TCA and Urea cycles affect PRODH/POX-dependent apoptosis/autophagy and the knowledge might be useful to targeted cancer therapy.
Collapse
|
26
|
Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 2019; 94:95-107. [PMID: 31707015 DOI: 10.1016/j.niox.2019.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022]
Abstract
Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.
Collapse
|
27
|
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 2019; 294:10278-10289. [PMID: 31110046 PMCID: PMC6664195 DOI: 10.1074/jbc.ra119.007983] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.
Collapse
Affiliation(s)
- Michelle Yam
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Abbi L Engel
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Siyan Zhu
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Allison Hauer
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Rui Zhang
- From the Departments of Ophthalmology and
- the Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | - Daniel Lohner
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- From the Departments of Ophthalmology and
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
- the Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Marlee Dinterman
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Chen Zhao
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
| | - Jennifer R Chao
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109,
| | - Jianhai Du
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
28
|
Wei Q, Dong HL, Pan LY, Chen CX, Yan YT, Wang RM, Li HF, Liu ZJ, Tao QQ, Wu ZY. Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia. Transl Neurodegener 2019; 8:19. [PMID: 31289639 PMCID: PMC6593507 DOI: 10.1186/s40035-019-0157-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Although many causative genes of hereditary spastic paraplegia (HSP) have been uncovered in recent years, there are still approximately 50% of HSP patients without genetically diagnosis, especially in autosomal recessive (AR) HSP patients. Rare studies have been performed to determine the genetic spectrum and clinical profiles of recessive HSP patients in the Chinese population. METHODS In this study, we investigated 24 Chinese index AR/sporadic patients by targeted next-generation sequencing (NGS), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Further functional studies were performed to identify pathogenicity of those uncertain significance variants. RESULTS We identified 11 mutations in HSP related genes including 7 novel mutations, including two (p.V1979_L1980delinsX, p.F2343 fs) in SPG11, two (p.T55 M, p.S308 T) in AP5Z1, one (p.S242 N) in ALDH18A1, one (p.D597fs) in GBA2, and one (p.Q486X) in ATP13A2 in 8 index patients and their family members. Mutations in ALDH18A1, AP5Z1, CAPN1 and ATP13A2 genes were firstly reported in the Chinese population. Furthermore, the clinical phenotypes of the patients carrying mutations were described in detail. The mutation (p.S242 N) in ALDH18A1 decreased enzyme activity of P5CS and mutations (p.T55 M, p.S308 T) in AP5Z1 induced lysosomal dysfunction. CONCLUSION Our results expanded the genetic spectrum and clinical profiles of AR-HSP patients and further demonstrated the efficiency and reliability of targeted NGS diagnosing suspected HSP patients.
Collapse
Affiliation(s)
- Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Li-Ying Pan
- Longyan First Hospital, Fujian Medical University, Longyan, China
| | - Cong-Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Yang-Tian Yan
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Rou-Min Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Zhi-Jun Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Sienkiewicz N, Ong HB, Fairlamb AH. Characterisation of a putative glutamate 5-kinase from Leishmania donovani. FEBS J 2018; 285:2662-2678. [PMID: 29777624 PMCID: PMC6099280 DOI: 10.1111/febs.14511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
Previous metabolic studies have demonstrated that leishmania parasites are able to synthesise proline from glutamic acid and threonine from aspartic acid. The first committed step in both biosynthetic pathways involves an amino acid kinase, either a glutamate 5‐kinase (G5K; http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/7/2/11.html) or an aspartokinase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/7/2/4.html). Bioinformatic analysis of multiple leishmania genomes identifies a single amino acid‐kinase gene (LdBPK 262740.1) variously annotated as either a putative glutamate or aspartate kinase. To establish the catalytic function of this Leishmania donovani gene product, we have determined the physical and kinetic properties of the recombinant enzyme purified from Escherichia coli. The findings indicate that the enzyme is a bona fide G5K with no activity as an aspartokinase. Tetrameric G5K displays kinetic behaviour similar to its bacterial orthologues and is allosterically regulated by proline, the end product of the pathway. The structure‐activity relationships of proline analogues as inhibitors are broadly similar to the bacterial enzyme. However, unlike G5K from E. coli, leishmania G5K lacks a C‐terminal PUA (pseudouridine synthase and archaeosine transglycosylase) domain and does not undergo higher oligomerisation in the presence of proline. Gene replacement studies are suggestive, but not conclusive that G5K is essential. Enzymes Glutamate 5‐kinase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/7/2/11.html); aspartokinase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/7/2/4.html).
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, UK
| | - Han B Ong
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, UK
| | - Alan H Fairlamb
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, UK
| |
Collapse
|
30
|
DeBiasse MB, Kawji Y, Kelly MW. Phenotypic and transcriptomic responses to salinity stress across genetically and geographically divergent Tigriopus californicus populations. Mol Ecol 2018; 27:1621-1632. [PMID: 29509986 DOI: 10.1111/mec.14547] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Species inhabiting the North American west coast intertidal must tolerate an extremely variable environment, with large fluctuations in both temperature and salinity. Uncovering the mechanisms for this tolerance is key to understanding species' persistence. We tested for differences in salinity tolerance between populations of Tigriopus californicus copepods from locations in northern (Bodega Reserve) and southern (San Diego) California known to differ in temperature, precipitation and humidity. We also tested for differences between populations in their transcriptomic responses to salinity. Although these two populations have ~20% mtDNA sequence divergence and differ strongly in other phenotypic traits, we observed similarities in their phenotypic and transcriptomic responses to low and high salinity stress. Salinity significantly affected respiration rate (increased under low salinity and reduced under high salinity), but we found no significant effect of population on respiration or a population by salinity interaction. Under high salinity, there was no population difference in knock-down response, but northern copepods had a smaller knock-down under low salinity stress, corroborating previous results for T. californicus. Northern and southern populations had a similar transcriptomic response to salinity based on a principle components analysis, although differential gene expression under high salinity stress was three times lower in the northern population compared to the southern population. Transcripts differentially regulated under salinity stress were enriched for "amino acid transport" and "ion transport" annotation categories, supporting previous work demonstrating that the accumulation of free amino acids is important for osmotic regulation in T. californicus.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Yasmeen Kawji
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
31
|
Soni P, Abdin MZ. Water deficit-induced oxidative stress affects artemisinin content and expression of proline metabolic genes in Artemisia annua L. FEBS Open Bio 2017; 7:367-381. [PMID: 28286732 PMCID: PMC5337892 DOI: 10.1002/2211-5463.12184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/12/2016] [Accepted: 12/09/2016] [Indexed: 12/02/2022] Open
Abstract
Water stress is one of the most critical abiotic stresses that restricts growth, development, and alters physiological and biochemical mechanisms of plant. The effects of long-term water shortage-induced oxidative stress on morphophysiological parameters, proline metabolic genes, and artemisinin content were studied in Artemisia annua L. under greenhouse conditions. Plant growth, biomass accumulation, relative water content, and chlorophyll content were reduced under drought. Leaf water potential ranged from -0.3248 MPa to -1.22 MPa in stress conditions. Increased levels of proline accumulation, protein concentration, and lipid peroxidation were detected in water-stressed plants. Stage-dependent increases in activity of antioxidants including superoxide dismutase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were observed. The expression of proline biosynthetic genes including pyrroline-5-carboxylase synthase1, 1-pyrroline-5-carboxylase synthase2, and 1-pyrroline-5-carboxylase reductase was induced, while the ornithine aminotransferase transcript showed a variable response and the expression of proline catabolic genes including proline dehydrogenase1, proline dehydrogenase1, and proline 5-carboxylate dehydrogenase was reduced by water stress. Our results indicate that the glutamine pathway is predominant under drought stress in A. annua and a reduction of catabolic gene expression is adopted as a defense strategy in adverse conditions. Higher expression of biosynthetic genes and lower expression of catabolic genes at the preflowering stage confirmed the important role of proline in flower development. Artemisinin content decreased owing to water stress, but the slightly higher amounts were detected in leaves of severely stressed plants compared with moderately stressed plants. The artemisinin content of A. annua might be regulated by controlling irrigation regimes.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of BiotechnologyCentre for Transgenic Plant DevelopmentJamia Hamdard UniversityNew DelhiIndia
| | - Malik Z. Abdin
- Department of BiotechnologyCentre for Transgenic Plant DevelopmentJamia Hamdard UniversityNew DelhiIndia
| |
Collapse
|
32
|
Comparative and evolutionary studies of ALDH18A1 genes and proteins. Chem Biol Interact 2016; 276:2-8. [PMID: 27989597 DOI: 10.1016/j.cbi.2016.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022]
Abstract
Vertebrate ALDH18A1 genes encode a bifunctional mitochondrial enzyme, catalyzing a 2-step conversion of glutamate to glutamyl semialdehyde, subsequently converted into proline, ornithine and arginine. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH18A1 amino acid sequences. G5K (glutamyl kinase) and GPR (glutamyl phosphate reductase) domain sequences were identified for all vertebrate and invertebrate genomes examined, whereas bacterial sequences encoded separate enzymes. Vertebrate ALDH18A1 (also called P5CS) sequences were highly conserved throughout vertebrate evolution. A mechanism for generating two major vertebrate ALDH18A1 isoforms is proposed with 'a' isoform containing Asn239-Val240 with wide tissue expression, whereas the 'b' isoform lacking the dipeptide has been reported in gut tissues. Phylogenetic analyses describe the relationships and potential origins of the ALDH18A1 gene during vertebrate and invertebrate evolution and a proposal for generating the bifunctional vertebrate and invertebrate ALDH18A1 gene from a bacterial operon (proBA) encoding G5K and GPR. A more recent Aldh18a1 gene duplication event has apparently occurred with a primordial rat genome.
Collapse
|
33
|
Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 2016; 42:217-243. [DOI: 10.1007/s11064-016-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
34
|
Hernández-Castellano LE, Ferreira AM, Nanni P, Grossmann J, Argüello A, Capote J, Cai G, Lippolis J, Castro N, de Almeida AM. The goat (Capra hircus) mammary gland secretory tissue proteome as influenced by weight loss: A study using label free proteomics. J Proteomics 2016; 145:60-69. [DOI: 10.1016/j.jprot.2016.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 01/02/2023]
|
35
|
A pathway map of glutamate metabolism. J Cell Commun Signal 2015; 10:69-75. [PMID: 26635200 DOI: 10.1007/s12079-015-0315-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
Abstract
Glutamate metabolism plays a vital role in biosynthesis of nucleic acids and proteins. It is also associated with a number of different stress responses. Deficiency of enzymes involved in glutamate metabolism is associated with various disorders including gyrate atrophy, hyperammonemia, hemolytic anemia, γ-hydoxybutyric aciduria and 5-oxoprolinuria. Here, we present a pathway map of glutamate metabolism representing metabolic intermediates in the pathway, 107 regulator molecules, 9 interactors and 3 types of post-translational modifications. This pathway map provides detailed information about enzyme regulation, protein-enzyme interactions, post-translational modifications of enzymes and disorders due to enzyme deficiency. The information included in the map was based on published experimental evidence reported from mammalian systems.
Collapse
|
36
|
Wan PJ, Fu KY, Lü FG, Wang XX, Guo WC, Li GQ. Knocking down a putative Δ(1) -pyrroline-5-carboxylate dehydrogenase gene by RNA interference inhibits flight and causes adult lethality in the Colorado potato beetle Leptinotarsa decemlineata (Say). PEST MANAGEMENT SCIENCE 2015; 71:1387-96. [PMID: 25400271 DOI: 10.1002/ps.3941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/07/2014] [Accepted: 11/09/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Leptinotarsa decemlineata is an able disperser by flight. Novel control strategies must be explored to control the damage and inhibit the dispersal efficiently. Proline is a major energy substrate during flight. Δ-Pyrroline-5-carboxylate dehydrogenase (P5CDh) catalyses the second step of proline degradation for the production of ATP. RESULTS A full-length Ldp5cdh cDNA was cloned. Ldp5cdh was ubiquitously expressed in the eggs, the first through fourth larval instars, wandering larvae, pupae and adults. In the adults, Ldp5cdh mRNA was widely distributed in thorax muscles, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion, fat body and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdp5cdh1 and dsLdp5cdh2) targeting Ldp5cdh were constructed and bacterially expressed. Ingestion of dsLdp5cdh1 and dsLdp5cdh2 successfully silenced Ldp5cdh, significantly increased the contents of proline, arginine and alanine, but strongly decreased the contents of asparate, asparagine, glutamate and glutamine in the haemolymph. Moreover, knocking down Ldp5cdh significantly reduced ATP content, decreased flight speed, shortened flight distance and increased adult mortality. CONCLUSIONS It seems that identified Ldp5cdh encodes a functional P5CDh enzyme, and Ldp5cdh may serve as a potential target for dsRNA-based pesticide for controlling the damage and dispersal of L. decemlineata adults. © 2014 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin-Xin Wang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Peng Y, Cooper SK, Li Y, Mei JM, Qiu S, Borchert GL, Donald SP, Kung HF, Phang JM. Ornithine-δ-Aminotransferase Inhibits Neurogenesis During Xenopus Embryonic Development. Invest Ophthalmol Vis Sci 2015; 56:2486-97. [PMID: 25783604 DOI: 10.1167/iovs.15-16509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In humans, deficiency of ornithine-δ-aminotransferase (OAT) results in progressive degeneration of the neural retina (gyrate atrophy) with blindness in the fourth decade. In this study, we used the Xenopus embryonic developmental model to study functions of the OAT gene on embryonic development. METHODS We cloned and sequenced full-length OAT cDNA from Xenopus oocytes (X-OAT) and determined X-OAT expression in various developmental stages of Xenopus embryos and in a variety of adult tissues. The phenotype, gene expression of neural developmental markers, and enzymatic activity were detected by gain-of-function and loss-of-function manipulations. RESULTS We showed that X-OAT is essential for Xenopus embryonic development, and overexpression of X-OAT produces a ventralized phenotype characterized by a small head, lack of axial structure, and defective expression of neural developmental markers. Using X-OAT mutants based on mutations identified in humans, we found that substitution of both Arg 180 and Leu 402 abrogated both X-OAT enzymatic activity and ability to modulate the developmental phenotype. Neurogenesis is inhibited by X-OAT during Xenopus embryonic development. CONCLUSIONS Neurogenesis is inhibited by X-OAT during Xenopus embryonic development, but it is essential for Xenopus embryonic development. The Arg 180 and Leu 402 are crucial for these effects of the OAT molecule in development.
Collapse
Affiliation(s)
- Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sandra K Cooper
- Basic Research Program, Leidos, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jay M Mei
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Shuwei Qiu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gregory L Borchert
- Basic Research Program, Leidos, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Steven P Donald
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Hsiang-Fu Kung
- State Key Laboratory of Oncology in Southern China, and Centre for Emerging Infectious Diseases, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - James M Phang
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| |
Collapse
|
38
|
Pushing the annotation of cellular activities to a higher resolution: Predicting functions at the isoform level. Methods 2015; 93:110-8. [PMID: 26238263 DOI: 10.1016/j.ymeth.2015.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
In past decades, the experimental determination of protein functions was expensive and time-consuming, so numerous computational methods were developed to speed up and guide the process. However, most of these methods predict protein functions at the gene level and do not consider the fact that protein isoforms (translated from alternatively spliced transcripts), not genes, are the actual function carriers. Now, high-throughput RNA-seq technology is providing unprecedented opportunities to unravel protein functions at the isoform level. In this article, we review recent progress in the high-resolution functional annotations of protein isoforms, focusing on two methods developed by the authors. Both methods can integrate multiple RNA-seq datasets for comprehensively characterizing functions of protein isoforms.
Collapse
|
39
|
Kardos GR, Wastyk HC, Robertson GP. Disruption of Proline Synthesis in Melanoma Inhibits Protein Production Mediated by the GCN2 Pathway. Mol Cancer Res 2015; 13:1408-20. [PMID: 26082174 DOI: 10.1158/1541-7786.mcr-15-0048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Many processes are deregulated in melanoma cells and one of those is protein production. Although much is known about protein synthesis in cancer cells, effective ways of therapeutically targeting this process remain an understudied area of research. A process that is upregulated in melanoma compared with normal melanocytes is proline biosynthesis, which has been linked to both oncogene and tumor suppressor pathways, suggesting an important convergent point for therapeutic intervention. Therefore, an RNAi screen of a kinase library was undertaken, identifying aldehyde dehydrogenase 18 family, member A1 (ALDH18A1) as a critically important gene in regulating melanoma cell growth through proline biosynthesis. Inhibition of ALDH18A1, the gene encoding pyrroline-5-carboxylate synthase (P5CS), significantly decreased cultured melanoma cell viability and tumor growth. Knockdown of P5CS using siRNA had no effect on apoptosis, autophagy, or the cell cycle but cell-doubling time increased dramatically suggesting that there was a general slowdown in cellular metabolism. Mechanistically, targeting ALDH18A1 activated the serine/threonine protein kinase GCN2 (general control nonderepressible 2) to inhibit protein synthesis, which could be reversed with proline supplementation. Thus, targeting ALDH18A1 in melanoma can be used to disrupt proline biosynthesis to limit cell metabolism thereby increasing the cellular doubling time mediated through the GCN2 pathway. IMPLICATIONS This study demonstrates that melanoma cells are sensitive to disruption of proline synthesis and provides a proof-of-concept that the proline synthesis pathway can be therapeutically targeted in melanoma tumors for tumor inhibitory efficacy.
Collapse
Affiliation(s)
- Gregory R Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hannah C Wastyk
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
40
|
Coutelier M, Goizet C, Durr A, Habarou F, Morais S, Dionne-Laporte A, Tao F, Konop J, Stoll M, Charles P, Jacoupy M, Matusiak R, Alonso I, Tallaksen C, Mairey M, Kennerson M, Gaussen M, Schule R, Janin M, Morice-Picard F, Durand CM, Depienne C, Calvas P, Coutinho P, Saudubray JM, Rouleau G, Brice A, Nicholson G, Darios F, Loureiro JL, Zuchner S, Ottolenghi C, Mochel F, Stevanin G. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 2015; 138:2191-205. [PMID: 26026163 DOI: 10.1093/brain/awv143] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/04/2015] [Indexed: 12/30/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1 mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes.
Collapse
Affiliation(s)
- Marie Coutelier
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 5 Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, B-1200, Brussels, Belgium 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Cyril Goizet
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France 8 CHU Pellegrin, Service de Génétique Médicale, F-33000, Bordeaux, France
| | - Alexandra Durr
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Florence Habarou
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Sara Morais
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 13 Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, P-4150, Porto, Portugal
| | - Alexandre Dionne-Laporte
- 14 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Feifei Tao
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juliette Konop
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Marion Stoll
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Perrine Charles
- 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Maxime Jacoupy
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Raphaël Matusiak
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Isabel Alonso
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 13 Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, P-4150, Porto, Portugal
| | - Chantal Tallaksen
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mathilde Mairey
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Marina Kennerson
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Marion Gaussen
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France
| | - Rebecca Schule
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA 17 Centre for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, G-72074, Tübingen, Germany 18 German Centre of Neurodegenerative Diseases (DZNE), Eberhard-Karls-University, G-72074, Tübingen, Germany
| | - Maxime Janin
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Fanny Morice-Picard
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France 8 CHU Pellegrin, Service de Génétique Médicale, F-33000, Bordeaux, France
| | - Christelle M Durand
- 7 Univ. Bordeaux, Laboratoire Maladies Rares: Génétique et Métabolisme, EA4576, F-33000, Bordeaux, France
| | - Christel Depienne
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Patrick Calvas
- 19 Fédération de Neurologie et Service de Génétique Médicale, CHU de Toulouse, Hôpital Purpan, F-31059, Toulouse, France
| | - Paula Coutinho
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 12 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, P-4150, Porto, Portugal 20 Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, P-4520-211, Santa Maria da Feira, Portugal
| | - Jean-Marie Saudubray
- 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Guy Rouleau
- 14 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada 21 Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexis Brice
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Garth Nicholson
- 16 Northcott Neuroscience Laboratory, ANZAC Research Institute; Molecular Medicine Laboratory, Concord Hospital; Sydney Medical School University of Sydney, NSW 2138, Sydney, Australia
| | - Frédéric Darios
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - José L Loureiro
- 11 UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, P-4150, Porto, Portugal 20 Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, P-4520-211, Santa Maria da Feira, Portugal
| | - Stephan Zuchner
- 15 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chris Ottolenghi
- 10 Metabolic Biochemistry Lab, Necker-Enfants Malades Hospital, APHP, F-75015; and University Paris Descartes, F-75006, Paris, France
| | - Fanny Mochel
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| | - Giovanni Stevanin
- 1 INSERM, U 1127, F-75013, Paris, France 2 CNRS, UMR 7225, F-75013, Paris, France 3 Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, F-75013, Paris, France 4 Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 6 Ecole Pratique des Hautes Etudes, F-75014, Paris, France 9 APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France
| |
Collapse
|
41
|
Hou Q, Bartels D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. ANNALS OF BOTANY 2015; 115:465-79. [PMID: 25085467 PMCID: PMC4332599 DOI: 10.1093/aob/mcu152] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Stresses such as drought or salinity induce the generation of reactive oxygen species, which subsequently cause excessive accumulation of aldehydes in plant cells. Aldehyde dehydrogenases (ALDHs) are considered as 'aldehyde scavengers' to eliminate toxic aldehydes caused by oxidative stress. The completion of the genome sequencing projects of the halophytes Eutrema parvulum and E. salsugineum has paved the way to explore the relationships and the roles of ALDH genes in the glycophyte Arabidopsis thaliana and halophyte model plants. METHODS Protein sequences of all plant ALDH families were used as queries to search E. parvulum and E. salsugineum genome databases. Evolutionary analyses compared the phylogenetic relationships of ALDHs from A. thaliana and Eutrema. Expression patterns of several stress-associated ALDH genes were investigated under different salt conditions using reverse transcription-PCR. Putative cis-elements in the promoters of ALDH10A8 from A. thaliana and E. salsugineum were compared in silico. KEY RESULTS Sixteen and 17 members of ten ALDH families were identified from E. parvulum and E. salsugineum genomes, respectively. Phylogenetic analysis of ALDH protein sequences indicated that Eutrema ALDHs are closely related to those of Arabidopsis, and members within these species possess nearly identical exon-intron structures. Gene expression analysis under different salt conditions showed that most of the ALDH genes have similar expression profiles in Arabidopsis and E. salsugineum, except for ALDH7B4 and ALDH10A8. In silico analysis of promoter regions of ALDH10A8 revealed different distributions of cis-elements in E. salsugineum and Arabidopsis. CONCLUSIONS Genomic organization, copy number, sub-cellular localization and expression profiles of ALDH genes are conserved in Arabidopsis, E. parvulum and E. salsugineum. The different expression patterns of ALDH7B4 and ALDH10A8 in Arabidopsis and E. salsugineum suggest that E. salsugineum uses modified regulatory pathways, which may contribute to salinity tolerance.
Collapse
Affiliation(s)
- Quancan Hou
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53315 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53315 Bonn, Germany
| |
Collapse
|
42
|
Wan PJ, Fu KY, Lü FG, Guo WC, Li GQ. A putative Δ1-pyrroline-5-carboxylate synthetase involved in the biosynthesis of proline and arginine in Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:105-113. [PMID: 25450565 DOI: 10.1016/j.jinsphys.2014.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Delta 1-pyrroline-5-carboxylate synthetase (P5CS) catalyzes the conversion of glutamate (Glu) to Glu semialdehyde (GSA). GSA spontaneously cyclizes to form P5C. P5C is then reduced to proline (Pro) or is converted to ornithine, the intermediate for arginine (Arg) biosynthesis. In the present study, a full-length Ldp5cs complementary DNA was cloned from the Colorado potato beetle Leptinotarsa decemlineata, a notorious insect defoliator of potato in most potato-growing regions of the world. Ldp5cs encodes a 792-amino-acid protein which shares high identity to homologues from other insect species. Quantitative reverse transcription polymerase chain reaction revealed that Ldp5cs was ubiquitously expressed in the eggs, first to fourth-instar larvae, wandering larvae, pupae and sexually mature adults. In the adults, Ldp5cs mRNA levels were higher in the fat body, foregut, midgut and hindgut, moderate in the ventral ganglion, lower in the thorax muscles, epidermis and Malpighian tubules. Two double-stranded RNAs (dsRNAs) (dsLdp5cs1 and dsLdp5cs2) targeting Ldp5cs were constructed and bacterially expressed. Ingestion during 3 consecutive days of dsLdp5cs1 or dsLdp5cs2 successfully silenced Ldp5cs, significantly reduced the contents of Pro and Arg in the hemolymph, decreased flight speed and shortened flight distance of the resulting adults. Furthermore, knocking down Ldp5cs significantly increased adult mortality. Thus, our results suggest that identified Ldp5cs encodes a functional P5CS enzyme that is involved in the biosynthesis of Pro and Arg in L. decemlineata.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc 2014; 90:1065-99. [PMID: 25367752 DOI: 10.1111/brv.12146] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Proline is not only an essential component of proteins but it also has important roles in adaptation to osmotic and dehydration stresses, redox control, and apoptosis. Here, we review pathways of proline biosynthesis in the three domains of life. Pathway reconstruction from genome data for hundreds of eubacterial and dozens of archaeal and eukaryotic organisms revealed evolutionary conservation and variations of this pathway across different taxa. In the most prevalent pathway of proline synthesis, glutamate is phosphorylated to γ-glutamyl phosphate by γ-glutamyl kinase, reduced to γ-glutamyl semialdehyde by γ-glutamyl phosphate reductase, cyclized spontaneously to Δ(1)-pyrroline-5-carboxylate and reduced to proline by Δ(1)-pyrroline-5-carboxylate reductase. In higher plants and animals the first two steps are catalysed by a bi-functional Δ(1) -pyrroline-5-carboxylate synthase. Alternative pathways of proline formation use the initial steps of the arginine biosynthetic pathway to ornithine, which can be converted to Δ(1)-pyrroline-5-carboxylate by ornithine aminotransferase and then reduced to proline or converted directly to proline by ornithine cyclodeaminase. In some organisms, the latter pathways contribute to or could be fully responsible for the synthesis of proline. The conservation of proline biosynthetic enzymes and significance of specific residues for catalytic activity and allosteric regulation are analysed on the basis of protein structural data, multiple sequence alignments, and mutant studies, providing novel insights into proline biosynthesis in organisms. We also discuss the transcriptional control of the proline biosynthetic genes in bacteria and plants.
Collapse
Affiliation(s)
- Yosef Fichman
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 6997803, Israel
| | - Svetlana Y Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, U.S.A
| | - Hajnalka Kovács
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Aviah Zilberstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 6997803, Israel
| | - Laszlo N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
44
|
Wolthuis DFGJ, van Asbeck E, Mohamed M, Gardeitchik T, Lim-Melia ER, Wevers RA, Morava E. Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. Eur J Paediatr Neurol 2014; 18:511-5. [PMID: 24767728 DOI: 10.1016/j.ejpn.2014.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 01/12/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
Autosomal recessive cutis laxa (ARCL) is a connective tissue disorder characterized by wrinkled, inelastic skin, frequently associated with a neurologic involvement and multisystem disease. Next generation sequencing was performed in genetically unsolved patients with progeroid features, neurological and eye involvement to assess the underlying etiology. We describe an 6 month old child, diagnosed with a novel, homozygous nonsense mutation c.2339T>C in exon 18 of the ALDH18A1 gene, and reviewed all reported P5CS patients. So far 10 patients were described with mutations in ALDH18A1. Features of our patient that have been described in literature included cutis laxa on hands and feet, visible veins on thorax and abdomen, joint laxity, failure to thrive, short stature, microcephaly, and severe developmental and speech delay. Furthermore, abnormal fat distribution, retinal abnormalities, undescended testis, and retinitis pigmentosa have never been described in ALDH18A1. Some features described as unique in ALDH18A1 have been observed in PYCR1 patients, thus suggesting that the phenotypic overlap is higher than previously shown. In conclusion, the clinical phenotype caused by ALDH18A1 mutations is diverse, with variable degree of progeria in children, but always in association with neurologic disease. We suggest genetic testing for possible ALDH18A1 mutations in all patients with progeroid features, like wrinkled or parchment-like skin, abnormal growth, especially with central nervous system involvement and microcephaly.
Collapse
Affiliation(s)
- David F G J Wolthuis
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans, LA 70112, USA; Laboratory of Genetic, Metabolic and Endocrine Diseases, Radboud University Medical Centre Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ellyze van Asbeck
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans, LA 70112, USA; Laboratory of Genetic, Metabolic and Endocrine Diseases, Radboud University Medical Centre Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Miski Mohamed
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans, LA 70112, USA; Laboratory of Genetic, Metabolic and Endocrine Diseases, Radboud University Medical Centre Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Thatjana Gardeitchik
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans, LA 70112, USA; Laboratory of Genetic, Metabolic and Endocrine Diseases, Radboud University Medical Centre Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Ron A Wevers
- Laboratory of Genetic, Metabolic and Endocrine Diseases, Radboud University Medical Centre Nijmegen, The Netherlands
| | - Eva Morava
- Hayward Genetics Center, Tulane University Medical School, 1430 Tulane Ave, New Orleans, LA 70112, USA; Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Li W, Kang S, Liu CC, Zhang S, Shi Y, Liu Y, Zhou XJ. High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res 2013; 42:e39. [PMID: 24369432 PMCID: PMC3973446 DOI: 10.1093/nar/gkt1362] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alternative transcript processing is an important mechanism for generating functional diversity in genes. However, little is known about the precise functions of individual isoforms. In fact, proteins (translated from transcript isoforms), not genes, are the function carriers. By integrating multiple human RNA-seq data sets, we carried out the first systematic prediction of isoform functions, enabling high-resolution functional annotation of human transcriptome. Unlike gene function prediction, isoform function prediction faces a unique challenge: the lack of the training data--all known functional annotations are at the gene level. To address this challenge, we modelled the gene-isoform relationships as multiple instance data and developed a novel label propagation method to predict functions. Our method achieved an average area under the receiver operating characteristic curve of 0.67 and assigned functions to 15 572 isoforms. Interestingly, we observed that different functions have different sensitivities to alternative isoform processing, and that the function diversity of isoforms from the same gene is positively correlated with their tissue expression diversity. Finally, we surveyed the literature to validate our predictions for a number of apoptotic genes. Strikingly, for the famous 'TP53' gene, we not only accurately identified the apoptosis regulation function of its five isoforms, but also correctly predicted the precise direction of the regulation.
Collapse
Affiliation(s)
- Wenyuan Li
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Shuli Kang
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Chun-Chi Liu
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Shihua Zhang
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Yi Shi
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Yan Liu
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
| | - Xianghong Jasmine Zhou
- Molecular and Computational Biology Program, Department
of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,
Institute of Genomics and Bioinformatics, National Chung Hsing University,
Taiwan 40227, Republic of China, National Center for Mathematics and
Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China and Department of Computer Science, University
of Southern California, Los Angeles, CA 90089, USA
- *To whom correspondence should be addressed. Tel:
+1 213 740 7055; Fax: +1 213 740 2475;
| |
Collapse
|
46
|
Singh H, Farouk M, Bose BB, Singh P. Novel genes underlying beta cell survival in metabolic stress. Bioinformation 2013; 9:37-41. [PMID: 23390342 PMCID: PMC3563414 DOI: 10.6026/97320630009037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 02/07/2023] Open
Abstract
Relative insulin deficiency, in response to increased metabolic demand (obesity, genetic insulin resistance, pregnancy and aging) lead to Type2 diabetes. Susceptibility of the type 2 diabetes has a genetic basis, as a subset of people with risk factors (obesity, Insulin Resistance, pregnancy), develop Type2 Diabetes. We aimed to identify 'cluster' of overexpressed genes, underlying increased beta cell survival in diabetes resistant C57BL/6J ob/ob mice (compared to diabetes susceptible BTBR ob/ob mice). We used 'consensus' overexpression status to identify 'cluster' of 11 genes consisting of Aldh18a1, Rfc4, Dynlt3, Prom1, H13, Psen1, Ssr4, Dad1, Anpep, Fam111a and Plk1. Information (biological processes, molecular functions, cellular components, protein-protein interactions/associations, gene deletion/knockout/inhibition studies) of all the genes in 'cluster' were collected by text mining using different literature search tools, gene information databases and protein-protein interaction databases. Beta cell specific function of these genes were also inferred using meta analysis tool of Beta Cell Biology Consortium, by studying the expression pattern of these genes in microarray studies related to beta-cell stimulation/injury, pancreas development and growth and cell differentiation. In the 'clusters', 6 genes (Dad1, Psen1, Ssr4, Rfc4, H13, Plk1) have a role in cell survival. Only Psen1 was previously identified to have role in successful beta cell compensation. We advocate these genes to be potentially involved in successful beta cell compensation and prevent T2D in humans, by conferring protection against diabetogenic insults.
Collapse
Affiliation(s)
- Himadri Singh
- Sevayan Medical and Research Centre, Dr BG Bose Lane, Munger, 811201, India
| | - Mohammed Farouk
- Institute of Liver Disease and Transplantation, Global Hospitals, Chennai, India
| | - Barish Baran Bose
- Sevayan Medical and Research Centre, Dr BG Bose Lane, Munger, 811201, India
| | - Prabhakar Singh
- Sevayan Medical and Research Centre, Dr BG Bose Lane, Munger, 811201, India
| |
Collapse
|
47
|
Martinelli D, Häberle J, Rubio V, Giunta C, Hausser I, Carrozzo R, Gougeard N, Marco-Marín C, Goffredo BM, Meschini MC, Bevivino E, Boenzi S, Colafati GS, Brancati F, Baumgartner MR, Dionisi-Vici C. Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis 2012; 35:761-76. [PMID: 22170564 DOI: 10.1007/s10545-011-9411-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 12/21/2022]
Abstract
Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS) catalyzes the first two steps of ornithine/proline biosynthesis. P5CS deficiency has been reported in three families, with patients presenting with cutis/joint laxity, cataracts, and neurodevelopmental delay. Only one family exhibited metabolic changes consistent with P5CS deficiency (low proline/ornithine/citrulline/arginine; fasting hyperammonemia). Here we report a new P5CS-deficient patient presenting the complete clinical/metabolic phenotype and carrying p.G93R and p.T299I substitutions in the γ-glutamyl kinase (γGK) component of P5CS. The effects of these substitutions are (1) tested in mutagenesis/functional studies with E.coli γGK, (2) rationalized by structural modelling, and (3) reflected in decreased P5CS protein in patient fibroblasts (shown by immunofluorescence). Using optical/electron microscopy on skin biopsy, we show collagen/elastin fiber alterations that may contribute to connective tissue laxity and are compatible with our angio-MRI finding of kinky brain vessels in the patient. MR spectroscopy revealed decreased brain creatine, which normalized after sustained arginine supplementation, with improvement of neurodevelopmental and metabolic parameters, suggesting a pathogenic role of brain creatine decrease and the value of arginine therapy. Morphological and functional studies of fibroblast mitochondria show that P5CS deficiency is not associated with the mitochondrial alterations observed in Δ(1)-pyrroline-5-carboxylate reductase deficiency (another proline biosynthesis defect presenting cutis laxa and neurological alterations).
Collapse
Affiliation(s)
- Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J. Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. PLANTA 2012; 235:433-441. [PMID: 21960163 DOI: 10.1007/s00425-011-1477-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase proteins consist of a superfamily and the family 7 (ALDH7) is a typical group with highly conserved proteins across species. It catalyzes oxidation of α-aminoadipic semialdehyde (AASA) in lysine degradation, participates in protection against hyperosmotic stress, and detoxifies aldehydes in human; however, its function in plants has been much less documented. Here we reported a mutant with yellow-colored endosperm in rice, and showed that the yellow endosperm was caused by mutation of OsALDH7. OsALDH7 is expressed in all tissues detected, with the highest level in mature seeds. We found that oryzamutaic acid A accumulated during late seed development and after a year-long storage in the colored endosperm, whereas it was undetectable in the wild type endosperm. Moreover, lysine degradation was enhanced in yeast over-expressing OsALDH7 and as a result, content of lysine, glutamate and saccharopine was changed, suggesting a role of OsALDH7 in lysine catabolism.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pérez-Arellano I, Carmona-Álvarez F, Gallego J, Cervera J. Molecular Mechanisms Modulating Glutamate Kinase Activity. Identification of the Proline Feedback Inhibitor Binding Site. J Mol Biol 2010; 404:890-901. [DOI: 10.1016/j.jmb.2010.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 11/16/2022]
|
50
|
Abstract
Proline, the only proteinogenic secondary amino acid, is metabolized by its own family of enzymes responding to metabolic stress and participating in metabolic signaling. Collagen in extracellular matrix, connective tissue, and bone is an abundant reservoir for proline. Matrix metalloproteinases degrading collagen are activated during stress to make proline available, and proline oxidase, the first enzyme in proline degradation, is induced by p53, peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands, and by AMP-activated protein kinase downregulating mTOR. Metabolism of proline generates electrons to produce ROS and initiates a variety of downstream effects, including blockade of the cell cycle, autophagy, and apoptosis. The electrons can also enter the electron transport chain to produce adenosine triphosphate for survival under nutrient stress. Pyrroline-5-carboxylate, the product of proline oxidation, is recycled back to proline with redox transfers or is sequentially converted to glutamate and alpha-ketoglutarate. The latter augments the prolyl hydroxylation of hypoxia-inducible factor-1alpha and its proteasomal degradation. These effects of proline oxidase, as well as its decreased levels in tumors, support its role as a tumor suppressor. The mechanism for its decrease is mediated by a specific microRNA. The metabolic signaling by proline oxidase between oxidized low-density lipoproteins and autophagy provides a functional link between obesity and increased cancer risk.
Collapse
Affiliation(s)
- James M Phang
- Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, NCI at Frederick, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|