1
|
Yen YC, Li Y, Chen CL, Klose T, Watts VJ, Dessauer CW, Tesmer JJG. Structure of adenylyl cyclase 5 in complex with Gβγ offers insights into ADCY5-related dyskinesia. Nat Struct Mol Biol 2024; 31:1189-1197. [PMID: 38589608 PMCID: PMC11329361 DOI: 10.1038/s41594-024-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gβγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gβγ and a dimeric form of AC5 that could be involved in its regulation. Gβγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gβγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gβγ and show reduced conditional activation by Gβγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gβγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Purdue Cryo-EM Facility, Hockmeyer Hall for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Holfeld A, Schuster D, Sesterhenn F, Gillingham AK, Stalder P, Haenseler W, Barrio-Hernandez I, Ghosh D, Vowles J, Cowley SA, Nagel L, Khanppnavar B, Serdiuk T, Beltrao P, Korkhov VM, Munro S, Riek R, de Souza N, Picotti P. Systematic identification of structure-specific protein-protein interactions. Mol Syst Biol 2024; 20:651-675. [PMID: 38702390 PMCID: PMC11148107 DOI: 10.1038/s44320-024-00037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.
Collapse
Affiliation(s)
- Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dina Schuster
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Fabian Sesterhenn
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Patrick Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Walther Haenseler
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- University Research Priority Program AdaBD (Adaptive Brain Circuits in Development and Learning), University of Zurich, Zurich, Switzerland
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Luise Nagel
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Basavraj Khanppnavar
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Volodymyr M Korkhov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Khanppnavar B, Schuster D, Lavriha P, Uliana F, Özel M, Mehta V, Leitner A, Picotti P, Korkhov VM. Regulatory sites of CaM-sensitive adenylyl cyclase AC8 revealed by cryo-EM and structural proteomics. EMBO Rep 2024; 25:1513-1540. [PMID: 38351373 PMCID: PMC10933263 DOI: 10.1038/s44319-024-00076-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/19/2024] Open
Abstract
Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gβγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.
Collapse
Affiliation(s)
- Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Dina Schuster
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Pia Lavriha
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biological Chemistry, ETH Zurich, Zurich, Switzerland
| | - Merve Özel
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Ved Mehta
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Schuster D, Khanppnavar B, Kantarci I, Mehta V, Korkhov VM. Structural insights into membrane adenylyl cyclases, initiators of cAMP signaling. Trends Biochem Sci 2024; 49:156-168. [PMID: 38158273 DOI: 10.1016/j.tibs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Membrane adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. As effector proteins of G protein-coupled receptors and other signaling pathways, ACs receive and amplify signals from the cell surface, translating them into biochemical reactions in the intracellular space and integrating different signaling pathways. Despite their importance in signal transduction and physiology, our knowledge about the structure, function, regulation, and molecular interactions of ACs remains relatively scarce. In this review, we summarize recent advances in our understanding of these membrane enzymes.
Collapse
Affiliation(s)
- Dina Schuster
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | - Ilayda Kantarci
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Ved Mehta
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| |
Collapse
|
5
|
Yen YC, Li Y, Chen CL, Klose T, Watts VJ, Dessauer CW, Tesmer JJG. Isoform Specific Regulation of Adenylyl Cyclase 5 by Gβγ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539090. [PMID: 37205557 PMCID: PMC10187219 DOI: 10.1101/2023.05.02.539090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein Gαs, but their response to Gβγ regulation is isoform-specific. For example, AC5 is conditionally activated by Gβγ. Here, we report cryo-EM structures of ligand-free AC5 in complex with Gβγ and of a dimeric form of AC5 that could be involved in its regulation. Gβγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gβγ interaction with both purified proteins and cell-based assays. The interface with Gβγ involves AC5 residues that are subject to gain-of-function mutations in humans with familial dyskinesia, indicating that the observed interaction is important for motor function. A molecular mechanism wherein Gβγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core, is proposed. Because our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yong Li
- Department Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Purdue CryoEM Facility, Suite 171, Hockmeyer Hall for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Val J Watts
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Carmen W Dessauer
- Department Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
7
|
Sánchez-Collado J, López JJ, Rosado JA. The Orai1-AC8 Interplay: How Breast Cancer Cells Escape from Orai1 Channel Inactivation. Cells 2021; 10:1308. [PMID: 34070268 PMCID: PMC8225208 DOI: 10.3390/cells10061308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The interplay between the Ca2+-sensitive adenylyl cyclase 8 (AC8) and Orai1 channels plays an important role both in the activation of the cAMP/PKA signaling and the modulation of Orai1-dependent Ca2+ signals. AC8 interacts with a N-terminal region that is exclusive to the Orai1 long variant, Orai1α. The interaction between both proteins allows the Ca2+ that enters the cell through Orai1α to activate the generation of cAMP by AC8. Subsequent PKA activation results in Orai1α inactivation by phosphorylation at serine-34, thus shaping Orai1-mediated cellular functions. In breast cancer cells, AC8 plays a relevant role supporting a variety of cancer hallmarks, including proliferation and migration. Breast cancer cells overexpress AC8, which shifts the AC8-Orai1 stoichiometry in favor of the former and leads to the impairment of PKA-dependent Orai1α inactivation. This mechanism contributes to the enhanced SOCE observed in triple-negative breast cancer cells. This review summarizes the functional interaction between AC8 and Orai1α in normal and breast cancer cells and its relevance for different cancer features.
Collapse
Affiliation(s)
| | - José J. López
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| |
Collapse
|
8
|
Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive Tuning Among Ca 2+/Calmodulin-Dependent Proteins: Analysis of in silico Model Robustness and Parameter Variability. Cell Mol Bioeng 2018; 11:353-365. [PMID: 31105797 DOI: 10.1007/s12195-018-0549-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction Calcium/Calmodulin-dependent (Ca2+/CaM-dependent) regulation of protein signaling has long been recognized for its importance in a number of physiological contexts. Found in almost all eukaryotic cells, Ca2+/CaM-dependent signaling participates in muscle development, immune responses, cardiac myocyte function and regulation of neuronal connectivity. In excitatory neurons, dynamic changes in the strength of synaptic connections, known as synaptic plasticity, occur when calcium ions (Ca2+) flux through NMDA receptors and bind the Ca2+-sensor calmodulin (CaM). Ca2+/CaM, in turn, regulates downstream protein signaling in actin polymerization, receptor trafficking, and transcription factor activation.The activation of downstream Ca2+/CaM-dependent binding proteins (CBPs) is a function of the frequency of Ca2+ flux, such that each CBP is preferentially "tuned" to different Ca2+ input signals. We have recently reported that competition among CBPs for CaM binding is alone sufficient to recreate in silico the observed in vivo frequency-dependence of several CBPs. However, CBP activation may strongly depend on the identity and concentration of proteins that constitute the competitive pool; with important implications in the regulation of CBPs in both normal and disease states. Methods Here, we extend our previous deterministic model of competition among CBPs to include phosphodiesterases, AMPAR receptors that are important in synaptic plasticity, and enzymatic function of CBPs: cAMP regulation, kinase activity, and phosphatase activity. After rigorous parameterization and validation by global sensitivity analysis using Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC), we explore how perturbing the competitive pool of CBPs influences downstream signaling events. In particular, we hypothesize that although perturbations may decrease activation of one CBP, increased activation of a separate, but enzymatically-related CBP could compensate for this loss, providing a homeostatic effect. Results and Conclusions First we compare dynamic model output of two models: a two-state model of Ca2+/CaM binding and a four-state model of Ca2+/CaM binding. We find that a four-state model of Ca2+/CaM binding best captures the dynamic nature of the rapid response of CaM and CBPs to Ca2+ flux in the system. Using global sensitivity analysis, we find that model output is robust to parameter variability. Indeed, although variations in the expression of the CaM buffer neurogranin (Ng) may cause a decrease in Ca2+/CaM-dependent kinase II (CaMKII) activation, overall AMPA receptor phosphorylation is preserved; ostensibly by a concomitant increase in adenylyl cyclase 8 (AC8)-mediated activation of protein kinase A (PKA). Indeed phosphorylation of AMPAR receptors by CaMKII and PKA is robust across a wide range of Ng concentrations, though increases in AMPAR phosphorylation is seen at low Ng levels approaching zero. Our results may explain recent counter-intuitive results in neurogranin knockout mice and provide further evidence that competitive tuning is an important mechanism in synaptic plasticity. These results may be readily translated to other Ca2+/CaM-dependent signaling systems in other cell types and can be used to suggest targeted experimental investigation to explain counter-intuitive or unexpected downstream signaling outcomes.Tamara Kinzer-Ursem is an Assistant Professor in the Weldon School of Biomedical Engineering. She received her B.S. in Bioengineering from the University of Toledo and her M.S. and Ph.D. degrees in Chemical Engineering from the University of Michigan, and her post-doctoral training in Molecular Neuroscience at the California Institute of Technology. Prior to joining Purdue she was the Head of R&D in Biochemistry at Maven Biotechnologies and Visiting Associate in Chemical Engineering at the California Institute of Technology.Research in the Kinzer-Ursem lab focuses on developing tools to advance quantitative descriptions of cellular processes and disease within three areas of expertise: 1) Using particle diffusivity measurements to quantify biomolecular processes. Particle diffusometry is being used as a sensitive biosensor to detect the presence of pathogens in environmental and patient samples. 2) Development of novel protein tagging technologies that are used to label proteins in vivo to enable quantitative description of protein function and elucidate disease mechanisms. 3) Computational modeling of signal transduction mechanisms to understand cellular processes. Using computational techniques, we have recently described "competitive tuning" as a mechanism that might be used to regulate information transfer through protein networks, with implications in cell behavior and drug target analysis.
Collapse
Affiliation(s)
- Matthew C Pharris
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Neal M Patel
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
9
|
Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. PLoS Comput Biol 2017; 13:e1005820. [PMID: 29107982 PMCID: PMC5690689 DOI: 10.1371/journal.pcbi.1005820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023] Open
Abstract
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. Learning and memory formation are likely associated with dynamic fluctuations in the connective strength of neuronal synapses. These fluctuations, called synaptic plasticity, are regulated by calcium ion (Ca2+) influx through ion channels localized to the post-synaptic membrane. Within the post-synapse, the dominant Ca2+ sensor protein, calmodulin (CaM), may activate a variety of downstream binding partners, each contributing to synaptic plasticity outcomes. The conditions at which certain binding partners most strongly activate are increasingly studied using computational models. Nearly all computational studies describe these binding partners in combinations of only one or two CaM binding proteins. In contrast, we combine seven well-studied CaM binding partners into a single model wherein they simultaneously compete for access to CaM. Our dynamic model suggests that competition narrows the window of conditions for optimal activation of some binding partners, mimicking the Ca2+-frequency dependence of some proteins in vivo. Further characterization of CaM-dependent signaling dynamics in neuronal synapses may benefit our understanding of learning and memory formation. Furthermore, we propose that competitive binding may be another framework, alongside feedback and feed-forward loops, signaling motifs, and spatial localization, that can be applied to other signal transduction networks, particularly second messenger cascades, to explain the dynamical behavior of protein activation.
Collapse
Affiliation(s)
- Daniel R. Romano
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
10
|
Halls ML, Cooper DMF. Adenylyl cyclase signalling complexes - Pharmacological challenges and opportunities. Pharmacol Ther 2017; 172:171-180. [PMID: 28132906 DOI: 10.1016/j.pharmthera.2017.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signalling pathways involving the vital second messanger, cAMP, impact on most significant physiological processes. Unsurprisingly therefore, the activation and regulation of cAMP signalling is tightly controlled within the cell by processes including phosphorylation, the scaffolding of protein signalling complexes and sub-cellular compartmentalisation. This inherent complexity, along with the highly conserved structure of the catalytic sites among the nine membrane-bound adenylyl cyclases, presents significant challenges for efficient inhibition of cAMP signalling. Here, we will describe the biochemistry and cell biology of the family of membrane-bound adenylyl cyclases, their organisation within the cell, and the nature of the cAMP signals that they produce, as a prelude to considering how cAMP signalling might be perturbed. We describe the limitations associated with direct inhibition of adenylyl cyclase activity, and evaluate alternative strategies for more specific targeting of adenylyl cyclase signalling. The inherent complexity in the activation and organisation of adenylyl cyclase activity may actually provide unique opportunities for selectively targeting discrete adenylyl cyclase functions in disease.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
11
|
Abstract
Recent advances in the AC (adenylate cyclase)/cAMP field reveal overarching roles for the ACs. Whereas few processes are unaffected by cAMP in eukaryotes, ranging from the rapid modulation of ion channel kinetics to the slowest developmental effects, the large number of cellular processes modulated by only three intermediaries, i.e. PKA (protein kinase A), Epacs (exchange proteins directly activated by cAMP) and CNG (cyclic nucleotide-gated) channels, poses the question of how selectivity and fine control is achieved by cAMP. One answer rests on the number of differently regulated and distinctly expressed AC species. Specific ACs are implicated in processes such as insulin secretion, immunological responses, sino-atrial node pulsatility and memory formation, and specific ACs are linked with particular diseased conditions or predispositions, such as cystic fibrosis, Type 2 diabetes and dysrhythmias. However, much of the selectivity and control exerted by cAMP lies in the sophisticated properties of individual ACs, in terms of their coincident responsiveness, dynamic protein scaffolding and organization of cellular microassemblies. The ACs appear to be the centre of highly organized microdomains, where both cAMP and Ca2+, the other major influence on ACs, change in patterns quite discrete from the broad cellular milieu. How these microdomains are organized is beginning to become clear, so that ACs may now be viewed as fundamental signalling centres, whose properties exceed their production of cAMP. In the present review, we summarize how ACs are multiply regulated and the steps that are put in place to ensure discrimination in their signalling. This includes scaffolding of targets and modulators by the ACs and assembling of signalling nexuses in discrete cellular domains. We also stress how these assemblies are cell-specific, context-specific and dynamic, and may be best addressed by targeted biosensors. These perspectives on the organization of ACs uncover new strategies for intervention in systems mediated by cAMP, which promise far more informed specificity than traditional approaches.
Collapse
|
12
|
Structural insights into calmodulin/adenylyl cyclase 8 interaction. Anal Bioanal Chem 2013; 405:9333-42. [PMID: 24071896 DOI: 10.1007/s00216-013-7358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/22/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Calmodulin (CaM) is a highly conserved intracellular Ca(2+)-binding protein that exerts important functions in many cellular processes. Prominent examples of CaM-regulated proteins are adenylyl cyclases (ACs), which synthesize cAMP as a central second messenger. The interaction of ACs with CaM represents the link between Ca(2+)-signaling and cAMP-signaling pathways. Thereby, different AC isoforms stimulated by CaM, comprise diverse mechanisms of regulation by the Ca(2+) sensor. To extend the structural information about the detailed mechanisms underlying the regulation of AC8 by CaM, we employed an integrated approach combining chemical cross-linking and mass spectrometry with two peptides representing the CaM-binding regions of AC8. These experiments reveal that the structures of CaM/AC8 peptide complexes are similar to that of the CaM/skeletal muscle myosin light chain kinase peptide complex where CaM is collapsed around the target peptide that binds to CaM in an antiparallel orientation. Cross-linking experiments were complemented by investigating the binding of AC8 peptides to CaM thermodynamically with isothermal titration calorimetry. There were no hints on a complex, in which both AC8 peptides bind simultaneously to CaM, refining our current understanding of the interaction between CaM and AC8.
Collapse
|
13
|
Masada N, Schaks S, Jackson SE, Sinz A, Cooper DMF. Distinct mechanisms of calmodulin binding and regulation of adenylyl cyclases 1 and 8. Biochemistry 2012; 51:7917-29. [PMID: 22971080 PMCID: PMC3466776 DOI: 10.1021/bi300646y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DMF. Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 2012; 5:ra29. [PMID: 22494970 DOI: 10.1126/scisignal.2002299] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between calcium ion (Ca(2+)) and cyclic adenosine monophosphate (cAMP) signaling underlies crucial aspects of cell homeostasis. The membrane-bound Ca(2+)-regulated adenylyl cyclases (ACs) are pivotal points of this integration. These enzymes display high selectivity for Ca(2+) entry arising from the activation of store-operated Ca(2+) (SOC) channels, and they have been proposed to functionally colocalize with SOC channels to reinforce crosstalk between the two signaling pathways. Using a multidisciplinary approach, we have identified a direct interaction between the amino termini of Ca(2+)-stimulated AC8 and Orai1, the pore component of SOC channels. High-resolution biosensors targeted to the AC8 and Orai1 microdomains revealed that this protein-protein interaction is responsible for coordinating subcellular changes in both Ca(2+) and cAMP. The demonstration that Orai1 functions as an integral component of a highly organized signaling complex to coordinate Ca(2+) and cAMP signals underscores how SOC channels can be recruited to maximize the efficiency of the interplay between these two ubiquitous signaling pathways.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ayling LJ, Briddon SJ, Halls ML, Hammond GRV, Vaca L, Pacheco J, Hill SJ, Cooper DMF. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu. J Cell Sci 2012; 125:869-86. [PMID: 22399809 DOI: 10.1242/jcs.091090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.
Collapse
Affiliation(s)
- Laura J Ayling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Type VI adenylyl cyclase regulates neurite extension by binding to Snapin and Snap25. Mol Cell Biol 2011; 31:4874-86. [PMID: 21986494 DOI: 10.1128/mcb.05593-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3'-5'-Cyclic AMP (cAMP) is an important second messenger which regulates neurite outgrowth. We demonstrate here that type VI adenylyl cyclase (AC6), an enzyme which catalyzes cAMP synthesis, regulates neurite outgrowth by direct interaction with a binding protein (Snapin) of Snap25 at the N terminus of AC6 (AC6-N). We first showed that AC6 expression increased during postnatal brain development. In primary hippocampal neurons and Neuro2A cells, elevated AC6 expression suppressed neurite outgrowth, whereas the downregulation or genetic removal of AC6 promoted neurite extension. An AC6 variant (AC6-N5) that contains the N terminus of AC5 had no effect, indicating the importance of AC6-N. The downregulation of endogenous Snapin or the overexpression of a Snapin mutant (Snap(Δ33-51)) that does not bind to AC6, or another Snapin mutant (Snapin(S50A)) that does not interact with Snap25, reversed the inhibitory effect of AC6. Pulldown assays and immunoprecipitation-AC assays revealed that the complex formation of AC6, Snapin, and Snap25 is dependent on AC6-N and the phosphorylation of Snapin. The overexpression of Snap25 completely reversed the action of AC6. Collectively, in addition to cAMP production, AC6 plays a complex role in modulating neurite outgrowth by redistributing localization of the SNARE apparatus via its interaction with Snapin.
Collapse
|
17
|
Abstract
Interplay between the signaling pathways of the intracellular second messengers, cAMP and Ca(2+), has vital consequences for numerous essential physiological processes. Although cAMP can impact on Ca(2+)-homeostasis at many levels, Ca(2+) either directly, or indirectly (via calmodulin [CaM], CaM-binding proteins, protein kinase C [PKC] or Gβγ subunits) may also regulate cAMP synthesis. Here, we have evaluated the evidence for regulation of adenylyl cyclases (ACs) by Ca(2+)-signaling pathways, with an emphasis on verification of this regulation in a physiological context. The effects of compartmentalization and protein signaling complexes on the regulation of AC activity by Ca(2+)-signaling pathways are also addressed. Major gaps are apparent in the interactions that have been assumed, revealing a need to comprehensively clarify the effects of Ca(2+) signaling on individual ACs, so that the important ramifications of this critical interplay between Ca(2+) and cAMP are fully appreciated.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | |
Collapse
|
18
|
Xu H, Leinwand SG, Dell AL, Fried-Cassorla E, Raper JA. The calmodulin-stimulated adenylate cyclase ADCY8 sets the sensitivity of zebrafish retinal axons to midline repellents and is required for normal midline crossing. J Neurosci 2010; 30:7423-33. [PMID: 20505109 PMCID: PMC2906118 DOI: 10.1523/jneurosci.0699-10.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/25/2010] [Accepted: 04/03/2010] [Indexed: 11/21/2022] Open
Abstract
The chemokine SDF1 activates a cAMP-mediated signaling pathway that antagonizes retinal responses to the midline repellent slit. We show that knocking down the calmodulin-activated adenylate cyclase ADCY8 makes retinal axons insensitive to SDF1. Experiments in vivo using male and female zebrafish (Danio rerio) confirm a mutual antagonism between slit signaling and ADCY8-mediated signaling. Unexpectedly, knockdown of ADCY8 or another calmodulin-activated cyclase, ADCY1, induces ipsilateral misprojections of retinal axons that would normally cross the ventral midline. We demonstrate a cell-autonomous requirement for ADCY8 in retinal neurons for normal midline crossing. These findings are the first to show that ADCY8 is required for axonal pathfinding before axons reach their targets. They support a model in which ADCY8 is an essential component of a signaling pathway that opposes repellent signaling. Finally, they demonstrate that ADCY8 helps regulate retinal sensitivity to midline guidance cues.
Collapse
Affiliation(s)
- Hong Xu
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Sarah G. Leinwand
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alison L. Dell
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Emma Fried-Cassorla
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jonathan A. Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
19
|
Willoughby D, Masada N, Wachten S, Pagano M, Halls ML, Everett KL, Ciruela A, Cooper DMF. AKAP79/150 interacts with AC8 and regulates Ca2+-dependent cAMP synthesis in pancreatic and neuronal systems. J Biol Chem 2010; 285:20328-42. [PMID: 20410303 PMCID: PMC2888445 DOI: 10.1074/jbc.m110.120725] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca2+. However, whether AKAPs play a role in the control of AC activity by Ca2+ is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca2+-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca2+ events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca2+-stimulated cAMP production.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sossin WS, Abrams TW. Evolutionary conservation of the signaling proteins upstream of cyclic AMP-dependent kinase and protein kinase C in gastropod mollusks. BRAIN, BEHAVIOR AND EVOLUTION 2009; 74:191-205. [PMID: 20029183 DOI: 10.1159/000258666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protein kinase C (PKC) and the cAMP-dependent kinase (protein kinase A; PKA) pathways are known to play important roles in behavioral plasticity and learning in the nervous systems of a wide variety of species across phyla. We briefly review the members of the PKC and PKA family and focus on the evolution of the immediate upstream activators of PKC and PKA i.e., phospholipase C (PLC) and adenylyl cyclase (AC), and their conservation in gastropod mollusks, taking advantage of the recent assembly of the Aplysiacalifornica and Lottia gigantea genomes. The diversity of PLC and AC family members present in mollusks suggests a multitude of possible mechanisms to activate PKA and PKC; we briefly discuss the relevance of these pathways to the known physiological activation of these kinases in Aplysia neurons during plasticity and learning. These multiple mechanisms of activation provide the gastropod nervous system with tremendous flexibility for implementing neuromodulatory responses to both neuronal activity and extracellular signals.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Que., Canada.
| | | |
Collapse
|
21
|
Martin ACL, Willoughby D, Ciruela A, Ayling LJ, Pagano M, Wachten S, Tengholm A, Cooper DMF. Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8. Mol Pharmacol 2009; 75:830-42. [PMID: 19171672 PMCID: PMC2684926 DOI: 10.1124/mol.108.051748] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/22/2009] [Indexed: 12/19/2022] Open
Abstract
Capacitative Ca(2+) entry (CCE), which occurs through the plasma membrane as a result of Ca(2+) store depletion, is mediated by stromal interacting molecule 1 (STIM1), a sensor of intracellular Ca(2+) store content, and the pore-forming component Orai1. However, additional factors, such as C-type transient receptor potential (TRPC) channels, may also participate in the CCE apparatus. To explore whether the store-dependent Ca(2+) entry reconstituted by coexpression of Orai1 and STIM1 has the functional properties of CCE, we used the Ca(2+)-calmodulin stimulated adenylyl cyclase type 8 (AC8), which responds selectively to CCE, whereas other modes of Ca(2+) entry, including those activated by arachidonate and the ionophore ionomycin, are ineffective. In addition, the Ca(2+) entry mediated by previous CCE candidates, diacylglycerol-activated TRPC channels, does not activate AC8. Here, we expressed Orai1 and STIM1 in HEK293 cells and saw a robust increment in CCE, and a proportional increase in CCE-stimulated AC8 activity. Inhibitors of the CCE assembly process ablated the effects on cyclase activity in both AC8-overexpressing HEK293 cells and insulin-secreting MIN6 cells endogenously expressing Ca(2+)-sensitive AC isoforms. AC8 is believed to be closely associated with the source of CCE; indeed, not only were AC8, Orai1, and STIM1 colocalized at the plasma membrane but also all three proteins occurred in lipid rafts. Together, our data indicate that Orai1 and STIM1 can be integral components of the cAMP and CCE microdomain associated with adenylyl cyclase type 8.
Collapse
Affiliation(s)
- Agnes C L Martin
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Macdougall DA, Wachten S, Ciruela A, Sinz A, Cooper DMF. Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition. J Biol Chem 2009; 284:15573-88. [PMID: 19305019 PMCID: PMC2708854 DOI: 10.1074/jbc.m809585200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ubiquitous Ca2+-sensing protein calmodulin (CaM) fulfills its numerous signaling functions through a wide range of modular binding and activation mechanisms. By activating adenylyl cyclases (ACs) 1 and 8, Ca2+ acting via calmodulin impacts on the signaling of the other major cellular second messenger cAMP. In possessing two CaM-binding domains, a 1-5-8-14 motif at the N terminus and an IQ-like motif (IQlm) at the C terminus, AC8 offers particularly sophisticated regulatory possibilities. The IQlm has remained unexplored beyond the suggestion that it bound CaM, and the larger C2b region of which it is part was involved in the relief of autoinhibition of AC8. Here we attempt to distinguish the function of individual residues of the IQlm. From a complementary approach of in vitro and cell population AC activity assays, as well as CaM binding, we propose that the IQlm alone, and not the majority of the C2b, imparts CaM binding and autoinhibitory functions. Moreover, this duality of function is spatially separated and depends on amino acid side-chain character. Accordingly, residues critical for CaM binding are positively charged and clustered toward the C terminus, and those essential for the maintenance of autoinhibition are hydrophobic and more N-terminal. Secondary structure prediction of the IQlm supports this separation, with an ideally placed break in the α-helical nature of the sequence. We additionally find that the N and C termini of AC8 interact, which is an association specifically abrogated by fully Ca2+-bound, but not Ca2+-free, CaM. These data support a sophisticated activation mechanism of AC8 by CaM, in which the duality of the IQlm function is critical.
Collapse
Affiliation(s)
- David A Macdougall
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Masada N, Ciruela A, Macdougall DA, Cooper DMF. Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles. J Biol Chem 2008; 284:4451-63. [PMID: 19029295 DOI: 10.1074/jbc.m807359200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nine membrane-bound mammalian adenylyl cyclases (ACs) have been identified. Type 1 and 8 ACs (AC1 and AC8), which are both expressed in the brain and are stimulated by Ca(2+)/calmodulin (CaM), have discrete neuronal functions. Although the Ca(2+) sensitivity of AC1 is higher than that of AC8, precisely how these two ACs are regulated by Ca(2+)/CaM remains elusive, and the basis for their diverse physiological roles is quite unknown. Distinct localization of the CaM binding domains within the two enzymes may be essential to differential regulation of the ACs by Ca(2+)/CaM. In this study we compare in detail the regulation of AC1 and AC8 by Ca(2+)/CaM both in vivo and in vitro and explore the different role of each Ca(2+)-binding lobe of CaM in regulating the two enzymes. We also assess the relative dependence of AC1 and AC8 on capacitative Ca(2+) entry. Finally, in real-time fluorescence resonance energy transfer-based imaging experiments, we examine the effects of dynamic Ca(2+) events on the production of cAMP in cells expressing AC1 and AC8. Our data demonstrate distinct patterns of regulation and Ca(2+) dependence of AC1 and AC8, which seems to emanate from their mode of regulation by CaM. Such distinctive properties may contribute significantly to the divergent physiological roles in which these ACs have been implicated.
Collapse
Affiliation(s)
- Nanako Masada
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
24
|
Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 2008; 17:5-22. [PMID: 18948702 PMCID: PMC2790773 DOI: 10.1159/000166277] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023] Open
Abstract
Cyclic AMP is a universal second messenger, produced by a family of adenylyl cyclase (AC) enzymes. The last three decades have brought a wealth of new information about the regulation of cyclic AMP production by ACs. Nine hormone-sensitive, membrane-bound AC isoforms have been identified in addition to a tenth isoform that lacks membrane spans and more closely resembles the cyanobacterial AC enzymes. New model systems for purifying and characterizing the catalytic domains of AC have led to the crystal structure of these domains and the mapping of numerous interaction sites. However, big hurdles remain in unraveling the roles of individual AC isoforms and their regulation in physiological systems. In this review we explore the latest on AC knockout and overexpression studies to better understand the roles of G protein regulation of ACs in the brain, olfactory bulb, and heart.
Collapse
Affiliation(s)
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Tex., USA
| |
Collapse
|
25
|
Wang SC, Lai HL, Chiu YT, Ou R, Huang CL, Chern Y. Regulation of type V adenylate cyclase by Ric8a, a guanine nucleotide exchange factor. Biochem J 2007; 406:383-8. [PMID: 17593019 PMCID: PMC2049038 DOI: 10.1042/bj20070512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we demonstrate that AC5 (type V adenylate cyclase) interacts with Ric8a through directly interacting at its N-terminus. Ric8a was shown to be a GEF (guanine nucleotide exchange factor) for several alpha subunits of heterotrimeric GTP binding proteins (Galpha proteins) in vitro. Selective Galpha targets of Ric8a have not yet been revealed in vivo. An interaction between AC5 and Ric8a was verified by pull-down assays, co-immunoprecipitation analyses, and co-localization in the brain. Expression of Ric8a selectively suppressed AC5 activity. Treating cells with pertussis toxin or expressing a dominant negative Galphai mutant abolished the suppressive effect of Ric8a, suggesting that interaction between the N-terminus of AC5 and a GEF (Ric8a) provides a novel pathway to fine-tune AC5 activity via a Galphai-mediated pathway.
Collapse
Affiliation(s)
- Shyi-Chyi Wang
- *Institute of Life Sciences, National Defence Medical Center, Taipei 104, Taiwan
- †Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsing-Lin Lai
- †Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ting Chiu
- †Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- ‡Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan
| | - Ren Ou
- †Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- ‡Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan
| | - Chuen-Lin Huang
- §Cardinal Tien Hospital, Hsintien Taipei Hsien 23137, Taiwan
| | - Yijuang Chern
- *Institute of Life Sciences, National Defence Medical Center, Taipei 104, Taiwan
- †Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- ‡Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Gao X, Sadana R, Dessauer CW, Patel TB. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem 2007; 282:294-302. [PMID: 17110384 DOI: 10.1074/jbc.m607522200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a yeast two-hybrid screen of mouse brain cDNA library, using the N-terminal region of human type V adenylyl cyclase (hACV) as bait, we identified G protein beta2 subunit as an interacting partner. Additional yeast two-hybrid assays showed that the Gbeta(1) subunit also interacts with the N-terminal segments of hACV and human type VI adenylyl cyclase (hACVI). In vitro adenylyl cyclase (AC) activity assays using membranes of Sf9 cells expressing hACV or hACVI showed that Gbetagamma subunits enhance the activity of these enzymes provided either Galpha(s) or forskolin is present. Deletion of residues 77-151, but not 1-76, in the N-terminal region of hACVI obliterated the ability of Gbetagamma subunits to conditionally stimulate the enzyme. Likewise, activities of the recombinant, engineered, soluble forms of ACV and ACVI, which lack the N termini, were not enhanced by Gbetagamma subunits. Transfection of the C terminus of G protein receptor kinase 2 to sequester endogenous Gbetagamma subunits attenuated the ability of isoproterenol to increase cAMP accumulation in COS-7 cells overexpressing hACVI even when G(i) was inactivated by pertussis toxin. Therefore, we conclude that the N termini of human hACV and hACVI are necessary for interactions with, and regulation by, Gbetagamma subunits both in vitro and in intact cells. Moreover, Gbetagamma subunits derived from a source(s) other than G(i) are necessary for the full activation of hACVI by isoproterenol in intact cells.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Elevations in cytosolic Ca2+ concentration are the usual initial response of endothelial cells to hormonal and chemical transmitters and to changes in physical parameters, and many endothelial functions are dependent upon changes in Ca2+ signals produced. Endothelial cell Ca2+ signalling shares similar features with other electrically non-excitable cell types, but has features unique to endothelial cells. This chapter discusses the major components of endothelial cell Ca2+ signalling.
Collapse
Affiliation(s)
- Q K Tran
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | |
Collapse
|
29
|
Ihling C, Schmidt A, Kalkhof S, Schulz DM, Stingl C, Mechtler K, Haack M, Beck-Sickinger AG, Cooper DMF, Sinz A. Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1100-1113. [PMID: 16750914 DOI: 10.1016/j.jasms.2006.04.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 04/01/2006] [Accepted: 04/03/2006] [Indexed: 05/10/2023]
Abstract
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.
Collapse
Affiliation(s)
- Christian Ihling
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Institute of Molecular Pathology, Vienna, Austria
| | - Andreas Schmidt
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Institute of Molecular Pathology, Vienna, Austria
| | - Stefan Kalkhof
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Daniela M Schulz
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | | | | | - Michael Haack
- Department of Bioscience, Pharmacy, and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Department of Bioscience, Pharmacy, and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | - Andrea Sinz
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnéstrasse 3, D-04103, Leipzig, Germany.
| |
Collapse
|
30
|
Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006; 362:623-39. [PMID: 16934836 PMCID: PMC3662476 DOI: 10.1016/j.jmb.2006.07.045] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 01/05/2023]
Abstract
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.
Collapse
Affiliation(s)
- Margarita Kamenetsky
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Sabine Middelhaufe
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
| | - Erin M. Bank
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Lonny R. Levin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
- Corresponding authors: ;
| | - Jochen Buck
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Clemens Steegborn
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
- Corresponding authors: ;
| |
Collapse
|
31
|
Cooper DMF, Crossthwaite AJ. Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol Sci 2006; 27:426-31. [PMID: 16820220 DOI: 10.1016/j.tips.2006.06.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/26/2006] [Accepted: 06/16/2006] [Indexed: 11/26/2022]
Abstract
There is increasing awareness of the compartmentalization of cAMP signalling--the means by which cAMP levels change in discrete domains of the cell with discrete local consequences. Current developments in understanding the organization of adenylyl cyclases in the plasma membrane are illuminating how the earliest part of cAMP compartmentalization could occur. This review focuses on recent findings regarding three levels of adenylyl cyclase organization--oligomerization, positioning to lipid rafts and participation in multiprotein signalling complexes. This organization, coupled with the role of scaffolding proteins in arranging the downstream effectors of cAMP, helps to identify complexes that greatly facilitate the translation of enzyme activation into local consequences.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
32
|
Simpson RE, Ciruela A, Cooper DMF. The role of calmodulin recruitment in Ca2+ stimulation of adenylyl cyclase type 8. J Biol Chem 2006; 281:17379-17389. [PMID: 16613843 DOI: 10.1074/jbc.m510992200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ stimulation of adenylyl cyclase type 8 (AC8) is mediated by calmodulin (CaM). An earlier study identified two CaM binding sites in AC8; one that was apparently not essential for AC8 activity, located at the N terminus, and a second site that was critical for Ca2+ stimulation, found at the C terminus (Gu, C., and Cooper, D. M. F. (1999) J. Biol. Chem. 274, 8012-8021). This study explores the role of these two CaM binding domains and their interaction in regulating AC8 activity, employing binding and functional studies with mutant CaM and modified AC8 species. We report that the N-terminal CaM binding domain of AC8 has a role in recruiting CaM and that this recruitment is essential to permit stimulation by Ca2+ in vivo. Using Ca2+-insensitive mutants of CaM, we found that partially liganded CaM can bind to AC8, but only fully liganded Ca2+/CaM can stimulate AC8 activity. Moreover, partially liganded CaM inhibited AC8 activity in vivo. The results indicate that CaM pre-associates with the N terminus of AC8, and we suggest that this recruited CaM is used by the C terminus of AC8 to mediate Ca2+ stimulation.
Collapse
Affiliation(s)
- Rachel E Simpson
- The Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Antonio Ciruela
- The Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Dermot M F Cooper
- The Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
33
|
Crossthwaite AJ, Ciruela A, Rayner TF, Cooper DMF. A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A. Mol Pharmacol 2006; 69:608-17. [PMID: 16258073 DOI: 10.1124/mol.105.018275] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although protein scaffolding complexes compartmentalize protein kinase A (PKA) and phosphodiesterases to optimize cAMP signaling, adenylyl cyclases, the sources of cAMP, have been implicated in very few direct protein interactions. The N termini of adenylyl cyclases are highly divergent, which hints at isoform-specific interactions. Indeed, the Ca(2+)-sensitive adenylyl cyclase 8 (AC8) contains a Ca(2+)/calmodulin binding site on the N terminus that is essential for stimulation of activity by the capacitative entry of Ca(2+) in the intact cell. Here, we have used the N terminus of AC8 as a bait in a yeast two-hybrid screen of a human embryonic kidney (HEK) 293 cell cDNA library and identified the catalytic subunit of the serine/threonine protein phosphatase 2A (PP2A(C)) as a binding partner. Confirming the highly specific nature of this novel interaction, glutathione-S-transferase fusion proteins containing the full-length N terminus of AC8 affinity precipitated catalytically active PP2A(C) from both HEK293 and mouse forebrain membranes-the latter a normal source of AC8. The scaffolding subunit of PP2A (PP2A(A); 65 kDa) was also precipitated by the N terminus of AC8, indicating that AC8 may occur in a complex with the PP2A core dimer. The interaction between the N terminus of AC8 and PP2A(C) was antagonized by Ca(2+)/calmodulin. However, PP2A(C) and Ca(2+)/calmodulin did not share identical binding specificities in the N terminus of AC8. PKA-mediated phosphorylation did not influence either calmodulin or PP2A(C) association with AC8. In addition, both PP2A(C) and AC8 occurred in lipid rafts. These findings are the first demonstration of an association between adenylyl cyclase and any downstream element of cAMP signaling.
Collapse
|
34
|
Abstract
Calmodulin (CaM) operates as a Ca(2+) sensor and is known to interact with and regulate hundreds of proteins involved in a great many aspects of cellular function. It is of considerable interest to understand the balance of forces in complex formation of CaM with its target proteins. Here we have studied the importance of electrostatic interactions in the complex between CaM and a peptide derived from smooth-muscle myosin light-chain kinase by experimental methods and Monte Carlo simulations of electrostatic interactions. We show by Monte Carlo simulations that, in agreement with experimental data, the binding affinity between CaM and highly charged peptides is surprisingly insensitive to changes in the net charge of both the protein and peptide. We observe an increase in the binding affinity between oppositely charged partners with increasing salt concentration from zero to 100 mM, showing that formation of globular CaM-kinase type complexes is facilitated at physiological ionic strength. We conclude that ionic interactions in complex formation are optimized at pH and saline similar to the cell environment, which probably overrules the electrostatic repulsion between the negatively charged Ca(2+)-binding domains of CaM. We propose a conceivable rationalization of CaM electrostatics associated with interdomain repulsion.
Collapse
Affiliation(s)
- Ingemar André
- Department of Biophysical Chemistry, Lund University, Chemical Centre, Lund, Sweden
| | | | | | | |
Collapse
|
35
|
Diel S, Klass K, Wittig B, Kleuss C. Gbetagamma activation site in adenylyl cyclase type II. Adenylyl cyclase type III is inhibited by Gbetagamma. J Biol Chem 2005; 281:288-94. [PMID: 16275644 DOI: 10.1074/jbc.m511045200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gbetagamma complex of heterotrimeric G proteins is the most outstanding example for the divergent regulation of mammalian adenylyl cyclases. The heterodimeric Gbetagamma complex inhibits some isoforms, e.g. ACI, and stimulates the isoforms ACII, -IV, and -VII. Although former studies identified the QEHA region located in the C2 domain of ACII as an important interaction site for Gbetagamma, the determinant of the stimulatory effect of Gbetagamma has not been detected. Here, we identified the C1b domain as the stimulatory region using full-length adenylyl cyclase. The relevant Gbetagamma signal transfer motif in IIC1b was determined as MTRYLESWGAAKPFAHL (amino acids 493-509). Amino acids of this PFAHL motif were absolutely necessary for ACII to be stimulated by Gbetagamma, whereas they were dispensable for Galpha(s) or forskolin stimulation. The PFAHL motif is present in all three adenylyl cyclase isoforms that are activated by Gbetagamma but is absent in other adenylyl cyclase isoforms as well as other known effectors of Gbetagamma. The emerging concept of two contact sites on different molecule halves for effective regulation of adenylyl cyclase is discussed.
Collapse
Affiliation(s)
- Susanne Diel
- Institut für Pharmakologie, Thielallee 67-73, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
37
|
Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z. Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits. Cell Signal 2005; 18:62-8. [PMID: 15925485 DOI: 10.1016/j.cellsig.2005.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
The Ca2+-activated adenylyl cyclase type VIII (AC-VIII) has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. It has not been clear whether Gi/o proteins and G-protein coupled receptors regulate the activity of AC-VIII. Here we show in intact mammalian cell system that AC-VIII is inhibited by mu-opioid receptor activation and that this inhibition is pertussis toxin sensitive. Moreover, we show that G(betagamma) subunits inhibit AC-VIII activity, while constitutively active alphai/o subunits do not. Different Gbeta isoforms varied in their efficacies, with Gbeta1gamma2 or Gbeta2gamma2 being more efficient than Gbeta3gamma2 and Gbeta4gamma2, while Gbeta5 (transfected with gamma2) had no effect. As for the Ggamma subunits, Gbeta1 inhibited AC-VIII activity in the presence of all gamma subunits tested except for gamma5 that had only a marginal activity. Moreover, cotransfection with proteins known to serve as scavengers of Gbetagamma dimers, or to reduce Gbetagamma plasma membrane anchorage, markedly attenuated the mu-opioid receptor-induced inhibition of AC-VIII. These results demonstrate that Gbetagamma (originating from agonist activation of these receptors) and probably not Galphai/o subunits are involved in the agonist inhibition of AC-VIII.
Collapse
Affiliation(s)
- Debora Steiner
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
38
|
Tran QK, Black DJ, Persechini A. Dominant affectors in the calmodulin network shape the time courses of target responses in the cell. Cell Calcium 2005; 37:541-53. [PMID: 15862345 DOI: 10.1016/j.ceca.2005.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/29/2022]
Abstract
In endothelial cells nitric oxide synthase is a dominant affector in the calmodulin network by virtue of its ability to bind a significant fraction of limiting intracellular calmodulin. We have investigated how this affector function influences the kinetics of calmodulin-dependent signaling in cells co-expressing the synthase and a fluorescent calmodulin target analog similar in its interactions with calmodulin to myosin light chain kinase. The synthase binds (Ca(2+))(4)-calmodulin with a K(d) value of approximately 0.2 nM and an association rate constant of approximately 1.5 x 10(5) M(-1) s(-1). These values are, respectively, 10- and 100-fold smaller than the corresponding values for the analog. Thus, when Ca(2+) is added to a mixture of calmodulin, target analog and synthase in vitro a large fluorescence transient with a relaxation time of approximately 600 s is observed as (Ca(2+))(4)-calmodulin is rapidly bound to the analog and then slowly captured by the higher affinity synthase. A rapid increase in the free Ca(2+) concentration elicits similar transient analog responses in cells expressing the cytoplasmic target analog and either a wild-type membrane bound or mutant cytoplasmic synthase. Transient responses are not observed in cells co-expressing the fluorescent analog and a mutant T497D synthase unable to bind calmodulin. These results demonstrate that dominant affectors in the calmodulin network shape both the magnitudes and time courses of target responses in the cell.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri at Kansas City, 64110-2499, USA
| | | | | |
Collapse
|
39
|
André I, Kesvatera T, Jönsson B, Akerfeldt KS, Linse S. The role of electrostatic interactions in calmodulin-peptide complex formation. Biophys J 2005; 87:1929-38. [PMID: 15345569 PMCID: PMC1304596 DOI: 10.1529/biophysj.104.040998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex between calmodulin and the calmodulin-binding portion of smMLCKp has been studied. Electrostatic interactions have been anticipated to be important in this system where a strongly negative protein binds a peptide with high positive charge. Electrostatic interactions were probed by varying the pH in the range from 4 to 11 and by charge deletions in CaM and smMLCKp. The change in net charge of CaM from approximately -5 at pH 4.5 to -15 at pH 7.5 leaves the binding constant virtually unchanged. The affinity was also unaffected by mutations in CaM and charge substitutions in the peptide. The insensitivity of the binding constant to pH may seem surprising, but it is a consequence of the high charge on both protein and peptide. At low pH it is further attenuated by a charge regulation mechanism. That is, the protein releases a number of protons when binding the positively charged peptide. We speculate that the role of electrostatic interactions is to discriminate against unbound proteins rather than to increase the affinity for any particular target protein.
Collapse
Affiliation(s)
- Ingemar André
- Department of Biophysical Chemistry, Lund University, Chemical Center, SE-22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Steiner D, Avidor-Reiss T, Schallmach E, Butovsky E, Lev N, Vogel Z. Regulation of adenylate cyclase type VIII splice variants by acute and chronic Gi/o-coupled receptor activation. Biochem J 2005; 386:341-8. [PMID: 15537392 PMCID: PMC1134799 DOI: 10.1042/bj20041670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/03/2004] [Accepted: 11/10/2004] [Indexed: 11/17/2022]
Abstract
We previously reported that acute agonist activation of G(i/o)-coupled receptors inhibits adenylate cyclase (AC) type VIII activity, whereas agonist withdrawal following chronic activation of these receptors induces AC-VIII superactivation. Three splice variants of AC-VIII have been identified, which are called AC-VIII-A, -B and -C (with AC-VIII-B missing the glycosylation domain and AC-VIII-C lacking most of the C1b area). We report here that AC-VIII-A and -B, but not -C, are inhibited by acute mu-opioid and dopaminergic type D2 receptor activation, indicating that the C1b area of AC-VIII has an important role in AC inhibition by G(i/o)-coupled receptor activation. On the other hand the glycosylation sites in AC-VIII did not play a role in AC-VIII regulation. Although AC-VIII-A and -C differed in their capacity to be inhibited by acute agonist exposure, agonist withdrawal after prolonged treatment led to a similar superactivation of all three splice variants, with no significant change in AC-VIII expression. AC-VIII superactivation was not affected by pre-incubation with a cell permeable cAMP analogue, indicating that the superactivation does not depend on the agonist-induced reduction in cAMP levels. The superactivated AC-VIII-A, -B and -C were similarly re-inhibited by re-application of agonist (morphine or quinpirole), returning the activity to control levels. These results demonstrate marked differences in the agonist inhibition of the AC-VIII splice variants before, but not after, superactivation.
Collapse
Key Words
- adenylate cyclase type viii
- camp
- dopamine receptor
- g-protein-coupled receptor
- opiate receptor
- superactivation
- ac, adenylate cyclase
- cho, chinese-hamster ovary
- 8-cpt-camp, 8-(4-chlorophenylthio)-3′,5′-camp
- dmem, dulbecco's modified eagle's medium
- d2 receptor, dopaminergic type 2 receptor
- d2l receptor, long form of the d2 receptor
- fs, forskolin
- ibmx, isobutylmethylxanthine
- ptx, pertussis toxin
Collapse
Affiliation(s)
- Debora Steiner
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tomer Avidor-Reiss
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ester Schallmach
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Elena Butovsky
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nirit Lev
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvi Vogel
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
41
|
Schmidt A, Kalkhof S, Ihling C, Cooper DMF, Sinz A. Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin / adenylyl cyclase 8 peptide complex. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:525-34. [PMID: 16322659 DOI: 10.1255/ejms.748] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chemical cross-linking--an established technique in protein chemistry--has re-emerged, in combination with mass spectrometric analysis of the reaction products, as a valuable tool to identify interacting amino acid sequences in protein complexes. In the present study, we are mapping the interface of the calcium-dependent complex between calmodulin (CaM) and a peptide derived from the C-terminal region of adenylyl cyclase 8 (AC 8). Cross-linking reactions are performed using the two amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS(3) (bis[sulfosuccinimidyl]suberate) and BS(2)G (bi[sulfosuccinimidyl] glutarate) as well as the 'zero-length' cross-linker (EDC, ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride). After separation of the cross-linking reaction mixtures by one-dimensional gel electrophoresis (sodium dodecyl sulphate polyacrylamide gel) and in-gel digestion of the cross-linked complexes, the resulting peptide mixtures are analyzed by nano-high-performance liquid chromatography/ nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The identified intermolecular cross-linking products will give further insight into calmodulin/adenylyl cyclase 8 interaction.
Collapse
Affiliation(s)
- Andreas Schmidt
- Biotechnological-Biomedical Center, Faculty of Chemistry and Mineralogy, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
42
|
Black DJ, Tran QK, Persechini A. Monitoring the total available calmodulin concentration in intact cells over the physiological range in free Ca2+. Cell Calcium 2004; 35:415-25. [PMID: 15003851 DOI: 10.1016/j.ceca.2003.10.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/22/2003] [Indexed: 10/26/2022]
Abstract
We describe the design, characterization and application of a new genetically encoded fluorescent biosensor for intracellular detection of both free Ca(2+)-calmodulin and apocalmodulin, which together comprise the available calmodulin concentration. The biosensor binds both forms of calmodulin with an apparent Kd value of 3 microM, and has kinetic properties making it suitable for monitoring dynamic changes on a subsecond time scale. It can be used in conjunction with the fluorescent Ca(2+)-indicator, indo-1, allowing the available calmodulin and free Ca2+ concentrations to be monitored concurrently. We have determined an intracellular available calmodulin concentration of 8.8 +/- 2.2 microM under resting conditions in a human kidney cell line stably expressing the biosensor. Elevation of the intracellular free Ca2+ concentration by agonist, store-operated Ca(2+)-entry or ionophore results in Ca(2+)-dependent consumption of the available calmodulin. A plot of normalized values for the available calmodulin concentration versus the free Ca2+ concentration fits a consumption curve with a cooperativity coefficient of 1.8 and a [Ca2+]50 of 850 nM. There is no detectible binding of calmodulin to the biosensor above a free Ca2+ concentration of approximately 4 microM, consistent with an available calmodulin concentration < or = 200 nM under these conditions, and an overall excess of calmodulin-binding sites.
Collapse
Affiliation(s)
- D J Black
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | |
Collapse
|
43
|
Abstract
The Ca2+/calmodulin-stimulated adenylyl cyclases, AC1 and AC8, play a critical role in several forms of neuroplasticity, including long-lasting long-term potentiation (L-LTP) and long-term memory (LTM). By coupling neuronal activity and Ca2+increases to the production of cAMP, AC1 and AC8 activate cAMP-dependent signal transduction and transcriptional pathways critical for L-LTP and LTM.
Collapse
Affiliation(s)
- Gregory D Ferguson
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
44
|
Spehr M, Schwane K, Riffell JA, Barbour J, Zimmer RK, Neuhaus EM, Hatt H. Particulate Adenylate Cyclase Plays a Key Role in Human Sperm Olfactory Receptor-mediated Chemotaxis. J Biol Chem 2004; 279:40194-203. [PMID: 15271985 DOI: 10.1074/jbc.m403913200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human sperm chemotaxis is a critical component of the fertilization process, but the molecular basis for this behavior remains unclear. Recent evidence shows that chemotactic responses depend on activation of the sperm olfactory receptor, hOR17-4. Certain floral scents, including bourgeonal, activate hOR17-4, trigger pronounced Ca(2+) fluxes, and evoke chemotaxis. Here, we provide evidence that hOR17-4 activation is coupled to a cAMP-mediated signaling cascade. Multidimensional protein identification technology was used to identify potential components of a G-protein-coupled cAMP transduction pathway in human sperm. These products included various membrane-associated adenylate cyclase (mAC) isoforms and the G(olf)-subunit. Using immunocytochemistry, specific mAC isoforms were localized to particular cell regions. Whereas mAC III occurred in the sperm head and midpiece, mAC VIII was distributed predominantly in the flagellum. In contrast, G(olf) was found mostly in the flagellum and midpiece. The observed spatial distribution patterns largely correspond to the spatiotemporal character of hOR17-4-induced Ca(2+) changes. Behavioral and Ca(2+) signaling responses of human sperm to bourgeonal were bioassayed in the presence, or absence, of the adenylate cyclase antagonist SQ22536. This specific agent inhibits particulate AC, but not soluble AC, activation. Upon incubation with SQ22536, cells ceased to exhibit Ca(2+) signaling, chemotaxis, and hyperactivation (faster swim speed and flagellar beat rate) in response to bourgeonal. Particulate AC is therefore required for induction of hOR17-4-mediated human sperm behavior and represents a promising target for future design of contraceptive drugs.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chou JL, Huang CL, Lai HL, Hung AC, Chien CL, Kao YY, Chern Y. Regulation of type VI adenylyl cyclase by Snapin, a SNAP25-binding protein. J Biol Chem 2004; 279:46271-9. [PMID: 15319443 DOI: 10.1074/jbc.m407206200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we used the N terminus (amino acids 1 approximately 160) of type VI adenylyl cyclase (ACVI) as bait to screen a mouse brain cDNA library and identified Snapin as a novel ACVI-interacting molecule. Snapin is a binding protein of SNAP25, a component of the SNARE complex. Co-immunoprecipitation analyses confirmed the interaction between Snapin and full-length ACVI. Mutational analysis revealed that the interaction domains of ACVI and Snapin were located within amino acids 1 approximately 86 of ACVI and 33-51 of Snapin, respectively. Co-localization of ACVI and Snapin was observed in primary hippocampal neurons. Moreover, expression of Snapin specifically eliminated protein kinase C (PKC)-mediated suppression of ACVI, but not that of cAMP-dependent protein kinase (PKA) or calcium. Mutation of the potential PKC and PKA phosphorylation sites of Snapin did not affect the ability of Snapin to reverse the PKC inhibitory effect on ACVI. Phosphorylation of Snapin by PKC or PKA therefore might not be crucial for Snapin action on ACVI. In contrast, Snapin(Delta33-51), which harbors an internal deletion of amino acids 33-51 did not affect PKC-mediated inhibition of ACVI, supporting that amino acids 33-51 of Snapin comprises the ACVI-interacting region. Consistently, Snapin exerted no effect on PKC-mediated inhibition of an ACVI mutant (ACVI-DeltaA87), which lacked the Snapin-interacting region (amino acids 1-86). Snapin thus reverses its action via direct interaction with the N terminus of ACVI. Collectively, we demonstrate herein that in addition to its association with the SNARE complex, Snapin also functions as a regulator of an important cAMP synthesis enzyme in the brain.
Collapse
Affiliation(s)
- Jui-Ling Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Kao YY, Lai HL, Hwang MJ, Chern Y. An Important Functional Role of the N Terminus Domain of Type VI Adenylyl Cyclase in Gαi-mediated Inhibition. J Biol Chem 2004; 279:34440-8. [PMID: 15192109 DOI: 10.1074/jbc.m401952200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show herein that removal of the first 86 amino acids (aa) of the N terminus (designated N) of type VI adenylyl cyclase (ACVI) caused the resultant ACVI mutant (ACVI-DeltaA87) to be more greatly inhibited by a Galpha(i)-coupled receptor or activated Galpha(i) protein. Moreover, in vitro binding of the full-length N and C1a domain (designated C1a), which interacts with Galpha(i), was detected. A truncated N terminus (aa 1-86) also interacted with C1a, suggesting that the C1a-interacting region is located within aa 1-86. Mutation analyses further revealed that N might interact with C1a in the region (aa 434-505) where Galpha(i) is bound. Mutations of two residues (Leu-472 and Val-476) located in this N-binding region of C1a suppressed the interaction between recombinant N and C1a and markedly reduced Galpha(i)-mediated inhibition of ACVI-DeltaA87. Further biochemical analyses of the effect of internal mutations of Leu-472/Val-476 on Galpha(i)-mediated inhibition of wild-type ACVI and ACVI-DeltaA87 suggested that N modulates the Galpha(i)-mediated inhibition of ACVI via binding to C1a when the level of Galpha(i) is low (i.e. around the IC(50) value) and that a more complicated interfering mode results when the level of Galpha(i) is high (i.e. approximately 10- to 20-fold of the IC(50) value). Collectively, data presented herein suggest a novel function of the N terminus of ACVI in Galpha(i)-mediated regulation.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Blotting, Western
- CHO Cells
- Catalytic Domain
- Cell Line
- Cell Membrane/metabolism
- Cricetinae
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Inhibitory Concentration 50
- Leucine/chemistry
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Polymerase Chain Reaction
- Protein Binding
- Protein Conformation
- Protein Isoforms
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/metabolism
- Rats
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Transfection
- Valine/chemistry
Collapse
Affiliation(s)
- Yu-Ya Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | |
Collapse
|
47
|
Cooper DMF. Regulation and organization of adenylyl cyclases and cAMP. Biochem J 2003; 375:517-29. [PMID: 12940771 PMCID: PMC1223734 DOI: 10.1042/bj20031061] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/26/2003] [Indexed: 11/17/2022]
Abstract
Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
48
|
Abstract
Measurements of cellular Ca2+-calmodulin concentrations have suggested that competition for limiting calmodulin may couple calmodulin-dependent activities. Here we have directly tested this hypothesis. We have found that in endothelial cells the amount of calmodulin bound to nitric-oxide synthase and the catalytic activity of the enzyme both are increased approximately 3-fold upon changes in the phosphorylation status of the enzyme. Quantitative immunoblotting indicates that the synthase can bind up to 25% of the total cellular calmodulin. Consistent with this, simultaneous determinations of the free Ca2+ and Ca2+-calmodulin concentrations in these cells performed using indo-1 and a fluorescent calmodulin biosensor (Kd = 2 nm) indicate that increased binding of calmodulin to the synthase is associated with substantial reductions in the Ca2+-calmodulin concentrations produced and an increase in the [Ca2+]50 for formation of the calmodulin-biosensor complex. The physiological significance of these effects is confirmed by a corresponding 40% reduction in calmodulin-dependent plasma membrane Ca2+ pump activity. An identical reduction in pump activity is produced by expression of a high affinity (Kd = 0.3 nm) calmodulin biosensor, and treatment to increase calmodulin binding to the synthase then has no further effect. This suggests that the observed reduction in pump activity is due specifically to reduced calmodulin availability. Increases in synthase activity thus appear to be coupled to decreases in the activities of other calmodulin targets through reductions in the size of a limiting pool of available calmodulin. This exemplifies what is likely to be a ubiquitous mechanism for coupling among diverse calmodulin-dependent activities.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Division of Molecular Biology & Biochemistry, School of Biological Sciences, University of Missouri, Kansas City 64110-2499, USA
| | | | | |
Collapse
|
49
|
Wang H, Storm DR. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol Pharmacol 2003; 63:463-8. [PMID: 12606751 DOI: 10.1124/mol.63.3.463] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene disruption studies have shown that the Ca(2+)-stimulated adenylyl cyclases, AC1 and AC8, are critical for some forms of synaptic plasticity, including long-term potentiation as well as long-term memory formation (LTM). It is hypothesized that these enzymes are required for LTM to support the increased expression of a family of genes regulated through the cAMP/Ca(2+) response element-binding protein/cAMP response element transcriptional pathway. In contrast to AC1 and AC8, AC3 is a Ca(2+)-inhibited adenylyl cyclase that plays an essential role in olfactory signal transduction. Coupling of odorant receptors to AC3 stimulates cAMP transients that function as the major second messenger for olfactory signaling. These cAMP transients are caused, at least in part, by Ca(2+) inhibition of AC3, which is mediated through calmodulin-dependent protein kinase II. The unique structure and regulatory properties of these adenylyl cyclases make them attractive drug target sites for modulation of a number of physiological processes including memory formation and olfaction.
Collapse
Affiliation(s)
- Hongbing Wang
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
50
|
Lin TH, Lai HL, Kao YY, Sun CN, Hwang MJ, Chern Y. Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains. J Biol Chem 2002; 277:15721-8. [PMID: 11877398 DOI: 10.1074/jbc.m111537200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that phosphorylation of Ser(10) of the N terminus domain of the type VI adenylyl cyclase (ACVI) partly mediated protein kinase C (PKC)-induced inhibition of ACVI. We now report that phosphorylation of the other two cytosolic domains (C1 and C2), which form the catalytic core complex of ACVI, also contributes to PKC-mediated inhibition. In vitro phosphorylation by PKC of the recombinant C1a and C2 domains, and of the synthetic peptides representing potential PKC phosphorylation sites, suggests that Ser(568) and Ser(674) of the C1 domain and Thr(931) of the C2 domain might act as substrates for PKC. We next created several full-length ACVI mutants in which one or more of the four likely PKC phosphorylation sites (Ser(10), Ser(568), Ser(674), and Thr(931)) were mutated to alanine. Simultaneous mutation of at least two of the three likely residues located in the N and C1 domains (Ser(10), Ser(568), and Ser(674)) was required to render ACVI variants completely insensitive to PKC treatment. In contrast, a single mutation of Thr(931) was sufficient to create a functional ACVI mutant that exhibited no detectable PKC-mediated inhibition, demonstrating the essentiality of Thr(931) to PKC-mediated regulation. Based on these results, we propose that the three cytosolic domains of ACVI might form a regulatory complex. Phosphorylation of this regulatory complex at different sites might induce a fine-tuning of the catalytic core complex and subsequently lead to alternation in the catalytic activity of ACVI.
Collapse
Affiliation(s)
- Ting-Hui Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|