1
|
Razzaq S, Fatima I, Moafian Z, Rahdar A, Fathi-Karkan S, Kharaba Z, Shirzad M, Khan A, Pandey S. Nanomedicine innovations in colon and rectal cancer: advances in targeted drug and gene delivery systems. Med Oncol 2025; 42:113. [PMID: 40097759 DOI: 10.1007/s12032-025-02670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has revolutionized cancer diagnostics and therapy, offering unprecedented possibilities to overcome the constraints of conventional treatments. This study provides a detailed overview of the current progress and difficulties in the creation of nanostructured materials, with a specific emphasis on their use in drug and gene delivery systems. The study examines tactics that attempt to improve the effectiveness and safety of chemotherapeutic drugs such as doxorubicin (Dox) by focusing on the potential of antibody-drug conjugates and functionalized nanoparticles. Moreover, it clarifies the challenges encountered in administering nanoparticles orally for gastrointestinal treatments, emphasizing the crucial physicochemical properties that affect their behavior in the gastrointestinal system. This study highlights the transformational potential of nanostructured materials in precision oncology by examining advanced breakthroughs such cell membrane-camouflaged nanoparticles and inorganic nanoparticles designed for gastrointestinal disorders. The text investigates the processes involved in the absorption of nanoparticles and their destruction in lysosomes, revealing the many methods in which enterocytes take up these particles. This study strongly supports the use of advanced nanoparticle-based methods to reduce the harmful effects on the whole body and improve the effectiveness of therapy, based on a thorough examination of current experiments on animals and humans. The main objective of this paper is to provide a fundamental comprehension that will stimulate more investigation and practical use in the field of cancer nanomedicine, advancing its boundaries.
Collapse
Affiliation(s)
- Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zeinab Moafian
- Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran.
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India.
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
2
|
Hu W, Wang Y, Zhou Y, Shi J, Li Z, Jiang X, Wu Q, Zhong C, Weng H, Ouyang S, Jing Y, Cai X, Ye M, Huang N. Exploration of the mechanism of Lithospermum erythrorhizon oil in treating atopic dermatitis based on network pharmacology and experimental validation of the PI3K-Akt pathway regulation. Heliyon 2025; 11:e41707. [PMID: 39906865 PMCID: PMC11791135 DOI: 10.1016/j.heliyon.2025.e41707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Objective This study aimed to explore the molecular mechanisms of Lithospermum erythrorhizon oil in treating atopic dermatitis (AD), with a particular focus on its regulatory effect on the PI3K-Akt signaling pathway. Methods Utilizing a network pharmacology approach integrated with experimental validation, we identified active components and potential targets of Lithospermum erythrorhizon oil via TCMSP, ChemSrc, PubChem, and PharmMapper. Common targets were selected by intersecting these with AD-related targets from GeneCards. A protein-protein interaction (PPI) network was built using STRING, and functional analysis Gene Ontology (GO) and pathway enrichment Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on Metascape. A Gene-miRNA regulatory network was constructed on miRTarBase and NetworkAnalyst, with miRNA functions annotated by miEAA. An AD mouse model induced by DNCB was established to evaluate Lithospermum erythrorhizon oil's therapeutic efficacy, its influence on inflammatory markers, and the PI3K-Akt pathway. Results Fifteen common targets were found to be crucial in AD pathogenesis. The PPI network, constructed using STRING, revealed interactions among 13 nodes and 42 edges, with Cytoscape analysis highlighting 10 core targets. GO and KEGG analyses were significant in biological processes like cell migration and inflammatory response regulation, and in pathways such as IL-17 signaling and PI3K-Akt signaling. The Gene-miRNA network suggested Lithospermum erythrorhizon oil may regulate miRNAs like hsa-mir-124-3p and hsa-let-7b-5p. Experimental results showed that Lithospermum erythrorhizon oil significantly improved AD symptoms in mice, reduced IL-4 and IL-13 levels, and decreased p-PI3K, p-PI3K/PI3K, p-Akt, and p-Akt/Akt expression, inhibiting PI3K-Akt pathway activation. Conclusion Lithospermum erythrorhizon oil exerts multi-target, multi-pathway therapeutic effects in AD, potentially through suppressing Th2-mediated immune responses and the PI3K-Akt signaling pathway, suggesting novel avenues for AD treatment strategies.
Collapse
Affiliation(s)
- Weisheng Hu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Yinlan Wang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Yingjie Zhou
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Junbao Shi
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Zengyan Li
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Xiaoling Jiang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Qinyuan Wu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Changming Zhong
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Huilan Weng
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Integrated Traditional Chinese and Western Medicine Dermatology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Sijie Ouyang
- School of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yuan Jing
- School of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xianxiang Cai
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Mingda Ye
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Ning Huang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Integrated Traditional Chinese and Western Medicine Dermatology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| |
Collapse
|
3
|
Fu Q, Zhu X, Fang Q, Han H, Wang Z, Xie J, Qian D, Wu X, Wu Y, Chen K. miR-155 enhances apoptosis of macrophage through suppressing PI3K-AKT activation in Pseudomonas aeruginosa keratitis. Heliyon 2024; 10:e36585. [PMID: 39263048 PMCID: PMC11385765 DOI: 10.1016/j.heliyon.2024.e36585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Keratitis induced by Pseudomonas aeruginosa (P. aeruginosa) is an acute and serious corneal inflammation. As a family of gene regulators, miRNAs play a crucial role in modulating host response after microbial invasion. However, their functions in P. aeruginosa keratitis remain largely unclear. In the present study, we demonstrated that miR-155 expression was significantly increased in macrophages and corneal tissue after P. aeruginosa infection. In vivo studies demonstrated that mice with miR-155 knockdown displayed more resistance to P. aeruginosa keratitis, with a lower bacterial burden. In addition, in vitro and in vivo studies indicated that miR-155 enhanced apoptosis of macrophages after P. aeruginosa infection, and resulted in a susceptible phenotype of P. aeruginosa keratitis. Moreover, miR-155 induced apoptosis through reducing activation of PI3K-Akt signaling pathway. Our data provided evidence of miR-155 mediated apoptosis of macrophage in P. aeruginosa keratitis, which may be an underlying target for the therapy of P. aeruginosa keratitis and other infectious diseases.
Collapse
Affiliation(s)
- Qiang Fu
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xingyuan Zhu
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Qiongyan Fang
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hui Han
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Zhiying Wang
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Jinye Xie
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Dong Qian
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xinger Wu
- Zhongshan Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Yongjian Wu
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| |
Collapse
|
4
|
Ray J, Sapp DG, Fairn GD. Phosphatidylinositol 3,4-bisphosphate: Out of the shadows and into the spotlight. Curr Opin Cell Biol 2024; 88:102372. [PMID: 38776601 DOI: 10.1016/j.ceb.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Phosphoinositide 3-kinases regulate many cellular functions, including migration, growth, proliferation, and cell survival. Early studies equated the inhibition of Class I PI3Ks with loss of; phosphatidylinositol 3,4,5-trisphosphate (PIP3), but over time, it was realised that these; treatments also depleted phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In recent years, the; use of better tools and an improved understanding of its metabolism have allowed for the; identification of specific roles of PI(3,4)P2. This includes the production of PI(3,4)P2 and the; activation of its effector Akt2 in response to growth factor signalling. In contrast, a lysosomal pool of PI(3,4)P2 is a negative regulator of mTORC1 during growth factor deprivation. A growing body of literature also demonstrates that PI(3,4)P2 controls many dynamic plasmalemmal processes. The significance of PI(3,4)P2 in cell biology is increasingly evident.
Collapse
Affiliation(s)
- Jayatee Ray
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David G Sapp
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gregory D Fairn
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
5
|
Li Y, Wang Y, Ao Q, Li X, Huang Z, Dou X, Mu N, Pu X, Wang J, Chen T, Yin G, Feng H, Feng C. Unique Chirality Selection in Neural Cells for D-Matrix Enabling Specific Manipulation of Cell Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301435. [PMID: 37366043 DOI: 10.1002/adma.202301435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Manipulating neural cell behaviors is a critical issue to various therapies for neurological diseases and damages, where matrix chirality has long been overlooked despite the proven adhesion and proliferation improvement of multiple non-neural cells by L-matrixes. Here, it is reported that the D-matrix chirality specifically enhances cell density, viability, proliferation, and survival in four different types of neural cells, contrasting its inhibition in non-neural cells. This universal impact on neural cells is defined as "chirality selection for D-matrix" and is achieved through the activation of JNK and p38/MAPK signaling pathways by the cellular tension relaxation resulting from the weak interaction between D-matrix and cytoskeleton proteins, particularly actin. Also, D-matrix promotes sciatic nerve repair effectively, both with or without non-neural stem cell implantation, by improving the population, function, and myelination of autologous Schwann cells. D-matrix chirality, as a simple, safe, and effective microenvironment cue to specifically and universally manipulate neural cell behaviors, holds extensive application potential in addressing neurological issues such as nerve regeneration, neurodegenerative disease treatment, neural tumor targeting, and neurodevelopment.
Collapse
Affiliation(s)
- Ya Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Qiang Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ning Mu
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Tunan Chen
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Feng
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Wen T, Thapa N, Cryns VL, Anderson RA. Regulation of Phosphoinositide Signaling by Scaffolds at Cytoplasmic Membranes. Biomolecules 2023; 13:1297. [PMID: 37759697 PMCID: PMC10526805 DOI: 10.3390/biom13091297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cytoplasmic phosphoinositides (PI) are critical regulators of the membrane-cytosol interface that control a myriad of cellular functions despite their low abundance among phospholipids. The metabolic cycle that generates different PI species is crucial to their regulatory role, controlling membrane dynamics, vesicular trafficking, signal transduction, and other key cellular events. The synthesis of phosphatidylinositol (3,4,5)-triphosphate (PI3,4,5P3) in the cytoplamic PI3K/Akt pathway is central to the life and death of a cell. This review will focus on the emerging evidence that scaffold proteins regulate the PI3K/Akt pathway in distinct membrane structures in response to diverse stimuli, challenging the belief that the plasma membrane is the predominant site for PI3k/Akt signaling. In addition, we will discuss how PIs regulate the recruitment of specific scaffolding complexes to membrane structures to coordinate vesicle formation, fusion, and reformation during autophagy as well as a novel lysosome repair pathway.
Collapse
Affiliation(s)
- Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| |
Collapse
|
7
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
8
|
Yu J, Leibiger B, Yang SN, Shears SB, Leibiger IB, Berggren PO, Barker CJ. Multiple Inositol Polyphosphate Phosphatase Compartmentalization Separates Inositol Phosphate Metabolism from Inositol Lipid Signaling. Biomolecules 2023; 13:885. [PMID: 37371464 DOI: 10.3390/biom13060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple inositol polyphosphate phosphatase (MINPP1) is an enigmatic enzyme that is responsible for the metabolism of inositol hexakisphosphate (InsP6) and inositol 1,3,4,5,6 pentakisphosphate (Ins(1,3,4,5,6)P5 in mammalian cells, despite being restricted to the confines of the ER. The reason for this compartmentalization is unclear. In our previous studies in the insulin-secreting HIT cell line, we expressed MINPP1 in the cytosol to artificially reduce the concentration of these higher inositol phosphates. Undocumented at the time, we noted cytosolic MINPP1 expression reduced cell growth. We were struck by the similarities in substrate preference between a number of different enzymes that are able to metabolize both inositol phosphates and lipids, notably IPMK and PTEN. MINPP1 was first characterized as a phosphatase that could remove the 3-phosphate from inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). This molecule shares strong structural homology with the major product of the growth-promoting Phosphatidyl 3-kinase (PI3K), phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and PTEN can degrade both this lipid and Ins(1,3,4,5)P4. Because of this similar substrate preference, we postulated that the cytosolic version of MINPP1 (cyt-MINPP1) may not only attack inositol polyphosphates but also PtdIns(3,4,5)P3, a key signal in mitogenesis. Our experiments show that expression of cyt-MINPP1 in HIT cells lowers the concentration of PtdIns(3,4,5)P3. We conclude this reflects a direct effect of MINPP1 upon the lipid because cyt-MINPP1 actively dephosphorylates synthetic, di(C4:0)PtdIns(3,4,5)P3 in vitro. These data illustrate the importance of MINPP1's confinement to the ER whereby important aspects of inositol phosphate metabolism and inositol lipid signaling can be separately regulated and give one important clarification for MINPP1's ER seclusion.
Collapse
Affiliation(s)
- Jia Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Stephen B Shears
- Inositol Signaling Section, NIEHS, 111, Alexander Drive, Research Triangle Park, Durham, NC 27709, USA
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
9
|
Ji W, Wang ES, Manz TD, Jiang J, Donovan KA, Abulaiti X, Fischer ES, Cantley LC, Zhang T, Gray NS. Development of potent and selective degraders of PI5P4Kγ. Eur J Med Chem 2023; 247:115027. [PMID: 36584631 PMCID: PMC10150581 DOI: 10.1016/j.ejmech.2022.115027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), a family of three members in mammals (α, β and γ), have emerged as potential therapeutic targets due to their role in regulating many important cellular signaling pathways. In comparison to the PI5P4Kα and PI5P4Kβ, which usually have similar expression profiles across cancer cells, PI5P4Kγ exhibits distinct expression patterns, and pathological functions for PI5P4Kγ have been proposed in the context of cancer and neurodegenerative diseases. PI5P4Kγ has very low kinase activity and has been proposed to inhibit the PI4P5Ks through scaffolding function, providing a rationale for developing a selective PI5P4Kγ degrader. Here, we report the development and characterization of JWZ-1-80, a first-in-class PI5P4Kγ degrader. JWZ-1-80 potently degrades PI5P4Kγ via the ubiquitin-proteasome system and exhibits proteome-wide selectivity and is therefore a useful tool compound for further dissecting the biological functions of PI5P4Kγ.
Collapse
Affiliation(s)
- Wenzhi Ji
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xianmixinuer Abulaiti
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - Tinghu Zhang
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA.
| | - Nathanael S Gray
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Li Y, Anand-Srivastava MB. Role of Gi proteins in the regulation of blood pressure and vascular remodeling. Biochem Pharmacol 2023; 208:115384. [PMID: 36549460 DOI: 10.1016/j.bcp.2022.115384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Heterotrimeric guanine nucleotide regulatory proteins (G-proteins) through the activation of several signaling mechanisms including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol (PI) turnover. regulate a variety of cellular functions, including vascular reactivity, proliferation and hypertrophy of VSMC. Activity of adenylyl cyclase is regulated by two G proteins, stimulatory (Gsα) and inhibitory (Giα). Gsα stimulates adenylyl cyclase activity and increases the levels of cAMP, whereas Giα inhibits the activity of adenylyl cyclase and results in the reduction of cAMP levels. Abnormalities in Giα protein expression and associated adenylyl cyclase\cAMP levels result in the impaired cellular functions and contribute to various pathological states including hypertension. The expression of Giα proteins is enhanced in various tissues including heart, kidney, aorta and vascular smooth muscle cells (VSMC) from genetic (spontaneously hypertensive rats (SHR)) and experimentally - induced hypertensive rats and contribute to the pathogenesis of hypertension. In addition, the enhanced expression of Giα proteins exhibited by VSMC from SHR is also implicated in the hyperproliferation and hypertrophy, the two key players contributing to vascular remodelling in hypertension. The enhanced levels of endogenous vasoactive peptides including angiotensin II (Ang II), endothelin-1 (ET-1) and growth factors contribute to the overexpression of Giα proteins in VSMC from SHR. In addition, enhanced oxidative stress, activation of c-Src, growth factor receptor transactivation and MAP kinase/PI3kinase signaling also contribute to the augmented expression of Giα proteins in VSMC from SHR. This review summarizes the role of Giα proteins, and the underlying molecular mechanisms implicated in the regulation of high blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
11
|
Chen QY, Gao B, Tong D, Huang C. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552:215979. [PMID: 36306939 DOI: 10.1016/j.canlet.2022.215979] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
In concert with hijacking key genes to drive tumor progression, cancer cells also have the unique ability to dynamically interact with host microenvironment and discreetly manipulate the surrounding stroma, also known as the tumor microenvironment (TME), to provide optimal conditions for tumor cells to thrive and evade host immunity. Complex cellular crosstalk and molecular signaling between cancer cells, surrounding non-malignant cells, and non-cellular components are involved in this process. While intercellular communication traditionally centers around chemokines, cytokines, inflammatory mediators, and growth factors, emerging pathways involving extracellular vesicles (EVs) are gaining increasing attention. The immunosuppressive TME is created and maintained in part by the large abundance of tumor-associated macrophages (TMAs), which are associated with drug resistance, poor prognosis, and have emerged as potential targets for cancer immunotherapy. TMAs are highly dynamic, and can be polarized into either M1 or M2-like macrophages. EVs are efficient cell-cell communication molecules that have been catapulted to the center of TMA polarization. In this article, we provide detailed examination of the determinative role of EVs in sustaining the TME through mediating crosstalk between tumor cells and tumor-associated macrophages.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Beibei Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Environmenta and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
12
|
Woo H, Lee S, Han JY, Kim WJ, Kim MJ, Seong MW, Kim SY, Cho A, Lim BC, Kim KJ, Chae JH. Clinical Characteristics and Neurologic Outcomes of X-Linked Myotubular Myopathy. ANNALS OF CHILD NEUROLOGY 2022. [DOI: 10.26815/acn.2022.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: X-linked myotubular myopathy (XLMTM) is a rare condition of centronuclear myopathy caused by myotubularin 1 (MTM1) mutations. Patients with XLMTM show different neurodevelopmental outcomes after the neonatal period depending on age and acquired hypoxic damage. We aim to evaluate the clinical characteristics and neurodevelopmental outcomes of patients with XLMTM who were followed up at a single center. It is essential to understand the volume and conditions to prepare for being a candidate for new therapeutic strategies. Methods: Patients diagnosed with centronuclear myopathy by muscle pathology and MTM1 mutation analysis were included. We retrospectively investigated motor milestones, communication skills, and bulbar and respiratory function in the patients. The patients were categorized into two groups: with and without hypoxic insults (HI). Results: All 13 patients were severely affected by neonatal hypotonia and required respiratory support and a feeding tube during the neonatal period. The follow-up duration was 4.4 years (range, 0.3 to 8.9). In the non-HI group, developmental milestones were delayed but were slowly achieved. Some patients underwent training in oral feeding with thickened foods and weaning from ventilation. Patients with HI showed poor motor function catch-up and communication skills. Three deaths were associated with acute respiratory failure.Conclusion: Patients with XLMTM without HI can survive long-term with the slow achievement of motor milestones and bulbar and respiratory function. However, hypoxic brain damage following acute respiratory failure negatively influences their developmental potential or even lead to death. Therefore, parental education for proper respiratory management is necessary, especially for young children.
Collapse
|
13
|
Liang M, Lu M, Aleem MT, Zhang Y, Wang M, Wen Z, Song X, Xu L, Li X, Yan R. Identification of excretory and secretory proteins from Haemonchus contortus inducing a Th9 immune response in goats. Vet Res 2022; 53:36. [PMID: 35597967 PMCID: PMC9123704 DOI: 10.1186/s13567-022-01055-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Th9 cells have been shown to play crucial roles in anti-parasite immunity, pathogenic microbe infection, and allergy. Previous studies have demonstrated that Haemonchus contortus excretory and secretory proteins (HcESPs) induce the proliferation of Th9 cells and alter the transcriptional level of IL-9 as well as its related pathways in the Th9 immune response after infection. However, the exact molecule(s) in HcESPs inducing the Th9 immune response is not yet known. In this study, flow cytometry, co-immunoprecipitation (Co-IP) and shotgun liquid chromatography tandem-mass spectrometry (LC–MS/MS) were used, and a total of 218 proteins from HcESPs that might interact with goat Th9 cells were identified. By in vitro culture of Th9 cells with HcESPs, 40 binding proteins were identified. In vivo, 38, 47, 42 and 142 binding proteins were identified at 7, 15, 35 and 50 days post-infection (dpi), respectively. Furthermore, 2 of the 218 HcESPs, named DNA/RNA helicase domain containing protein (HcDR) and GATA transcription factor (HcGATA), were confirmed to induce the proliferation of Th9 cells and promote the expression of IL-9 when incubated with goat peripheral blood mononuclear cells (PBMCs). This study represents a proteomics-guided investigation of the interactions between Th9 cells and HcESPs. It provides a new way to explore immunostimulatory antigens among HcESPs and identifies candidates for immune-mediated prevention of H. contortus infection.
Collapse
Affiliation(s)
- Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
14
|
Yang R, Li Y, Wang H, Qin T, Yin X, Ma X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. MOLECULAR BIOMEDICINE 2022; 3:8. [PMID: 35243562 PMCID: PMC8894518 DOI: 10.1186/s43556-022-00071-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer, with estrogen receptor, human epidermal growth factor receptor 2 and progesterone receptor negative. TNBC is characterized by high heterogeneity, high rates of metastasis, poor prognosis, and lack of therapeutic targets. Now the treatment of TNBC is still based on surgery and chemotherapy, which is effective only in initial stage but almost useless in advanced stage. And due to the lack of hormone target, hormonal therapies have little beneficial effects. In recent years, signaling pathways and receptor-specific targets have been reported to be effective in TNBC patients under specific clinical conditions. Now targeted therapies have been approved for many other cancers and even other subtypes of breast cancer, but treatment options for TNBC are still limited. Most of TNBC patients showed no response, which may be related to the heterogeneity of TNBC, therefore more effective treatments and predictive biomarkers are needed. In the present review, we summarize potential treatment opinions for TNBC based on the dysregulated receptors and signaling pathways, which play a significant role in multiple stages of TNBC development. We also focus on the application of immunotherapy in TNBC, and summarize the preclinical and clinical trials of therapy for patients with TNBC. We hope to accelerate the research and development of new drugs for TNBC by understanding the relevant mechanisms, and to improve survival.
Collapse
Affiliation(s)
- Ruoning Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.,Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Hang Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Taolin Qin
- West China Hospital, West China Medical School Sichuan University, Chengdu, PR, China
| | - Xiaomeng Yin
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.
| |
Collapse
|
15
|
Yerramilli VS, Ross AH, Scarlata S, Gericke A. IQGAP1 scaffolding links phosphoinositide kinases to cytoskeletal reorganization. Biophys J 2022; 121:793-807. [PMID: 35077666 PMCID: PMC8943696 DOI: 10.1016/j.bpj.2022.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022] Open
Abstract
IQGAP1 is a multidomain scaffold protein that coordinates the direction and impact of multiple signaling pathways by scaffolding its various binding partners. However, the spatial and temporal resolution of IQGAP1 scaffolding remains unclear. Here, we use fluorescence imaging and correlation methods that allow for real-time live-cell changes in IQGAP1 localization and complex formation during signaling. We find that IQGAP1 and PIPKIγ interact on both the plasma membrane and in cytosol. Epidermal growth factor (EGF) stimulation, which can initiate cytoskeletal changes, drives the movement of the cytosolic pool toward the plasma membrane to promote cytoskeletal changes. We also observe that a significant population of cytosolic IQGAP1-PIPKIγ complexes localize to early endosomes, and in some instances form aggregated clusters which become highly mobile upon EGF stimulation. Our imaging studies show that PIPKIγ and PI3K bind simultaneously to IQGAP1, which may accelerate conversion of PI4P to PI(3,4,5)P3 that is required for cytoskeletal changes. Additionally, we find that IQGAP1 is responsible for PIPKIγ association with two proteins associated with cytoskeletal changes, talin and Cdc42, during EGF stimulation. These results directly show that IQGAP1 provides a physical link between phosphoinositides (through PIPKIγ), focal adhesion formation (through talin), and cytoskeletal reorganization (through Cdc42) upon EGF stimulation. Taken together, our results support the importance of IQGAP1 in regulating cell migration by linking phosphoinositide lipid signaling with cytoskeletal reorganization.
Collapse
Affiliation(s)
- V. Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Alonzo H. Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
16
|
Proskura AL, Islamova MY, Vechkapova SO. Cross-Talk of the Glutamate and Leptin Receptor Pathways. Mol Biol 2021. [DOI: 10.1134/s0026893321020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Proc Natl Acad Sci U S A 2021; 118:2109327118. [PMID: 34725156 PMCID: PMC8609346 DOI: 10.1073/pnas.2109327118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are of critical importance in cell signaling and can function as drivers of disease. Information on the PI3K structure is essential for an understanding of the function of these proteins and for the identification of specific and effective small-molecule inhibitors. Here we present a single-particle cryo-electron microscopy (cryo-EM) analysis of PI3Kα, the dimer consisting of the p110α catalytic subunit bound to the p85α regulatory subunit. We investigated three conformational states of PI3Kα: the unbound dimer, the dimer bound to the isoform-specific inhibitor BYL-719, and the dimer associated with an activating phosphopeptide. Each of these conformations reveals specific structural features that provide insights into conformation-associated functions. Phosphoinositide 3-kinases (PI3Ks) are lipid kinases essential for growth and metabolism. Their aberrant activation is associated with many types of cancers. Here we used single-particle cryoelectron microscopy (cryo-EM) to determine three distinct conformations of full-length PI3Kα (p110α–p85α): the unliganded heterodimer PI3Kα, PI3Kα bound to the p110α-specific inhibitor BYL-719, and PI3Kα exposed to an activating phosphopeptide. The cryo-EM structures of unbound and of BYL-719–bound PI3Kα are in general accord with published crystal structures. Local deviations are presented and discussed. BYL-719 stabilizes the structure of PI3Kα, but three regions of low-resolution extra density remain and are provisionally assigned to the cSH2, BH, and SH3 domains of p85. One of the extra density regions is in contact with the kinase domain blocking access to the catalytic site. This conformational change indicates that the effects of BYL-719 on PI3Kα activity extend beyond competition with adenosine triphosphate (ATP). In unliganded PI3Kα, the DFG motif occurs in the “in” and “out” positions. In BYL-719–bound PI3Kα, only the DFG-in position, corresponding to the active conformation of the kinase, was observed. The phosphopeptide-bound structure of PI3Kα is composed of a stable core resolved at 3.8 Å. It contains all p110α domains except the adaptor-binding domain (ABD). The p85α domains, linked to the core through the ABD, are no longer resolved, implying that the phosphopeptide activates PI3Kα by fully releasing the niSH2 domain from binding to p110α. The structures presented here show the basal form of the full-length PI3Kα dimer and document conformational changes related to the activated and inhibited states.
Collapse
|
18
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
19
|
An FYVE-Domain-Containing Protein, PsFP1, Is Involved in Vegetative Growth, Oxidative Stress Response and Virulence of Phytophthora sojae. Int J Mol Sci 2021; 22:ijms22126601. [PMID: 34202990 PMCID: PMC8233823 DOI: 10.3390/ijms22126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins that contain the FYVE zinc-finger domain are recruited to PtdIns3P-containing membranes, participating in numerous biological processes such as membrane trafficking, cytoskeletal regulation, and receptor signaling. However, the genome-wide distribution, evolution, and biological functions of FYVE-containing proteins are rarely reported for oomycetes. By genome mining of Phytophthora sojae, two proteins (PsFP1 and PsFP2) with a combination of the FYVE domain and the PX domain (a major phosphoinositide binding module) were found. To clarify the functions of PsFP1 and PsFP2, the CRISPR/Cas9-mediated gene replacement system was used to knock out the two genes respectively. Only heterozygous deletion mutants of PsFP1 were recovered, and the expression level of PsFP1 in the heterozygous knockout transformants was significantly down-regulated. These PsFP1 mutants showed a decrease in mycelial growth and pathogenicity and were more sensitive to hydrogen peroxide. These phenotypes were recovered to the level of wild-type by overexpression PsFP1 gene in the PsFP1 heterozygous knockout transformant. In contrast, deletion of PsFP2 had no significant effect on vegetative growth, asexual and sexual reproduction, pathogenicity, or oxidative stress sensitivity. PsFP1 was primarily localized in vesicle-like structures and both the FYVE and PX domains are important for its localization. Overall, our results indicate that PsFP1 plays an important role in the vegetative growth and virulence of P. sojae.
Collapse
|
20
|
Endosomal mTORC2 Is Required for Phosphoinositide-Dependent AKT Activation in Platelet-Derived Growth Factor-Stimulated Glioma Cells. Cancers (Basel) 2021; 13:cancers13102405. [PMID: 34065746 PMCID: PMC8157044 DOI: 10.3390/cancers13102405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The full activation of AKT, which is necessary for cell physiological changes, is achieved through the phosphorylation of Thr308 and Ser473 in human AKT. Here, we have addressed how AKT activation at early endosomes occurs during growth factor stimulation and how mTORC2 is recruited into endosomes and associated with AKT. The explanation comes from the discovery of three important events: (1) the physical association of mSIN and Rictor, critical components for mTORC2 assembly and activity, with early endosomes; (2) the control of the recruitment of mSIN to endosomes by PtdIns(3,4)P2; and (3) the PtdIns(3,4)P2-mediated endosomal AKT activation through phosphorylation at Ser473 to control a subset of AKT substrates. Abstract The serine/threonine kinase AKT is a major effector during phosphatidylinositol 3-kinase (PI3K)-driven cell signal transduction in response to extracellular stimuli. AKT activation mechanisms have been extensively studied; however, the mechanism underlying target of rapamycin complex 2 (mTORC2) phosphorylation of AKT at Ser473 in the cellular endomembrane system remains to be elucidated. Here, we demonstrate that endocytosis is required for AKT activation through phosphorylation at Ser473 via mTORC2 using platelet-derived growth factor-stimulated U87MG glioma cells. mTORC2 components are localized to early endosomes during growth factor activation, and the association of mTORC2 with early endosomes is responsible for the local activation of AKT, which is critical for specific signal transduction through glycogen synthase kinase-3 beta and forkhead box O1/O3 phosphorylation. Furthermore, endosomal phosphoinositide, represented by PtdIns(3,4)P2, provides a binding platform for mTORC2 to phosphorylate AKT Ser473 in endosomes through mammalian Sty1/Spc1-interacting protein (mSIN), a pleckstrin homology domain-containing protein, and is dispensable for AKT phosphorylation at Thr308. This PtdIns(3,4)P2-mediated endosomal AKT activation provides a means to integrate PI3K activated by diverse stimuli to mTORC2 assembly. These early endosomal events induced by endocytosis, together with the previously identified AKT activation by PtdIns(3,4,5)P3, contribute to the strengthening of the transduction of AKT signaling through phosphoinositide.
Collapse
|
21
|
Mercurio L, Albanesi C, Madonna S. Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne) 2021; 8:665647. [PMID: 33996865 PMCID: PMC8119789 DOI: 10.3389/fmed.2021.665647] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases which control multiple biological processes in mammalian cells, such as cell growth, proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals, consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin contributes to several pathological conditions characterized by uncontrolled proliferation, including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling proteins has also been reported in psoriasis, in association with enhanced proliferation, defective keratinocyte differentiation, senescence-like growth arrest, and resistance to apoptosis, accounting for major parts of the overall disease phenotypes. On the contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence demonstrates the relevant function for mTOR pathway in the regulation of epidermal barrier formation and stratification. In this review, we provide the most recent updates on the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different hyperproliferative skin disorders, and highlights on the current status of preclinical and clinical studies on PI3K-targeted therapies.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
22
|
Luff DH, Wojdyla K, Oxley D, Chessa T, Hudson K, Hawkins PT, Stephens LR, Barry ST, Okkenhaug K. PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 + T Cells. Front Immunol 2021; 12:631271. [PMID: 33763075 PMCID: PMC7982423 DOI: 10.3389/fimmu.2021.631271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
Collapse
Affiliation(s)
- Daisy H Luff
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Katarzyna Wojdyla
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom.,Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Tamara Chessa
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hudson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Phillip T Hawkins
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len R Stephens
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
24
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
25
|
Wang X, Zhu Y. Circ_0000020 elevates the expression of PIK3CA and facilitates the malignant phenotypes of glioma cells via targeting miR-142-5p. Cancer Cell Int 2021; 21:79. [PMID: 33509213 PMCID: PMC7841906 DOI: 10.1186/s12935-021-01767-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/10/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Multiple circular RNAs (circRNAs) have been recently described as crucial oncogenic factors or tumor suppressors. This study aimed to investigate the role of circ_0000020 in glioma progression. METHODS Circ_0000020 and miR-142-5p expressions in glioma samples were assessed through qRT-PCR, and then the association between pathological indexes and circ_0000020 expressions was analyzed. Functional experiment was performed with human glioma cell lines U251 and U87. Gain-of-function and loss-of-function models were established. CCK-8 assay was used to detect glioma cell proliferation. Transwell assay was used to examine glioma cell migration and invasion. The regulatory relationships among circ_0000020, miR-142-5p and phosphatidylinositol 3-kinase C (PIK3CA) were investigated by bioinformatics analysis, luciferase reporter assay, qRT-PCR and Western blot. In vivo tumorigenesis assay was performed with nude mice to further validate the demonstrations of in vitro experiments. RESULTS Circ_0000020 expression in glioma samples was remarkably increased compared with that in normal brain tissues and its high expression was associated with unfavorable pathological indexes. Circ_0000020 overexpression remarkably accelerated proliferation, migration and invasion of glioma cells. Accordingly, circ_0000020 knockdown suppressed the malignant phenotypes of glioma cells. Circ_0000020 overexpression significantly reduced miR-142-5p expression by sponging it, and circ_0000020 could enhance the expression of PIK3CA, which was a target gene of miR-142-5p. CONCLUSIONS Circ_0000020 promotes glioma progression via miR-142-5p/PIK3CA axis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Street No. 136, Xiangyang, 441021, Hubei, China
| | - Yaozu Zhu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Street No. 136, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
26
|
Corey EA, Ukhanov K, Bobkov YV, McIntyre JC, Martens JR, Ache BW. Inhibitory signaling in mammalian olfactory transduction potentially mediated by Gα o. Mol Cell Neurosci 2020; 110:103585. [PMID: 33358996 DOI: 10.1016/j.mcn.2020.103585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the Gαs family member Gαolf. Here we tentatively associate a second G protein, Gαo, with inhibitory signaling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gαo. We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its functionality in native ORNs. Our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Kirill Ukhanov
- Dept. of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeremy C McIntyre
- Dept. of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey R Martens
- Dept. of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Barry W Ache
- Whitney Laboratory, Dept. of Biology, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America; Whitney Laboratory, Dept. of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
27
|
Nakamura M, Verboon JM, Allen TE, Abreu-Blanco MT, Liu R, Dominguez ANM, Delrow JJ, Parkhurst SM. Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genet 2020; 16:e1009186. [PMID: 33306674 PMCID: PMC7758051 DOI: 10.1371/journal.pgen.1009186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Tessa E. Allen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Maria Teresa Abreu-Blanco
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raymond Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Andrew N. M. Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey J. Delrow
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
28
|
Guerra B, Issinger OG. Role of Protein Kinase CK2 in Aberrant Lipid Metabolism in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13100292. [PMID: 33027921 PMCID: PMC7601870 DOI: 10.3390/ph13100292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Uncontrolled proliferation is a feature defining cancer and it is linked to the ability of cancer cells to effectively adapt their metabolic needs in response to a harsh tumor environment. Metabolic reprogramming is considered a hallmark of cancer and includes increased glucose uptake and processing, and increased glutamine utilization, but also the deregulation of lipid and cholesterol-associated signal transduction, as highlighted in recent years. In the first part of the review, we will (i) provide an overview of the major types of lipids found in eukaryotic cells and their importance as mediators of intracellular signaling pathways (ii) analyze the main metabolic changes occurring in cancer development and the role of oncogenic signaling in supporting aberrant lipid metabolism and (iii) discuss combination strategies as powerful new approaches to cancer treatment. The second part of the review will address the emerging role of CK2, a conserved serine/threonine protein kinase, in lipid homeostasis with an emphasis regarding its function in lipogenesis and adipogenesis. Evidence will be provided that CK2 regulates these processes at multiple levels. This suggests that its pharmacological inhibition combined with dietary restrictions and/or inhibitors of metabolic targets could represent an effective way to undermine the dependency of cancer cells on lipids to interfere with tumor progression.
Collapse
|
29
|
Zhao J, Wang M, Liu W, Ma Z, Wu J. Activation of cannabinoid receptor 2 protects rat hippocampal neurons against Aβ-induced neuronal toxicity. Neurosci Lett 2020; 735:135207. [DOI: 10.1016/j.neulet.2020.135207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
30
|
Kim K, Park SG, Park BC, Kim JH, Kim S. Serine 389 phosphorylation of 3-phosphoinositide-dependent kinase 1 by UNC-51-like kinase 1 affects its ability to regulate Akt and p70 S6kinase. BMB Rep 2020. [PMID: 32317083 PMCID: PMC7396916 DOI: 10.5483/bmbrep.2020.53.7.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Phosphorylation of the signaling component by protein kinase often leads to a kinase cascade or feedback loop. 3-Phosphoinositide-dependent kinase 1 (PDK1) signaling pathway diverges into various kinases including Akt and p70 S6 kinase (p70S6k). However, the PDK1 feedback mechanism remains elusive. Here, we demonstrated that UNC-51-like kinase (ULK1), an autophagy initiator kinase downstream of mechanistic target of rapamycin (mTOR), directly phosphorylated PDK1 on serine 389 at the linker region. Furthermore, our data showed that this phosphorylation affected the kinase activity of PDK1 toward downstream substrates. These results suggest a possible negative feedback loop between PDK1 and ULK1.
Collapse
Affiliation(s)
- Kidae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
31
|
Reelin Counteracts Chondroitin Sulfate Proteoglycan-Mediated Cortical Dendrite Growth Inhibition. eNeuro 2020; 7:ENEURO.0168-20.2020. [PMID: 32641498 PMCID: PMC7393641 DOI: 10.1523/eneuro.0168-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Disruptions in neuronal dendrite development alter brain circuitry and are associated with debilitating neurological disorders. Nascent apical dendrites of cortical excitatory neurons project into the marginal zone (MZ), a cell-sparse layer characterized by intense chondroitin sulfate proteoglycan (CSPG) expression. Paradoxically, CSPGs are known to broadly inhibit neurite growth and regeneration. This raises the possibility that the growing apical dendrite is somehow insensitive to CSPG-mediated neurite growth inhibition. To test this, developing cortical neurons were challenged with both soluble CSPGs and CSPG-positive stripe substrates in vitro. Soluble CSPGs inhibited dendritic growth and cortical dendrites respected CSPG stripe boundaries, effects that could be counteracted by prior CSPG inactivation by chondroitinase. Importantly, addition of Reelin, an extracellular signaling protein highly expressed in the MZ, partially rescued dendritic growth in the presence of CSPGs. High-resolution confocal imaging revealed that the CSPG-enriched areas of the MZ spatially correspond with the areas of reduced dendritic density in the Reelin null (reeler) cortex compared with controls. Chondroitinase injections into reeler explants resulted in increased dendritic growth into the MZ, recovering to near wild-type levels. Activation of the serine threonine kinase Akt is required for Reelin-dependent dendritic growth and we find that CSPGs induce Akt dephosphorylation, an effect that can be counteracted by Reelin addition. In contrast, CSPG application had no effect on the cytoplasmic adaptor Dab1, which is rapidly phosphorylated in response to Reelin and is upstream of Akt. These findings suggest CSPGs do inhibit cortical dendritic growth, but this effect can be counteracted by Reelin signaling.
Collapse
|
32
|
Rajala A, McCauley A, Brush RS, Nguyen K, Rajala RV. Phosphoinositide Lipids in Ocular Tissues. BIOLOGY 2020; 9:biology9060125. [PMID: 32545642 PMCID: PMC7345453 DOI: 10.3390/biology9060125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
Inositol phospholipids play an important role in cell physiology. The inositol head groups are reversibly phosphorylated to produce seven distinct phosphorylated inositides, commonly referred to as phosphoinositides (PIs). These seven PIs are dynamically interconverted from one PI to another by the action of PI kinases and PI phosphatases. The PI signals regulate a wide variety of cellular functions, including organelle distinction, vesicular transport, cytoskeletal organization, nuclear events, regulation of ion channels, cell signaling, and host–pathogen interactions. Most of the studies of PIs in ocular tissues are based on the PI enzymes and PI phosphatases. In this study, we examined the PI levels in the cornea, retinal pigment epithelium (RPE), and retina using PI-binding protein as probes. We have examined the lipids PI(3)P, PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, and each is present in the cornea, RPE, and retina. Alterations in the levels of these PIs in mouse models of retinal disease and corneal infections have been reported, and the results of our study will help in the management of anomalous phosphoinositide metabolism in ocular tissues.
Collapse
Affiliation(s)
- Ammaji Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Austin McCauley
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Richard S. Brush
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khuong Nguyen
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raju V.S. Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence: ; Tel.: +1-(405)-271-8255; Fax: +1-(405)-271-8128
| |
Collapse
|
33
|
Roy S, Mahapatra AD, Mohammad T, Gupta P, Alajmi MF, Hussain A, Rehman MT, Datta B, Hassan MI. Design and Development of Novel Urea, Sulfonyltriurea, and Sulfonamide Derivatives as Potential Inhibitors of Sphingosine Kinase 1. Pharmaceuticals (Basel) 2020; 13:E118. [PMID: 32526899 PMCID: PMC7346089 DOI: 10.3390/ph13060118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is one of the well-studied drug targets for cancer and inflammatory diseases. Recently discovered small-molecule inhibitors of SphK1 have been recommended in cancer therapeutics; however, selectivity and potency of first-generation inhibitors are great challenge. In search of effective SphK1 inhibitors, a set of small molecules have been designed and synthesized bearing urea, sulfonylurea, sulfonamide, and sulfonyltriurea groups. The binding affinity of these inhibitors was measured by fluorescence-binding assay and isothermal titration calorimetry. Compounds 1, 5, 6, and 7 showed an admirable binding affinity to the SphK1 in the sub-micromolar range and significantly inhibited SphK1 activity with admirable IC50 values. Molecular docking studies revealed that these compounds fit well into the sphingosine binding pocket of SphK1 and formed significant number of hydrogen bonds and van der Waals interactions. These molecules may be exploited as potent and selective inhibitors of SphK1 that could be implicated in cancer therapeutics after the required in vivo validation.
Collapse
Affiliation(s)
- Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| |
Collapse
|
34
|
Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem Biol 2020; 27:525-537.e6. [PMID: 32130941 PMCID: PMC7286548 DOI: 10.1016/j.chembiol.2020.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/β/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.
Collapse
Affiliation(s)
- Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pranav Krishnan
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M Cunningham
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Wang L, Lv Y, Liu G. The roles of SHANK1 in the development of colon cancer. Cell Biochem Funct 2020; 38:669-675. [PMID: 32356303 DOI: 10.1002/cbf.3529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 01/17/2023]
Abstract
SH3 and multiple ankyrin repeat domains protein 1 (SHANK1) belongs to a family of postsynaptic scaffolding proteins. In this study, we found that SHANK1 was abnormally high expressed in colon cancer tissues compared to normal tissues. Colon cancer patients with low SHANK1 expression had better prognosis. Furthermore, the expression of SHANK1 was knocked down in human colon cancer cell lines HCT116 and HT29 and the role of SHANK1 was investigated in colon cancer tumorigenesis. Our results showed that the knockdown of SHANK1 inhibited the survival and proliferation of both cells. The migration of these two cell lines was significantly reduced and the apoptosis was induced compared with control cells. The Bax/Bcl-2 ratio in both cell lines that SHANK1 was knocked down was increased, which is a signal that the mitochondrial apoptotic pathway was triggered. In addition, we observed that knockdown of SHANK1 reduced the expression of phosphorylated forms of AKT and mTOR. These data suggested that loss of SHANK1 inhibited viability and induced apoptosis of HCT116 and HT29 cells through the AKT/mTOR signaling pathway. Our data revealed that SHANK1 played important roles in the growth of colon cancer cells and may be used as a novel strategy for colon cancer therapy. SIGNIFICANCE OF THE STUDY: Herein, we reported that SHANK1 was abnormally high expressed in colon cancer tissues and associated with worse prognosis of patients. In addition, knockdown of SHANK1 inhibited viability and induced apoptosis in colon cancer cell lines through AKT/mTOR signaling pathways. These data suggest that SHANK1 may be a new oncogene in colon cancer. This study reveals the role of SHANK1 in addition to neuronal development and cognitive development. And it provides a new potential target for the prediction and treatment of colon cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterological Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Lv
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Guoqin Liu
- Department of Gastroenterological Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
36
|
Han P, Hanlon D, Arshad N, Lee JS, Tatsuno K, Robinson E, Filler R, Sobolev O, Cote C, Rivera-Molina F, Toomre D, Fahmy T, Edelson R. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. SCIENCE ADVANCES 2020; 6:eaaz1580. [PMID: 32195350 PMCID: PMC7065880 DOI: 10.1126/sciadv.aaz1580] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/17/2019] [Indexed: 05/04/2023]
Abstract
Dendritic cells (DCs) are adept at cross-presentation and initiation of antigen-specific immunity. Clinically, however, DCs produced by in vitro differentiation of monocytes in the presence of exogenous cytokines have been met with limited success. We hypothesized that DCs produced in a physiological manner may be more effective and found that platelets activate a cross-presentation program in peripheral blood monocytes with rapid (18 hours) maturation into physiological DCs (phDCs). Differentiation of monocytes into phDCs was concomitant with the formation of an "adhesion synapse," a biophysical junction enriched with platelet P-selectin and monocyte P-selectin glycoprotein ligand 1, followed by intracellular calcium fluxing and nuclear localization of nuclear factor κB. phDCs were more efficient than cytokine-derived DCs in generating tumor-specific T cell immunity. Our findings demonstrate that platelets mediate a cytokine-independent, physiologic maturation of DC and suggest a novel strategy for DC-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Najla Arshad
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Kazuki Tatsuno
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Eve Robinson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Renata Filler
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Christine Cote
- Yale Flow Cytometry Facility, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Felix Rivera-Molina
- Yale CINEMA Lab, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Derek Toomre
- Yale CINEMA Lab, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Tarek Fahmy
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
- Corresponding author. (T.F.); (R.E.)
| | - Richard Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Corresponding author. (T.F.); (R.E.)
| |
Collapse
|
37
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
38
|
Fan Q, Wang Q, Cai R, Yuan H, Xu M. The ubiquitin system: orchestrating cellular signals in non-small-cell lung cancer. Cell Mol Biol Lett 2020; 25:1. [PMID: 31988639 PMCID: PMC6966813 DOI: 10.1186/s11658-019-0193-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system, known as a common feature in eukaryotes, participates in multiple cellular processes, such as signal transduction, cell-cycle progression, receptor trafficking and endocytosis, and even the immune response. In lung cancer, evidence has revealed that aberrant events in ubiquitin-mediated processes can cause a variety of pathological outcomes including tumorigenesis and metastasis. Likewise, ubiquitination on the core components contributing to the activity of cell signaling controls bio-signal turnover and cell final destination. Given this, inhibitors targeting the ubiquitin system have been developed for lung cancer therapies and have shown great prospects for clinical application. However, the exact biological effects and physiological role of the drugs used in lung cancer therapies are still not clearly elucidated, which might seriously impede the progress of treatment. In this work, we summarize current research advances in cell signal regulation processes mediated through the ubiquitin system during the development of lung cancer, with the hope of improving the therapeutic effects by means of aiming at efficient targets.
Collapse
Affiliation(s)
- Qiang Fan
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China.,2Department of General Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Qian Wang
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Renjie Cai
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China.,2Department of General Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Haihua Yuan
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Ming Xu
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| |
Collapse
|
39
|
Cao Y, Ghabache E, Rappel WJ. Plasticity of cell migration resulting from mechanochemical coupling. eLife 2019; 8:e48478. [PMID: 31625907 PMCID: PMC6799977 DOI: 10.7554/elife.48478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/02/2019] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells can migrate using different modes, ranging from amoeboid-like, during which actin filled protrusions come and go, to keratocyte-like, characterized by a stable morphology and persistent motion. How cells can switch between these modes is not well understood but waves of signaling events are thought to play an important role in these transitions. Here we present a simple two-component biochemical reaction-diffusion model based on relaxation oscillators and couple this to a model for the mechanics of cell deformations. Different migration modes, including amoeboid-like and keratocyte-like, naturally emerge through transitions determined by interactions between biochemical traveling waves, cell mechanics and morphology. The model predictions are explicitly verified by systematically reducing the protrusive force of the actin network in experiments using Dictyostelium discoideum cells. Our results indicate the importance of coupling signaling events to cell mechanics and morphology and may be applicable in a wide variety of cell motility systems.
Collapse
Affiliation(s)
- Yuansheng Cao
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Elisabeth Ghabache
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| | - Wouter-Jan Rappel
- Department of PhysicsUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
40
|
Individual differences in EPA and DHA content of Atlantic salmon are associated with gene expression of key metabolic processes. Sci Rep 2019; 9:3889. [PMID: 30846825 PMCID: PMC6405848 DOI: 10.1038/s41598-019-40391-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore how individual differences in content of the omega-3 fatty acids EPA and DHA in skeletal muscle of slaughter-sized Atlantic salmon, are associated with expression of genes involved in key metabolic processes. All experimental fish were fed the same diet throughout life and fasted for 14 days prior to slaughter. Still, there were relatively large individual variations in EPA and DHA content of skeletal muscle. Higher DHA content was concurrent with increased expression of genes of the glycolytic pathway and the production of pyruvate and lactate, whereas EPA was associated with increased expression of pentose phosphate pathway and glycogen breakdown genes. Furthermore, EPA, but not DHA, was associated with expression of genes involved in insulin signaling. Expression of genes specific for skeletal muscle function were positively associated with both EPA and DHA. EPA and DHA were also associated with expression of genes related to eicosanoid and resolvin production. EPA was negatively associated with expression of genes involved in lipid catabolism. Thus, a possible reason why some individuals have a higher level of EPA in the skeletal muscle is that they deposit - rather than oxidize - EPA for energy.
Collapse
|
41
|
Liu Y, Wang X, Zhang Z, Xiao B, An B, Zhang J. The overexpression of Rab9 promotes tumor progression regulated by XBP1 in breast cancer. Onco Targets Ther 2019; 12:1815-1824. [PMID: 30881034 PMCID: PMC6404677 DOI: 10.2147/ott.s183748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes and is involved in the recycling of mannose-6-phosphate receptors (MPRs). Materials and methods To determine new treatment strategies for breast cancer and to elucidate the mechanism underlying the phenomenon, we investigated the effects of Rab9 in the human breast cancer cell lines MCF7 and MDA-MB-231. Results We observed that knockdown of Rab9 inhibited the survival and proliferation of MCF7 and MDA-MB-231 cells, whereas Rab9 overexpression facilitated cell survival and proliferation by inducing or suppressing apoptosis. These results were further confirmed by the Bax/Bcl-2 ratio in affected MCF7 and MDA-MB-231 cells, which demonstrated whether the mitochondrial apoptotic pathway was triggered. Furthermore, the AKT/PI3K pathway is implicated in cell growth and survival and Rab9 changed the expression and phosphorylation of PI3K signaling pathway members. XBP1 is a key regulator of Rab9 and further confirmed that Rab9 play important roles in breast cancer tumorigenesis. Conclusion These data suggest that Rab9 is a good candidate for a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Breast Department, Shandong Cancer Hospital, Affiliated to Shandong University, Shandong, China,
| | - Xin Wang
- Breast Department, Yinan Country People's Hospital, Shandong, China
| | - Zhonghua Zhang
- Breast Department, Dongping Country People's Hospital, Shandong, China
| | - Bin Xiao
- Breast Department, Shanxian Hygeia Hospital, Shandong, China
| | - Baoming An
- Breast Department, Wulian Country People's Hospital, Shandong, China
| | - Jun Zhang
- Breast Department, Zhangqiu Hospital of Chinese Medicine, Shandong, China
| |
Collapse
|
42
|
Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ 2019; 26:781-793. [PMID: 30742090 DOI: 10.1038/s41418-018-0269-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Phosphorylated phosphatidylinositol lipids, or phosphoinositides, critically regulate diverse cellular processes, including signalling transduction, cytoskeletal reorganisation, membrane dynamics and cellular trafficking. However, phosphoinositides have been inadequately investigated in the context of cell death, where they are mainly regarded as signalling secondary messengers. However, recent studies have begun to highlight the importance of phosphoinositides in facilitating cell death execution. Here, we cover the latest phosphoinositide research with a particular focus on phosphoinositides in the mechanisms of cell death. This progress article also raises key questions regarding the poorly defined role of phosphoinositides, particularly during membrane-associated events in cell death such as apoptosis and secondary necrosis. The review then further discusses important future directions for the phosphoinositide field, including therapeutically targeting phosphoinositides to modulate cell death.
Collapse
|
43
|
Liang X, Xin X, Qi D, Fu C, Ding M. Silencing the PIK3CA Gene Enhances the Sensitivity of Childhood Leukemia Cells to Chemotherapy Drugs by Suppressing the Phosphorylation of Akt. Yonsei Med J 2019; 60:182-190. [PMID: 30666840 PMCID: PMC6342719 DOI: 10.3349/ymj.2019.60.2.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study aimed to investigate the effects of PIK3CA on the sensitivity of acute B lymphocytic leukemia cells (Nalm-6 cells) to chemotherapy drugs. MATERIALS AND METHODS Children's normal B lymphocytes and Nalm-6 cells were cultured. Nalm-6 cells were transfected with PIK3CA siRNA (siPIK3CA group) or its negative control (PIK3CA-Control group). Normal Nalm-6 cells were named Mock group. Nalm-6 cells transfected by PIK3CA siRNA were treated with Akt inhibitor (siPIK3CA+Akti-1/2 group). mRNA and protein expression was detected by qRT-PCR and Western blot. Proliferation and sensitivity to chemotherapeutic drugs was detected by MTT assay. Cell cycle and apoptosis was explored by low cytometry. Transwell assay was performed to test invasion. RESULTS PIK3CA mRNA (p=0.008) and protein (p=0.006) expression was higher in Nalm-6 cells than that in normal B lymphocytes. Compared with the Mock group and PIK3CA-Control group, Nalm-6 cells of the siPIK3CA group had lower OD495 values (all p<0.05) and invasion cell numbers (p=0.03 and p=0.025), as well as a higher proportion of G0/G1 phase cells (p=0.020 and p=0.022), percentage of apoptosis (p=0.016 and p=0.022), and inhibition rate (all p<0.05). pAkt expression in the siPIK3CA group (p=0.026 and p=0.031) and siPIK3CA+Akti-1/2 group (p=0.019 and p=0.023) was lower than that in the Mock group. CONCLUSION PIK3CA silencing inhibited Nalm-6 cell proliferation and invasion, and promoted their apoptosis and sensitivity to chemotherapeutic drugs, potentially through regulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiuling Liang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Xianfang Xin
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Dongmei Qi
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Chengyan Fu
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Mingde Ding
- Department of Gynecology, Affiliated Hospital of Taishan Medical University, Tai'an, China.
| |
Collapse
|
44
|
Wei W, Huo B, Shi X. miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Manag Res 2019; 11:1177-1187. [PMID: 30774445 PMCID: PMC6362936 DOI: 10.2147/cmar.s181058] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Methyltransferase like 3 (METTL3) is an RNA methyltransferase implicated in mRNA biogenesis, decay, and translation control through N6-methyladenosine (m6A) modification. Methods To find new treatment strategies for lung cancer and to elucidate the mechanism underlying the phenomenon, we treated the human lung cancer cell lines A549 and H1299 to investigate the effect of METTL3 on lung cancer. Results We observed that knockdown of METTL3 inhibited the survival and proliferation of A549 and H1299 cells. The migration and proliferation of both cell lines were significantly decreased, and the apoptosis was induced in comparison with control cells. These results were further confirmed by the transfection of miRNA of METTL3 increased the Bax/Bcl-2 ratio in A549 and H1299 cells, which is a sign that mitochondrial apoptotic pathway was triggered. The PI3K/Akt pathway is implicated in cell growth and survival and we also observed that knockdown of METTL3 changed the expression and phosphorylation of proteins of PI3K signaling pathway members. Further, our results demonstrated that miR-600 inhibited the expression of METTL3 and reversed the positive effect of METTL3 on NSCLC progression, indicating an miR-600/METTL3 pathway in NSCLC. Conclusion These data suggested that miR-600 inhibited lung cancer via down-regulating METTL3 expression, and knockdown of METTL3 might be used as a novel strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Wenwen Wei
- Department of Respiratory Medicine, The Second People's Hospital of Dongying, Guangrao City, Shandong Province 257335, People's Republic of China,
| | - Baosheng Huo
- Department of Thoracic Surgery, The Second People's Hospital of Dongying, Guangrao City, Shandong Province 257335, People's Republic of China,
| | - Xiulan Shi
- Department of Respiratory Medicine, The Second People's Hospital of Dongying, Guangrao City, Shandong Province 257335, People's Republic of China,
| |
Collapse
|
45
|
Liu R, Liu C, Liu C, Fan T, Geng W, Ruan Q. TIPE2 in dendritic cells inhibits the induction of pTregs in the gut mucosa. Biochem Biophys Res Commun 2019; 509:911-917. [DOI: 10.1016/j.bbrc.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 02/08/2023]
|
46
|
Wang S, Qiu L, Song H, Dang N. NPS - 2143 (hydrochloride) inhibits melanoma cancer cell proliferation and induces autophagy and apoptosis. Med Sci (Paris) 2018; 34 Focus issue F1:87-93. [PMID: 30403181 DOI: 10.1051/medsci/201834f115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is a common and aggressive skin cancer caused by the oncogenic transformation of melanocytes. NPS-2143 (hydrochloride) is a calcification drug that acts as an antagonist of the calcium-sensing receptor (CaSR) and consequently stimulates the release of parathyroid hormone. In the present work, we treated cells from the human melanoma cell line M14 to investigate the effects of NPS-2143 on melanoma cells and elucidate their underlying mechanisms. We observed that NPS-2143 inhibits the survival and proliferation of M14 cells and suppresses the migration and proliferation of M14 cells by inducing apoptosis. The Bax/Bcl‑2 ratio in M14 cells was enhanced by the NPS-2143 treatment, suggesting that the mitochondrial apoptotic pathway was activated. The expression and phosphorylation of proteins involved in the PI3K signaling pathway were altered by NPS-2143 treatment. Our data show that NPS-2143 impacts the viability and induces the apoptosis of melanoma M14 cells through its impact on the PI3K signaling pathway. It suggests that NPS-2143 could represent a promising candidate for melanoma treatment.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Community Medicine, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| | - Liyun Qiu
- Department of Pharmacy, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| | - Haiyan Song
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| | - Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, No.105 Jiefang Road, Jinan 250013, Shandong Province, China
| |
Collapse
|
47
|
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett 2018; 16:4984-4996. [PMID: 30250564 PMCID: PMC6144355 DOI: 10.3892/ol.2018.9290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
As a clinically heterogeneous subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial-to-mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinghua Zhang
- Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jing Zhao
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kun Mu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jun Zhang
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhao Jin
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Juntian Liu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
48
|
Chen QY, Costa M. PI3K/Akt/mTOR Signaling Pathway and the Biphasic Effect of Arsenic in Carcinogenesis. Mol Pharmacol 2018; 94:784-792. [PMID: 29769245 PMCID: PMC5994485 DOI: 10.1124/mol.118.112268] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Arsenic is a naturally occurring, ubiquitous metalloid found in the Earth's crust. In its inorganic form, arsenic is highly toxic and carcinogenic and is widely found across the globe and throughout the environment. As an International Agency for Research on Cancer-defined class 1 human carcinogen, arsenic can cause multiple human cancers, including liver, lung, urinary bladder, skin, kidney, and prostate. Mechanisms of arsenic-induced carcinogenesis remain elusive, and this review focuses specifically on the role of the PI3K/AKT/mTOR pathway in promoting cancer development. In addition to exerting potent carcinogenic responses, arsenic is also known for its therapeutic effects against acute promyelocytic leukemia. Current literature suggests that arsenic can achieve both therapeutic as well as carcinogenic effects, and this review serves to examine the paradoxical effects of arsenic, specifically through the PI3K/AKT/mTOR pathway. Furthermore, a comprehensive review of current literature reveals an imperative need for future studies to establish and pinpoint the exact conditions for which arsenic can, and through what mechanisms it is able to, differentially regulate the PI3K/AKT/mTOR pathway to maximize the therapeutic and minimize the carcinogenic properties of arsenic.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
49
|
Sathiyamoorthy J, Shyam Sundar V, Babu NA, Shanmugham S, .G.Mani J, Chinnaiyan P, Kalyanaraman A, Hari R. Study on PIK3CA Gene Mutations in Oral Squamous Cell Carcinoma among South Indian populations. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present investigation was performed in South Indian Populations to determine the hotspot mutation frequency in Oral Squamous Cell Carcinoma (OSCC) patients with PIK3CA gene Exon 9 and Exon 20 and its correlations with help of their clinical characteristics leading to these mutations. PI3KCA belongs to a group of regulatory heterodimeric lipid kinase which is involved in proliferation of cells, apoptosis and as well in metastasis which is controlled by PIK3CA gene is subjected to high frequency of somatic mutation in various tumors including OSCC. Total of 25 OSCC patients samples comprising of male and female subjects from Government tertiary care Centre were included in this study. Tumor specimen samples were collected and amplified for PIK3CA gene by PCR and subjected to genomic DNA Sequencing. Our findings showed total of 20% of oncogenic frequency in PIK3CA gene. We also observed two hot spot mutations (E545K) in exon 9 gene and three hot spot mutations (H1047Q, H1047Y, H1048Q) in exon 20 gene in our study populations. 0 Based on our findings it may be concluded that PIK3CA gene Exon 9 and Exon 20 contributes to a major role in pathogenesis on OSCC among South Indian populations may act as therapeutic target for a anticancer drug for the treatment OSCC.
Collapse
Affiliation(s)
- Jayalalitha Sathiyamoorthy
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute Maduravoyal, Chennai-95, India
| | - Vidyarani Shyam Sundar
- Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education (Bharath University), Pallikaranai, Chennai-99, India
| | - N. Aravindha Babu
- Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education (Bharath University), Pallikaranai, Chennai-99, India
| | - Subbaih Shanmugham
- Centre of Surgical Oncology Government Royapettah hospital and Kilpauk Medical College, Chennai, India
| | - Jagadeesan .G.Mani
- Centre of Surgical Oncology Government Royapettah hospital and Kilpauk Medical College, Chennai, India
| | - Ponnuraja Chinnaiyan
- Department of Statistics, National Institute of Research in Tuberculosis, No:1, Sathiyamoorthy Road, Chetpet, 600031,Chennai, India
| | - Aparna Kalyanaraman
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute Maduravoyal, Chennai-95, India
| | - Rajeswary Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute Maduravoyal, Chennai-95, India
| |
Collapse
|
50
|
Lu H, Bogdanovic E, Yu Z, Cho C, Liu L, Ho K, Guo J, Yeung LSN, Lehmann R, Hundal HS, Giacca A, Fantus IG. Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology 2018; 159:1658-1677. [PMID: 29370351 PMCID: PMC5939637 DOI: 10.1210/en.2017-00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
A hyperglycemic and hyperinsulinemic environment characteristic of type 2 diabetes causes insulin resistance. In adipocytes, defects in both insulin sensitivity and maximum response of glucose transport have been demonstrated. To investigate the molecular mechanisms, freshly isolated rat adipocytes were incubated in control (5.6 mM glucose, no insulin) and high glucose (20 mM)/high insulin (100 nM) (HG/HI) for 18 hours to induce insulin resistance. Insulin-resistant adipocytes manifested decreased sensitivity of glucose uptake associated with defects in insulin receptor substrate (IRS)-1 Tyr phosphorylation, association of p85 subunit of phosphatidylinositol-3-kinase, Akt Ser473 and Thr308 phosphorylation, accompanied by impaired glucose transporter 4 translocation. In contrast, protein kinase C (PKC)-ζ activity was augmented by chronic HG/HI. Inhibition of PKC-ζ with a specific cell-permeable peptide reversed the signaling defects and insulin sensitivity of glucose uptake. Transfection of dominant-negative, kinase-inactive PKC-ζ blocked insulin resistance, whereas constitutively active PKC-ζ recapitulated the defects. The HG/HI incubation was associated with stimulation of IRS-1 Ser318 and Akt Thr34 phosphorylation, targets of PKC-ζ. Transfection of IRS-1 S318A and Akt T34A each partially corrected insulin signaling, whereas combined transfection of both completely normalized insulin signaling. In vivo hyperglycemia/hyperinsulinemia in rats for 48 hours similarly resulted in activation of PKC-ζ and increased phosphorylation of IRS-1 Ser318 and Akt Thr34. These data indicate that impairment of insulin signaling by chronic HG/HI is mediated by dual defects at IRS-1 and Akt mediated by PKC-ζ.
Collapse
Affiliation(s)
- Huogen Lu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elena Bogdanovic
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles Cho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijiang Liu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Karen Ho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - June Guo
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lucy S N Yeung
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Reiner Lehmann
- Department of Internal Medicine IV, Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, University Hospital Tuebingen, Tuebingen, Germany
| | - Harinder S Hundal
- Division of Molecular Physiology Unit, Faculty of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Adria Giacca
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: I. George Fantus, MD, Departments of Medicine and Physiology, Mount Sinai Hospital, Joseph and Wolfe Lebovic Building, 60 Murray Street, 5th Floor, Room 5028, Toronto, Ontario M5T 3L9, Canada. E-mail:
| |
Collapse
|