1
|
Brown LM, Tax G, Acera Mateos P, de Weck A, Foresto S, Robertson T, Jalud F, Ajuyah P, Barahona P, Mao J, Dolman MEM, Wong M, Mayoh C, Cowley MJ, Lau LMS, Sadras T, Ekert PG. A novel TRKB-activating internal tandem duplication characterizes a new mechanism of receptor tyrosine kinase activation. NPJ Precis Oncol 2025; 9:137. [PMID: 40348911 PMCID: PMC12065843 DOI: 10.1038/s41698-025-00928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Precision medicine programs like the Zero Childhood Cancer Program perform comprehensive molecular analysis of patient tumors, enabling detection of novel structural variants that may be cryptic to standard techniques. Identification of these variants can impact individual patient treatment, and beyond this establish new mechanisms of oncogenic activation. We have identified a novel internal tandem duplication (ITD) in the receptor tyrosine kinase (RTK), NTRK2, in a patient with FOXR2-activated CNS neuroblastoma. The ITD spans exons 10-13 of NTRK2 encoding the transmembrane domain. NTRK2 ITD is transforming and sensitive to TRK inhibition. In silico structural predictions suggested the duplication of an alpha-helix region and juxtaposed tyrosine residues that play a role in facilitating autophosphorylation. Consistent with this, mutation of these residues inhibited cellular transformation. This is the first report of an ITD spanning the transmembrane domain of an RTK, characterizing an additional mechanism by which RTKs are activated in cancer.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gabor Tax
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Pablo Acera Mateos
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Antoine de Weck
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Steve Foresto
- Queensland Children's Hospital, Brisbane, QLD, Australia
| | | | - Fatimah Jalud
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Pamela Ajuyah
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jie Mao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - M Emmy M Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Teresa Sadras
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Liu A, Mohr MA, Hope JM, Wang J, Chen X, Cui B. Light-Inducible Activation of TrkA for Probing Chronic Pain in Mice. ACS Chem Biol 2024; 19:1626-1637. [PMID: 39026469 PMCID: PMC11756861 DOI: 10.1021/acschembio.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chronic pain is a prevalent problem that plagues modern society, and better understanding its mechanisms is critical for developing effective therapeutics. Nerve growth factor (NGF) and its primary receptor, Tropomyosin receptor kinase A (TrkA), are known to be potent mediators of chronic pain, but there is a lack of established methods for precisely perturbing the NGF/TrkA signaling pathway in the study of pain and nociception. Optobiological tools that leverage light-induced protein-protein interactions allow for precise spatial and temporal control of receptor signaling. Previously, our lab reported a blue light-activated version of TrkA generated using light-induced dimerization of the intracellular TrkA domain, opto-iTrkA. In this work, we show that opto-iTrkA activation is able to activate endogenous ERK and Akt signaling pathways and causes the retrograde transduction of phospho-ERK signals in dorsal root ganglion (DRG) neurons. Opto-iTrkA activation also sensitizes the transient receptor potential vanilloid 1 (TRPV1) channel in cellular models, further corroborating the physiological relevance of the optobiological stimulus. Finally, we show that opto-iTrkA enables light-inducible potentiation of mechanical sensitization in mice. Light illumination enables nontraumatic and reversible (<2 days) sensitization of mechanical pain in mice transduced with opto-iTrkA, which provides a platform for dissecting TrkA pathways for nociception in vitro and in vivo.
Collapse
Affiliation(s)
- Aofei Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Manuel A Mohr
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Jen M Hope
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jennifer Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Pennacchietti V, Pagano L, Malagrinò F, Diop A, Di Felice M, Di Matteo S, Marcocci L, Pietrangeli P, Toto A, Gianni S. Characterization of the folding and binding properties of the PTB domain of FRS2 with phosphorylated and unphosphorylated ligands. Arch Biochem Biophys 2023; 745:109703. [PMID: 37543351 DOI: 10.1016/j.abb.2023.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
PTB (PhosphoTyrosine Binding) domains are protein domains that exert their function by binding phosphotyrosine residues on other proteins. They are commonly found in a variety of signaling proteins and are important for mediating protein-protein interactions in numerous cellular processes. PTB domains can also exhibit binding to unphosphorylated ligands, suggesting that they have additional binding specificities beyond phosphotyrosine recognition. Structural studies have reported that the PTB domain from FRS2 possesses this peculiar feature, allowing it to interact with both phosphorylated and unphosphorylated ligands, such as TrkB and FGFR1, through different topologies and orientations. In an effort to elucidate the dynamic and functional properties of these protein-protein interactions, we provide a complete characterization of the folding mechanism of the PTB domain of FRS2 and the binding process to peptides mimicking specific regions of TrkB and FGFR1. By analyzing the equilibrium and kinetics of PTB folding, we propose a mechanism implying the presence of an intermediate along the folding pathway. Kinetic binding experiments performed at different ionic strengths highlighted the electrostatic nature of the interaction with both peptides. The specific role of single amino acids in early and late events of binding was pinpointed by site-directed mutagenesis. These results are discussed in light of previous experimental works on these protein systems.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Sara Di Matteo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
Wang H, Zhou R, Xu F, Yang K, Zheng L, Zhao P, Shi G, Dai L, Xu C, Yu L, Li Z, Wang J, Wang J. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Biomater Res 2023; 27:72. [PMID: 37480049 PMCID: PMC10362593 DOI: 10.1186/s40824-023-00385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/21/2023] [Indexed: 07/23/2023] Open
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.
Collapse
Affiliation(s)
- Huifang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Runhua Zhou
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fushan Xu
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Kongjun Yang
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Liuhai Zheng
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Pan Zhao
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Guangwei Shi
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Le Yu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Zhijie Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jianhong Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| |
Collapse
|
5
|
Shia DW, Choi W, Vijayaraj P, Vuong V, Sandlin JM, Lu MM, Aziz A, Marin C, Aros CJ, Sen C, Durra A, Lund AJ, Purkayastha A, Rickabaugh TM, Graeber TG, Gomperts BN. Targeting PEA3 transcription factors to mitigate small cell lung cancer progression. Oncogene 2023; 42:434-448. [PMID: 36509998 PMCID: PMC9898033 DOI: 10.1038/s41388-022-02558-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC) remains a lethal disease with a dismal overall survival rate of 6% despite promising responses to upfront combination chemotherapy. The key drivers of such rapid mortality include early metastatic dissemination in the natural course of the disease and the near guaranteed emergence of chemoresistant disease. Here, we found that we could model the regression and relapse seen in clinical SCLC in vitro. We utilized time-course resolved RNA-sequencing to globally profile transcriptome changes as SCLC cells responded to a combination of cisplatin and etoposide-the standard-of-care in SCLC. Comparisons across time points demonstrated a distinct transient transcriptional state resembling embryonic diapause. Differential gene expression analysis revealed that expression of the PEA3 transcription factors ETV4 and ETV5 were transiently upregulated in the surviving fraction of cells which we determined to be necessary for efficient clonogenic expansion following chemotherapy. The FGFR-PEA3 signaling axis guided the identification of a pan-FGFR inhibitor demonstrating in vitro and in vivo efficacy in delaying progression following combination chemotherapy, observed inhibition of phosphorylation of the FGFR adaptor FRS2 and corresponding downstream MAPK and PI3K-Akt signaling pathways. Taken together, these data nominate PEA3 transcription factors as key mediators of relapse progression in SCLC and identify a clinically actionable small molecule candidate for delaying relapse of SCLC.
Collapse
Affiliation(s)
- David W Shia
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- UCLA Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - WooSuk Choi
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Valarie Vuong
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jenna M Sandlin
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Michelle M Lu
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Adam Aziz
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Caliope Marin
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Cody J Aros
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- UCLA Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Chandani Sen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Abdo Durra
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew J Lund
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
| | - Arunima Purkayastha
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tammy M Rickabaugh
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, 90095, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, 90095, USA.
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Mulkey DK, Milla BM. Perspectives on the basis of seizure-induced respiratory dysfunction. Front Neural Circuits 2022; 16:1033756. [PMID: 36605420 PMCID: PMC9807672 DOI: 10.3389/fncir.2022.1033756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
7
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
8
|
Kamyshna I, Kamyshnyi A. Transcriptional Activity of Neurotrophins Genes and Their Receptors in the Peripheral Blood in Patients with Thyroid Diseases in Bukovinian Population of Ukraine. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective. Thyroid hormone has an especially strong impact on central nervous system development, and thyroid hormone deficiency has been shown to result in severe mental retardation. It is crucial to identify compensatory mechanisms that can be involved in improving cognitive function and the quality of life of patients with hypothyroidism.
Methods: We used the pathway-specific PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and validate neurotrophins genes and their receptor expression in patients with thyroid pathology and control group.
Results: The analysis of gene expression of neurotrophins and their receptors showed that CRHBP, FRS2, FRS3, GFRA1, GFRA2, GMFB, NGF, NRG2, NRG4, NTF4, TRO, and VGF significantly decreased their expression in Group 3, which includes the patients with postoperative hypothyroidism. The patients with primary hypothyroidism stemming from AIT had significantly reduced expression of CRHBP, GFRA1, GFRA2, GMFB, NGF, PTGER2, and VGF, while the expression of NRG4 and TRO increased. In Group 3, which includes the patients with AIT and elevated serum anti-Tg and anti-TPO autoantibodies, the mRNA levels of GFRA2, NGF, NRG2, NTF4, NGF, PTGER were reduced, and the expression of CRHBP, FRS2, FRS3 GFRA1, GMFB, NRG4, TRO, and VGF significantly increased.
Conclusion: These results indicate significant variability in the transcriptional activity of the genes of encoding neurotrophins and their receptors in the peripheral blood in people with thyroid diseases.
Collapse
|
9
|
Li S, Hao M, Wu T, Wang Z, Wang X, Zhang J, Zhang L. Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis. Biomed Pharmacother 2021; 137:111419. [PMID: 33761622 DOI: 10.1016/j.biopha.2021.111419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Atherosclerosis, inflammatory disease, is a major reason for cardiovascular diseases and stroke. Kaempferol (Kae) has been well-documented to have pharmacological activities in the previous studies. However, the detailed mechanisms by which Kae regulates inflammation, oxidative stress, and apoptosis in Human Umbilical Vein Endothelial Cells (HUVECs) remain unknown. METHODS AND RESULTS The real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure expression levels of circNOL12, nucleolar protein 12 (NOL12), miR-6873-3p, and Fibroblast growth factor receptor substrate 2 (FRS2) in HUVECs treated with either oxidized low-density lipoprotein (ox-LDL) alone or in combination with Kae. The cells viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. The inflammation and oxidative stress were assessed by checking inflammatory factors, Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) levels in ox-LDL-induced HUVECs. The apoptotic cells were quantified by flow cytometry assay. The western blot assay was used for measuring protein expression. The interaction relationship between miR-6873-3p and circNOL12 or FRS2 was analyzed by dual-luciferase reporter and RNA pull-down assays. Treatment with Kae could inhibit ox-LDL-induced the upregulation of circNOL12 in HUVECs. Importantly, Kae weakened ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs, which was abolished by overexpression of circNOL12. What's more, miR-6873-3p was a target of circNOL12 in HUVECs, and the upregulation of miR-6873-3p overturned circNOL12 overexpression-induced effects on HUVECs treated with ox-LDL and Kae. FRS2 was negatively regulated by miR-6873-3p in HUVECs. CONCLUSION Kae alleviated ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs by regulating circNOL12/miR-6873-3p/FRS2 axis.
Collapse
Affiliation(s)
- Shuangzhan Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Meihua Hao
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Taisheng Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zixuan Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xicheng Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Junjian Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Lei Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
10
|
Photosensitive tyrosine analogues unravel site-dependent phosphorylation in TrkA initiated MAPK/ERK signaling. Commun Biol 2020; 3:706. [PMID: 33239753 PMCID: PMC7689462 DOI: 10.1038/s42003-020-01396-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Tyrosine kinase A (TrkA) is a membrane receptor which, upon ligand binding, activates several pathways including MAPK/ERK signaling, implicated in a spectrum of human pathologies; thus, TrkA is an emerging therapeutic target in treatment of neuronal diseases and cancer. However, mechanistic insights into TrKA signaling are lacking due to lack of site-dependent phosphorylation control. Here we engineer two light-sensitive tyrosine analogues, namely p-azido-L-phenylalanine (AzF) and the caged-tyrosine (ONB), through amber codon suppression to optically manipulate the phosphorylation state of individual intracellular tyrosines in TrkA. We identify TrkA-AzF and ONB mutants, which can activate the ERK pathway in the absence of NGF ligand binding through light control. Our results not only reveal how TrkA site-dependent phosphorylation controls the defined signaling process, but also extend the genetic code expansion technology to enable regulation of receptor-type kinase activation by optical control at the precision of a single phosphorylation site. It paves the way for comprehensive analysis of kinase-associated pathways as well as screening of compounds intervening in a site-directed phosphorylation pathway for targeted therapy. Using genetic code expansion, Zhao, Shi et al. generate light-sensitive tyrosine analogues to obtain insights into the activation of the NGF receptor, TrkA. They identify light-sensitive and NGF-insensitive phosphorylation sites, validating the approach and providing insights into TrkA signaling
Collapse
|
11
|
FGFR Regulation of Dendrite Elaboration in Adult-born Granule Cells Depends on Intracellular Mediator and Proximity to the Soma. Neuroscience 2020; 453:148-167. [PMID: 33246055 DOI: 10.1016/j.neuroscience.2020.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Fibroblast Growth Factor Receptors (FGFRs) play crucial roles in promoting dendrite growth and branching during development. In mice, three FGFR genes, Fgfr1, Fgfr2, and Fgfr3, remain expressed in the adult neurogenic niche of the hippocampal dentate gyrus. However, the function of FGFRs in the dendritic maturation of adult-born neurons remains largely unexplored. Here, using conditional alleles of Fgfr1, Fgfr2, and Fgfr3 as well as Fgfr1 alleles lacking binding sites for Phospholipase-Cγ (PLCγ) and FGF Receptor Substrate (FRS) proteins, we test the requirement for FGFRs in dendritogenesis of adult-born granule cells. We find that deleting all three receptors results in a small decrease in proximal dendrite elaboration. In contrast, specifically mutating Tyr766 in FGFR1 (a PLCγ binding site) in an Fgfr2;Fgfr3 deficient background results in a dramatic increase of overall dendrite elaboration, while blocking FGFR1-FRS signaling causes proximal dendrite deficits and, to a lesser extent than Tyr766 mutants, increases distal dendrite elaboration. These findings reveal unexpectedly complex roles for FGFRs and their intracellular mediators in regulating proximal and distal dendrite elaboration, with the most notable role in suppressing distal elaboration through the PLCγbinding site.
Collapse
|
12
|
Matsuoka H, Pokorski M, Harada K, Yoshimura R, Inoue M. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells. J Histochem Cytochem 2020; 68:679-690. [PMID: 32886017 DOI: 10.1369/0022155420955246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TWIK-related acid-sensitive K+ (TASK) homomeric channels, TASK1 and TASK3, are present in PC12 cells. The channels do not heteromerize due plausibly to a lack of p11 protein. Single-channel recording reveals that most of the rat carotid body (CB) glomus cells express heteromeric TASK1-TASK3 channels, but the presence of p11 in glomus cells has not yet been verified. TASK1, but not TASK3, binds to p11, which has a retention signal for the endoplasmic reticulum. We hypothesized that p11 could facilitate heteromeric TASK1-TASK3 formation in glomus cells. We investigated this hypothesis in isolated immunocytochemically identified rat CB glomus cells. The findings were that glomus cells expressed p11-like immunoreactive (IR) material, and TASK1- and TASK3-like IR material mainly coincided in the cytoplasm. The proximity ligation assay showed that TASK1 and TASK3 heteromerized. In separate experiments, supporting evidence for the major role of p11 for channel heteromerization was provided in PC12 cells stimulated by nerve growth factor. p11 production took place there via multiple signaling pathways comprising mitogen-activated protein kinase and phospholipase C, and heteromeric TASK1-TASK3 channels were formed. We conclude that p11 is expressed and TASK1 and TASK3 heteromerize in rat CB glomus cells.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mieczyslaw Pokorski
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Institute of Sciences, University of Opole, Opole, Poland
| | - Keita Harada
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
13
|
Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:151-178. [PMID: 32034713 DOI: 10.1007/978-3-030-30651-9_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
|
14
|
López-Menéndez C, Simón-García A, Gamir-Morralla A, Pose-Utrilla J, Luján R, Mochizuki N, Díaz-Guerra M, Iglesias T. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes. Cell Death Dis 2019; 10:535. [PMID: 31296845 PMCID: PMC6624258 DOI: 10.1038/s41419-019-1766-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Excitotoxic neuronal death induced by high concentrations of glutamate is a pathological event common to multiple acute or chronic neurodegenerative diseases. Excitotoxicity is mediated through overactivation of the N-Methyl-D-aspartate type of ionotropic glutamate receptors (NMDARs). Physiological stimulation of NMDARs triggers their endocytosis from the neuronal surface, inducing synaptic activity and survival. However almost nothing is known about the internalization of overactivated NMDARs and their interacting proteins, and how this endocytic process is connected with neuronal death has been poorly explored. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a component of NMDAR complexes essential for neuronal viability by the control of ERK activation. Here we have investigated Kidins220 endocytosis induced by NMDAR overstimulation and the participation of this internalization step in the molecular mechanisms of excitotoxicity. We show that excitotoxicity induces Kidins220 and GluN1 traffic to the Golgi apparatus (GA) before Kidins220 is degraded by the protease calpain. We also find that excitotoxicity triggers an early activation of Rap1-GTPase followed by its inactivation. Kidins220 excitotoxic endocytosis and subsequent calpain-mediated downregulation governs this late inactivation of Rap1 that is associated to decreases in ERK activity preceding neuronal death. Furthermore, we identify the molecular mechanisms involved in the excitotoxic shutoff of Kidins220/Rap1/ERK prosurvival cascade that depends on calpain processing of Rap1-activation complexes. Our data fit in a model where Kidins220 targeting to the GA during early excitotoxicity would facilitate Rap1 activation and subsequent stimulation of ERK. At later times, activation of Golgi-associated calpain, would promote the degradation of GA-targeted Kidins220 and two additional components of the specific Rap1 activation complex, PDZ-GEF1, and S-SCAM. In this way, late excitotoxicity would turn off Rap1/ERK cascade and compromise neuronal survival.
Collapse
Affiliation(s)
- Celia López-Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain.,Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, 565-8565, Osaka, Japan
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain.
| |
Collapse
|
15
|
Nerve growth factor receptor TrkA signaling in streptozotocin-induced type 1 diabetes rat brain. Biochem Biophys Res Commun 2019; 514:1285-1289. [PMID: 31113619 DOI: 10.1016/j.bbrc.2019.04.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023]
Abstract
Previous work from our lab demonstrated a new role of TrkA in the insulin signaling pathway. The kinase activity of TrkA is essential for its interaction with the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) and activation of Akt and Erk5 in PC12 cells. Here we show in brain from streptozotocin (STZ)-induced type 1 diabetic rats that the expression of the inactive proNGF is elevated, whereas the expression of mature NGF is reduced. In addition, tyrosine phosphorylation of TrkA is decreased in STZ-induced diabetes compared to control. Results of the co-immunoprecipitation experiments indicate that the interaction of TrkA with the IR and IRS-1 is also reduced in the brain of diabetic rats. Moreover, tyrosine phosphorylation of the IR and IRS-1, and Akt activation is decreased in STZ diabetes compared to control. Our results suggest that the NGF-TrkA receptor is involved in insulin signaling and is impaired in the brain of STZ-induced diabetic rats.
Collapse
|
16
|
TrkB Regulates N-Methyl-D-Aspartate Receptor Signaling by Uncoupling and Recruiting the Brain-Specific Guanine Nucleotide Exchange Factor, RasGrf1. J Mol Neurosci 2018; 67:97-110. [DOI: 10.1007/s12031-018-1214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/11/2018] [Indexed: 01/26/2023]
|
17
|
Notaras M, van den Buuse M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2018; 25:434-454. [DOI: 10.1177/1073858418810142] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, brain-derived neurotrophic factor (BDNF) has spawned a literature that now spans 35 years of research. While all neurotrophins share considerable overlap in sequence homology and their processing, BDNF has become the most widely studied neurotrophin because of its broad roles in brain homeostasis, health, and disease. Although research on BDNF has produced thousands of articles, there remain numerous long-standing questions on aspects of BDNF molecular biology and signaling. Here we provide a comprehensive review, including both a historical narrative and a forward-looking perspective on advances in the actions of BDNF within the brain. We specifically review BDNF’s gene structure, peptide composition (including domains, posttranslational modifications and putative motif sites), mechanisms of transport, signaling pathway recruitment, and other recent developments including the functional effects of genetic variation and the discovery of a new BDNF prodomain ligand. This body of knowledge illustrates a highly conserved and complex role for BDNF within the brain, that promotes the idea that the neurotrophin biology of BDNF is diverse and that any disease involvement is likely to be equally multifarious.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
19
|
Li Q, Alsaidan OA, Ma Y, Kim S, Liu J, Albers T, Liu K, Beharry Z, Zhao S, Wang F, Lebedyeva I, Cai H. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem 2018. [PMID: 29540482 DOI: 10.1074/jbc.ra117.000940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.
Collapse
Affiliation(s)
- Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Omar Awad Alsaidan
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Yongjie Ma
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Junchen Liu
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Kebin Liu
- Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Shaying Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Fen Wang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| |
Collapse
|
20
|
Coleman KG, Crews CM. Proteolysis-Targeting Chimeras: Harnessing the Ubiquitin-Proteasome System to Induce Degradation of Specific Target Proteins. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050430] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology; Department of Chemistry; and Department of Pharmacology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
21
|
Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1α To Enhance Nerve Growth Factor Function. Mol Cell Biol 2018; 38:MCB.00277-17. [PMID: 29229648 DOI: 10.1128/mcb.00277-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022] Open
Abstract
The scaffold protein SH2B1, a major regulator of body weight, is recruited to the receptors of multiple cytokines and growth factors, including nerve growth factor (NGF). The β isoform but not the α isoform of SH2B1 greatly enhances NGF-dependent neurite outgrowth of PC12 cells. Here, we asked how the unique C-terminal tails of the α and β isoforms modulate SH2B1 function. We compared the actions of SH2B1α and SH2B1β to those of the N-terminal 631 amino acids shared by both isoforms. In contrast to the β tail, the α tail inhibited the ability of SH2B1 to both cycle through the nucleus and enhance NGF-mediated neurite outgrowth, gene expression, phosphorylation of Akt and phospholipase C-gamma (PLC-γ), and autophosphorylation of the NGF receptor TrkA. These functions were restored when Tyr753 in the α tail was mutated to phenylalanine. We provide evidence that TrkA phosphorylates Tyr753 in SH2B1α, as well as tyrosines 439 and 55 in both SH2B1α and SH2B1β. Finally, coexpression of SH2B1α but not SH2B1α with a mutation of Y to F at position 753 (Y753F) inhibited the ability of SH2B1β to enhance neurite outgrowth. These results suggest that the C-terminal tails of SH2B1 isoforms are key determinants of the cellular role of SH2B1. Furthermore, the function of SH2B1α is regulated by phosphorylation of the α tail.
Collapse
|
22
|
Nandi S, Alviña K, Lituma PJ, Castillo PE, Hébert JM. Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis. Neuroscience 2017; 369:192-201. [PMID: 29155277 DOI: 10.1016/j.neuroscience.2017.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
Abstract
Dentate granule cells (DGCs) play important roles in cognitive processes. Knowledge about how growth factors such as FGFs and neurotrophins contribute to the maturation and synaptogenesis of DGCs is limited. Here, using brain-specific and germline mouse mutants we show that a module of neurotrophin and FGF signaling, the FGF Receptor Substrate (FRS) family of intracellular adapters, FRS2 and FRS3, are together required for postnatal brain development. In the hippocampus, FRS promotes dentate gyrus morphogenesis and DGC maturation during developmental neurogenesis, similar to previously published functions for both neurotrophins and FGFs. Consistent with a role in DGC maturation, two-photon imaging revealed that Frs2,3-double mutants have reduced numbers of dendritic branches and spines in DGCs. Functional analysis further showed that double-mutant mice exhibit fewer excitatory synaptic inputs onto DGCs. These observations reveal roles for FRS adapters in DGC maturation and synaptogenesis and suggest that FRS proteins may act as an important node for FGF and neurotrophin signaling in postnatal hippocampal development.
Collapse
Affiliation(s)
- Sayan Nandi
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Karina Alviña
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Pablo J Lituma
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo E Castillo
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
Saadipour K, MacLean M, Pirkle S, Ali S, Lopez-Redondo ML, Stokes DL, Chao MV. The transmembrane domain of the p75 neurotrophin receptor stimulates phosphorylation of the TrkB tyrosine kinase receptor. J Biol Chem 2017; 292:16594-16604. [PMID: 28821608 PMCID: PMC5633122 DOI: 10.1074/jbc.m117.788729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/31/2017] [Indexed: 01/19/2023] Open
Abstract
The function of protein products generated from intramembraneous cleavage by the γ-secretase complex is not well defined. The γ-secretase complex is responsible for the cleavage of several transmembrane proteins, most notably the amyloid precursor protein that results in Aβ, a transmembrane (TM) peptide. Another protein that undergoes very similar γ-secretase cleavage is the p75 neurotrophin receptor. However, the fate of the cleaved p75 TM domain is unknown. p75 neurotrophin receptor is highly expressed during early neuronal development and regulates survival and process formation of neurons. Here, we report that the p75 TM can stimulate the phosphorylation of TrkB (tyrosine kinase receptor B). In vitro phosphorylation experiments indicated that a peptide representing p75 TM increases TrkB phosphorylation in a dose- and time-dependent manner. Moreover, mutagenesis analyses revealed that a valine residue at position 264 in the rat p75 neurotrophin receptor is necessary for the ability of p75 TM to induce TrkB phosphorylation. Because this residue is just before the γ-secretase cleavage site, we then investigated whether the p75(αγ) peptide, which is a product of both α- and γ-cleavage events, could also induce TrkB phosphorylation. Experiments using TM domains from other receptors, EGFR and FGFR1, failed to stimulate TrkB phosphorylation. Co-immunoprecipitation and biochemical fractionation data suggested that p75 TM stimulates TrkB phosphorylation at the cell membrane. Altogether, our results suggest that TrkB activation by p75(αγ) peptide may be enhanced in situations where the levels of the p75 receptor are increased, such as during brain injury, Alzheimer's disease, and epilepsy.
Collapse
Affiliation(s)
- Khalil Saadipour
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| | - Michael MacLean
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| | - Sean Pirkle
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| | - Solav Ali
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| | - Maria-Luisa Lopez-Redondo
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| | - David L Stokes
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| | - Moses V Chao
- From the Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016
| |
Collapse
|
24
|
Trivedi P, Kumar RK, Iyer A, Boswell S, Gerarduzzi C, Dadhania VP, Herbert Z, Joshi N, Luyendyk JP, Humphreys BD, Vaidya VS. Targeting Phospholipase D4 Attenuates Kidney Fibrosis. J Am Soc Nephrol 2017; 28:3579-3589. [PMID: 28814511 DOI: 10.1681/asn.2016111222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/11/2017] [Indexed: 01/13/2023] Open
Abstract
Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-β signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-β-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-β signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ramya K Kumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ashwin Iyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sarah Boswell
- Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| | - Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Vivekkumar P Dadhania
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts
| | - Zach Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikita Joshi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; .,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
25
|
Wills MKB, Keyvani Chahi A, Lau HR, Tilak M, Guild BD, New LA, Lu P, Jacquet K, Meakin SO, Bisson N, Jones N. Signaling adaptor ShcD suppresses extracellular signal-regulated kinase (Erk) phosphorylation distal to the Ret and Trk neurotrophic receptors. J Biol Chem 2017; 292:5748-5759. [PMID: 28213521 DOI: 10.1074/jbc.m116.770511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Src homology and collagen (Shc) family are typically involved in signal transduction events involving Ras/MAPK and PI3K/Akt pathways. In the nervous system, they function proximal to the neurotrophic factors that regulate cell survival, differentiation, and neuron-specific characteristics. The least characterized homolog, ShcD, is robustly expressed in the developing and mature nervous system, but its contributions to neural cell circuitry are largely uncharted. We now report that ShcD binds to active Ret, TrkA, and TrkB neurotrophic factor receptors predominantly via its phosphotyrosine-binding (PTB) domain. However, in contrast to the conventional Shc adaptors, ShcD suppresses distal phosphorylation of the Erk MAPK. Accordingly, genetic knock-out of mouse ShcD enhances Erk phosphorylation in the brain. In cultured cells, this capacity is tightly aligned to phosphorylation of ShcD CH1 region tyrosine motifs, which serve as docking platforms for signal transducers, such as Grb2. Erk suppression is relieved through independent mutagenesis of the PTB domain and the CH1 tyrosine residues, and successive substitution of these tyrosines breaks the interaction between ShcD and Grb2, thereby promoting TrkB-Grb2 association. Erk phosphorylation can also be restored in the presence of wild type ShcD through Grb2 overexpression. Conversely, mutation of the ShcD SH2 domain results in enhanced repression of Erk. Although the SH2 domain is a less common binding interface in Shc proteins, we demonstrate that it associates with the Ptpn11 (Shp2) phosphatase, which in turn regulates ShcD tyrosine phosphorylation. We therefore propose a model whereby ShcD competes with neurotrophic receptors for Grb2 binding and opposes activation of the MAPK cascade.
Collapse
Affiliation(s)
- Melanie K B Wills
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ava Keyvani Chahi
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hayley R Lau
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Manali Tilak
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brianna D Guild
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura A New
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Peihua Lu
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kévin Jacquet
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Susan O Meakin
- Department of Biochemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Nicolas Bisson
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Nina Jones
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada,
| |
Collapse
|
26
|
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to a family of small secreted proteins that also include nerve growth factor, neurotrophin 3, and neurotrophin 4. BDNF stands out among all neurotrophins by its high expression levels in the brain and its potent effects at synapses. Several aspects of BDNF biology such as transcription, processing, and secretion are regulated by synaptic activity. Such observations prompted the suggestion that BDNF may regulate activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP), a sustained enhancement of excitatory synaptic efficacy thought to underlie learning and memory. Here, we will review the evidence pointing to a fundamental role of this neurotrophin in LTP, especially within the hippocampus. Prominent questions in the field, including the release and action sites of BDNF during LTP, as well as the signaling and molecular mechanisms involved, will also be addressed. The diverse effects of BDNF at excitatory synapses are determined by the activation of TrkB receptors and downstream signaling pathways, and the functions, typically opposing in nature, of its immature form (proBDNF). The activation of p75NTR receptors by proBDNF and the implications for long-term depression will also be addressed. Finally, we discuss the synergy between TrkB and glucocorticoid receptor signaling to determine cellular responses to stress.
Collapse
Affiliation(s)
- G Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - C R Bramham
- K.G. Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Unravelling the Mechanism of TrkA-Induced Cell Death by Macropinocytosis in Medulloblastoma Daoy Cells. Mol Cell Biol 2016; 36:2596-611. [PMID: 27503856 DOI: 10.1128/mcb.00255-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser(185) by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die.
Collapse
|
28
|
Wang TT, Tian C, Sun J, Wang H, Zhang BY, Chen C, Wang J, Xiao K, Chen LN, Lv Y, Gao C, Shi Q, Xin Y, Dong XP. Down-regulation of brain-derived neurotrophic factor and its signaling components in the brain tissues of scrapie experimental animals. Int J Biochem Cell Biol 2016; 79:318-326. [PMID: 27590859 DOI: 10.1016/j.biocel.2016.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022]
Abstract
Prion is a unique nucleic acid-free pathogen that causes human and animal fatal neurodegenerative diseases. Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that helps to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses through axonal and dendritic sprouting. There are two distinct classes of glycosylated receptors, neurotrophin receptor p75 (p75NTR) and tropomyosin-related kinase (Trk), that can bind to BDNF. To obtain insights into the possible alterations of brain BDNF and its signaling pathway in prion disease, the levels of BDNF and several molecules in the BDNF pathway in the brain tissues of scrapie agents 263K-infected hamsters were separately evaluated. Western blots and/or immunohistochemical (IHC) assays revealed that BDNF, TrkB, GRB2 and p75NTR, were significantly downregulated in the brain tissues of scrapie-infected rodents at terminal stage. Double-stained immunofluorescent assay (IFA) demonstrated that BDNF and phospho-TrkB predominately expressed in neurons. Dynamic analyses of the brain samples collected at the different time-points during the incubation period illustrated continuous decreases of BDNF, TrkB, phospho-TrkB, GRB2 and p75NTR, which correlated well with neuron loss. However, these proteins remained almost unchanged in the prion infected cell line SMB-S15 compared with those of its normal cell line SMB-PS. These data suggest that the BDNF signaling pathway is severely hindered in the brains of prion disease, which may contribute, at least partially, to the neuron death.
Collapse
Affiliation(s)
- Ting-Ting Wang
- School of Basic Medical Sciences, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, People's Republic of China; State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Hui Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China
| | - Yan Xin
- School of Basic Medical Sciences, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, People's Republic of China.
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, People's Republic of China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
29
|
Shi T, Niepel M, McDermott JE, Gao Y, Nicora CD, Chrisler WB, Markillie LM, Petyuk VA, Smith RD, Rodland KD, Sorger PK, Qian WJ, Wiley HS. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Sci Signal 2016; 9:rs6. [PMID: 27405981 DOI: 10.1126/scisignal.aaf0891] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mario Niepel
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye M Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Peter K Sorger
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA.
| |
Collapse
|
30
|
Kashiwai K, Kajiya M, Matsuda S, Ouhara K, Takeda K, Takata T, Kitagawa M, Fujita T, Shiba H, Kurihara H. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells. J Cell Biochem 2015; 117:1543-55. [PMID: 26581032 DOI: 10.1002/jcb.25446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/16/2023]
Abstract
Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kei Kashiwai
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathology, Basic Life Sciences, Institute of Biomedical and Health Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Masae Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Hideki Shiba
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
31
|
Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell 2015; 26:4412-26. [PMID: 26446845 PMCID: PMC4666136 DOI: 10.1091/mbc.e15-02-0087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
GGA3 binds directly to the TrkA internal DXXLL motif and mediates TrkA endocytic recycling. This effect is dependent on the activation of Arf6. GGA3 is a key player in a novel DXXLL-mediated recycling machinery for TrkA, where it prolongs the activation of Akt signaling and survival responses. Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses.
Collapse
Affiliation(s)
- Xuezhi Li
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
32
|
Zeng L, Kuti M, Mujtaba S, Zhou MM. Structural insights into FRS2α PTB domain recognition by neurotrophin receptor TrkB. Proteins 2015; 82:1534-41. [PMID: 24470253 DOI: 10.1002/prot.24523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/27/2013] [Accepted: 01/16/2014] [Indexed: 11/07/2022]
Abstract
The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain.
Collapse
Affiliation(s)
- Lei Zeng
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | | | | | |
Collapse
|
33
|
Zhou L, Talebian A, Meakin SO. The signaling adapter, FRS2, facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J Mol Neurosci 2014; 55:663-77. [PMID: 25159185 DOI: 10.1007/s12031-014-0406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Abstract
The neurotrophins are a family of closely related growth factors that regulate proliferation and differentiation in the developing and mature nervous systems. Neurotrophins stimulate a family of receptor tyrosine kinases (Trk receptors) and utilize an intracellular docking protein termed fibroblast growth factor (FGF) receptor substrate 2 (FRS2) as a major downstream adapter to activate Ras, phosphatidylinositide 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) signaling cascades. The goals of this study were twofold: first, to investigate the complexity of neurotrophin-induced FRS2 interactions in primary cortical neurons and to determine which pathway(s) are important in regulating neuronal growth and, second, to determine whether the related signaling adapter, FRS3, stimulates neuron growth comparable to FRS2. We find that neurotrophin treatment of primary cortical neurons stimulates the tyrosine phosphorylation of FRS2 and the subsequent recruitment of Shp2, Grb2, and Gab2. With FRS2 mutants deficient in Grb2 or Shp2 binding, we demonstrate that FRS2 binds Gab1 and Gab2 through Grb2, providing an alternative route to activate PI3 kinase and Shp2. Using recombinant adenoviruses expressing FRS2, we demonstrate that FRS2 overexpression promotes neurite outgrowth and branching in cortical neurons relative to controls. In contrast, overexpression of FRS3 does not stimulate neuronal growth. Moreover, we find that while loss of Shp2, but not Grb2, reduces brain-derived neurotrophic factor (BDNF)-induced MAPK activation, the loss of either pathway impairs neuronal growth. Collectively, these experiments demonstrate that FRS2 functions as an adapter of a multiprotein complex that is activated by the Trk receptors and that the activation of both Grb2- and Shp2-dependent pathways facilitates cortical neuronal growth.
Collapse
Affiliation(s)
- Li Zhou
- Laboratory of Neural Signaling, Molecular Medicine Research Group, The Robarts Research Institute, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | | | | |
Collapse
|
34
|
Abstract
TrkA is a tyrosine kinase receptor required for development and survival of the peripheral nervous system. In the adult, TrkA and its ligand NGF are peripheral pain mediators, particularly in inflammatory pain states. However, how TrkA regulates the function of nociceptive neurons and whether its activity levels may lead to sensory abnormalities is still unclear. Here we report the characterization of a 3 aa (KFG) domain that negatively regulates TrkA level and function in response to NGF. Deletion of this domain in mouse causes a reduction of TrkA ubiquitination leading to an increase in TrkA protein levels and activity. The number of dorsal root ganglia neurons is not affected by the mutation. However, mutant mice have enhanced thermal sensitivity and inflammatory pain. Together, these data suggest that ubiquitination is a mechanism used in nociceptive neurons to regulate TrkA level and function. Our results may enhance our understanding of how ubiquitination affects TrkA activation following noxious thermal stimulation and inflammatory pain.
Collapse
|
35
|
Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014; 156:195-207. [PMID: 24439376 DOI: 10.1016/j.cell.2013.11.048] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | - Zhucheng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chi W Pak
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuxing Liao
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuoyong Shi
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Bronte G, Rolfo C, Giovannetti E, Cicero G, Pauwels P, Passiglia F, Castiglia M, Rizzo S, Vullo FL, Fiorentino E, Van Meerbeeck J, Russo A. Are erlotinib and gefitinib interchangeable, opposite or complementary for non-small cell lung cancer treatment? Biological, pharmacological and clinical aspects. Crit Rev Oncol Hematol 2014; 89:300-313. [PMID: 24041630 DOI: 10.1016/j.critrevonc.2013.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 11/22/2022] Open
Abstract
Gefitinib and erlotinib are the two anti-epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) approved for treatment of advanced NSCLC patients. These drugs target one of the most important pathways in lung carcinogenesis and are able to exploit the phenomenon of 'oncogene addiction', with different efficacy according to EGFR gene mutational status in tumor samples. Gefitinib has been approved only for EGFR mutation bearing patients regardless the line of treatment, while erlotinib is also indicated in patients without EGFR mutation who undergo second- or third-line treatment. Some studies evaluated the main differences between these drugs both for direct comparison and to improve their sequential use. In particular, toxicity profile resulted partially different, and these observations may be explained by several molecular and pharmacokinetic features. Therefore, this review integrates preclinical data with clinical evidences of TKIs to guide the optimization of currently available treatments in advanced NSCLC patients.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Elisa Giovannetti
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Giuseppe Cicero
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department and Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Francesco Passiglia
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Marta Castiglia
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Francesca Lo Vullo
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Eugenio Fiorentino
- Surgical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | - Jan Van Meerbeeck
- Thoracic Oncology, Multidisciplinary Oncology Center Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Antonio Russo
- Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
37
|
Ceni C, Unsain N, Zeinieh MP, Barker PA. Neurotrophins in the regulation of cellular survival and death. Handb Exp Pharmacol 2014; 220:193-221. [PMID: 24668474 DOI: 10.1007/978-3-642-45106-5_8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neurotrophins play crucial roles regulating survival and apoptosis in the developing and injured nervous system. The four neurotrophins exert profound and crucial survival effects on developing peripheral neurons, and their expression and action is intimately tied to successful innervation of peripheral targets. In the central nervous system, they are dispensable for neuronal survival during development but support neuronal survival after lesion or other forms of injury. Neurotrophins also regulate apoptosis of both peripheral and central neurons, and we now recognize that there are regulatory advantages to having the same molecules regulate life and death decisions. This chapter examines the biological contexts in which these events take place and highlights the specific ligands, receptors, and signaling mechanisms that allow them to occur.
Collapse
Affiliation(s)
- Claire Ceni
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada, H3A 2B4
| | | | | | | |
Collapse
|
38
|
The long coiled-coil protein NECC2 is associated to caveolae and modulates NGF/TrkA signaling in PC12 cells [corrected]. PLoS One 2013; 8:e73668. [PMID: 24040018 PMCID: PMC3765260 DOI: 10.1371/journal.pone.0073668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
TrkA-mediated NGF signaling in PC12 cells has been shown to be compartimentalized in specialized microdomains of the plasma membrane, the caveolae, which are organized by scaffold proteins including the member of the caveolin family of proteins, caveolin-1. Here, we characterize the intracellular distribution as well as the biochemical and functional properties of the neuroendocrine long coiled-coil protein 2 (NECC2), a novel long coiled-coil protein selectively expressed in neuroendocrine tissues that contains a predicted caveolin-binding domain and displays structural characteristics of a scaffolding factor. NECC2 distributes in caveolae, wherein it colocalizes with the TrkA receptor, and behaves as a caveolae-associated protein in neuroendocrine PC12 cells. In addition, stimulation of PC12 cells with nerve growth factor (NGF) increased the expression and regulated the distribution of NECC2. Interestingly, knockdown as well as overexpression of NECC2 resulted in a reduction of NGF-induced phosphorylation of the TrkA downstream effector extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) but not of Akt. Altogether, our results identify NECC2 as a novel component of caveolae in PC12 cells and support the contribution of this protein in the maintenance of TrkA-mediated NGF signaling.
Collapse
|
39
|
Geetha T, Rege SD, Mathews SE, Meakin SO, White MF, Babu JR. Nerve growth factor receptor TrkA, a new receptor in insulin signaling pathway in PC12 cells. J Biol Chem 2013; 288:23807-13. [PMID: 23749991 DOI: 10.1074/jbc.m112.436279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama 36849,USA
| | | | | | | | | | | |
Collapse
|
40
|
Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc Natl Acad Sci U S A 2013; 110:8942-7. [PMID: 23674677 DOI: 10.1073/pnas.1217206110] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Posttranslational knockdown of a specific protein is an attractive approach for examining its function within a system. Here we introduce phospho-dependent proteolysis targeting chimeras (phosphoPROTACs), a method to couple the conditional degradation of targeted proteins to the activation state of particular kinase-signaling pathways. We generated two phosphoPROTACs that couple the tyrosine phosphorylation sequences of either the nerve growth factor receptor, TrkA (tropomyosin receptor kinase A), or the neuregulin receptor, ErbB3 (erythroblastosis oncogene B3), with a peptide ligand for the E3 ubiquitin ligase von Hippel Lindau protein. These phosphoPROTACs recruit either the neurotrophic signaling effector fibroblast growth factor receptor substrate 2α or the survival-promoting phosphatidylinositol-3-kinase, respectively, to be ubiquitinated and degraded upon activation of specific receptor tyrosine kinases and phosphorylation of the phosphoPROTACs. We demonstrate the ability of these phosphoPROTACs to suppress the short- and long-term effects of their respective activating receptor tyrosine kinase pathways both in vitro and in vivo. In addition, we show that activation of phosphoPROTACs is entirely dependent on their kinase-mediated phosphorylation, as phenylalanine-containing null variants are inactive. Furthermore, stimulation of unrelated growth factor receptors does not induce target protein knockdown. Although comparable in efficiency to RNAi, this approach has the added advantage of providing a degree of temporal and dosing control as well as cell-type selectivity unavailable using nucleic acid-based strategies. By varying the autophosphorylation sequence of a phosphoPROTAC, it is conceivable that other receptor tyrosine kinase/effector pairings could be similarly exploited to achieve other biological effects.
Collapse
|
41
|
TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 2013; 14:10122-42. [PMID: 23670594 PMCID: PMC3676832 DOI: 10.3390/ijms140510122] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/27/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.
Collapse
|
42
|
The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 2013; 33:1927-39. [PMID: 23365232 DOI: 10.1523/jneurosci.2080-12.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.
Collapse
|
43
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
44
|
Nakada M, Kita D, Teng L, Pyko IV, Watanabe T, Hayashi Y, Hamada JI. Receptor tyrosine kinases: principles and functions in glioma invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:143-70. [PMID: 22879068 DOI: 10.1007/978-94-007-4719-7_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Madakashira BP, Kobrinski DA, Hancher AD, Arneman EC, Wagner BD, Wang F, Shin H, Lovicu FJ, Reneker LW, Robinson ML. Frs2α enhances fibroblast growth factor-mediated survival and differentiation in lens development. Development 2012; 139:4601-12. [PMID: 23136392 DOI: 10.1242/dev.081737] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most growth factor receptor tyrosine kinases (RTKs) signal through similar intracellular pathways, but they often have divergent biological effects. Therefore, elucidating the mechanism of channeling the intracellular effect of RTK stimulation to facilitate specific biological responses represents a fundamental biological challenge. Lens epithelial cells express numerous RTKs with the ability to initiate the phosphorylation (activation) of Erk1/2 and PI3-K/Akt signaling. However, only Fgfr stimulation leads to lens fiber cell differentiation in the developing mammalian embryo. Additionally, within the lens, only Fgfrs activate the signal transduction molecule Frs2α. Loss of Frs2α in the lens significantly increases apoptosis and decreases phosphorylation of both Erk1/2 and Akt. Also, Frs2α deficiency decreases the expression of several proteins characteristic of lens fiber cell differentiation, including Prox1, p57(KIP2), aquaporin 0 and β-crystallins. Although not normally expressed in the lens, the RTK TrkC phosphorylates Frs2α in response to binding the ligand NT3. Transgenic lens epithelial cells expressing both TrkC and NT3 exhibit several features characteristic of lens fiber cells. These include elongation, increased Erk1/2 and Akt phosphorylation, and the expression of β-crystallins. All these characteristics of NT3-TrkC transgenic lens epithelial cells depend on Frs2α. Therefore, tyrosine phosphorylation of Frs2α mediates Fgfr-dependent lens cell survival and provides a mechanistic basis for the unique fiber-differentiating capacity of Fgfs on mammalian lens epithelial cells.
Collapse
|
46
|
Li PP, Zhou JJ, Meng M, Madhavan R, Peng HB. Reciprocal regulation of axonal Filopodia and outgrowth during neuromuscular junction development. PLoS One 2012; 7:e44759. [PMID: 22957106 PMCID: PMC3434160 DOI: 10.1371/journal.pone.0044759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 01/01/2023] Open
Abstract
Background The assembly of the vertebrate neuromuscular junction (NMJ) is initiated when nerve and muscle first contact each other by filopodial processes which are thought to enable close interactions between the synaptic partners and facilitate synaptogenesis. We recently reported that embryonic Xenopus spinal neurons preferentially extended filopodia towards cocultured muscle cells and that basic fibroblast growth factor (bFGF) produced by muscle activated neuronal FGF receptor 1 (FGFR1) to induce filopodia and favor synaptogenesis. Intriguingly, in an earlier study we found that neurotrophins (NTs), a different set of target-derived factors that act through Trk receptor tyrosine kinases, promoted neuronal growth but hindered presynaptic differentiation and NMJ formation. Thus, here we investigated how bFGF- and NT-signals in neurons jointly elicit presynaptic changes during the earliest stages of NMJ development. Methodology/Principal Findings Whereas forced expression of wild-type TrkB in neurons reduced filopodial extension and triggered axonal outgrowth, expression of a mutant TrkB lacking the intracellular kinase domain enhanced filopodial growth and slowed axonal advance. Neurons overexpressing wild-type FGFR1 also displayed more filopodia than control neurons, in accord with our previous findings, and, notably, this elevation in filopodial density was suppressed when neurons were chronically treated from the beginning of the culture period with BDNF, the NT that specifically activates TrkB. Conversely, inhibition by BDNF of NMJ formation in nerve-muscle cocultures was partly reversed by the overexpression of bFGF in muscle. Conclusions Our results suggest that the balance between neuronal FGFR1- and TrkB-dependent filopodial assembly and axonal outgrowth regulates the establishment of incipient NMJs.
Collapse
Affiliation(s)
- Pan P. Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jie J. Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Min Meng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Raghavan Madhavan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - H. Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail:
| |
Collapse
|
47
|
Oku S, van der Meulen T, Copp J, Glenn G, van der Geer P. Engineering NGF receptors to bind Grb2 directly uncovers differences in signaling ability between Grb2- and ShcA-binding sites. FEBS Lett 2012; 586:3658-64. [DOI: 10.1016/j.febslet.2012.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/27/2022]
|
48
|
Nerve growth factor-mediated neuronal plasticity in spinal cord contributes to neonatal maternal separation-induced visceral hypersensitivity in rats. Eur J Pain 2012; 16:463-72. [PMID: 22396076 DOI: 10.1016/j.ejpain.2011.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Visceral hyperalgesia is a multifactorial gastrointestinal disorder which featured with alterations of abdominal motility and/or gut sensitivity, and is believed to be triggered by environmental stressor or psychological factors. However, its etiology remains incompletely understood. In this study, we aimed to investigate whether nerve growth factor (NGF)-mediated neuronal plasticity is involved in neonatal maternal separation (NMS)-induced visceral hypersensitivity in adult rats, and whether NGF antagonist can attenuate or block such development. In our experiments, animals subjected to NMS were developed with visceral hyperalgesia at age of 8 weeks. The threshold for visceral pain among these NMS rats was remarkably lowered than that of the normal handling (NH) rats; however, the expression levels of NGF, c-fos, calcitonin gene-related peptide (CGRP), Substance P, and tyrosine kinases A (TrkA) were notably elevated in lumbosacral spinal cord and/or dorsal root ganglion (DRG) when comparing to those of the NH rats. Further, as intra-peritoneal administration of NGF (10 μl at 1 μg/kg/day) was given to NH rats during neonatal period, effects that comparable to NMS induction were observed in the adulthood. In contrast, when NMS rats were treated with NGF antagonist K252a (10 μl/day from postnatal days 2-14), which acts against tyrosine kinases, the neonatal stress-induced down-shifted visceral pain threshold was restored and neuronal activation, specifically NGF and neuropeptide production, was attenuated. In conclusion, our data strongly suggest that NGF triggers neuronal plasticity and plays a crucial role in NMS-induced visceral hypersensitivity in which NGF antagonism provides positive inhibition via blocking the tyrosine phosphorylation of TrkA.
Collapse
|
49
|
Ras Guanine Nucleotide Releasing Factor 1 (RasGrf1) Enhancement of Trk Receptor-Mediated Neurite Outgrowth Requires Activation of Both H-Ras and Rac. J Mol Neurosci 2012; 49:38-51. [DOI: 10.1007/s12031-012-9847-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
50
|
Phospholipase D1 mediates bFGF-induced Bcl-2 expression leading to neurite outgrowth in H19-7 cells. Biochem J 2012; 441:407-16. [PMID: 21916846 DOI: 10.1042/bj20110302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to investigate the role of PLD (phospholipase D) in bFGF (basic fibroblast growth factor)-induced Bcl-2 expression and to examine whether overexpressed Bcl-2 influences neurite outgrowth in immortalized hippocampal progenitor cells (H19-7 cells). We found that Bcl-2 expression was maximally induced by bFGF within 24 h, and that this effect was reduced by inhibiting PLD1 expression with PLD1 small interfering RNA or by overexpressing DN (dominant-negative)-PLD1, whereas PLD1 overexpression markedly induced Bcl-2 expression. bFGF treatment activated Ras, Src, PI3K (phosphoinositide 3-kinase), PLCγ (phospholipase Cγ) and PKCα (protein kinase Cα). Among these molecules, Src and PKCα were not required for Bcl-2 expression. PLD activity was decreased by Ras, PI3K or PLCγ inhibitor, suggesting that PLD1 activation occurred through Ras, PI3K or PLCγ. We found that Ras was the most upstream molecule among these proteins, followed by the PI3K/PLCγ pathway, indicating that bFGF-induced PLD activation took place through the Ras/PI3K/PLCγ pathway. Furthermore, PLD1 was required for activation of JNK (c-Jun N-terminal kinase), which led to activation of STAT3 (signal transducer and activator of transcription 3) and finally Bcl-2 expression. When Bcl-2 was overexpressed, neurite outgrowth was stimulated along with induction of neurotrophic factors such as brain-derived neurotrophic factor and neurotrophin 4/5. In conclusion, PLD1 acts as a downstream effector of bFGF/Ras/PI3K/PLCγ signalling and regulates Bcl-2 expression through JNK/STAT3, which leads to neurite outgrowth in H19-7 cells.
Collapse
|