1
|
Chen X, Gao C, Han LW, Heidelberger S, Liao MZ, Neradugomma NK, Ni Z, Shuster DL, Wang H, Zhang Y, Zhou L. Efflux transporters in drug disposition during pregnancy. Drug Metab Dispos 2025; 53:100022. [PMID: 39884822 DOI: 10.1124/dmd.123.001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Evidence-based dose selection of drugs in pregnant women has been lacking because of challenges in studying maternal-fetal pharmacokinetics. Hence, many drugs are administered off-label during pregnancy based on data obtained from nonpregnant women. During pregnancy, drug transporters play an important role in drug disposition along with known gestational age-dependent changes in physiology and drug-metabolizing enzymes. In this review, as Dr Qingcheng Mao's former and current laboratory members, we summarize the collective contributions of Dr Mao, who lost his life to cancer, focusing on the role of drug transporters in drug disposition during pregnancy. Dr Mao and his team initiated their research by characterizing the structure of breast cancer resistance protein (ATP-binding cassette G2). Subsequently, they have made significant contributions to the understanding of the role of breast cancer resistance protein and other transporters, particularly P-glycoprotein (ATP-binding cassette B1), in the exposure of pregnant women and their fetuses to various drugs, including nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. This review also highlights the gestation- and pregnancy-dependent transporter expression at the blood-brain and blood-placenta barriers in mice. SIGNIFICANCE STATEMENT: Dr Qingcheng Mao and his team have made significant contributions to the investigation of the role of efflux transporters, especially P-glycoprotein and breast cancer resistance protein, in maternal-fetal exposure to many xenobiotics: nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. Studies of individual compounds and the expression of transporters during gestation and pregnancy have improved the understanding of maternal-fetal pharmacokinetics.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Chunying Gao
- Janssen Research & Development, Spring House, Pennsylvania
| | | | | | | | | | - Zhanglin Ni
- Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | | | - Honggang Wang
- Office of Cardiology, Hematology, Endocrinology, and Nephrology (OCHEN), Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Yi Zhang
- Schrödinger Inc, New York, New York.
| | - Lin Zhou
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
2
|
Ramisetty SK, Garg P, Mohanty A, Mirzapoiazova T, Yue E, Wang E, Horne D, Awasthi S, Kulkarni P, Salgia R, Singhal SS. Regression of ovarian cancer xenografts by depleting or inhibiting RLIP. Biochem Pharmacol 2023; 217:115847. [PMID: 37804871 DOI: 10.1016/j.bcp.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Ovarian cancer (OC) is the most prevalent and deadly cancer of the female reproductive system. Women will continue to be impacted by OC-related morbidity and mortality. Despite the fact that chemotherapy with cisplatin is the main component as the first-line anticancer treatment for OC, chemoresistance and unfavorable side effects are important obstacles to effective treatment. Targets for effective cancer therapy are required for cancer cells but not for non-malignant cells because they are expressed differently in cancer cells compared to normal cells. Targets for cancer therapy should preferably be components that already exist in biochemical and signalling frameworks and that significantly contribute to the development of cancer or regulate the response to therapy. RLIP is an important mercapturic acid pathway transporter that is crucial for survival and therapy resistance in cancers, therefore, we examined the role of RLIP in regulating essential signalling proteins involved in relaying the inputs from upstream survival pathways and mechanisms contributing to chemo-radiotherapy resistance in OC. The findings of our research offer insight into a novel anticancer effect of RLIP depletion/inhibition on OC and might open up new therapeutic avenues for OC therapy.
Collapse
Affiliation(s)
- Sravani K Ramisetty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Atish Mohanty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Er Yue
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Edward Wang
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Cayman Islands
| | - Prakash Kulkarni
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Marjamaa A, Gibbs B, Kotrba C, Masamha CP. The role and impact of alternative polyadenylation and miRNA regulation on the expression of the multidrug resistance-associated protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep 2023; 13:17476. [PMID: 37838788 PMCID: PMC10576765 DOI: 10.1038/s41598-023-44548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The ATP-binding cassette transporter (ABCC1) is associated with poor survival and chemotherapy drug resistance in high grade serous ovarian cancer (HGSOC). The mechanisms driving ABCC1 expression are poorly understood. Alternative polyadenylation (APA) can give rise to ABCC1 mRNAs which differ only in the length of their 3'untranslated regions (3'UTRs) in a process known as 3'UTR-APA. Like other ABC transporters, shortening of the 3'UTR of ABCC1 through 3'UTR-APA would eliminate microRNA binding sites found within the longer 3'UTRs, hence eliminating miRNA regulation and altering gene expression. We found that the HGSOC cell lines Caov-3 and Ovcar-3 express higher levels of ABCC1 protein than normal cells. APA of ABCC1 occurs in all three cell lines resulting in mRNAs with both short and long 3'UTRs. In Ovcar-3, mRNAs with shorter 3'UTRs dominate resulting in a six-fold increase in protein expression. We were able to show that miR-185-5p and miR-326 both target the ABCC1 3'UTR. Hence, 3'UTR-APA should be considered as an important regulator of ABCC1 expression in HGSOC. Both HGSOC cell lines are cisplatin resistant, and we used erastin to induce ferroptosis, an alternative form of cell death. We showed that we could induce ferroptosis and sensitize the cisplatin resistant cells to cisplatin by using erastin. Knocking down ABCC1 resulted in decreased cell viability, but did not contribute to erastin induced ferroptosis.
Collapse
Affiliation(s)
- Audrey Marjamaa
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN, 46208, USA
| | - Bettine Gibbs
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe Kotrba
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | | |
Collapse
|
4
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
5
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Singhal SS, Mohanty A, Kulkarni P, Horne D, Awasthi S, Salgia R. RLIP depletion induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells. Carcinogenesis 2021; 42:742-752. [PMID: 33623991 DOI: 10.1093/carcin/bgab016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
The incidence of malignant melanoma, a neoplasm of melanocytic cells, is increasing rapidly. The lymph nodes are often the first site of metastasis and can herald systemic dissemination, which is almost uniformly fatal. RLIP, a multi-specific ATP-dependent transporter that is over-expressed in several types of cancers, plays a central role in cancer cell resistance to radiation and chemotherapy. RLIP appears to be necessary for cancer cell survival because both in vitro cell culture and in vivo animal tumor studies show that the depletion or inhibition of RLIP causes selective toxicity to malignant cells. RLIP depletion/inhibition triggers apoptosis in cancer cells by inducing the accumulation of endogenously formed glutathione-conjugates. In our in vivo studies, we administered RLIP antibodies or antisense oligonucleotides to mice bearing subcutaneous xenografts of SKMEL2 and SKMEL5 melanoma cells and demonstrated that both treatments caused significant xenograft regression with no apparent toxic effects. Anti-RLIP antibodies and antisense, which respectively inhibit RLIP-mediated transport and deplete RLIP expression, showed similar tumor regressing activities, indicating that the inhibition of RLIP transport activity at the cell surface is sufficient to achieve anti-tumor activity. Furthermore, RLIP antisense treatment reduced levels of RLIP, pSTAT3, pJAK2, pSrc, Mcl-1 and Bcl2, as well as CDK4 and cyclin B1, and increased levels of Bax and phospho 5' AMP-activated protein kinase (pAMPK). These studies indicate that RLIP serves as a key effector in the survival of melanoma cells and is a valid target for cancer therapy. Overall, compounds that inhibit, deplete or downregulate RLIP will function as wide-spectrum agents to treat melanoma, independent of common signaling pathway mutations.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| |
Collapse
|
7
|
El‐Mesery M, Seher A, El‐Shafey M, El‐Dosoky M, Badria FA. Repurposing of quinoline alkaloids identifies their ability to enhance doxorubicin‐induced sub‐G0/G1 phase cell cycle arrest and apoptosis in cervical and hepatocellular carcinoma cells. Biotechnol Appl Biochem 2020; 68:832-840. [DOI: 10.1002/bab.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Mohamed El‐Mesery
- Department of Biochemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery University Hospital Wuerzburg Wuerzburg Germany
| | - Mohamed El‐Shafey
- Department of Anatomy and Embryology, Faculty of Medicine Mansoura University Egypt
- Physiological Sciences Department Fakeeh College for Medical Sciences Jeddah Saudi Arabia
| | - Mohamed El‐Dosoky
- Department of Neuroscience Technology, College of Applied Medical Science in Jubail Imam Abdulalrahman Bin Faisal University Dammam Saudi Arabia
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy Mansoura University Egypt
| |
Collapse
|
8
|
Abstract
Antibodies can be developed to directly inhibit almost any protein, but their inability to enter the cytosol limits inhibitory antibodies to membrane-associated or extracellular targets. Developing a cytosolic antibody delivery system would offer unique opportunities to directly inhibit and study intracellular protein function. Here we demonstrate that IgG antibodies that are conjugated with anionic polypeptides (ApPs) can be complexed with cationic lipids originally designed for nucleic acid delivery through electrostatic interactions, enabling close to 90% cytosolic delivery efficiency with only 500 nM IgG. The ApP is fused to a small photoreactive antibody-binding domain (pAbBD) that can be site-specifically photocrosslinked to nearly all off-the-shelf IgGs, enabling easy exchange of cargo IgGs. We show that cytosolically delivered IgGs can inhibit the drug efflux pump multidrug resistance-associated protein 1 (MRP1) and the transcription factor NFκB. This work establishes an approach for using existing antibody collections to modulate intracellular protein function.
Collapse
|
9
|
Bongiorno T, Chojnowski JL, Lauderdale JD, Sulchek T. Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus. Biophys J 2017; 111:1761-1772. [PMID: 27760362 DOI: 10.1016/j.bpj.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022] Open
Abstract
Healthy eyes contain a population of limbal stem cells (LSCs) that continuously renew the corneal epithelium. However, each year, 1 million Americans are afflicted with severely reduced visual acuity caused by corneal damage or disease, including LSC deficiency (LSCD). Recent advances in corneal transplant technology promise to repair the cornea by implanting healthy LSCs to encourage regeneration; however, success is limited to transplanted tissues that contain a sufficiently high percentage of LSCs. Attempts to screen limbal tissues for suitable implants using molecular stemness markers are confounded by the poorly understood signature of the LSC phenotype. For cells derived from the corneal limbus, we show that the performance of cell stiffness as a stemness indicator is on par with the performance of ΔNP63α, a common molecular marker. In combination with recent methods for sorting cells on a biophysical basis, the biomechanical stemness markers presented here may enable the rapid purification of LSCs from a heterogeneous population of corneal cells, thus potentially enabling clinicians and researchers to generate corneal transplants with sufficiently high fractions of LSCs, regardless of the LSC percentage in the donor tissue.
Collapse
Affiliation(s)
- Tom Bongiorno
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jena L Chojnowski
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | | - Todd Sulchek
- The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
10
|
A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells. Anal Chim Acta 2016; 920:86-93. [DOI: 10.1016/j.aca.2016.03.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
|
11
|
Conseil G, Cole SPC. Two polymorphic variants of ABCC1 selectively alter drug resistance and inhibitor sensitivity of the multidrug and organic anion transporter multidrug resistance protein 1. Drug Metab Dispos 2013; 41:2187-96. [PMID: 24080162 DOI: 10.1124/dmd.113.054213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
In this study we compared the in silico predictions of the effect of ABCC1 nonsynonymous single nucleotide polymorphisms (nsSNPs) with experimental data on MRP1 transport function and response to chemotherapeutics and multidrug resistance protein 1 (MRP1) inhibitors. Vectors encoding seven ABCC1 nsSNPs were stably expressed in human embryonic kidney (HEK) cells, and levels and localization of the mutant MRP1 proteins were determined by confocal microscopy and immunoblotting. The function of five of the mutant proteins was determined using cell-based drug and inhibitor sensitivity and efflux assays, and membrane-based organic anion transport assays. Predicted consequences of the mutations were determined by multiple bioinformatic methods. Mutants C43S and S92F were correctly routed to the HEK cell plasma membrane, but the levels were too low to permit functional characterization. In contrast, levels and membrane trafficking of R633Q, G671V, R723Q, A989T, and C1047S were similar to wild-type MRP1. In cell-based assays, all five mutants were equally effective at effluxing calcein, but only two exhibited reduced resistance to etoposide (C1047S) and vincristine (A989T; C1047S). The GSH-dependent inhibitor LY465803 (LY465803 [N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide)] was less effective at blocking calcein efflux by A989T, but in a membrane-based assay, organic anion transport by A989T and C1047S was inhibited by MRP1 modulators as well as wild-type MRP1. GSH accumulation assays suggest cellular GSH efflux by A989T and C1047S may be impaired. In conclusion, although six in silico analyses consistently predict deleterious consequences of ABCC1 nsSNPs G671V, changes in drug resistance and inhibitor sensitivity were only observed for A989T and C1047S, which may relate to GSH transport differences.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | |
Collapse
|
12
|
Iram SH, Cole SPC. Differential functional rescue of Lys(513) and Lys(516) processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain-domain interactions of the transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:756-65. [PMID: 24231430 DOI: 10.1016/j.bbamem.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Multidrug resistance protein 1 (MRP1) extrudes drugs as well as pharmacologically and physiologically important organic anions across the plasma membrane in an ATP-dependent manner. We previously showed that Ala substitutions of Lys(513) and Lys(516) in the cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 cause misfolding of MRP1, abrogating its expression at the plasma membrane in transfected human embryonic kidney (HEK) cells. Exposure of HEK cells to the chemical chaperones glycerol, DMSO, polyethylene glycol (PEG) and 4-aminobutyric acid (4-PBA) improved levels of K513A to wild-type MRP1 levels but transport activity was only fully restored by 4-PBA or DMSO treatments. Tryptic fragmentation patterns and conformation-dependent antibody immunoreactivity of the transport-deficient PEG- and glycerol-rescued K513A proteins indicated that the second nucleotide binding domain (NBD2) had adopted a more open conformation than in wild-type MRP1. This structural change was accompanied by differences in ATP binding and hydrolysis but no changes in substrate Km. In contrast to K513A, K516A levels in HEK cells were not significantly enhanced by chemical chaperones. In more permissive insect cells, however, K516A levels were comparable to wild-type MRP1. Nevertheless, organic anion transport by K516A in insect cell membranes was reduced by >80% due to reduced substrate Km. Tryptic fragmentation patterns indicated a more open conformation of the third membrane spanning domain of MRP1. Thus, despite their close proximity to one another in CL5, Lys(513) and Lys(516) participate in different interdomain interactions crucial for the proper folding and assembly of MRP1.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
13
|
Cole SPC. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 2013; 54:95-117. [PMID: 24050699 DOI: 10.1146/annurev-pharmtox-011613-135959] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human ATP-binding cassette transporter multidrug resistance protein 1 (MRP1), encoded by ABCC1, was initially identified because of its ability to confer multidrug resistance in lung cancer cells. It is now established that MRP1 plays a role in protecting certain tissues from xenobiotic insults and that it mediates the cellular efflux of the proinflammatory cysteinyl leukotriene C4 as well as a vast array of other endo- and xenobiotic organic anions. Many of these are glutathione (GSH) or glucuronide conjugates, the products of Phase II drug metabolism. MRP1 also plays a role in the cellular efflux of the reduced and oxidized forms of GSH and thus contributes to the many physiological and pathophysiological processes influenced by these small peptides, including oxidative stress. In this review, the pharmacological and physiological aspects of MRP1 are considered in the context of the current status and future prospects of pharmacological and genetic modulation of MRP1 activity.
Collapse
Affiliation(s)
- Susan P C Cole
- Department of Pathology and Molecular Medicine, and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|
14
|
Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 2013; 288:19269-79. [PMID: 23671276 DOI: 10.1074/jbc.m112.445445] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
15
|
Inhibition of the MRP1-mediated transport of the menadione-glutathione conjugate (thiodione) in HeLa cells as studied by SECM. Proc Natl Acad Sci U S A 2012; 109:11522-7. [PMID: 22679290 DOI: 10.1073/pnas.1201555109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress induced in live HeLa cells by menadione (2-methyl-1,4-napthaquinone) was studied in real time by scanning electrochemical microscopy (SECM). The hydrophobic molecule menadione diffuses through a living cell membrane where it is toxic to the cell. However, in the cell it is conjugated with glutathione to form thiodione. Thiodione is then recognized and transported across the cell membrane via the ATP-driven MRP1 pump. In the extracellular environment, thiodione was detected by the SECM tip at levels of 140, 70, and 35 µM upon exposure of the cells to menadione concentrations of 500, 250, and 125 µM, respectively. With the aid of finite element modeling, the kinetics of thiodione transport was determined to be 1.6 10(-7) m/s, about 10 times faster than menadione uptake. Selective inhibition of these MRP1 pumps inside live HeLa cells by MK571 produced a lower thiodione concentration of 50 µM in presence of 500 µM menadione and 50 µM MK571. A similar reduced (50% drop) thiodione efflux was observed in the presence of monoclonal antibody QCRL-4, a selective blocking agent of the MRP1 pumps. The reduced thiodione flux confirmed that thiodione was transported by MRP1, and that glutathione is an essential substrate for MRP1-mediated transport. This finding demonstrates the usefulness of SECM in quantitative studies of MRP1 inhibitors and suggests that monoclonal antibodies can be a useful tool in inhibiting the transport of these MDR pumps, and thereby aiding in overcoming multidrug resistance.
Collapse
|
16
|
Leake K, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS. RLIP76 regulates PI3K/Akt signaling and chemo-radiotherapy resistance in pancreatic cancer. PLoS One 2012; 7:e34582. [PMID: 22509328 PMCID: PMC3317991 DOI: 10.1371/journal.pone.0034582] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. Research Design and Methods Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. Results Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. Conclusions/Significance RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers.
Collapse
Affiliation(s)
- Kathryn Leake
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Jyotsana Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Lokesh Dalasanur Nagaprashantha
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sanjay Awasthi
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sharad S. Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Jeong SJ, Koh W, Kim B, Kim SH. Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites? JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:652-661. [PMID: 22032843 DOI: 10.1016/j.jep.2011.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED ETHONOPHARMACOLOGICAL RELEVANCE: Lung cancer is one of the most lethal cancers in terms of mortality and incidence worldwide. Despite intensive research and investigation, treatment of lung cancer is still unsatisfactory due to adverse effects and multidrug resistance. Recently, herbal drugs have been recognized as one of attractive approaches for lung cancer therapy with little side effects. Furthermore, there are evidences that various herbal medicines have proven to be useful and effective in sensitizing conventional agents, prolonging survival time, preventing side effects of chemotherapy, and improving quality of life (QoL) in lung cancer patients. AIM AND METHODS OF THE STUDY Nevertheless, the underlying molecular targets and efficacy of herbal medicines in lung cancer treatment still remain unclear. Thus, we reviewed traditionally used herbal medicines and their phytochemicals with antitumor activity against lung cancer from peer-reviewed papers through Scientific Database Medline, Scopus and Google scholar. CONCLUSIONS We suggest that herbal medicines and phytochemicals can be useful anti-cancer agents for lung cancer treatment by targeting molecular signaling involved in the regulation of angiogenesis, metastasis and severe side effects, only provided quality control and reproducibility issues were solved.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Lee SY, Rhee YH, Jeong SJ, Lee HJ, Lee HJ, Jung MH, Kim SH, Lee EO, Ahn KS, Ahn KS, Kim SH. Hydrocinchonine, cinchonine, and quinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. ENVIRONMENTAL TOXICOLOGY 2011; 26:424-431. [PMID: 20196146 DOI: 10.1002/tox.20568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 12/17/2009] [Accepted: 12/28/2009] [Indexed: 05/28/2023]
Abstract
Multidrug resistance (MDR) is one of important issues to cause the chemotherapy failure against cancers including gynecological malignancies. Despite some MDR reversal evidences of natural compounds including quinidine and cinchonine, there are no reports on MDR reversal activity of hydrocinchonine with its analogues quinidine and cinchonine especially in uterine sarcoma cells. Thus, in the current study, we comparatively investigated the potent efficacy of hydrocinchonine and its analogues quinidine and cinchonine as MDR-reversal agents for combined therapy with antitumor agent paclitaxel (TAX). Hydrocinchonine, cinchonine, and quinidine significantly increased the cytotoxicity of TAX in P-glycoprotein (gp)-positive MES-SA/DX5, but not in the P-gp-negative MES-SA cells at nontoxic concentrations by 3-(4,5-dimethylthiazol-2-yl)-2,5--diphenyltetrazolium bromide (MTT) assay. Rhodamine assay also revealed that hydrocinchonine, cinchonine, and quinidine effectively enhanced the accumulation of a P-gp substrate, rhodamine in TAX-treated MES-SA/DX5 cells compared with TAX-treated control. In addition, hydrocinchonine, cinchonine, and quinidine effectively cleaved poly (ADP-ribose) polymerase (PARP), activated caspase-3, and downregulated P-gp expression as well as increased sub-G1 apoptotic portion in TAX-treated MES-SA/DX5 cells. Taken together, hydrocinchonine exerted MDR reversal activity and synergistic apoptotic effect with TAX in MES-SA/DX5 cells almost comparable with quinidine and cinchonine as a potent MDR-reversal and combined therapy agent with TAX.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Oriental Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemungu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iram SH, Cole SPC. Expression and function of human MRP1 (ABCC1) is dependent on amino acids in cytoplasmic loop 5 and its interface with nucleotide binding domain 2. J Biol Chem 2010; 286:7202-13. [PMID: 21177244 DOI: 10.1074/jbc.m110.166959] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is an ATP-binding cassette transporter that effluxes drugs and organic anions across the plasma membrane. The 17 transmembrane helices of MRP1 are linked by extracellular and cytoplasmic loops (CLs), but their role in coupling the ATPase activity of MRP1 to the translocation of its substrates is poorly understood. Here we have examined the importance of CL5 by mutating eight conserved charged residues and the helix-disrupting Gly(511) in this region. Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) markedly reduced MRP1 levels. Because three of these residues are predicted to lie at the interface of CL5 and the second nucleotide binding domain (NBD2), a critical role is indicated for this region in the plasma membrane expression of MRP1. Further support for this idea was obtained by mutating NBD2 amino acids His(1364) and Arg(1367) at the CL5 interface, which also resulted in reduced MRP1 levels. In contrast, mutation of Arg(501), Lys(503), Glu(507), Arg(532), and Gly(511) had no effect on MRP1 levels. Except for K503A, however, transport by these mutants was reduced by 50 to 75%, an effect largely attributable to reduced substrate binding and affinity. Studies with (32)P-labeled azido-ATP also indicated that whereas ATP binding by the G511I mutant was unchanged, vanadate-induced trapping of azido-ADP was reduced, indicating changes in the catalytic activity of MRP1. Together, these data demonstrate the multiple roles for CL5 in the membrane expression and function of MRP1.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
20
|
Carew MW, Leslie EM. Selenium-dependent and -independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): implications for the mutual detoxification of arsenic and selenium. Carcinogenesis 2010; 31:1450-5. [DOI: 10.1093/carcin/bgq125] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Ronaldson PT, Ashraf T, Bendayan R. Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells: involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol 2010; 77:644-59. [PMID: 20051532 DOI: 10.1124/mol.109.059410] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Pharmacotherapy of brain HIV-1 infection may be limited by ABC transporters [i.e., P-glycoprotein (P-gp), multidrug resistance protein 1 (Mrp1)] that export antiretroviral drugs from HIV-1 brain cellular targets (i.e., astrocytes, microglia). Using an in vitro astrocyte model of an HIV-1 associated inflammatory response, our laboratory has shown that cytokines [i.e., tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-6], which are secreted in response to HIV-1 envelope glycoprotein gp120 exposure, can decrease P-gp functional expression; however, it is unknown whether these same cytokines can alter expression and/or activity of other ABC transporters (i.e., Mrp1). In primary cultures of rat astrocytes, Mrp1 expression was increased by TNF-alpha (2.7-fold) but was not altered by IL-1 beta or IL-6. Cellular retention of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an Mrp substrate, was reduced in TNF-alpha-treated astrocytes, suggesting increased Mrp-mediated transport. Pharmacologic inhibition of nuclear factor-kappaB (NF-kappaB) signaling with SN50 prevented both TNF-alpha release and Mrp1 expression changes in astrocytes triggered with gp120; however, SN50 did not attenuate Mrp1 expression in cells triggered with TNF-alpha. In contrast, Mrp1 functional expression was not altered in the presence of gp120 or TNF-alpha when astrocyte cultures were pretreated with 1,9-pyrazoloanthrone (SP600125), an established c-Jun N-terminal kinase (JNK) inhibitor. SP600125 did not affect TNF-alpha release from cultured astrocytes triggered with gp120. Mrp1 mRNA expression was increased after treatment with gp120 (1.6-fold) or TNF-alpha (1.7-fold), suggesting altered Mrp1 gene transcription. These data suggest that gp120 and TNF-alpha can up-regulate Mrp1 expression in cultured astrocytes. Furthermore, our results imply that both NF-kappaB and JNK signaling are involved in Mrp1 regulation during an HIV-1 associated inflammatory response.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, Canada
| | | | | |
Collapse
|
22
|
Singhal SS, Roth C, Leake K, Singhal J, Yadav S, Awasthi S. Regression of prostate cancer xenografts by RLIP76 depletion. Biochem Pharmacol 2009; 77:1074-83. [PMID: 19073149 PMCID: PMC2683040 DOI: 10.1016/j.bcp.2008.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/09/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
RLIP76 plays a central role in radiation and chemotherapy resistance through its activity as a multi-specific ATP-dependent transporter which is over-expressed in a number of types of cancers. RLIP76 appears to be necessary for cancer cell survival because both in vitro cell culture and in vivo animal tumor studies show that depletion or inhibition of RLIP76 causes selective toxicity in malignant cells. RLIP76 induces apoptosis in cancer cells through the accumulation of endogenously formed GS-E. The results of our in vivo studies demonstrate that administration of RLIP76 antibodies, siRNA or anti-sense to mice bearing xenografts of PC-3 prostate cancer cells leads to near complete regression of established subcutaneous xenografts with no apparent toxic effects. Since anti-RLIP76 IgG (which inhibit RLIP76-mediated transport), siRNA and antisense (which deplete RLIP76) showed similar tumor regressing activities, our results indicate that the inhibition of RLIP76 transport activity at the cell surface is sufficient for observed anti-tumor activity. These studies indicate that RLIP76 serves a key effector function for the survival of prostate cancer cells and that it is a valid target for cancer therapy.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Rivers F, O'Brien TJ, Callaghan R. Exploring the possible interaction between anti-epilepsy drugs and multidrug efflux pumps; in vitro observations. Eur J Pharmacol 2008; 598:1-8. [PMID: 18835265 DOI: 10.1016/j.ejphar.2008.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 12/18/2022]
Abstract
Approximately one-third of patients with epilepsy display an inherent resistance to pharmacological therapy, manifest as continuing seizures despite maximal tolerated doses of anti-epileptic drugs. One hypothesis for the underlying mechanism of anti-epileptic drug pharmacoresistance is lower drug entry to the epileptic neurones due to the activity of multidrug efflux pumps from the ATP Binding Cassette (ABC) superfamily at the blood-brain barrier. There has been a steady accumulation of animal and human data supporting this theory, particularly for ABC(B1) (P-glycoprotein). However, much of this evidence is indirect. In the present study, several anti-epileptic drugs (carbamazepine, valproic acid, phenytoin, lamotrigine and primidone) were examined for their ability to interact with three ABC transporters that have been implicated pharmacoresistance of anti-epileptic drugs - ABC(B1), ABC(C1) and ABC(G2). Interaction of anti-epileptic drugs with the transporters was assessed by determining whether they could reverse the ability of multidrug ABC transporters to confer a drug resistance phenotype on cancer cell lines. None of these compounds was able to affect the phenotype, suggesting an absence of any interaction with the multidrug transporters. This finding was further investigated by examination of transporter activity; namely the ability to reduce steady-state intracellular [(3)H]-radiolabelled drug accumulation. None of the anti-epileptic drugs affected labelled drug accumulation by any of the triumvirate of multidrug transporters examined, indicating that they are unlikely to be substrates. The lack of direct modulation by anti-epileptic drugs of ABC transporter function suggests that these proteins do not contribute significantly to resistance in epilepsy.
Collapse
Affiliation(s)
- Francesca Rivers
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | | |
Collapse
|
24
|
Hoque MT, Cole SP. Down-regulation of Na+/H+Exchanger Regulatory Factor 1 Increases Expression and Function of Multidrug Resistance Protein 4. Cancer Res 2008; 68:4802-9. [DOI: 10.1158/0008-5472.can-07-6778] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 2008; 106:1298-313. [PMID: 18485102 DOI: 10.1111/j.1471-4159.2008.05479.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain human immunodeficiency virus type-1 (HIV-1) infection is associated with oxidative stress, which may lead to HIV-1 encephalitis, a chronic neurodegenerative condition. In vitro, oxidative stress can be induced in glial cells by exposure to HIV-1 envelope protein glycoprotein (gp120). Multidrug resistance proteins (Mrps) are known to efflux endogenous substrates (i.e. GSH and GSSG) involved in cellular defense against oxidative stress. Altered GSH/GSSG export may contribute to oxidative damage during HIV-1 encephalitis. At present, it is unknown if gp120 exposure can alter the functional expression of Mrp isoforms. Heat-shock protein 70, inducible nitric oxide synthase, intracellular GSSG, 2',7'-dichlorofluorescein fluorescence, and extracellular nitrite were increased in primary cultures of rat astrocytes triggered with gp120, suggesting an oxidative stress response. RT-PCR and immunoblot analysis demonstrated increased Mrp1 mRNA (2.3-fold) and protein (2.2-fold), respectively, in gp120 treated astrocytes while Mrp4 mRNA or protein expression was not changed. Cellular retention of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an established Mrp substrate, was reduced (twofold) in gp120-treated astrocytes, suggesting increased Mrp-mediated transport. In addition, GSH and GSSG export were enhanced in gp120-triggered cells. These data suggest that gp120 can up-regulate Mrp1, but not Mrp4, functional expression in cultured astrocytes. Our observation of increased GSH/GSSG efflux in response to gp120 treatment implies that Mrp isoforms may be involved in regulating the oxidative stress response in glial cells.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Bobrowska-Hägerstrand M, Wróbel A, Rychlik B, Ohman I, Hägerstrand H. Flow cytometric monitoring of multidrug drug resistance protein 1 (MRP1/ABCC1) -mediated transport of 2',7'-bis-(3-carboxypropyl)-5-(and-6)- carboxyfluorescein (BCPCF) into human erythrocyte membrane inside-out vesicles. Mol Membr Biol 2007; 24:485-95. [PMID: 17710652 DOI: 10.1080/09687680701383069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The presence of human multidrug resistance protein 1 (MRP1/ABCC1) in the human erythrocyte membrane is well established. In the present study, flow cytometric monitoring is introduced to identify MRP1 as the main transporter of 2',7'-bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein (BCPCF) in the erythrocyte membrane and to facilitate inhibition and kinetic studies of MRP1-mediated transport. The ATP-dependent transport of BCPCF into human erythrocyte inside-out vesicles and, for comparison, into MRP1-expressing Sf9 cell membrane inside-out vesicles were studied. The MRP1-specific monoclonal antibody, QCRL-3 and the MRP1 inhibitor, MK-571 strongly decreased the uptake of BCPCF into both erythrocyte and MRP1-expressing Sf9 cell membrane inside-out vesicles. The inhibition profiles of cyclosporin A, verapamil, benzbromarone, and probenecid in erythrocyte membrane vesicles were typical for MRP1-mediated transport. Furthermore, kinetic constants K(m) and V(max) of BCPCF transport into erythrocyte membrane inside-out vesicles were determined in the absence and in the presence of selected inhibitors (MK-571, cyclosporin A, benzbromarone and verapamil). The presented results identified MRP1 as the major transporter of BCPCF in the human erythrocyte membrane and showed for the first time that the active transport of fluorescent substrate into inside-out vesicles can be monitored by flow cytometry.
Collapse
|
27
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 552] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
28
|
Hooijberg JH, de Vries NA, Kaspers GJL, Pieters R, Jansen G, Peters GJ. Multidrug resistance proteins and folate supplementation: therapeutic implications for antifolates and other classes of drugs in cancer treatment. Cancer Chemother Pharmacol 2006; 58:1-12. [PMID: 16362298 DOI: 10.1007/s00280-005-0141-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 10/12/2005] [Indexed: 11/25/2022]
Abstract
Over the past decades, numerous reports have covered the crucial role of multidrug resistance (MDR) transporters in the efficacy of various chemotherapeutic drugs. Specific cell membrane-associated transporters mediate drug resistance by effluxing a wide spectrum of toxic agents. Although several excellent reviews have addressed general aspects of drug resistance, this current review aims to highlight implications for the efficacy of folate-based and other types of chemotherapeutic drugs. Folates are vitamins that are daily required for many biosynthetic processes. Folate supplementation in our diet may convey protective effects against several diseases, including cancers, but folate supplementation also makes up an essential part of several current cancer chemotherapeutic regimens. Traditionally, the folate leucovorin, for instance, is used to reduce antifolate toxicity in leukemia or to enhance the effect of the fluoropyrimidine 5-fluorouracil in some solid tumors. More recently, it has also been noted that folic acid has the ability to increase antitumor activity of several structurally unrelated regimens, such as alimta/pemetrexed and cisplatin. Moreover, studies from our laboratory demonstrated that folates could modulate the expression and activity of at least two members of the MDR transporters: MRP1/ABCC1, and the breast cancer resistance protein BCRP/ABCG2. Thus, folate supplementation may have differential effects on chemotherapy: (1) reduction of toxicity, (2) increase of antitumor activity, and (3) induction of MRP1 and BCRP associated cellular drug resistance. In this review the role of MDR proteins is discussed in further detail for each of these three items from the perspective to optimally exploit folate supplementation for enhanced chemotherapeutic efficacy of both antifolate-based chemotherapy and other classes of chemotherapeutic drugs.
Collapse
Affiliation(s)
- J H Hooijberg
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Lerdrup M, Hommelgaard AM, Grandal M, van Deurs B. Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J Cell Sci 2005; 119:85-95. [PMID: 16352662 DOI: 10.1242/jcs.02707] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potent oncoprotein and receptor tyrosine kinase ErbB2 is remarkable because it resists efficient downregulation. However, ErbB2 can be downregulated by the HSP-90 inhibitor geldanamycin, but the underlying cellular mechanisms are uncertain. Apparently, delivery of ErbB2 to lysosomes, cleavage of the ErbB2 kinase domain and proteasomal activity are all processes that are involved. Using a non-invasive confocal microscopical assay allowing quantitative analysis of ErbB2 internalization in cell populations, we show that whereas ErbB2 is resistant to internalization in untreated SK-BR-3 cells, geldanamycin stimulates internalization and subsequent degradation in lysosomes. This process depends on proteasomal activity, which is a regulatory upstream event in ErbB2 internalization rather than the actual mechanism of degradation. ErbB2 can be internalized as a full-length protein, thus cleavage of the ErbB2 kinase domain is not a requirement for geldanamycin-stimulated internalization. Moreover, as shown by FRAP (fluorescence recovery after photobleaching) and electron microscopy, geldanamycin induces an increase in the amount of mobile ErbB2 and a redistribution of ErbB2 in the plasma membrane making the receptor accessible to endocytosis. Cells with most ErbB2 endocytosis also have the highest fraction of mobile ErbB2. It is concluded that geldanamycin stimulates internalization of full-length ErbB2 in a proteasome-dependent manner leading to lysosomal degradation.
Collapse
Affiliation(s)
- Mads Lerdrup
- Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, Blegdamsvej 3C, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
30
|
Conseil G, Deeley RG, Cole SPC. Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1). J Biol Chem 2005; 281:43-50. [PMID: 16230346 DOI: 10.1074/jbc.m510143200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein 1 (MRP1) mediates drug and organic anion efflux across the plasma membrane. The 17 transmembrane (TM) helices of MRP1 are linked by extracellular and cytoplasmic (CL) loops of various lengths and two cytoplasmic nucleotide binding domains. In this study, three basic residues clustered at the predicted TM15/CL7 interface were investigated for their role in MRP1 expression and activity. Thus, Arg1138, Lys1141, and Arg1142 were replaced with residues of the same or opposite charge, expressed in human embryonic kidney cells, and the properties of the mutant proteins were assessed. Neither Glu nor Lys substitutions of Arg1138 and Arg1142 affected MRP1 expression; however, all four mutants showed a decrease in organic anion transport with a relatively greater decrease in leukotriene C4 and glutathione transport. These mutations also modulated MRP1 ATPase activity as reflected by a decreased vanadate-induced trapping of 8-azido-[32P]ADP. Mutation of Lys1141 to either Glu or Arg reduced MRP1 expression, and routing to the plasma membrane was impaired. However, only the Glu-substituted Lys1141 mutant showed a decrease in organic anion transport, and this was associated with decreased substrate binding and vanadate-induced trapping of 8-azido-ADP. These studies identified a cluster of basic amino acids likely at the TM15/CL7 interface as a region important for both MRP1 expression and activity and demonstrated that each of the three residues plays a distinct role in the substrate specificity and catalytic activity of the transporter.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
31
|
Conseil G, Deeley RG, Cole SPC. Role of two adjacent cytoplasmic tyrosine residues in MRP1 (ABCC1) transport activity and sensitivity to sulfonylureas. Biochem Pharmacol 2005; 69:451-61. [PMID: 15652236 DOI: 10.1016/j.bcp.2004.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022]
Abstract
The human ATP-binding cassette (ABC) protein MRP1 causes resistance to many anticancer drugs and is also a primary active transporter of conjugated metabolites and endogenous organic anions, including leukotriene C(4) (LTC(4)) and glutathione (GSH). The sulfonylurea receptors SUR1 and SUR2 are related ABC proteins with the same domain structure as MRP1, but serve as regulators of the K(+) channel Kir6.2. Despite their functional differences, the activity of both SUR1/2 and MRP1 can be blocked by glibenclamide, a sulfonylurea used to treat diabetes. Residues in the cytoplasmic loop connecting transmembrane helices 15 and 16 of the SUR proteins have been implicated as molecular determinants of their sensitivity to glibenclamide and other sulfonylureas. We have now investigated the effect of mutating Tyr(1189) and Tyr(1190) in the comparable region of MRP1 on its transport activity and sulfonylurea sensitivity. Ala and Ser substitutions of Tyr(1189) and Tyr(1190) caused a > or =50% decrease in the ability of MRP1 to transport different organic anions, and a decrease in LTC(4) photolabeling. Kinetic analyses showed the decrease in GSH transport was attributable primarily to a 10-fold increase in K(m). In contrast, mutations of these Tyr residues had no major effect on the catalytic activity of MRP1. Furthermore, the mutant proteins showed no substantial differences in their sensitivity to glibenclamide and tolbutamide. We conclude that MRP1 Tyr(1189) and Tyr(1190), unlike the corresponding residues in SUR1, are not involved in its differential sensitivity to sulfonylureas, but nevertheless, may be involved in the transport activity of MRP1, especially with respect to GSH.
Collapse
Affiliation(s)
- Gwenaëlle Conseil
- Divison of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ont., K7L 3N6, Canada
| | | | | |
Collapse
|
32
|
Leslie EM, Haimeur A, Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 2004; 279:32700-8. [PMID: 15161912 DOI: 10.1074/jbc.m404912200] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inorganic arsenic is an established human carcinogen, but its metabolism is incompletely defined. The ATP binding cassette protein, multidrug resistance protein (MRP1/ABCC1), transports conjugated organic anions (e.g. leukotriene C(4)) and also co-transports certain unmodified xenobiotics (e.g. vincristine) with glutathione (GSH). MRP1 also confers resistance to arsenic in association with GSH; however, the mechanism and the species of arsenic transported are unknown. Using membrane vesicles prepared from the MRP1-overexpressing lung cancer cell line, H69AR, we found that MRP1 transports arsenite (As(III)) only in the presence of GSH but does not transport arsenate (As(V)) (with or without GSH). The non-reducing GSH analogs L-gamma-glutamyl-L-alpha-aminobutyryl glycine and S-methyl GSH did not support As(III) transport, indicating that the free thiol group of GSH is required. GSH-dependent transport of As(III) was 2-fold higher at pH 6.5-7 than at a more basic pH, consistent with the formation and transport of the acid-stable arsenic triglutathione (As(GS)(3)). Immunoblot analysis of H69AR vesicles revealed the unexpected membrane association of GSH S-transferase P1-1 (GSTP1-1). Membrane vesicles from an MRP1-transfected HeLa cell line lacking membrane-associated GSTP1-1 did not transport As(III) even in the presence of GSH but did transport synthetic As(GS)(3). The addition of exogenous GSTP1-1 to HeLa-MRP1 vesicles resulted in GSH-dependent As(III) transport. The apparent K(m) of As(GS)(3) for MRP1 was 0.32 microM, suggesting a remarkably high relative affinity. As(GS)(3) transport by MRP1 was osmotically sensitive and was inhibited by several conjugated organic anions (MRP1 substrates) as well as the metalloid antimonite (K(i) 2.8 microM). As(GS)(3) transport experiments using MRP1 mutants with substrate specificities differing from wild-type MRP1 suggested a commonality in the substrate binding pockets of As(GS)(3) and leukotriene C(4). Finally, human MRP2 also transported As(GS)(3). In conclusion, MRP1 transports inorganic arsenic as a tri-GSH conjugate, and GSTP1-1 may have a synergistic role in this process.
Collapse
Affiliation(s)
- Elaine M Leslie
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
33
|
Koike K, Deeley RG, Cole SPC. Mapping of the MRPm5 epitope to the cytosolic region between transmembrane helices 13 and 14 in the drug and organic anion transporter, MRP1 (ABCC1). Biochem Biophys Res Commun 2004; 315:719-25. [PMID: 14975760 DOI: 10.1016/j.bbrc.2004.01.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/16/2022]
Abstract
Multidrug resistance in human tumour cells is often associated with increased expression of the 190kDa multidrug resistance protein, MRP1, that belongs to the ATP-binding cassette superfamily of transport proteins. MRP1 is also an efficient transporter of many organic anions. In the present study, we have mapped the epitope of the MRP1-specific murine monoclonal antibody (MAb) MRPm5 to the decapeptide (1063)FFERTPSGNL(1072) located in the cytoplasmic loop (CL6) linking transmembrane helices 13 and 14 in the third membrane spanning domain of the protein. Several amino acids in the cytoplasmic loops of MRP1 have been reported to be important for its transport function; nevertheless, MAb MRPm5 does not inhibit vesicular uptake of the high affinity substrate leukotriene C(4). None of the other MRP1-reactive MAbs described to date map to CL6 of MRP1 which in turn enhances the utility of MAb MRPm5 for both clinical and experimental investigations of this transporter.
Collapse
Affiliation(s)
- Koji Koike
- Cancer Research Laboratories, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | |
Collapse
|
34
|
Koike K, Conseil G, Leslie EM, Deeley RG, Cole SPC. Identification of proline residues in the core cytoplasmic and transmembrane regions of multidrug resistance protein 1 (MRP1/ABCC1) important for transport function, substrate specificity, and nucleotide interactions. J Biol Chem 2004; 279:12325-36. [PMID: 14722114 DOI: 10.1074/jbc.m311435200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.
Collapse
Affiliation(s)
- Koji Koike
- Cancer Research Laboratories, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
35
|
Zhang DW, Gu HM, Situ D, Haimeur A, Cole SPC, Deeley RG. Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1 (MRP1/ABCC1): identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. J Biol Chem 2003; 278:46052-63. [PMID: 12954620 DOI: 10.1074/jbc.m308403200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Payen LF, Gao M, Westlake CJ, Cole SPC, Deeley RG. Role of carboxylate residues adjacent to the conserved core Walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). J Biol Chem 2003; 278:38537-47. [PMID: 12882957 DOI: 10.1074/jbc.m305786200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MRP1 belongs to subfamily "C" of the ABC transporter superfamily. The nucleotide-binding domains (NBDs) of the C family members are relatively divergent compared with many ABC proteins. They also differ in their ability to bind and hydrolyze ATP. In MRP1, NBD1 binds ATP with high affinity, whereas NBD2 is hydrolytically more active. Furthermore, ATP binding and/or hydrolysis by NBD2 of MRP1, but not NBD1, is required for MRP1 to shift from a high to low affinity substrate binding state. Little is known of the structural basis for these functional differences. One minor structural difference between NBDs is the presence of Asp COOH-terminal to the conserved core Walker B motif in NBD1, rather than the more commonly found Glu present in NBD2. We show that the presence of Asp or Glu following the Walker B motif profoundly affects the ability of the NBDs to bind, hydrolyze, and release nucleotide. An Asp to Glu mutation in NBD1 enhances its hydrolytic capacity and affinity for ADP but markedly decreases transport activity. In contrast, mutations that eliminate the negative charge of the Asp side chain have little effect. The decrease in transport caused by the Asp to Glu mutation in NBD1 is associated with an inability of MRP1 to shift from high to low affinity substrate binding states. In contrast, mutation of Glu to Asp markedly increases the affinity of NBD2 for ATP while decreasing its ability to hydrolyze ATP and to release ADP. This mutation eliminates transport activity but potentiates the conversion from a high to low affinity binding state in the presence of nucleotide. These observations are discussed in the context of catalytic models proposed for MRP1 and other ABC drug transport proteins.
Collapse
Affiliation(s)
- Lea F Payen
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Ito KI, Weigl KE, Deeley RG, Cole SPC. Mutation of proline residues in the NH(2)-terminal region of the multidrug resistance protein, MRP1 (ABCC1): effects on protein expression, membrane localization, and transport function. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:103-14. [PMID: 12948592 DOI: 10.1016/s0005-2736(03)00228-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.
Collapse
Affiliation(s)
- Ken-ichi Ito
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Klokouzas A, Wu CP, van Veen HW, Barrand MA, Hladky SB. cGMP and glutathione-conjugate transport in human erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3696-708. [PMID: 12950253 DOI: 10.1046/j.1432-1033.2003.03753.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nature of cGMP transport in human erythrocytes, its relationship to glutathione conjugate transport, and possible mediation by multidrug resistance-associated proteins (MRPs) have been investigated. MRP1, MRP4 and MRP5 are detected in immunoblotting studies with erythrocytes. MRP1 and MRP5 are also detected in multidrug resistant COR-L23/R and MOR/R cells but at greatly reduced levels in the parent, drug sensitive COR-L23/P cells. MRP4 is detected in MOR/R but not COR-L23/R cells. Uptake of cGMP into inside-out membrane vesicles prepared by a spontaneous, one-step vesiculation process is shown to be by a low affinity system that accounts for more than 80% of the transport at all concentrations above 3 micro m. This transport is reduced by MRP inhibitors and substrates including MK-571, methotrexate, estradiol 17-beta-d-glucuronide, and S(2,4-dinitrophenyl)glutathione (DNP-SG) and also by glibenclamide and frusemide but not by the monoclonal Ig QCRL-3 that inhibits high-affinity transport of DNP-SG by MRP1. It is concluded that the cGMP exporter is distinct from MRP1 and has properties similar to those reported for MRP4. Furthermore the evidence suggests that the protein responsible for cGMP transport is the same as that mediating low-affinity DNP-SG transport in human erythrocytes.
Collapse
|
39
|
Rychlik B, Balcerczyk A, Klimczak A, Bartosz G. The role of multidrug resistance protein 1 (MRP1) in transport of fluorescent anions across the human erythrocyte membrane. J Membr Biol 2003; 193:79-90. [PMID: 12879156 DOI: 10.1007/s00232-002-2009-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Indexed: 11/24/2022]
Abstract
We employed human red blood cells as a model system to check the affinity of MRP1 (Multidrug Resistance-associated Protein 1) towards fluorescein and a set of its carboxyl derivatives: 5/6-carboxyfluorescein (CF), 2',7'-bis-(2-carboxyethyl)-5/6-carboxyfluorescein (BCECF) and calcein (CAL). We found significant differences in the characteristics of transport of the dyes tested across the erythrocyte membrane. Fluorescein is transported mainly in a passive way, while active efflux systems at least partially contribute to the transport of the other compounds. Inside-out vesicle studies revealed that active transport of calcein is masked by another, ATP-independent, transport activity. Inhibitor profiles of CF and BCECF transport are typical for substrates of organic anion transporters. BCECF is transported mainly via MRP1, as proven by the use of QCRL3, a monoclonal antibody known to specifically inhibit MRP1-mediated transport. Lack of effect of QCRL3 on CF uptake excludes the possibility of MRP1 being a transporter of this dye. No inhibition of CF accumulation by cGMP, thioguanine and 6-mercaptopurine suggests also that this fluorescent marker is not a substrate for MRP5, another ABC transporter identified in the human erythrocyte membrane.
Collapse
Affiliation(s)
- B Rychlik
- Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland.
| | | | | | | |
Collapse
|
40
|
Leslie EM, Létourneau IJ, Deeley RG, Cole SPC. Functional and structural consequences of cysteine substitutions in the NH2 proximal region of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochemistry 2003; 42:5214-24. [PMID: 12731862 DOI: 10.1021/bi027076n] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH. Previous studies have shown that portions of MSD1 and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. In the present study, Cys residues at positions 43, 49, 85, 148, and 190 in MSD1 and positions 208 and 265 in CL3 were mutated to Ala and Ser, and the effects on protein expression, plasma membrane localization, trypsin sensitivity, organic anion transport, and drug resistance properties were investigated. Confocal microscopy showed that 11 of 14 mutants displayed significant levels of nonplasma membrane-associated MRP1. Most mutant proteins were also more resistant to trypsin proteolysis than wild-type MRP1. All Cys mutants transported organic anions (0.5-1.5-fold wild-type MRP1 activity), and cells expressing Ser-substituted but not Ala-substituted Cys43 and Cys265 MRP1 mutants exhibited a 2.5-fold decrease and a 3-fold increase in arsenite resistance, respectively; Cys43Ser MRP1 also conferred lower levels of vincristine resistance. These results indicate that certain Cys residues in the NH(2) proximal region of MRP1 can be important for its structure and selected transport activities.
Collapse
Affiliation(s)
- Elaine M Leslie
- Department of Pharmacology & Toxicology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
41
|
Abstract
The ATP-binding cassette (ABC) transporters are a family of large proteins in membranes and are able to transport a variety of compounds through membranes against steep concentration gradients at the cost of ATP hydrolysis. The available outline of the human genome contains 48 ABC genes; 16 of these have a known function and 14 are associated with a defined human disease. Major physiological functions of ABC transporters include the transport of lipids, bile salts, toxic compounds, and peptides for antigen presentation or other purposes. We review the functions of mammalian ABC transporters, emphasizing biochemical mechanisms and genetic defects. Our overview illustrates the importance of ABC transporters in human physiology, toxicology, pharmacology, and disease. We focus on three topics: (a) ABC transporters transporting drugs (xenotoxins) and drug conjugates. (b) Mammalian secretory epithelia using ABC transporters to excrete a large number of substances, sometimes against a steep concentration gradient. Several inborn errors in liver metabolism are due to mutations in one of the genes for these pumps; these are discussed. (c) A rapidly increasing number of ABC transporters are found to play a role in lipid transport. Defects in each of these transporters are involved in human inborn or acquired diseases.
Collapse
Affiliation(s)
- P Borst
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
42
|
Haimeur A, Deeley RG, Cole SPC. Charged amino acids in the sixth transmembrane helix of multidrug resistance protein 1 (MRP1/ABCC1) are critical determinants of transport activity. J Biol Chem 2002; 277:41326-33. [PMID: 12186871 DOI: 10.1074/jbc.m206228200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1.
Collapse
Affiliation(s)
- Anass Haimeur
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
43
|
Mao Q, Qiu W, Weigl KE, Lander PA, Tabas LB, Shepard RL, Dantzig AH, Deeley RG, Cole SPC. GSH-dependent photolabeling of multidrug resistance protein MRP1 (ABCC1) by [125I]LY475776. Evidence of a major binding site in the COOH-proximal membrane spanning domain. J Biol Chem 2002; 277:28690-9. [PMID: 12034727 DOI: 10.1074/jbc.m202182200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates transported by the 190-kDa multidrug resistance protein 1 (MRP1) (ABCC1) include endogenous organic anions such as the cysteinyl leukotriene C(4). In addition, MRP1 confers resistance against various anticancer drugs by reducing intracellular accumulation by co-export of drug with reduced GSH. We have examined the properties of LY475776, an intrinsically photoactivable MRP1-specific tricyclic isoxazole modulator that inhibits leukotriene C(4) transport by this protein in a GSH-dependent manner. We show that [125I]LY475776 photolabeling of MRP1 requires GSH but is also supported by several non-reducing GSH derivatives and peptide analogs. Limited proteolysis revealed that [(125)I]LY475776 labeling was confined to the 75-kDa COOH-proximal half of MRP1. More extensive proteolysis generated two major 125I-labeled fragments of approximately 56 and approximately 41 kDa, and immunoblotting with regionally directed antibodies showed that these fragments correspond to amino acids approximately 1045-1531 and approximately 1150-1531, respectively. However, an approximately 33-kDa COOH-terminal immunoreactive fragment was not labeled, inferring that the major [125I]LY475776-labeling site resides approximately between amino acids 1150-1250. This region encompasses transmembrane (TM) segments 16 and 17 at the COOH-proximal end of the third membrane spanning domain of the protein. [125I]LY475776 labeling of mutant MRP1 molecules with substitutions of Trp(1246) in TM17 were reduced >80% compared with wild-type MRP1, confirming that TM17 is important for LY475776 binding. Finally, vanadate-induced trapping of ADP inhibited [125I]LY475776 labeling, suggesting that ATP hydrolysis causes a conformational change in MRP1 that reduces the affinity of the protein for this inhibitor.
Collapse
Affiliation(s)
- Qingcheng Mao
- Cancer Research Laboratories and Department of Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cai J, Daoud R, Alqawi O, Georges E, Pelletier J, Gros P. Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6). Biochemistry 2002; 41:8058-67. [PMID: 12069597 DOI: 10.1021/bi012082p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the MRP gene family member MRP6 cause pseudoxanthoma elasticum (PXE) in humans, a disease affecting elasticity of connective tissues. The normal function of MRP6, including its physiological substrate(s), remains unknown. To address these issues, recombinant rat Mrp6 (rMrp6) was expressed in the methylotrophic yeast Pichia pastoris. The protein was expressed in the membrane fraction as a stable 170 kDa protein. Its nucleotide binding and hydrolysis properties were investigated using the photoactive ATP analogue 8-azido-[alpha-(32)P]ATP and compared to those of the drug efflux pump MRP1. rMrp6 can bind 8-azido-[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion. Co(2+), Mn(2+), and Ni(2+) can also support 8-azido-[alpha-(32)P]ATP binding by rMrp6 while Ca(2+), Cd(2+), and Zn(2+) cannot. Under hydrolysis conditions (at 37 degrees C), the phosphate analogue beryllium fluoride (BeF(x)()) can stimulate trapping of the 8-azido-[alpha-(32)P]adenosine nucleotide in rMrp6 (and in MRP1) in a divalent cation-dependent and temperature-sensitive fashion. This suggests active ATPase activity, followed by trapping and photo-cross-linking of the 8-azido-[alpha-(32)P]ADP to the protein. By contrast to MRP1, orthovanadate-stimulated nucleotide trapping in rMrp6 does not occur in the presence of Mg(2+) but can be detected with Ni(2+) ions, suggesting structural and/or functional differences between the two proteins. The rMrp6 protein can be specifically photolabeled by a fluorescent photoactive drug analogue, [(125)I]-IAARh123, with characteristics similar to those previously reported for MRP1 (1), and this photolabeling of rMrp6 can be modulated by several structurally unrelated compounds. The P. pastoris expression system has allowed demonstration of ATP binding and ATP hydrolysis by rMrp6. In addition to providing large amounts of active protein for detailed biochemical studies, this system should also prove useful to identify potential rMrp6 substrates in [(125)I]-IAARh123 photolabeling competition studies, as well as to study the molecular basis of PXE mutations, which are most often found in the NBD2 of MRP6.
Collapse
Affiliation(s)
- Jie Cai
- Department of Biochemistry, McGill Cancer Center, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|
45
|
Conrad S, Kauffmann HM, Ito KI, Leslie EM, Deeley RG, Schrenk D, Cole SPC. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. PHARMACOGENETICS 2002; 12:321-30. [PMID: 12042670 DOI: 10.1097/00008571-200206000-00008] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human 190 kDa multidrug resistance protein, MRP1, is a polytopic membrane glycoprotein that confers resistance to a wide range of chemotherapeutic agents. It also transports structurally diverse conjugated organic anions, as well as certain unconjugated and conjugated compounds, in a reduced glutathione-stimulated manner. In this study, we characterized a low-frequency (<1%) naturally occurring mutation in MRP1 expected to cause the substitution of a conserved arginine with serine at position 433 in a predicted cytoplasmic loop of the protein. Transport experiments with membrane vesicles prepared from transfected human embryonic kidney cells and HeLa cells revealed a two-fold reduction in the ATP-dependent transport of the MRP1 substrates, leukotriene C4 (LTC4) and oestrone sulphate. Kinetic analysis showed that this reduction was due to a decrease in Vmax for both substrates but Km was unchanged. In contrast, 17beta-oestradiol-17beta-(D-glucuronide) transport by the Arg433Ser mutant MRP1 was similar to that by wild-type MRP1. Fluorescence confocal microscopy showed that the mutant MRP1 was routed correctly to the plasma membrane. In contrast to the reduced LTC4 and oestrone sulphate transport, stably transfected HeLa cells expressing Arg433Ser mutant MRP1 were 2.1-fold more resistant to doxorubicin than cells expressing wild-type MRP1, while resistance to VP-16 and vincristine was unchanged. These results provide the first example of a naturally occurring mutation predicted to result in an amino acid substitution in a cytoplasmic region of MRP1 that shows an altered phenotype with respect to both conjugated organic anion transport and drug resistance.
Collapse
Affiliation(s)
- Silke Conrad
- Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002; 125:22-31. [PMID: 11834590 DOI: 10.1093/brain/awf002] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is resistant to drug treatment in about one-third of cases, but the mechanisms underlying this drug resistance are not understood. In cancer, drug resistance has been studied extensively. Amongst the various resistance mechanisms, overexpression of drug resistance proteins, such as multi-drug resistance gene-1 P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1), has been shown to correlate with cellular resistance to anticancer drugs. Previous studies in human epilepsy have shown that MDR1 and MRP1 may also be overexpressed in brain tissue from patients with refractory epilepsy; expression has been shown in glia and neurones, which do not normally express these proteins. We examined expression of MDR1 and MRP1 in refractory epilepsy from three common causes, dysembryoplastic neuroepithelial tumours (DNTs; eight cases), focal cortical dysplasia (FCD; 14 cases) and hippocampal sclerosis (HS; eight cases). Expression was studied immunohistochemically in lesional tissue from therapeutic resections and compared with expression in histologically normal adjacent tissue. With the most sensitive antibodies, in all eight DNT cases, reactive astrocytes within tumour nodules expressed MDR1 and MRP1. In five of eight HS cases, reactive astrocytes within the gliotic hippocampus expressed MDR1 and MRP1. Of 14 cases of FCD, MDR1 and MRP1 expression was noted in reactive astrocytes in all cases. In five FCD cases, MRP1 expression was also noted in dysplastic neurones. In FCD and DNTs, accentuation of reactivity was noted around lesional vessels. Immunoreactivity was always more frequent and intense in lesional reactive astrocytes than in glial fibrillary acidic protein-positive reactive astrocytes in adjacent histologically normal tissue. MDR1 is able to transport some antiepileptic drugs (AEDs), and MRP1 may also do so. The overexpression of these drug resistance proteins in tissue from patients with refractory epilepsy suggests one possible mechanism for drug resistance in patients with these pathologies. We propose that overexpressed resistance proteins lower the interstitial concentration of AEDs in the vicinity of the epileptogenic pathology and thereby render the epilepsy caused by these pathologies resistant to treatment with AEDs.
Collapse
Affiliation(s)
- S M Sisodiya
- Epilepsy Research Group, University Department of Clinical Neurology, University College London, London, UK.
| | | | | | | | | |
Collapse
|
47
|
Klokouzas A, Barrand MA, Hladky SB. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6569-77. [PMID: 11737211 DOI: 10.1046/j.0014-2956.2001.02611.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clotrimazole has been shown to have potent anti-malarial activity in vitro, one possible mechanism being inhibition of oxidized glutathione (GSSG) export from the infected human red blood cells or from the parasite itself. Efflux of GSSG from normal erythrocytes is mediated by a high affinity glutathione S-conjugate transporter. This paper shows that transport of the model substrate, 3 microm dinitrophenyl S-glutathione, across erythrocyte membranes is inhibited by multidrug resistance-associated protein 1 (MRP1)-specific antibody, QCRL-3, strongly suggesting that the high affinity transport is mediated by MRP1. The rates of transport observed with membrane vesicles prepared from erythrocytes or from multidrug resistant tumour cells show a similar pattern of responses to applied reduced glutathione, GSSG and MRP1 inhibitors (indomethacin, MK571) further supporting the conclusion that the high affinity transporter is MRP1. In both erythrocytes and MRP1-expressing tumour cells, MRP1-associated transport is inhibited by clotrimazole over the range 2-20 microm, and the inhibitory effect leads to increases in accumulation of MRP1 substrates, vincristine and calcein, and decreases in calcein efflux from intact MRP1-expressing human tumour cells. It also results in increased sensitivity to daunorubicin of the multidrug resistant cells, L23/R but not the sensitive parent L23/P cells. These results demonstrate that clotrimazole can inhibit the MRP1 which is present in human erythrocytes, an effect that may contribute to, though not fully account for, its anti-malarial action.
Collapse
Affiliation(s)
- A Klokouzas
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
48
|
Cai J, Daoud R, Georges E, Gros P. Functional expression of multidrug resistance protein 1 in Pichia pastoris. Biochemistry 2001; 40:8307-16. [PMID: 11444977 DOI: 10.1021/bi010093c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Overexpression of the multidrug resistance-associated protein (MRP1) causes multidrug resistance in cultured cells. MRP1 transports a large number of glutathione, glucuronide, and sulfate-conjugated organic anions by an ATP-dependent efflux mechanism. Six other MRP proteins exist (MRP2-7), and mutations in some of these genes cause major pathological conditions in humans. A detailed characterization of the structure and mechanism of action of these proteins requires an efficient expression system from which large amounts of active protein can be obtained. We report the expression of a recombinant MRP1 in the methylotrophic yeast Pichia pastoris. The protein is expressed in the membrane fraction of these cells, as a stable and underglycosylated 165 kDa peptide. Expression levels are very high, and 30 times superior to those seen in multidrug-resistant HeLa/MRP1 transfectants. MRP1 expressed in P. pastoris binds 8-azido[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion, which can be competed by a molar excess of ADP and ATP. Under hydrolysis conditions (at 37 degrees C), orthovanadate induces trapping of the 8-azido[alpha-(32)P]nucleotide in MRP1, which can be further modulated by known MRP1 ligands. MRP1 is also labeled by a photoactive analogue of rhodamine 123 (IAARh123) in P. pastoris/MRP1 membranes, and this can be competed by known MRP1 ligands. Finally, MRP1-positive membrane vesicles show ATP-dependent uptake of LTC(4). Thus, MRP1 expressed in P. pastoris is active and shows characteristics of MRP1 expressed in mammalian cells, including drug binding, ligand-modulated formation of the MRP1-MgADP-P(i) intermediate (ATPase activity), and ATP-dependent substrate transport. The successful expression of catalytically active and transport-competent MRP1 in P. pastoris should greatly facilitate the efficient production and isolation of the wild type or inactive mutants of MRP1, or of other MRP proteins for structural and functional characterization.
Collapse
Affiliation(s)
- J Cai
- Department of Biochemistry and Institute of Parasitology, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
49
|
Bagrij T, Klokouzas A, Hladky SB, Barrand MA. Influences of glutathione on anionic substrate efflux in tumour cells expressing the multidrug resistance-associated protein, MRP1. Biochem Pharmacol 2001; 62:199-206. [PMID: 11389878 DOI: 10.1016/s0006-2952(01)00660-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-dependent transport of natural product drugs, e.g. vincristine, by multidrug resistance-associated protein (MRP1) requires reduced glutathione (GSH), whilst that of anionic substrates does not. The present results suggest, however, that GSH can modulate transport of anionic species. Efflux of fluorescent anionic substrates was measured from adherent MRP1-expressing human multidrug-resistant lung tumour cells, COR-L23/R, and drug-sensitive parental cells. As expected, much greater efflux of calcein, methylfluorescein-glutathione (GS-MF), and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) was observed from the resistant cells. Unexpectedly, lowering GSH levels in COR-L23/R cells by inhibiting GSH synthesis with buthionine sulfoximine decreased efflux of calcein and of GS-MF (3-fold and 1.6-fold) but not efflux of BCECF. Transport of the anionic conjugate dinitrophenyl-glutathione ([(3)H]DNP-SG) was investigated by following its uptake into inside-out plasma membrane vesicles prepared from the MRP1-expressing cells. At least 90% of the ATP-dependent uptake was blockable by the anti-MRP1 antibody QCRL-3 and 100 microM vincristine inhibited uptake but only in the presence of 1--3 mM GSH, suggesting MRP1 to be the protein primarily responsible for this transport. Agents shown to reduce efflux of calcein from resistant cells, i.e. indomethacin, MK-571, and probenecid, also inhibited [(3)H]DNP-SG uptakes, consistent with MRP1 being responsible for export of calcein. At concentrations achievable within cells, GSSG (70 microM) inhibited uptake whereas GSH (1 and 3 mM) enhanced uptake. We suggest that variations in both GSH and GSSG levels within cells may affect MRP1-mediated anion transport.
Collapse
Affiliation(s)
- T Bagrij
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | | | | | | |
Collapse
|
50
|
Sharma R, Singhal SS, Cheng J, Yang Y, Sharma A, Zimniak P, Awasthi S, Awasthi YC. RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes. Arch Biochem Biophys 2001; 391:171-9. [PMID: 11437348 DOI: 10.1006/abbi.2001.2395] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.
Collapse
Affiliation(s)
- R Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|