1
|
Eriksson H, Rössler OG, Thiel G. Tyrosine hydroxylase gene promoter activity is upregulated in female catecholaminergic neuroblastoma cells following activation of a Gαq-coupled designer receptor. Neurochem Int 2022; 160:105407. [PMID: 35995267 DOI: 10.1016/j.neuint.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 10/31/2022]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis that catalyzes the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine. The tyrosine hydroxylase gene is regulated by extracellular signaling molecules such as epidermal growth factor, nerve growth factor and steroids. Here, we investigated whether the activity of the tyrosine hydroxylase gene promoter is upregulated by activation of G protein-coupled receptors, the largest group of plasma membrane receptors. We used catecholaminergic neuroblastoma cells as a cellular model and chromatin-integrated tyrosine hydroxylase promoter-luciferase reporter genes. The results show that stimulation of Rαq, a Gαq-coupled designer receptor, triggered transcription of a reporter gene driven by the tyrosine hydroxylase promoter. Transcription was attenuated by overexpression of regulator of G-protein signaling-2, which activates the GTPase activity of the G protein α-subunit, and by a truncated, dominant-negative mutant of phospholipase Cβ3. Extracellular signal-regulated protein kinase was identified as the signal transducer. At the transcriptional level, tyrosine hydroxylase promoter activity was found to be controlled by the transcription factor CREB. Expression experiments with the adenoviral regulator protein E1A, an inhibitor of CBP/p300 histone acetyltransferases, showed that transcription of the reporter gene controlled by the tyrosine hydroxylase is under epigenetic control. We identified the protein phosphatases MAP kinase phosphatase-1 and calcineurin as part of a shutdown device of the signaling cascade linking Rαq designer receptor activation to tyrosine hydroxylase gene transcription. We conclude that tyrosine hydroxylase promoter activity is controlled by Gαq-coupled receptors.
Collapse
Affiliation(s)
- Helen Eriksson
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany.
| |
Collapse
|
2
|
Osei-Owusu P, Blumer KJ. Regulator of G Protein Signaling 2: A Versatile Regulator of Vascular Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:77-92. [PMID: 26123303 DOI: 10.1016/bs.pmbts.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regulators of G protein signaling (RGS) proteins of the B/R4 family are widely expressed in the cardiovascular system where their role in fine-tuning G protein signaling is critical to maintaining homeostasis. Among members of this family, RGS2 and RGS5 have been shown to play key roles in cardiac and smooth muscle function by tightly regulating signaling pathways that are activated through Gq/11 and Gi/o classes of heterotrimeric G proteins. This chapter reviews accumulating evidence supporting a key role for RGS2 in vascular function and the implication of changes in RGS2 function and/or expression in the pathogenesis of blood pressure disorders, particularly hypertension. With such understanding, RGS2 and the signaling pathways it controls may emerge as novel targets for developing next-generation antihypertensive drugs/agents.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Kach J, Sethakorn N, Dulin NO. A finer tuning of G-protein signaling through regulated control of RGS proteins. Am J Physiol Heart Circ Physiol 2012; 303:H19-35. [PMID: 22542620 DOI: 10.1152/ajpheart.00764.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
4
|
Chidiac P, Roy AA. Activity, Regulation, and Intracellular Localization of RGS Proteins. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Zhang P, Su J, King ME, Maldonado AE, Park C, Mende U. Regulator of G protein signaling 2 is a functionally important negative regulator of angiotensin II-induced cardiac fibroblast responses. Am J Physiol Heart Circ Physiol 2011; 301:H147-56. [PMID: 21498776 DOI: 10.1152/ajpheart.00026.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown Univ., 1 Hoppin St., Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
6
|
RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Cell Signal 2010; 22:1231-9. [PMID: 20362664 DOI: 10.1016/j.cellsig.2010.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/26/2010] [Accepted: 03/25/2010] [Indexed: 11/21/2022]
Abstract
The chronic stimulation of certain G protein-coupled receptors promotes cardiomyocyte hypertrophy and thus plays a pivotal role in the development of human heart failure. The beta-adrenergic receptors (beta-AR) are unique among these in that they signal via Gs, whereas others, such as the alpha1-adrenergic (alpha1-AR) and endothelin-1 (ET-1) receptors, predominantly act through Gq. In this study, we investigated the potential role of regulator of G protein signalling 2 (RGS2) in modulating the hypertrophic effects of the beta-AR agonist isoproterenol (ISO) in rat neonatal ventricular cardiomyocytes. We found that ISO-induced hypertrophy in rat neonatal ventricular myocytes was accompanied by the selective upregulation of RGS2 mRNA, with little or no change in RGS1, RGS3, RGS4 or RGS5. The adenylyl cyclase activator forskolin had a similar effect suggesting that it was mediated through cAMP production. To study the role of RGS2 upregulation in beta-AR-dependent hypertrophy, cardiomyocytes were infected with adenovirus encoding RGS2 and assayed for cell growth, markers of hypertrophy, and beta-AR signalling. ISO-induced increases in cell surface area were virtually eliminated by the overexpression of RGS2, as were increases in alpha-skeletal actin and atrial natriuretic peptide. RGS2 overexpression also significantly attenuated ISO-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt activation, which may account for, or contribute to, its observed antihypertrophic effects. In contrast, RGS2 overexpression significantly activated JNK MAP kinase, while decreasing the potency but not the maximal effect of ISO on cAMP accumulation. In conclusion, the present results suggest that RGS2 negatively regulates hypertrophy induced by beta-AR activation and thus may play a protective role in cardiac hypertrophy.
Collapse
|
7
|
Endale M, Kim SD, Lee WM, Kim S, Suk K, Cho JY, Park HJ, Wagley Y, Kim S, Oh JW, Rhee MH. Ischemia induces regulator of G protein signaling 2 (RGS2) protein upregulation and enhances apoptosis in astrocytes. Am J Physiol Cell Physiol 2009; 298:C611-23. [PMID: 20032508 DOI: 10.1152/ajpcell.00517.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signaling (RGS) family members, such as RGS2, interact with Galpha subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and attenuating the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. They are also reported to regulate G protein-effector interactions and form multiprotein signaling complexes. Ischemic stress-induced changes in RGS2 expression have been described in astrocytes, and these changes are associated with intracellular signaling cascades, suggesting that RGS2 upregulation may be an important mechanism by which astrocytes may regulate RGS2 function in response to physiological stress. However, information on the functional roles of stress-induced modulation of RGS2 protein expression in astrocyte function is limited. We report the role of ischemic stress in RGS2 protein expression in rat C6 astrocytoma cells and primary mouse astrocytes. A marked increase in RGS2 occurred after ischemic stress induced by chemicals (sodium azide and 2-deoxyglucose) or oxygen-glucose deprivation (OGD, real ischemia). RGS2 mRNA expression was markedly enhanced by 1 h of exposure to chemical ischemia or 6 h of OGD followed by 2 or 6 h of recovery, respectively. This enhanced expression in primary astrocytes and C6 cells was restored to baseline levels after 12 h of recovery from chemically induced ischemic stress or 4-6 h of recovery from OGD. RGS2 protein was also significantly expressed at 12-24 h of recovery from ischemic insult. Ischemia-induced RGS2 upregulation was associated with enhanced apoptosis. It significantly increased annexin V-positive cells, cleaved caspase-3, and enhanced DNA ladder formation and cell cycle arrest. However, a small interfering RNA (siRNA)-mediated RGS2 knockdown reversed the apoptotic cell death associated with ischemia-induced RGS2 upregulation. Upregulated RGS2 was significantly inhibited by SB-203580, a p38 MAPK inhibitor. Rottlerin, a potent inhibitor of PKCdelta, completely abrogated the increased RGS2 expression. We also examine whether ischemia-induced RGS2-mediated apoptosis is affected by siRNA-targeted endogenous PKCdelta downregulation or its phosphorylation. Although RGS2 upregulation was not affected, siRNA transfection significantly suppressed endogenous PKCdelta mRNA and protein expressions. Ischemia-induced PKCdelta phosphorylation and caspase-3 cleavage were dose dependently inhibited by PKCdelta knockdown, and this endogenous PKCdelta suppression reversed ischemia-induced annexin V-positive cells. This study suggests that ischemic stress increases RGS2 expression and that this condition contributes to enhanced apoptosis in C6 cells and primary astrocytes. The signaling it follows may involve PKCdelta and p38 MAPK pathways.
Collapse
Affiliation(s)
- Mehari Endale
- Laboratory of Physiology and Signaling, College of Veterinary Medicine, Kyungpook National Univ., Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xie Z, Gong MC, Su W, Turk J, Guo Z. Group VIA phospholipase A2 (iPLA2beta) participates in angiotensin II-induced transcriptional up-regulation of regulator of g-protein signaling-2 in vascular smooth muscle cells. J Biol Chem 2007; 282:25278-89. [PMID: 17613534 PMCID: PMC2096773 DOI: 10.1074/jbc.m611206200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rgs2 (regulator of G-protein signaling-2)-deficient mice exhibit severe hypertension, and genetic variations of RGS2 occur in hypertensive patients. RGS2 mRNA up-regulation by angiotensin II (Ang II) in vascular smooth muscle cells (VSMC) is a potentially important negative feedback mechanism in blood pressure homeostasis, but how it occurs is unknown. Here we demonstrate that group VIA phospholipase A2 (iPLA2beta) plays a pivotal role in Ang II-induced RGS2 mRNA up-regulation in VSMC by three independent approaches, including pharmacologic inhibition with a bromoenol lactone suicide substrate, suppression of iPLA2beta expression with antisense oligonucleotides, and genetic deletion in iPLA2beta-null mice. Selective inhibition of iPLA2beta by each of these approaches abolishes Ang II-induced RGS2 mRNA up-regulation. Furthermore, using adenovirus-mediated gene transfer, we demonstrate that restoration of iPLA2beta-expression in iPLA2beta-null VSMC reconstitutes the ability of Ang II to up-regulate RGS2 mRNA expression. In contrast, Ang II-induced vasodilator-stimulated phosphoprotein phosphorylation and Ang II receptor expression are unaffected. Moreover, in wild-type but not iPLA2beta-null VSMC, Ang II stimulates iPLA2 enzymatic activity significantly. Both arachidonic acid and lysophosphatidylcholine, products of iPLA2beta action, induce RGS2 mRNA up-regulation. Inhibition of lipoxygenases, particularly 15-lipoxygenase, and cyclooxygenases, but not cytochrome P450-dependent epoxygenases inhibits Ang II- or AA-induced RGS2 mRNA expression. Moreover, RGS2 protein expression is also up-regulated by Ang II, and this is attenuated by bromoenol lactone. Disruption of the Ang II/iPLA2beta/RGS2 feedback pathway in iPLA2beta-null cells potentiates Ang II-induced vasodilator-stimulated phosphoprotein and Akt phosphorylation in a time-dependent manner. Collectively, our results demonstrate that iPLA2beta participates in Ang II-induced transcriptional up-regulation of RGS2 in VSMC.
Collapse
MESH Headings
- Adenoviridae
- Angiotensin II/pharmacology
- Animals
- Arachidonic Acid/pharmacology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cell Adhesion Molecules/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Gene Deletion
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Group VI Phospholipases A2
- Homeostasis/drug effects
- Homeostasis/physiology
- Lysophosphatidylcholines/pharmacology
- Mice
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/enzymology
- Naphthalenes/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oxidoreductases/antagonists & inhibitors
- Oxidoreductases/metabolism
- Phospholipases A/antagonists & inhibitors
- Phospholipases A/deficiency
- Phospholipases A/metabolism
- Phospholipases A2
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrones/pharmacology
- RGS Proteins/antagonists & inhibitors
- RGS Proteins/deficiency
- RGS Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transduction, Genetic
- Up-Regulation/drug effects
- Up-Regulation/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology and the Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
9
|
Romero DG, Plonczynski MW, Gomez-Sanchez EP, Yanes LL, Gomez-Sanchez CE. RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells. Endocrinology 2006; 147:3889-97. [PMID: 16627589 DOI: 10.1210/en.2005-1532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulator of G protein signaling (RGS) proteins interact with Galpha-subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. Angiotensin (Ang) II interacts with its G protein-coupled receptor in zona glomerulosa adrenal cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. We studied Ang II-mediated regulation of RGS2, the role of RGS2 in steroidogenesis, and the intracellular signal events involved in H295R human adrenal cells. We report that both H295R cells and human adrenal gland express RGS2 mRNA. In H295R cells, Ang II caused a rapid and transient increase in RGS2 mRNA levels quantified by real-time RT-PCR. Ang II effects were mimicked by calcium ionophore A23187 and blocked by calcium channel blocker nifedipine. Ang II effects also were blocked by calmodulin antagonists (W-7 and calmidazolium) and calcium/calmodulin-dependent kinase antagonist KN-93. RGS2 overexpression by retroviral infection in H295R cells caused a decrease in Ang II-stimulated aldosterone secretion but did not modify cortisol secretion. In reporter assays, RGS2 decreased Ang II-mediated aldosterone synthase up-regulation. These results suggest that Ang II up-regulates RGS2 mRNA by the calcium/calmodulin-dependent kinase pathway in H295R cells. RGS2 overexpression specifically decreases aldosterone secretion through a decrease in Ang II-mediated aldosterone synthase-induced expression. In conclusion, RGS2 expression is induced by Ang II to terminate the intracellular signaling cascade generated by Ang II. RGS2 alterations in expression levels or functionality could be implicated in deregulations of Ang II signaling and abnormal aldosterone secretion by the adrenal gland.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, Montgomery Veterans Administration Medical Center, USA.
| | | | | | | | | |
Collapse
|
10
|
Shelat PB, Coulibaly AP, Wang Q, Sun AY, Sun GY, Simonyi A. Ischemia-induced increase in RGS7 mRNA expression in gerbil hippocampus. Neurosci Lett 2006; 403:157-61. [PMID: 16698180 DOI: 10.1016/j.neulet.2006.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/11/2006] [Accepted: 04/22/2006] [Indexed: 11/29/2022]
Abstract
The present study investigated the changes in the expression of regulators of G-protein-coupled signaling proteins RGS2, 7 and 8 in gerbil hippocampus to better understand alterations of G-protein-coupled receptors signaling after cerebral ischemia. In situ hybridization revealed a transient, robust early increase in RGS7 mRNA levels in the dentate gyrus after ischemia. RGS8 mRNA expression started to increase at a later time point in the CA3 region but no changes were found for RGS2. Our results show a subtype-, time-, and subregion-specific regulation in mRNA expression of RGS proteins after cerebral ischemia in gerbil hippocampus.
Collapse
Affiliation(s)
- Phullara B Shelat
- Department of Biochemistry, M743 Medical Sciences Bldg, University of Missouri-Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|
11
|
Song L, Jope RS. Cellular stress increases RGS2 mRNA and decreases RGS4 mRNA levels in SH-SY5Y cells. Neurosci Lett 2006; 402:205-9. [PMID: 16733081 PMCID: PMC1618799 DOI: 10.1016/j.neulet.2006.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/23/2006] [Accepted: 03/09/2006] [Indexed: 01/08/2023]
Abstract
Modulation of the expression of regulator of G-protein signaling (RGS) proteins is a major mechanism used to modulate their actions. Besides control by second messengers, the expression of RGS proteins, particularly RGS2, can be regulated by cell stress. Because RGS2 and RGS4 expression can be regulated by the cell cycle, we examined if cell cycle signals are involved in their regulation following stress. Treatment of SH-SY5Y cells with camptothecin increased RGS2 mRNA and decreased RGS4 mRNA levels. This effect on RGS2 mRNA was blocked by the cyclin-dependent kinase-2 (cdk2) inhibitors roscovitine and purvalanol. Cell cycle arrest was further implicated in regulating RGS mRNA levels because geldanamycin, which causes cell cycle arrest by inhibiting the actions of heat shock protein 90, caused changes in the mRNA levels of RGS2 and RGS4 similar to, and additive with, the effects of camptothecin. Overall, these results indicate that cell cycle arrest regulates the expression of RGS2 and RGS4, and that the expression of these two RGS family members is oppositely regulated by stress that causes cell cycle arrest.
Collapse
Affiliation(s)
- Ling Song
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 1057, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
12
|
Abstract
Regulators of G-protein signalling (RGS) proteins are a large and diverse family initially identified as GTPase activating proteins (GAPs) of heterotrimeric G-protein Galpha-subunits. At least some can also influence Galpha activity through either effector antagonism or by acting as guanine nucleotide dissociation inhibitors (GDIs). As our understanding of RGS protein structure and function has developed, so has the realisation that they play roles beyond G-protein regulation. Such diversity of function is enabled by the variety of RGS protein structure and their ability to interact with other cellular molecules including phospholipids, receptors, effectors and scaffolds. The activity, sub-cellular distribution and expression levels of RGS proteins are dynamically regulated, providing a layer of complexity that has yet to be fully elucidated.
Collapse
Affiliation(s)
- Gary B Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|
13
|
Abramow-Newerly M, Ming H, Chidiac P. Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins. Cell Signal 2006; 18:2209-22. [PMID: 16839744 DOI: 10.1016/j.cellsig.2006.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/09/2006] [Indexed: 12/01/2022]
Abstract
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3beta and 14-3-3epsilon, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3epsilon competes with Galphao for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3epsilon sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by Galpha protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with Galpha, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.
Collapse
Affiliation(s)
- Maria Abramow-Newerly
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
14
|
Burchett SA. Psychostimulants, madness, memory... and RGS proteins? Neuromolecular Med 2005; 7:101-27. [PMID: 16052041 DOI: 10.1385/nmm:7:1-2:101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 01/29/2005] [Indexed: 01/25/2023]
Abstract
The ingestion of psychostimulant drugs by humans imparts a profound sense of alertness and well-being. However, repeated use of these drugs in some individuals will induce a physiological state of dependence, characterized by compulsive behavior directed toward the acquisition and ingestion of the drug, at the expense of customary social obligations. Drugs of abuse and many other types of experiences share the ability to alter the morphology and density of neuronal dendrites and spines. Dopaminergic modulation of corticostriatal synaptic plasticity is necessary for these morphological changes. Changes in the density of dendritic spines on striatal neurons may underlie the development of this pathological pattern of drug-seeking behavior. Identifying proteins that regulate dopaminergic signaling are of value. A family of proteins, the regulators of G protein signaling (RGS) proteins, which regulate signaling from G protein-coupled receptors, such as dopamine and glutamate, may be important in this regard. By regulating corticostriatal synaptic plasticity, RGS proteins can influence presynaptic activity, neurotransmitter release, and postsynaptic depolarization and thereby play a key role in the development of this plasticity. Pharmacological agents that modify RGS activity in humans could be efficacious in ameliorating the dependence on psychostimulant drugs.
Collapse
Affiliation(s)
- Scott A Burchett
- University of California at San Francisco, Department of Psychiatry, Langley-Porter Psychiatric Institute, Nina Ireland Laboratory of Developmental Neurobiology, CA, USA.
| |
Collapse
|
15
|
Teber I, Köhling R, Speckmann EJ, Barnekow A, Kremerskothen J. Muscarinic acetylcholine receptor stimulation induces expression of the activity-regulated cytoskeleton-associated gene (ARC). ACTA ACUST UNITED AC 2004; 121:131-6. [PMID: 14969744 DOI: 10.1016/j.molbrainres.2003.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
Muscarinic acetylcholine receptors (mAChR) are involved in learning and memory but their molecular function in these processes is not fully understood. In this study, the signal transduction pathway coupling mAChR activation to induction of the activity-regulated cytoskeleton-associated gene (ARC) was examined. ARC was first identified as an effector immediate early gene induced by neuronal activity and ARC protein is thought to play a role in synaptic plasticity. In rats, intraperitoneal injection of pilocarpine, a potent agonist of mAChR, led to increased ARC expression in the brain. In human SH-SY5Y neuroblastoma cells mAChR stimulation with carbachol caused a rapid and robust induction of ARC expression. This effect was inhibited by atropine, a nonselective muscarinic receptor antagonist as well as by M1/M3 subtype-specific antagonists. Analysis of mAChR downstream effectors revealed that protein kinase C (PKC) and tyrosine kinases of the src family are key molecules in the signal cascade leading to ARC expression. Our data suggest, for the first time, that a correlation exists among mAChR-controlled signal cascades, the induction of the effector immediate early gene ARC and synaptic plasticity.
Collapse
Affiliation(s)
- Iskender Teber
- Department for Experimental Tumorbiology, Institute for Neurobiology, University Muenster, Badestrasse 9, D-48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
16
|
Poole DP, Van Nguyen T, Kawai M, Furness JB. Protein kinases expressed by interstitial cells of Cajal. Histochem Cell Biol 2003; 121:21-30. [PMID: 14658070 DOI: 10.1007/s00418-003-0602-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2003] [Indexed: 11/29/2022]
Abstract
Interstitial cells of Cajal (ICC) are involved in the generation of electrical rhythmicity of intestinal muscle and in the transduction of neural inputs in the gut. Although the expression of receptors for neurotransmitters and hormones and some second messengers have been investigated in ICC, the protein kinases present in these cells have not been well documented. This study has demonstrated the immunohistochemical localisation of PKA, PKC gamma and PKC theta in ICC that were identified by the known ICC marker, c-Kit, in the guinea-pig gut. Other PKCs, PKC alpha, beta, delta, epsilon, eta, iota and lambda, and Ca(2+)-calmodulin-dependent protein kinase II were not localised in ICC. Double labelling studies were conducted on longitudinal muscle-myenteric plexus and external muscle-myenteric plexus preparations of the oesophagus, stomach (fundus, corpus and antrum), duodenum, distal ileum, caecum, proximal and distal colon, and rectum. The three protein kinases were detected in c-Kit-immunoreactive ICC at the level of the myenteric plexus (IC-MY), in the muscle (IC-IM) and at the level of the deep muscular plexus (IC-DMP) in the small intestine. PKA was found in over 90% of IC-IM in all regions examined, and in over 90% of IC-MY in the gastric body and antrum and throughout the small and large intestines. PKC gamma was in the majority of ICC in the gastric body and antrum and in the small intestine, but was largely absent from ICC in the oesophagus, proximal stomach and large intestine. PKC theta occurred in the majority of ICC in all regions except the rectum. The intensity of staining was greatest for PKA, with PKC gamma giving comparatively weak labelling of ICC. PKA was also detected in myenteric neurons, smooth muscle, macrophages and fibroblast-like cells. PKC gamma labelling occurred in large, multipolar neurons throughout the small and large intestine, as well as in lymph vessels and in capillaries. It is concluded that PKA, PKC gamma and PKC theta are all present in ICC, with the differences in their localisations suggesting specific roles for each in ICC function.
Collapse
Affiliation(s)
- Daniel P Poole
- Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, VIC 3010 Parkville, Australia
| | | | | | | |
Collapse
|
17
|
Geurts M, Maloteaux JM, Hermans E. Altered expression of regulators of G-protein signaling (RGS) mRNAs in the striatum of rats undergoing dopamine depletion. Biochem Pharmacol 2003; 66:1163-70. [PMID: 14505795 DOI: 10.1016/s0006-2952(03)00447-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantitative in situ hybridization was used to investigate the effect of prolonged striatal dopamine or monoamine depletion on the mRNA density of regulators of G-protein signaling (RGS) 2-12 proteins. Two types of treatments were studied: a 6-hydroxydopamine-induced unilateral lesion of the nigrostriatal pathway and a 5-day reserpine treatment. The results clearly show a selective increase in the mRNA levels of RGS2, 5 and 8 and a decrease in RGS4 and 9 mRNA levels following nigrostriatal denervation. In this model, we observed no change in the mRNA levels of RGS10 and other RGS proteins that are weakly expressed in the striatum (RGS3, 6, 7, 11 and 12). On the other hand, the mRNA levels RGS2, 4, 5, 8, 9 and 10 were found to be significantly decreased after prolonged reserpine treatment. In contrast, the densities of these transcripts (in particular, RGS2, 4 and 10) tend to increase after an acute administration of reserpine, used as control. These results provide further evidence for the influence of dopamine and/or other monoamines in the regulation of RGS protein expression in the striatum. In connection with the previously documented acute regulation of RGS proteins after modulation of the dopaminergic transmission [Geurts et al., Neurosci Lett 2002;333:146-50], the present study demonstrates that alteration in their genetic expression can be long-lasting and this could reflect the adaptation processes that occur in certain pathological states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Muriel Geurts
- Laboratoire de Pharmacologie Expérimentale (FARL), Université Catholique de Louvain, 54.10 Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
18
|
Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 2003; 278:48872-9. [PMID: 14523002 PMCID: PMC1361697 DOI: 10.1074/jbc.m305870200] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The recent discovery of direct interactions between two important regulators of cell fate, the tumor suppressor p53 and glycogen synthase kinase-3beta (GSK3beta), led us to examine the mechanism and outcomes of this interaction. Two regions of p53 were identified that regulate its binding to GSK3beta. Deletion of the p53 activation domain-1 (AD1), but not mutations that prevent MDM2 binding through the AD1 domain, enhanced GSK3beta binding to p53, indicating that the AD1 domain interferes with p53 binding to GSK3beta. Deletion of the p53 basic domain (BD) abrogated GSK3beta binding, and a ten amino acid region within the C-terminal BD domain was identified as necessary for binding to GSK3beta. GSK3beta activity was not required for p53 binding, but inhibition of GSK3beta stabilized the association, suggesting a transient interaction during which active GSK3beta promotes actions of p53. This regulatory role of GSK3beta was demonstrated by large reductions of p53-induced increases in the levels of MDM2, p21, and Bax when GSK3beta was inhibited. Besides promoting p53-mediated transcription, GSK3beta also contributed to mitochondrial p53 apoptotic signaling. After DNA damage, mitochondrial GSK3beta co-immunoprecipitated with p53 and was activated, and inhibition of GSK3beta blocked cytochrome c release and caspase-3 activation. Thus, GSK3beta interacts with p53 in both the nucleus and mitochondria and promotes its actions at both sites.
Collapse
Affiliation(s)
| | - Gautam N. Bijur
- From the Departments of Psychiatry and Behavioral Neurobiology and
| | - Ling Song
- From the Departments of Psychiatry and Behavioral Neurobiology and
| | - Jianhui Zhu
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017
| | - Xinbin Chen
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017
| | - Richard S. Jope
- From the Departments of Psychiatry and Behavioral Neurobiology and
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017
- ¶ To whom correspondence should be addressed: Dept. of Psychiatry, 1720 7th Ave. South, Sparks Center 1057, University of Alabama at Birmingham, Birmingham, AL 35294-0017. Tel.: 205-934-7023; Fax: 205-934-3709; E-mail:
| |
Collapse
|
19
|
Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 2003; 99:25-44. [PMID: 12804697 DOI: 10.1016/s0163-7258(03)00051-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For decades, it has been generally proposed that a given receptor always interacts with a particular GTP-binding protein (G-protein) or with multiple G-proteins within one family. However, for several G-protein-coupled receptors (GPCR), it now becomes generally accepted that simultaneous functional coupling with distinct unrelated G-proteins can be observed, leading to the activation of multiple intracellular effectors with distinct efficacies and/or potencies. Multiplicity in G-protein coupling is frequently observed in artificial expression systems where high densities of receptors are obtained, raising the question of whether such complex signalling reveals artefactual promiscuous coupling or is a genuine property of GPCRs. Multiple biochemical and pharmacological evidence in favour of an intrinsic property of GPCRs were obtained in recent studies. Thus, there are now many examples showing that the coupling to multiple signalling pathways is dependent on the agonist used (agonist trafficking of receptor signals). In addition, the different couplings were demonstrated to involve distinct molecular determinants of the receptor and to show distinct desensitisation kinetics. Such multiplicity of signalling at the level of G-protein coupling leads to a further complexity in the functional response to agonist stimulation of one of the most elaborate cellular transmission systems. Indeed, the physiological relevance of such versatility in signalling associated with a single receptor requires the existence of critical mechanisms of dynamic regulation of the expression, the compartmentalisation, and the activity of the signalling partners. This review aims at summarising the different studies that support the concept of multiplicity of G-protein coupling. The physiological and pharmacological relevance of this coupling promiscuity will be discussed.
Collapse
Affiliation(s)
- Emmanuel Hermans
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, FARL 54.10, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
20
|
Raghunath A, Ling M, Larsson C. The catalytic domain limits the translocation of protein kinase C alpha in response to increases in Ca2+ and diacylglycerol. Biochem J 2003; 370:901-12. [PMID: 12460119 PMCID: PMC1223219 DOI: 10.1042/bj20021420] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Revised: 11/14/2002] [Accepted: 12/02/2002] [Indexed: 11/17/2022]
Abstract
Translocation of protein kinase C (PKC) alpha, beta II, delta and epsilon fused to enhanced green fluorescent protein (EGFP) was studied in living neuroblastoma cells by confocal microscopy. Exposure to carbachol elicited transient translocation of PKC alpha-EGFP and beta II-EGFP in most of the cells, PKC delta-EGFP in a few cells and induced sustained translocation of PKC epsilon-EGFP. To monitor levels of Ca(2+) and diacylglycerol and the translocation of PKC in the same cell, the Ca(2+)-sensitive C2 domain, diacylglycerol-sensitive C1 domains and full-length PKC were fused to red, cyan and yellow fluorescent proteins respectively. PKC alpha was translocated a few seconds after the C2 domain, which represents an increase in Ca(2+). This delay was insensitive to removal of the pseudosubstrate in PKC alpha, but the isolated regulatory domain translocated simultaneously with the C2 domain. Translocation of PKC epsilon coincided with the increase in diacylglycerol. Ionomycin induced translocation of PKC alpha and the C2 domain, whereas 1,2-dioctanoylglycerol caused translocation of the C1 domains and PKC epsilon, but not PKC alpha. Experiments with individual C1 domains showed that treatment with carbachol or phorbol 12,13-dibutyrate elicited translocation of PKC alpha C1a, PKC epsilon C1a and PKC epsilon C1b, whereas PKC alpha C1b was largely insensitive to these agents. In contrast with full-length PKC alpha, the regulatory domain of PKC alpha and pseudosubstrate-devoid PKC alpha responded to the carbachol-stimulated increase in diacylglycerol.
Collapse
Affiliation(s)
- Arathi Raghunath
- Department of Laboratory Medicine, Molecular Medicine, Lund University, Entrance 78, 3rd Floor, Malmö University Hospital, 205 02 Malmö, Sweden
| | | | | |
Collapse
|
21
|
Thirunavukkarasu K, Halladay DL, Miles RR, Geringer CD, Onyia JE. Analysis of regulator of G-protein signaling-2 (RGS-2) expression and function in osteoblastic cells. J Cell Biochem 2002; 85:837-50. [PMID: 11968023 DOI: 10.1002/jcb.10176] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Regulator of G-protein signaling-2 (RGS-2) belongs to a novel family of GTPase-activating proteins that rapidly turn-off G-protein coupled receptor signaling. RGS proteins contain a characteristic RGS domain by which they interact with the alpha-subunit of G-proteins and drive them into their inactive GDP-bound forms. Previously, we have reported that RGS-2 mRNA is rapidly and transiently increased by PTH in rat bone and in osteoblast cultures in vitro. In this study, we further explored the molecular basis for the regulation of RGS-2 by cloning and functionally characterizing the RGS-2 gene promoter. We cloned 2.3- and 2.8-kb fragments of the 5'-flanking regions of the rat and mouse RGS-2 genes, respectively, and generated a stable clone of UMR106 osteoblastic cells containing the rat RGS-2 promoter driving the beta-gal reporter gene (p2.3RGS-2-beta-gal). Treatment of the stable clone with PTH resulted in a maximal 2.2- to 3.6-fold increase in promoter activity at 8 h, reminiscent of the early response observed with endogenous RGS-2 mRNA regulation. Further, PTH (1-38), (1-31), PTHrP (1-34), and forskolin, which elevate cAMP levels, stimulated the promoter, while PTH (3-34) and (7-34), which do not readily stimulate cAMP accumulation, and PMA that directly activates protein kinase C, had no effect on promoter activity. Taken together, these results implicate the involvement of the Galpha(s)-adenylate cyclase-protein kinase A pathway in stimulating RGS-2 expression. Maintenance of a hyperphosphorylated state via the inhibition of type 2A protein phosphatases by okadaic acid, resulted in a strong dose-dependent increase in transcriptional activity of the RGS-2 promoter as well as that of the endogenous RGS-2 gene. Furthermore, overexpression of the osteoblast-specific transcription factor Runx2 also led to a stimulation of RGS-2 promoter activity. Functional analysis using RGS-2 overexpression suggests the potential negative regulatory effects of RGS-2 on PTH- and forskolin-induced cAMP production in osteoblastic cells. In summary, our data suggest that PTH treatment results in a direct transcriptional stimulation of RGS-2 that in turn may play a role in modulating the duration/intensity of PTH receptor signaling.
Collapse
Affiliation(s)
- Kannan Thirunavukkarasu
- Gene Regulation, Bone and Inflammation Research, Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
22
|
Tsingotjidou A, Nervina JM, Pham L, Bezouglaia O, Tetradis S. Parathyroid hormone induces RGS-2 expression by a cyclic adenosine 3',5'-monophosphate-mediated pathway in primary neonatal murine osteoblasts. Bone 2002; 30:677-84. [PMID: 11996904 DOI: 10.1016/s8756-3282(02)00698-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parathyroid hormone (PTH) is a promising anabolic agent for the treatment of osteoporosis. However, PTH is also potently catabolic. To help delineate the molecular mediators of PTH's opposing effects on skeletal metabolism, we have examined PTH-induced regulator of G-protein signaling-2 (RGS-2) expression and function in murine osteoblasts. RGS proteins are GTPase-activating proteins (GAPs) that regulate GTP-binding protein-coupled receptor (GPCR) signaling by enhancing the intrinsic GTPase activity of Galpha subunits. We found that 10 nmol/L PTH maximally induced RGS-2 mRNA in murine MC3T3-E1 cells, rat Py1a and ROS-17/2.8 cells, primary mouse osteoblasts (MOB cells), and mouse calvariae organ culture at 1-2 h posttreatment. PTH signaling through its receptor, PTHR1, is coupled to cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling pathways. We examined the effect of selective signaling agonists and antagonists on RGS-2 expression in MOB cells to determine which pathway(s) mediates PTH-induced RGS-2 expression. Although selective activation of all three pathways led to RGS-2 expression, cAMP-PKA activation with 10 nmol/L PTH and 10 micromol/L forskolin elicited the strongest induction. Similarly, RGS-2 mRNA expression was most strongly inhibited by the PKA inhibitor, H89 (10-30 micromol/L). The phorbol ester, PMA (1 micromol/L), which activates the PKC pathway, and ionomycin (1 micromol/L), which activates the calcium pathway, produced small but detectable elevations in RGS-2 mRNA levels. Overnight treatment with 1 micromol/L PMA to deplete PKC did not affect subsequent RGS-2 induction by PTH, but significantly inhibited PMA-induced RGS-2 expression. Treatment with 1-100 nmol/L PTH(3-34), which does not activate cAMP-PKA signaling, did not induce RGS-2 expression. MOB cells pretreated with 3 microg/mL cycloheximide produced sustained RGS-2 mRNA levels 2 h after 10 nmol/L PTH treatment. Actinomycin D (5 microg/mL) completely blocked 10 nmol/L PTH-induced RGS-2 expression. Finally, we tested the effect of RGS-2 overexpression on PTH- and fluprostenol-induced interleukin (IL)-6 promoter activity in MOB cells. PTH induces IL-6 through PKA activation, whereas fluprostenol induces IL-6 through PKC activation. We found that RGS-2 overexpression significantly inhibited IL-6 promoter activity following fluprostenol treatment, but not following PTH treatment. We conclude that RGS-2 is a PTH-induced primary response gene in murine osteoblasts that is induced mainly through the cAMP-PKA pathway and specifically inhibits Galphaq-coupled receptors.
Collapse
Affiliation(s)
- A Tsingotjidou
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | |
Collapse
|
23
|
Park ES, Echetebu CO, Soloff S, Soloff MS. Oxytocin stimulation of RGS2 mRNA expression in cultured human myometrial cells. Am J Physiol Endocrinol Metab 2002; 282:E580-4. [PMID: 11832360 DOI: 10.1152/ajpendo.00437.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulators of G protein signaling (RGS proteins) interact with Galpha(q) and Galpha(i) and accelerate GTPase activity. These proteins have been characterized only within the past few years, so our understanding of their importance is still preliminary. We examined the effect of oxytocin on RGS2 mRNA expression to help determine the role of RGS proteins in oxytocin signaling in human myometrial cells in primary culture. Oxytocin increased RGS2 mRNA concentration maximally by 1 or 2 h in a dose-dependent and agonist-specific manner. RGS2 mRNA levels were also elevated by treatment with Ca(2+) ionophore, phorbol ester, or forskolin. Oxytocin's effects were completely inhibited by an intracellular Ca(2+) chelator and partially blocked by a protein kinase C inhibitor, indicating that intracellular Ca(2+) concentration is the primary signal for oxytocin elevation of RGS2 mRNA levels. Use of pharmacological inhibitors indicated that part of oxytocin-stimulated RGS2 mRNA expression is mediated by G(i)/tyrosine kinase activities. Although oxytocin does not stimulate increases in intracellular cAMP concentration, agents that elevate intracellular cAMP concentrations and cause myometrial relaxation may possibly cause heterologous desensitization to oxytocin via RGS2 expression. These results suggest that RGS2 may be important in regulating the myometrial response to oxytocin.
Collapse
Affiliation(s)
- Eun Sung Park
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555-1062, USA
| | | | | | | |
Collapse
|
24
|
Zmijewski JW, Song L, Harkins L, Cobbs CS, Jope RS. Second messengers regulate RGS2 expression which is targeted to the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:201-11. [PMID: 11755214 DOI: 10.1016/s0167-4889(01)00144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulators of G-protein Signaling (RGS) proteins attenuate signaling activities of G proteins, and modulation of expression appears to be a primary mechanism for regulating RGS proteins. In human astrocytoma 1321N1 cells RGS2 expression was increased by activation of muscarinic receptors coupled to phosphoinositide signaling with carbachol, or by increased cyclic AMP production, demonstrating that both signaling systems can increase the expression of a RGS family member in a single cell type. Carbachol-stimulated increases in endogenous RGS2 protein levels appeared by immunocytochemical analysis to be largely confined to the nucleus, and this localization was confirmed by Western blot analysis which showed increased nuclear, but not cytosolic, RGS2 after carbachol treatment. Additionally, transiently expressed green fluorescent protein (GFP)-tagged, 6xHis-tagged, or unmodified RGS2 resulted in a predominant nuclear localization, as well as a distinct accumulation of RGS2 along the plasma membrane. The intranuclear localization of GFP-RGS2 was confirmed with confocal microscopy. Thus, RGS2 expression is rapidly and transiently increased by phosphoinositide signaling and by cyclic AMP, and endogenous and transfected RGS2 is largely, although not entirely, localized in the nucleus.
Collapse
Affiliation(s)
- J W Zmijewski
- Department of Psychiatry and Behavioral Neurology, University of Alabama at Birmingham, 35294-0017, USA
| | | | | | | | | |
Collapse
|
25
|
Zmijewski JW, Song L, Harkins L, Cobbs CS, Jope RS. Oxidative stress and heat shock stimulate RGS2 expression in 1321N1 astrocytoma cells. Arch Biochem Biophys 2001; 392:192-6. [PMID: 11488592 DOI: 10.1006/abbi.2001.2430] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RGS2, a regulators of G-protein signaling family member, regulates G-protein signaling and is itself controlled in part by regulated expression. We tested if cell stress regulates RGS2 expression in human astrocytoma 1321N1 cells. Treatment with H2O2 increased RGS2 mRNA levels time- and concentration-dependently, with 200 microM H2O2 causing an approximately eightfold increase after 2 h. Peroxynitrite and heat shock also increased RGS2 mRNA levels. H2O2-induced RGS2 expression was negatively regulated by phosphoinositide-3-kinase and extracellular signal-regulated kinases. H2O2 also concentration-dependently increased RGS2 protein levels, and the RGS2 appeared to be predominantly in the nucleus. These results demonstrate that RGS2 expression is up-regulated by cell stress.
Collapse
Affiliation(s)
- J W Zmijewski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0017, USA
| | | | | | | | | |
Collapse
|
26
|
Song L, Zmijewski JW, Jope RS. RGS2: regulation of expression and nuclear localization. Biochem Biophys Res Commun 2001; 283:102-6. [PMID: 11322774 DOI: 10.1006/bbrc.2001.4742] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RGS2, a Regulators of G-protein Signaling family member, regulates signaling activities of G-proteins, and RGS2 itself is controlled in part by regulation of its expression. This investigation extended previous studies of the regulation of RGS2 expression by examining the effects of stress, differentiation, and signaling activities on RGS2 mRNA level in human neuroblastoma SH-SY5Y cells. Cell stress induced by heat shock rapidly and transiently increased RGS2 mRNA levels, whereas differentiation to a neuronal phenotype reduced basal RGS2 mRNA levels by 50%. RGS2 mRNA levels were increased in differentiated cells by heat shock, carbachol, and activation of protein kinase C. After transient transfection of GFP-tagged RGS2, a predominant nuclear localization was observed by confocal microscopy. Thus, RGS2 expression is regulated by stress and differentiation, as well as by second messenger signaling, and transfected GFP-RGS2 is predominantly nuclear.
Collapse
Affiliation(s)
- L Song
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294-0017, USA
| | | | | |
Collapse
|
27
|
Melliti K, Meza U, Adams BA. RGS2 blocks slow muscarinic inhibition of N-type Ca(2+) channels reconstituted in a human cell line. J Physiol 2001; 532:337-47. [PMID: 11306654 PMCID: PMC2278552 DOI: 10.1111/j.1469-7793.2001.0337f.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. Native N-type Ca(2+) channels undergo sustained inhibition through a slowly activating pathway linked to M1 muscarinic acetylcholine receptors and Galphaq/11 proteins. Little is known concerning the regulation of this slow inhibitory pathway. We have reconstituted slow muscarinic inhibition of N-type channels in HEK293 cells (a human embryonic kidney cell line) by coexpressing cloned alpha1B (Ca(V)2.2) Ca(2+) channel subunits and M1 receptors. Expressed Ca(2+) currents were recorded using standard whole-cell, ruptured-patch techniques. 2. Rapid application of carbachol produced two kinetically distinct components of Ca(2+) channel inhibition. The fast component of inhibition had a time constant of < 1 s, whereas the slow component had a time constant of 5-40 s. Neither component of inhibition was reduced by pertussis toxin (PTX) or staurosporine. 3. The fast component of inhibition was selectively blocked by the Gbetagamma-binding region of beta-adrenergic receptor kinase 1, suggesting that fast inhibition is mediated by Gbetagamma released from Galphaq/11. 4. The slow component of inhibition was selectively blocked by regulator of G protein signalling 2 (RGS2), which preferentially interacts with Galphaq/11 proteins. RGS2 also attenuated channel inhibition produced by intracellular dialysis with non-hydrolysable GTPgammaS. Together these results suggest that RGS2 selectively blocked slow inhibition by functioning as an effector antagonist, rather than as a GTPase-accelerating protein (GAP). 5. These experiments demonstrate that slow muscarinic inhibition of N-type Ca(2+) channels can be reconstituted in non-neuronal cells, and that RGS2 can selectively block slow muscarinic inhibition while leaving fast muscarinic inhibition intact. These results identify RGS2 as a potential physiological regulator of the slow muscarinic pathway.
Collapse
Affiliation(s)
- K Melliti
- Department of Biology, Utah State University, Logan 84322-5305, USA
| | | | | |
Collapse
|
28
|
Garzón J, Rodríguez-Díaz M, López-Fando A, Sánchez-Blázquez P. RGS9 proteins facilitate acute tolerance to mu-opioid effects. Eur J Neurosci 2001; 13:801-11. [PMID: 11207815 DOI: 10.1046/j.0953-816x.2000.01444.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper reports that regulators of G-protein signalling (RGS) proteins modulate the timing and amplitude of opioid signals by a push-pull mechanism. This is achieved without noticeable changes in the binding properties of opioids, e.g. beta-endorphin to mu-opioid receptors. The expression of RGS proteins was reduced by blocking their mRNA with antisense oligodeoxynucleotides (ODN). Knock down of RGS2 or RGS3 diminished morphine and beta-endorphin analgesia, whereas that of RGS9 or RGS12 enhanced this activity. In mice with impaired RGS9, but not impaired RGS2, the potency and, in particular, the duration of opioid antinociception increased. Further, the animals did not exhibit acute tolerance generated by a single and efficacious dose of morphine, nor did they develop tolerance after a daily i.c.v. injection of the opioid for 4 days. In a model of sustained morphine treatment, the impairment of RGS9 proteins facilitated increases in the response to the delivered opioid. This was only effective for 2--3 h after the subcutaneous implantation of an oily morphine pellet; later, tolerance developed. To reduce the impact of the chronic morphine acting on opioid receptors, other RGS proteins presumably substitute the GTPase-activating function of RGS9 on morphine-activated G-alpha-GTP subunits. The desensitization of mu-opioid receptors appears to be a cell membrane-limited process facilitated by RGS9's sequestering of agonist-segregated G alpha subunits.
Collapse
Affiliation(s)
- J Garzón
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain.
| | | | | | | |
Collapse
|
29
|
Benzing T, Yaffe MB, Arnould T, Sellin L, Schermer B, Schilling B, Schreiber R, Kunzelmann K, Leparc GG, Kim E, Walz G. 14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. J Biol Chem 2000; 275:28167-72. [PMID: 10862767 DOI: 10.1074/jbc.m002905200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) that stimulate the inactivation of heterotrimeric G proteins. We have recently shown that RGS proteins may be regulated on a post-translational level (Benzing, T., Brandes, R., Sellin, L., Schermer, B., Lecker, S., Walz, G., and Kim, E. (1999) Nat. Med. 5, 913-918). However, mechanisms controlling the GAP activity of RGS proteins are poorly understood. Here we show that 14-3-3 proteins associate with RGS7 and RGS3. Binding of 14-3-3 is mediated by a conserved phosphoserine located in the Galpha-interacting portion of the RGS domain; interaction with 14-3-3 inhibits the GAP activity of RGS7, depends upon phosphorylation of a conserved residue within the RGS domain, and results in inhibition of GAP function. Collectively, these data indicate that phosphorylation-dependent binding of 14-3-3 may act as molecular switch that controls the GAP activity keeping a substantial fraction of RGS proteins in a dormant state.
Collapse
Affiliation(s)
- T Benzing
- Department of Medicine, University Hospital of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|