1
|
Rees WD, Tandun R, Yau E, Zachos NC, Steiner TS. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front Cell Dev Biol 2020; 8:583919. [PMID: 33282867 PMCID: PMC7688923 DOI: 10.3389/fcell.2020.583919] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rene Tandun
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Enoch Yau
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
2
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
3
|
The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Nat Commun 2019; 10:1827. [PMID: 31015444 PMCID: PMC6478875 DOI: 10.1038/s41467-019-09899-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
The Tip60/p400 chromatin-modifying complex, which is involved in the incorporation and post-translational modification of the H2A.Z histone variant, regulates cell proliferation and important signaling pathways, such as Wnt. Here, we study the involvement of H2A.Z in intestinal epithelial homeostasis, which is dependent on the finely-tuned equilibrium between stem cells renewal and differentiation, under the control of such pathway. We use cell models and inducible knock-out mice to study the impact of H2A.Z depletion on intestinal homeostasis. We show that H2A.Z is essential for the proliferation of human cancer and normal intestinal crypt cells and negatively controls the expression of a subset of differentiation markers, in cultured cells and mice. H2A.Z impairs the recruitment of the intestine-specific transcription factor CDX2 to chromatin, is itself a target of the Wnt pathway and thus, acts as an integrator for Wnt signaling in the control of intestinal epithelial cell fate and homeostasis. The histone variant, H2A.Z is known to regulate gene expression and cell proliferation. Here the authors show that H2A.Z has a central role in the control of intestinal epithelial homeostasis in mice, by preventing terminal differentiation of intestinal progenitors.
Collapse
|
4
|
Darvishi M, Mashati P, Khosravi A. The clinical significance of CDX2 in leukemia: A new perspective for leukemia research. Leuk Res 2018; 72:45-51. [PMID: 30096576 DOI: 10.1016/j.leukres.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
CDX2 gene encodes a transcription factor involved in primary embryogenesis and hematopoietic development; however, the expression of CDX2 in adults is restricted to intestine and is not observed in blood tissues. The ectopic expression of CDX2 has been frequently observed in acute myeloid and lymphoid leukemia which in most cases is concomitant with poor prognosis. Induction of CDX2 in mice leads to hematologic complications, showing the leukemogenic origin of this gene. CDX2 plays significant role in the most critical pathways as the regulator of important transcription factors targeting cell proliferation, multi-drug resistance and survival. On the whole, the results indicate that CDX2 has the potential to be suggested as the diagnostic marker in hematologic malignancies. This review discusses the role of aberrant expression of CDX2 in the prognosis and the response to treatment in patients with different leukemia in clinical reports in the recent decades. The improvement in this regard could be of high importance in diagnosis and treatment methods.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pargol Mashati
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Barros R, Freund JN, David L, Almeida R. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 2012; 18:555-63. [PMID: 22871898 DOI: 10.1016/j.molmed.2012.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Intestinal metaplasia of the stomach is a preneoplastic lesion that appears following Helicobacter pylori infection and confers increased risk for gastric cancer development. However, the molecular networks connecting infection to lesion formation and the cellular origin of this lesion remain largely unknown. A more comprehensive understanding of how intestinal metaplasia arises and is maintained will be a major breakthrough towards developing novel therapeutic interventions. Furthermore, after ascertaining the pivotal role of CDX2 in establishing and maintaining intestinal metaplasia, it becomes important to decipher the upstream molecular pathways leading to its ectopic expression. Here, we review the pathophysiology of intestinal metaplasia in the context of the molecular network involved in its establishment and maintenance, with emphasis on CDX2 function and regulation.
Collapse
Affiliation(s)
- Rita Barros
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal.
| | | | | | | |
Collapse
|
6
|
Olsen AK, Boyd M, Danielsen ET, Troelsen JT. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks. Am J Physiol Gastrointest Liver Physiol 2012; 302:G277-86. [PMID: 22094602 DOI: 10.1152/ajpgi.00362.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been applied to analyze known transcription factors and their interacting regulatory DNA elements in the intestine. The intestine is an example of a dynamic tissue where stem cells in the crypt proliferate and undergo a differentiation process toward the villus. During this differentiation process, specific regulatory networks of transcription factors are activated to target specific genes, which determine the intestinal cell fate. The expanding genomewide mapping of transcription factor binding sites and construction of transcriptional regulatory networks provide new insight into how intestinal differentiation occurs. This review summarizes the current overview of the transcriptional regulatory networks driving epithelial differentiation in adult intestine. The novel technologies that have been implied to study these networks are presented and their prospects for implications in future research are also addressed.
Collapse
Affiliation(s)
- Anders Krüger Olsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
7
|
Grainger S, Lam J, Savory JGA, Mears AJ, Rijli FM, Lohnes D. Cdx regulates Dll1 in multiple lineages. Dev Biol 2011; 361:1-11. [PMID: 22015720 DOI: 10.1016/j.ydbio.2011.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 02/07/2023]
Abstract
Vertebrate Cdx genes encode homeodomain transcription factors related to caudal in Drosophila. The murine Cdx homologues Cdx1, Cdx2 and Cdx4 play important roles in anterior-posterior patterning of the embryonic axis and the intestine, as well as axial elongation. While our understanding of the ontogenic programs requiring Cdx function has advanced considerably, the molecular bases underlying these functions are less well understood. In this regard, Cdx1-Cdx2 conditional mutants exhibit abnormal somite formation, while loss of Cdx1-Cdx2 in the intestinal epithelium results in a shift in differentiation toward the Goblet cell lineage. The aim of the present study was to identify the Cdx-dependent mechanisms impacting on these events. Consistent with prior work implicating Notch signaling in these pathways, we found that expression of the Notch ligand Dll1 was reduced in Cdx mutants in both the intestinal epithelium and paraxial mesoderm. Cdx members occupied the Dll1 promoter both in vivo and in vitro, while genetic analysis indicated interaction between Cdx and Dll1 pathways in both somitogenesis and Goblet cell differentiation. These findings suggest that Cdx members operate upstream of Dll1 to convey different functions in two distinct lineages.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Wang PX, Yu ZW, Wong S, Jin TR. Nkx6.2 synergizes with Cdx-2 in stimulating proglucagon gene expression. World J Diabetes 2011; 2:66-74. [PMID: 21691557 PMCID: PMC3116010 DOI: 10.4239/wjd.v2.i5.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate whether the transactivator of the proglucagon gene (Gcg), Cdx-2, synergizes with other transcription factors in stimulating Gcg expression and the trans-differentiation of Gcg-expressing cells.
METHODS: We conducted affinity chromatography to identify proteins that interact with Cdx-2, using GST-tagged Cdx-2 against cell lysates from pancreatic InR1-G9 and intestinal GLUTag cell lines. This was followed by a mass-spectrometry analysis. From a potential Cdx-2 interaction protein identified, we examined its expression in pancreatic and gut endocrine cells, confirmed its interaction with Cdx-2 by GST-pull down and determined its effect in provoking Gcg expression in cell lines that do not express endogenous Gcg.
RESULTS: We identified 18 potential Cdx-2 interacting proteins. One of them is Nkx6.2. This homeodomain (HD) protein is expressed in pancreatic α and intestinal endocrine L cells but not in insulin producing cell lines, including In111. Nkx6.2, but not Nkx6.1, was shown to interact with Cdx-2, detected by GST-pull down. Furthermore, Nkx6.2 was found to synergize with Cdx-2 in provoking Gcg expression when they were ectopically expressed in the In111 cell line. Finally, when Cdx-2 and Nkx6.2 were co-transfected into the undifferentiated rat intestinal IEC-6 cell line, it produced detectable amount of Gcg mRNA.
CONCLUSION: Cdx-2 recruits Nkx6.2 in exerting its effect in stimulating Gcg expression. Our observations further support the notion that multiple HD proteins, including Cdx-2 and Nkx6.2, are involved in the regulation of Gcg expression and the genesis of Gcg-producing cells.
Collapse
Affiliation(s)
- Pei-Xiang Wang
- Pei-Xiang Wang, Zhi-Wen Yu, Tian-Ru Jin, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | |
Collapse
|
9
|
The role of CDX2 in intestinal homeostasis and inflammation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:283-9. [PMID: 21126581 DOI: 10.1016/j.bbadis.2010.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/17/2022]
Abstract
Many transcription factors are known to control transcription at several promoters, while others are only active at a few places. However, due to their importance in controlling cellular functions, aberrant transcription factor function and inappropriate gene regulation have been shown to play a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including cell proliferation, differentiation, cell adhesion, migration, and tumorigenesis. In addition to these critical cellular processes, there is increasing evidence for linking CDX2 to intestinal inflammation. The aim of the present paper was to review the current knowledge of CDX2 in regulation of the intestinal homeostasis and further to reveal its potential role in inflammation.
Collapse
|
10
|
Savory JGA, Mansfield M, St Louis C, Lohnes D. Cdx4 is a Cdx2 target gene. Mech Dev 2010; 128:41-8. [PMID: 20933081 DOI: 10.1016/j.mod.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/31/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
The products of the Cdx genes, Cdx1, Cdx2 and Cdx4, play multiple roles in early vertebrate development, and have been proposed to serve to relay signaling information from Wnt, RA and FGF pathways to orchestrate events related to anterior-posterior vertebral patterning and axial elongation. In addition, Cdx1 and Cdx2 have been reported to both autoregulate and to be subject to cross regulation by other family members. We have now found that Cdx4 expression is significantly down regulated in Cdx2(-/-) mutants suggesting previously unrecognized cross-regulatory interactions. Moreover, we have previously shown that Cdx4 is a direct target of the canonical Wnt signaling pathway, and that Cdx1 physically interacts with LEF/TCF members in an autoregulatory loop. We therefore investigated the means by which Cdx2 impacted on Cdx4 expression and assessed potential interaction between Cdx2 and canonical Wnt signaling on the Cdx4 promoter. We found that the Cdx4 promoter was regulated by Cdx2 in transient transfection assays. Electrophoretic mobility shift assays showed that Cdx2 bound to predicted Cdx response elements in the Cdx4 promoter which, when mutated, significantly reduced activity. Consistent with these data, chromatin immunoprecipitation assays from embryos demonstrated occupancy of the Cdx4 promoter by Cdx2 in vivo. However, we failed to observe an interaction between Cdx2 and components of the canonical Wnt signaling pathway. These findings suggest that, while both canonical Wnt and Cdx2 can regulate the activity of the Cdx4 promoter, they appear to operate through distinct mechanisms.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
11
|
Sebastiano V, Dalvai M, Gentile L, Schubart K, Sutter J, Wu GM, Tapia N, Esch D, Ju JY, Hübner K, Bravo MJA, Schöler HR, Cavaleri F, Matthias P. Oct1 regulates trophoblast development during early mouse embryogenesis. Development 2010; 137:3551-60. [PMID: 20876643 DOI: 10.1242/dev.047027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage. Molecular and morphological analyses of Oct1 mutant embryos revealed a failure in the establishment of a normal maternal-embryonic interface due to reduced extra-embryonic ectoderm formation and lack of the ectoplacental cone. Oct1(-/-) blastocysts display proper segregation of trophectoderm and inner cell mass lineages. However, Oct1 loss is not compatible with trophoblast stem cell derivation. Importantly, the early gastrulation defect caused by Oct1 disruption can be rescued in a tetraploid complementation assay. Oct1 is therefore primarily required for the maintenance and differentiation of the trophoblast stem cell compartment during early post-implantation development. We present evidence that Cdx2, which is expressed at high levels in trophoblast stem cells, is a direct transcriptional target of Oct1. Our data also suggest that Oct1 is required in the embryo proper from late gastrulation stages onwards.
Collapse
Affiliation(s)
- Vittorio Sebastiano
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgenstrasse, 20 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takakura Y, Hinoi T, Oue N, Sasada T, Kawaguchi Y, Okajima M, Akyol A, Fearon ER, Yasui W, Ohdan H. CDX2 regulates multidrug resistance 1 gene expression in malignant intestinal epithelium. Cancer Res 2010; 70:6767-78. [PMID: 20699370 DOI: 10.1158/0008-5472.can-09-4701] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The caudal-related homeobox transcription factor CDX2 has a key role in intestinal development and differentiation. CDX2 heterozygous mutant mice develop colonic polyps, and loss of CDX2 expression is seen in a subset of colon carcinomas in humans. Ectopic CDX2 expression in the stomach of transgenic mice promotes intestinal metaplasia, and CDX2 expression is frequently detected in intestinal metaplasia in the stomach and esophagus. We sought to define CDX2-regulated genes to enhance knowledge of CDX2 function. HT-29 colorectal cancer cells have minimal endogenous CDX2 expression, and HT-29 cells with ectopic CDX2 expression were generated. Microarray-based gene expression studies revealed that the Multidrug Resistance 1 (MDR1/P-glycoprotein/ABCB1) gene was activated by CDX2. Evidence that the MDR1 gene was a direct transcriptional target of CDX2 was obtained, including analyses with MDR1 reporter gene constructs and chromatin immunoprecipitation assays. RNA interference-mediated inhibition of CDX2 decreased endogenous MDR1 expression. In various colorectal cancer cell lines and human tissues, endogenous MDR1 expression was well correlated to CDX2 expression. Overexpression of CDX2 in HT-29 cells revealed increased resistance to the known substrate of MDR1, vincristine and paclitaxel, which was reversed by an MDR1 inhibitor, verapamil. These data indicate that CDX2 directly regulates MDR1 gene expression through binding to elements in the promoter region. Thus, CDX2 is probably important for basal expression of MDR1, regulating drug excretion and absorption in the lower gastrointestinal tract, as well as for multidrug resistance to chemotherapy reagent in CDX2-positive gastrointestinal cancers.
Collapse
Affiliation(s)
- Yuji Takakura
- Department of Surgery, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang P, Jin T. Hydrogen peroxide stimulates nuclear import of the POU homeodomain protein Oct-1 and its repressive effect on the expression of Cdx-2. BMC Cell Biol 2010; 11:56. [PMID: 20637099 PMCID: PMC2913919 DOI: 10.1186/1471-2121-11-56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 07/16/2010] [Indexed: 11/24/2022] Open
Abstract
Background The ubiquitously expressed POU homeodomain protein Oct-1 serves as a sensor for stress induced by irradiation. We found recently that in pancreatic and intestinal endocrine cells, Oct-1 also functions as a sensor for cyclic AMP (cAMP). The caudal homeobox gene Cdx-2 is a transactivator of proglucagon (gcg) and pro-insulin genes. Oct-1 binds to Cdx-2 promoter and represses its expression. cAMP elevation leads to increased nuclear exclusion of Oct-1, associated with reduced recruitment of nuclear co-repressors to the Cdx-2 promoter and increased Cdx-2 expression. Results We show in this study that inducing oxidative stress by hydrogen peroxide (H2O2) increased nuclear Oct-1 content in both pancreatic α and β cell lines, as well as in a battery of other cells. This increase was then attributed to accelerated nuclear import of Oct-1, assessed by Fluorescence Recovery After Photobleaching (FRAP) using green fluorescence protein (EGFP) tagged Oct-1 molecule. H2O2 treatment was then shown to stimulate the activities of DNA-dependent protein kinase (DNA-PK) and c-jun N-terminal kinase (JNK). Finally, increased Oct-1 nuclear content upon H2O2 treatment in a pancreatic α cell line was associated with reduced Cdx-2 and gcg mRNA expression. Conclusion These observations suggest that Oct-1 functions as a sensor for both metabolic and stress/survival signaling pathways via altering its nuclear-cytoplasmic shuttling.
Collapse
Affiliation(s)
- Peixiang Wang
- Div of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, 10-354 Toronto Medical Discovery Tower, The MaRS Building, 101 College St, Toronto, Ontario M5G 1L7, Canada
| | | |
Collapse
|
14
|
Boyd M, Hansen M, Jensen TGK, Perearnau A, Olsen AK, Bram LL, Bak M, Tommerup N, Olsen J, Troelsen JT. Genome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2). J Biol Chem 2010; 285:25115-25. [PMID: 20551321 DOI: 10.1074/jbc.m109.089516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The CDX2 transcription factor is known to play a crucial role in inhibiting proliferation, promoting differentiation and the expression of intestinal specific genes in intestinal cells. The overall effect of CDX2 in intestinal cells has previously been investigated in conditional knock-out mice, revealing a critical role of CDX2 in the formation of the normal intestinal identity. The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. The ChIP-seq technique combines chromatin immunoprecipitation (ChIP) with next generation sequencing resulting in a high throughput experimental method of identifying direct targets of specific transcription factors. The method was applied to CDX2, leading to the identification of the direct binding of CDX2 to several known and novel target genes in the intestinal cell. Examination of the transcript levels of selected genes verified the regulatory role of CDX2 binding. The results place CDX2 as a key node in a transcription factor network controlling the proliferation and differentiation of intestinal cells.
Collapse
Affiliation(s)
- Mette Boyd
- Department of Cellular and Molecular Medicine, Panum Institute, Building 6.4, University of Copenhagen, Blegdamsvej 3. 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pathophysiology of intestinal metaplasia of the stomach: emphasis on CDX2 regulation. Biochem Soc Trans 2010; 38:358-63. [PMID: 20298183 DOI: 10.1042/bst0380358] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IM (intestinal metaplasia) of the stomach is a pre-neoplastic lesion that usually follows Helicobacter pylori infection and that confers increased risk for gastric cancer development. After setting the role played by CDX2 (Caudal-type homeobox 2) in the establishment of gastric IM, it became of foremost importance to unravel the regulatory mechanisms behind its de novo expression in the stomach. In the present paper, we review the basic pathology of gastric IM as well as the current knowledge on molecular pathways involved in CDX2 regulation in the gastric context.
Collapse
|
16
|
Grainger S, Savory JGA, Lohnes D. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 2010; 339:155-65. [PMID: 20043902 DOI: 10.1016/j.ydbio.2009.12.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022]
Abstract
Cdx1, Cdx2 and Cdx4 encode homeodomain transcription factors that are involved in vertebral anterior-posterior (AP) patterning. Cdx1 and Cdx2 are also expressed in the intestinal epithelium during development, suggesting a role in this tissue. Intestinal defects have not been reported in Cdx1 null mutants, while Cdx2 null mutants die at embryonic day 3.5 (E3.5), thus precluding assessment of the null phenotype at later stages. To circumvent this latter shortcoming, we have used a conditional Cre-lox strategy to inactivate Cdx2 in the intestinal epithelium. Using this approach, we found that ablation of Cdx2 at E13.5 led to a transformation of the small intestine to a pyloric stomach-like identity, although the molecular nature of the underlying mesenchyme remained unchanged. Further analysis of Cdx1-Cdx2 double mutants suggests that Cdx1 does not play a critical role in the development of the small intestine, at least after E13.5.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
17
|
Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, Huang Y, Su B, Li RK, Liu L, Zhang Y, Elsholtz HP, Hu J, Gaisano HY, Jin T. POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP. J Biol Chem 2009; 284:26456-65. [PMID: 19617623 PMCID: PMC2785334 DOI: 10.1074/jbc.m109.030668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Indexed: 01/30/2023] Open
Abstract
Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor. We found that it also functions as a repressor of Cdx-2, a proglucagon gene activator. Through a mechanism that involves the activation of exchange protein activated by cyclic AMP, elevation of cAMP leads to enhanced phosphorylation and nuclear exclusion of Oct-1 and reduced interactions between Oct-1 or nuclear co-repressors and the Cdx-2 gene promoter, detected by chromatin immunoprecipitation. In rat primary pancreatic islet cells, cAMP elevation also reduces nuclear Oct-1 content, which causes increased proglucagon and proinsulin mRNA expression. Our study therefore identifies a novel mechanism by which cAMP regulates hormone-gene expression and suggests that ubiquitously expressed Oct-1 may play a role in metabolic homeostasis by functioning as a sensor for cAMP.
Collapse
Affiliation(s)
| | - Qinghua Wang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Jane Sun
- From the Division of Cell and Molecular Biology and
- the Departments of Laboratory Medicine and Pathobiology and
| | - Jing Wu
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Hang Li
- From the Division of Cell and Molecular Biology and
| | - Nina Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Yachi Huang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda Su
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ren-ke Li
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ling Liu
- From the Division of Cell and Molecular Biology and
| | - Yi Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Jim Hu
- the Departments of Laboratory Medicine and Pathobiology and
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Herbert Y. Gaisano
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tianru Jin
- From the Division of Cell and Molecular Biology and
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Departments of Laboratory Medicine and Pathobiology and
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Department of Nutrition, School of Public Health, Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
18
|
Mutoh H, Hayakawa H, Sakamoto H, Sashikawa M, Sugano K. Transgenic Cdx2 induces endogenous Cdx1 in intestinal metaplasia of Cdx2-transgenic mouse stomach. FEBS J 2009; 276:5821-31. [PMID: 19725873 DOI: 10.1111/j.1742-4658.2009.07263.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cdx1 and Cdx2, which are transcription factors regulating normal intestinal development, have been studied as potential key molecules in the pathogenesis of the precancerous intestinal metaplasia of the human stomach. However, the regulation of Cdx1 expression in the intestinal metaplasia is poorly understood. Cdx2-expressing gastric mucosa of Cdx2-transgenic mouse stomach was replaced by intestinal metaplastic mucosa. The aim of this study was to investigate the following: (a) Cdx1 expression in the intestinal metaplastic mucosa of the Cdx2-transgenic mouse stomach; and (b) the relationship between Cdx1 and Cdx2. A mouse model of intestinal metaplasia, the Cdx2-transgenic mouse, was used to investigate Cdx1 gene expression by RT-PCR. DNA methylation profile analysis was performed by bisulfite sequencing, and the interaction of Cdx2 with the Cdx1 promoter was examined by chromatin immunoprecipitation assay, electrophoretic mobility shift assay, and luciferase reporter assays. Cdx2 mRNA was expressed in the Cdx2-transgenic mouse stomach. However, endogenous Cdx2 mRNA was not expressed in the intestinal metaplasia of the Cdx2-transgenic mouse stomach. On the other hand, endogenous Cdx1 mRNA and protein were expressed in the intestinal metaplasia of the Cdx2-transgenic mouse stomach. The Cdx1 promoter was unmethylated in the intestinal metaplasia of the Cdx2-transgenic mouse stomach. Chromatin immunoprecipitation assay and electrophoretic mobility shift assay showed that Cdx2 was bound to the Cdx1 promoter region in the intestinal metaplasia and the normal intestine. Cdx2 upregulated and siRNA-Cdx2 downregulated the transcriptional activity of the Cdx1 gene in the human gastric carcinoma cell lines AGS, MKN45, and MKN74. In conclusion, transgenic Cdx2 induced endogenous Cdx1 through the binding of Cdx2 to the unmethylated Cdx1 promoter region in the intestinal metaplasia of the Cdx2-transgenic mouse stomach.
Collapse
Affiliation(s)
- Hiroyuki Mutoh
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
19
|
Savory JG, Pilon N, Grainger S, Sylvestre JR, Béland M, Houle M, Oh K, Lohnes D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev Biol 2009; 330:114-22. [DOI: 10.1016/j.ydbio.2009.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/27/2022]
|
20
|
Rossant J, Tam PPL. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 2009; 136:701-13. [PMID: 19201946 DOI: 10.1242/dev.017178] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The investigation into lineage allocation and early asymmetries in the pre- and peri-implantation mouse embryo is gaining momentum. As we review here, new insights have been gained into the cellular and molecular events that lead to the establishment of the three lineages of the blastocyst, to the determination of the origin and the fates of the visceral endoderm in the peri-implantation mouse embryo, and to the generation of cellular and molecular activities that accompany the emergence of asymmetries in the pre-gastrulation embryo. We also discuss the continuing debate that surrounds the relative impacts of early lineage bias versus the stochastic allocation of cells with respect to the events that pattern the blastocyst and initiate its later asymmetries.
Collapse
Affiliation(s)
- Janet Rossant
- Research Institute, The Hospital for Sick Children and Departments of Molecular Genetics, and Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
21
|
Bai Z, Ye Y, Chen D, Shen D, Xu F, Cui Z, Wang S. Homeoprotein Cdx2 and nuclear PTEN expression profiles are related to gastric cancer prognosis. APMIS 2008; 115:1383-90. [PMID: 18184409 DOI: 10.1111/j.1600-0463.2007.00654.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the study was to analyze the expression of Cdx2 and nuclear PTEN in relation to clinicopathological features of gastric cancer tissue biopsies in order to determine the value of a combined analysis of Cdx2 and nuclear PTEN expression in distinguishing histological types and prognosis of gastric cancers. The expression of Cdx2 and nuclear PTEN was studied using immunohistochemistry of paraffin-embedded tumor specimens from 99 patients who underwent radical D2 gastrectomy between 1999 and 2001. Cdx2 and nuclear PTEN expression were detected in 39.6% (36 of 91) and 70.3% (64 of 91) of gastric cancer cases, respectively. There was a negative correlation between Cdx2 expression and Lauren classification (p=0.032), and between nuclear PTEN expression and lymph node metastasis (p=0.049). Patients with Cdx2-positive, or nuclear PTEN-positive expression had higher survival rates than those with Cdx2-negative or nuclear PTEN-negative expression (p<0.001 and p=0.003, respectively). Co-expression of Cdx2 and nuclear PTEN showed significantly lower levels in diffuse- or mixed-type cancers than in intestinal-type cancers (p=0.005). Multivariate analysis revealed that Cdx2 expression was an independent prognostic indicator of gastric cancer (p=0.014). These data suggest that combined analysis of Cdx2 and nuclear PTEN expression can have significant value in distinguishing histological types of gastric cancer and assessing prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Zhigang Bai
- Department of Gastroenterological Surgery, Surgical Oncology Laboratory, People's Hospital, Peking University, 100044 Beijing, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 2007; 313:614-29. [PMID: 18067887 DOI: 10.1016/j.ydbio.2007.10.054] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/08/2007] [Accepted: 10/31/2007] [Indexed: 01/14/2023]
Abstract
The first lineage decision during mouse development is the establishment of trophectoderm and inner cell mass lineages, morphologically distinguishable at the blastocyst stage. The Caudal-like transcription factor Cdx2 is required for repression of inner cell mass genes Oct4 and Nanog in the trophectoderm. Expression of Cdx2 in the trophectoderm is thus one of the earliest known events in lineage determination. However, it is not clear whether the Cdx2 expression pattern is the cause or the consequence of this first lineage decision. Here, we show that Cdx2 is initially ubiquitously expressed, and becomes progressively upregulated in outside, future trophectoderm cells prior to blastocyst formation. Ubiquitous Cdx2 expression begins around the time of cell polarization, but we show that cell polarization is independent of zygotic Cdx2. Finally, we show functionally that Cdx2 is downstream of lineage allocation since Cdx2 mutant cells, which show cell-autonomous defects in expression of Oct4, Nanog, and the trophectoderm marker Eomesodermin, do not preferentially contribute to inner cell mass in chimeric blastocysts. Cdx2 therefore appears to act downstream of the first lineage decision, suggesting that processes influencing lineage allocation or morphogenesis may regulate Cdx2 expression along the inside/outside axis of the embryo.
Collapse
|
23
|
Wen F, Tynan JA, Cecena G, Williams R, Múnera J, Mavrothalassitis G, Oshima RG. Ets2 is required for trophoblast stem cell self-renewal. Dev Biol 2007; 312:284-99. [PMID: 17977525 DOI: 10.1016/j.ydbio.2007.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 09/11/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
The Ets2 transcription factor is essential for the development of the mouse placenta and for generating signals for embryonic mesoderm and axis formation. Using a conditional targeted Ets2 allele, we show that Ets2 is essential for trophoblast stem (TS) cells self-renewal. Inactivation of Ets2 results in TS cell slower growth, increased expression of a subset of differentiation-associated genes and decreased expression of several genes implicated in TS self-renewal. Among the direct TS targets of Ets2 is Cdx2, a key master regulator of TS cell state. Thus Ets2 contributes to the regulation of multiple genes important for maintaining the undifferentiated state of TS cells and as candidate signals for embryonic development.
Collapse
Affiliation(s)
- Fang Wen
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang D, Zhuang L, Gao B, Shi CX, Cheung J, Liu M, Jin T, Wen XY. The Blimp-1 gene regulatory region directs EGFP expression in multiple hematopoietic lineages and testis in mice. Transgenic Res 2007; 17:193-203. [PMID: 17879142 DOI: 10.1007/s11248-007-9140-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The B lymphocyte-induced maturation protein-1 (Blimp-1) is a transcriptional repressor involved in B cell terminal differentiation. Recent studies suggest that it also plays roles in the differentiation of myeloid and T cells. Using reporter gene analysis, we found that the mouse Blimp-1 promoter constructs of 4.4 kb, 2.5 kb and 1.6 kb exerted similar transcription activity in vitro. To study the Blimp-1 promoter function in vivo, we generated a mouse transgenic line in which the expression of EGFP is driven by the 4.4 kb Blimp-1 promoter fragment. EGFP expression was detected in multiple hematopoietic lineages including hematopoietic progenitor cells (c-kit+), B cells at various developmental stages (B220+, IgM+, IgD+ and CD138+), myeloid cells (Gr1+ and CD11b+) and T cells (CD4+ and CD8+). Furthermore, we demonstrated, for the first time, that this Blimp-1 promoter fragment also drives EGFP expression in erythroid lineage (Ter119+) and embryonic livers. Finally, EGFP was expressed in the testes of transgenic mice in a cell-specific manner with expression weakly in primary spermatocytes and strongly in spermatids, but not in spermatogonia or spermatozoa. Our studies collectively suggest that Blimp-1 may play a general role in the development of hematopoietic lineages and a stage-specific role in spermatogenesis.
Collapse
Affiliation(s)
- Dingyan Wang
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, 620 University Avenue, Room 8-205, Toronto, ON, Canada, M5G 2C1
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Saegusa M, Hashimura M, Kuwata T, Hamano M, Wani Y, Okayasu I. A functional role of Cdx2 in beta-catenin signaling during transdifferentiation in endometrial carcinomas. Carcinogenesis 2007; 28:1885-92. [PMID: 17468517 DOI: 10.1093/carcin/bgm105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear beta-catenin is required for changes in morphology from glandular to morular phenotypes of endometrial carcinoma (Em Ca) cells, with activation of p14(ARF)/p53/p21(Waf1) and alteration of p16(INK4A)/pRb pathways. Having demonstrated previously that the homeodomain transcription factor Cdx2 increases markedly during intestinal epithelial cell differentiation, we have examined its effects in beta-catenin signaling during transdifferentiation of Em Ca cells. In clinical cases, Cdx2 immunoreactivity, along with increased mRNA signals, was found to overlap with nuclear accumulation of beta-catenin and p21(Waf1) in morules, demonstrating an inverse correlation with cell proliferation. In cell lines, over-expression of active form beta-catenin resulted in a significant increase in endogenous Cdx2 expression at both mRNA and protein levels. Furthermore, the Cdx2 promoter was activated by T-cell factor 4 (TCF4) -independent activated beta-catenin, as well as Cdx2 itself, through the region from -39 to +9 bp relative to transcription start site. Cells over-expressing exogenous Cdx2 showed high levels of p21(Waf1) expression due to stabilization of the mRNA status, resulting in significant decrease in the proliferation rate, in contrast to the lack of apparent changes in morphology. Moreover, transfected Cdx2 could inhibit beta-catenin/TCF4-mediated transcriptional activation of target genes, including p14(ARF) and cyclin D1, probably through indirect mechanisms. These data suggest that over-expression of Cdx2 mediated by nuclear beta-catenin and Cdx2 itself can cause an inhibition of Em Ca cell proliferation through up-regulation of p21(Waf1) expression, modulating beta-catenin/TCF4-mediated transcription. We therefore conclude that an association between Cdx2 and beta-catenin signaling may participate in induction of transdifferentiation of Em Ca cells.
Collapse
Affiliation(s)
- Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Wang WCH, Shashikant CS. Evidence for positive and negative regulation of the mouseCdx2 gene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:308-21. [PMID: 17358012 DOI: 10.1002/jez.b.21154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The caudal family of transcription factors specifies posterior structures during mouse development. We describe the cis-regulatory regions that control mouse Cdx2 expression in the posterior neural tube and mesoderm. An 11.4 kb genomic fragment directs reporter gene expression in a pattern reflecting endogenous Cdx2 expression. A crucial enhancer is located in a 1 kb fragment upstream of the Cdx2 transcriptional start site. This enhancer by itself directs reporter gene expression to more anterior levels in the neural tube compared to the endogenous Cdx2 expression, suggesting the presence of negative regulatory elements outside the 1 kb fragment. A second enhancer, located in the first intron directs robust expression to the posterior two-thirds of the developing embryo in a pattern that is ectopic to Cdx2 expression. The intronic enhancer activity is silenced in the context of the larger 11.4 kb reporter construct. Intron 1 contains two independent enhancers that specifically direct expression to mesoderm (MSE) and neural tube (NSE). Phylogenetic comparison of vertebrate Cdx2 sequences indicates several conserved regions of sequences within the three-enhancer regions. A transcription factor database search suggests potential binding sites for factors involved in FGF and Wnt signaling pathways.
Collapse
Affiliation(s)
- Wayne C H Wang
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
27
|
Liu T, Branch DR, Jin T. Pbx1 is a co-factor for Cdx-2 in regulating proglucagon gene expression in pancreatic A cells. Mol Cell Endocrinol 2006; 249:140-9. [PMID: 16574312 DOI: 10.1016/j.mce.2006.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 01/06/2023]
Abstract
A number of Hox and Hox-like homeodomain (HD) proteins have been previously shown to utilize members of the TALE HD protein family as co-factors in regulating gene expression. The caudal HD protein Cdx-2 is a transactivator for the proglucagon gene, expressed in pancreatic A cells and intestinal endocrine L cells. We demonstrate here that co-transfection of the TALE homeobox gene Pbx1 enhanced the activation of Cdx-2 on the proglucagon promoter in either the pancreatic A cell line InR1-G9 or BHK fibroblasts. The activation was observed for proglucagon promoter constructs with or without the binding motifs for Pbx1. Furthermore, mutating the penta-peptide motif (binding motif for TALE HD proteins) on Cdx-2 substantially attenuated its activation on proglucagon promoter, but not on the sucrase-isomaltase gene (SI) promoter, or its own (Cdx-2) promoter; suggesting that Cdx-2 utilizes Pbx1 as a co-factor for regulating the expression of selected target genes. Physical interaction between Cdx-2 and Pbx1 was demonstrated by co-immunoprecipitation as well as GST fusion protein pull-down. We suggest that this study reveals a novel function for Pbx1 in pancreatic islet physiology: regulating proglucagon expression by serving as a co-factor for Cdx-2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicine and Institute of Medical Science, University of Toronto, Rm. 410, 67 College Street, Toronto, Ont., Canada M5G 2M1
| | | | | |
Collapse
|
28
|
Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology 2006; 130:1191-206. [PMID: 16618413 DOI: 10.1053/j.gastro.2005.12.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/14/2005] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Although progression to adenocarcinoma at the gastroesophageal junction reflects exposure to acid and bile acids associated with reflux, mechanisms mediating this transformation remain undefined. Guanylyl cyclase C (GC-C), an intestine-specific tumor suppressor, may represent a mechanism-based marker and target of transformation at the gastroesophageal junction. The present studies examine the expression of GC-C in normal tissues and tumors from esophagus and stomach and mechanisms regulating its expression by acid and bile acids. METHODS Gene expression was examined by reverse-transcription polymerase chain reaction, promoter analysis, immunohistochemistry, immunoblotting, and functional analysis. Promoter transactivation was quantified by using luciferase constructs and mutational analysis. DNA binding of transcription factors was examined by electromobility shift analysis. RESULTS GC-C mRNA and protein were ectopically expressed in approximately 80% of adenocarcinomas arising in, but not in normal, esophagus and stomach. Similarly, in OE19 human esophageal cancer cells, deoxycholate and acid induced expression of GC-C. This was associated with the induction of expression of Cdx2, a transcription factor required for GC-C expression. In turn, induction of Cdx2 expression by deoxycholate was mediated by binding sites in the proximal promoter for nuclear factor kappaB (NF-kappaB). Furthermore, deoxycholate increased NF-kappaB activity, associated with nuclear translocation and Cdx2 promoter binding of the NF-kappaB subunit p50. Moreover, a dominant negative construct for NF-kappaB prevented deoxycholate-induced p50 nuclear translocation and activation of the Cdx2 promoter. CONCLUSIONS Transformation associated with reflux at the gastroesophageal junction reflects activation by bile acid and acid of a transcriptional program involving NF-kappaB and Cdx2, which mediate intestinal metaplasia and ectopic expression of GC-C.
Collapse
Affiliation(s)
- Philip R Debruyne
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2006; 123:917-29. [PMID: 16325584 DOI: 10.1016/j.cell.2005.08.040] [Citation(s) in RCA: 881] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 05/16/2005] [Accepted: 08/29/2005] [Indexed: 01/16/2023]
Abstract
Trophectoderm (TE), the first differentiated cell lineage of mammalian embryogenesis, forms the placenta, a structure unique to mammalian development. The differentiation of TE is a hallmark event in early mammalian development, but molecular mechanisms underlying this first differentiation event remain obscure. Embryonic stem (ES) cells can be induced to differentiate into the TE lineage by forced repression of the POU-family transcription factor, Oct3/4. We show here that this event can be mimicked by overexpression of Caudal-related homeobox 2 (Cdx2), which is sufficient to generate proper trophoblast stem (TS) cells. Cdx2 is dispensable for trophectoderm differentiation induced by Oct3/4 repression but essential for TS cell self-renewal. In preimplantation embryos, Cdx2 is initially coexpressed with Oct3/4 and they form a complex for the reciprocal repression of their target genes in ES cells. This suggests that reciprocal inhibition between lineage-specific transcription factors might be involved in the first differentiation event of mammalian development.
Collapse
Affiliation(s)
- Hitoshi Niwa
- Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Witek ME, Nielsen K, Walters R, Hyslop T, Palazzo J, Schulz S, Waldman SA. The putative tumor suppressor Cdx2 is overexpressed by human colorectal adenocarcinomas. Clin Cancer Res 2006; 11:8549-56. [PMID: 16361536 DOI: 10.1158/1078-0432.ccr-05-1624] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The current paradigm suggests that the homeodomain transcription factor Cdx2, which directs the development and maintenance of the intestinal epithelium, is a tumor suppressor in the colon and rectum. Although a cardinal property of tumor suppressors is their inactivation during carcinogenesis, the expression of Cdx2 in colorectal tumors has not been compared with that in normal mucosa. Here, Cdx2 expression and function was quantified in tumors and matched normal mucosa from patients with colorectal cancer. EXPERIMENTAL DESIGN Cdx2 expression was quantified by reverse transcription-PCR, immunoblot analysis, and immunohistochemistry. Transcriptional activity was explored by quantifying expression of an endogenous downstream target of Cdx2, guanylyl cyclase C (GCC), in tissues by quantitative reverse transcription-PCR and expression of exogenous Cdx2-specific luciferase promoter constructs in epithelial cells isolated from tumors and normal mucosa. RESULTS Most (>80%) colorectal tumors overexpressed Cdx2 mRNA and protein compared with normal mucosa, with median fold increases of 3.6 and 1.4, respectively (P<0.002). Concomitantly, immunohistochemistry revealed elevated levels of Cdx2 in nuclei of tumor cells compared with normal epithelial cells. Further, tumors exhibited increased expression of GCC compared with normal mucosa. Moreover, cells isolated from tumors overexpressed a Cdx2-specific luciferase promoter construct compared with normal mucosal cells. CONCLUSION These observations show, for the first time, the structural and functional overexpression of Cdx2 by human colorectal tumors compared with matched normal mucosa. They suggest that loss of Cdx2 expression or transcriptional activity is an infrequent event during tumorigenesis, which does not contribute to molecular mechanisms underlying initiation and progression of most colorectal tumors.
Collapse
Affiliation(s)
- Matthew E Witek
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Tolkunova E, Cavaleri F, Eckardt S, Reinbold R, Christenson LK, Schöler HR, Tomilin A. TheCaudal-Related Protein Cdx2 Promotes Trophoblast Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2006; 24:139-44. [PMID: 16210407 DOI: 10.1634/stemcells.2005-0240] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Besides holding great promise in clinics, embryonic stem (ES) cells represent a valuable tool for studying regulation of early developmental processes, such as cell differentiation in preimplantation embryos. The caudal-related homeobox protein Cdx2 is a transcriptional regulator essential for trophoblast lineage, functioning as early as implantation. Using an inducible system, we show that gain of Cdx2 function in ES cells triggers trophoblast-like morphological differentiation, accompanied by ploidy increase, onset of expression of trophoblast-specific markers, and loss of pluripotency-associated gene expression. These data provide an insight into the genetic network that controls lineage specification and functioning in early mammalian development.
Collapse
Affiliation(s)
- Elena Tolkunova
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Staloch LJ, Divine JK, Witten JT, Simon TC. C/EBP and Cdx family factors regulate liver fatty acid binding protein transgene expression in the small intestinal epithelium. ACTA ACUST UNITED AC 2005; 1731:168-78. [PMID: 16321657 DOI: 10.1016/j.bbaexp.2005.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/09/2005] [Accepted: 08/25/2005] [Indexed: 11/23/2022]
Abstract
A transgene constructed from the rat liver fatty acid binding protein gene (Fabp1) promoter is active in all murine small intestinal crypt and villus epithelial cells. Coincident Cdx and C/EBP transcription factor binding sites were identified spanning Fabp1 nucleotides -90 to -78. CDX-1, CDX-2, C/EBPalpha, and C/EBPbeta activated the Fabp1 transgene in CaCo-2 cells, and mutagenizing the -78 site prevented activation by these factors. CDX but not C/EBP factors bound to the site in vitro, although C/EBP factors competed with CDX factors for transgene activation. The -78 site adjoins an HNF-1 site, and CDX and C/EBP family factors cooperated with HNF-1alpha but not HNF-1beta to activate the transgene. Furthermore, CDX-1, CDX-2, C/EBPalpha, and C/EBPbeta bound to HNF-1alpha and HNF-1beta. The transgene with a mutagenized -78 site was silenced in vivo specifically in small intestinal crypt epithelial cells but remained active in villus cells. These results demonstrate functional interactions between HNF-1, C/EBP, and CDX family factors and suggest that these interactions may contribute to differential transcriptional regulation in the small intestinal crypt and villus compartments.
Collapse
Affiliation(s)
- Lora J Staloch
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
33
|
Reece-Hoyes JS, Keenan ID, Pownall ME, Isaacs HV. A consensus Oct1 binding site is required for the activity of the Xenopus Cdx4 promoter. Dev Biol 2005; 282:509-23. [PMID: 15950614 DOI: 10.1016/j.ydbio.2005.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/09/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Cdx homeodomain transcription factors have multiple roles in early vertebrate development. Furthermore, mis-regulation of Cdx expression has been demonstrated in metaplasias and cancers of the gut epithelium. Given the importance of Cdx genes in development and disease, the mechanisms underlying their expression are of considerable interest. We report an analysis of the upstream regulatory regions from the amphibian Xenopus laevis Cdx4 gene. We show that a GFP reporter containing 2.8 kb upstream of the transcription start site is expressed in the posterior of transgenic embryos. Deletion analysis of the upstream sequence reveals that a 247-bp proximal promoter fragment will drive posterior expression in transgenic embryos. We show that 63 bp of upstream sequence, that includes a consensus site for POU-domain octamer-binding proteins, retains significant promoter activity. Co-expression of the octamer-binding protein Oct1 induces expression from a Cdx4 reporter and mutation of the octamer site abolishes activity of the same reporter. We show that the octamer site is highly conserved in the promoters of the human, mouse, chicken, and zebrafish Cdx4 genes and within the promoters of amphibian Cdx1 and Cdx2. These data suggest a conserved function for octamer-binding proteins in the regulation of Cdx family members.
Collapse
|
34
|
Chen L, Wang P, Andrade CF, Zhao IY, Dubé PE, Brubaker PL, Liu M, Jin T. PKA independent and cell type specific activation of the expression of caudal homeobox gene Cdx-2 by cyclic AMP. FEBS J 2005; 272:2746-59. [PMID: 15943809 DOI: 10.1111/j.1742-4658.2005.04694.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cdx-2 is a transactivator for the proglucagon gene in pancreatic and intestinal endocrine cells. Cdx-2 is also expressed in differentiated intestinal epithelia of nonendocrine origin. Cdx-2-/- mice are embryonic lethal, while Cdx-2+/- mutants show multiple malfunctions including the formation of intestinal polyps. Within the polyps, the remaining wild type Cdx-2 allele ceases its expression, while the expression of both Cdx-2 and proglucagon in the endocrine cells remains unaltered, indicating that Cdx-2 could be haplo-insufficient for nonendocrine cells, but not for proglucagon producing endocrine cells. We propose that mechanisms underlying Cdx-2 expression and auto-regulation [Xu F, Li H & Jin T (1999), J Biol Chem274, 34310-34316] differ in these two types of cells. We show here that forskolin and cAMP upregulate Cdx-2 expression in proglucagon producing cells, but not in colon cancer cells and primary intestinal cell cultures. It is unlikely that the activation is mainly mediated by PKA, because the activation was observed in a PKA deficient cell line. Co-transfecting a dominant negative Ras expression plasmid substantially repressed the Cdx-2 promoter, in contrast to a previous finding that Ras is a negative factor for Cdx-2 expression in colon cancer cells. Furthermore, forskolin activated ERK1/2 phosphorylation in the endocrine cells, and attenuation of ERK1/2 phosphorylation by its inhibitor is associated with attenuated Cdx-2 expression. Finally, an Epac pathway specific cAMP analogue stimulated both ERK1/2 phosphorylation and Cdx-2 expression. Taken together, our observations suggest that Cdx-2 expression is regulated by the second messenger cAMP, cell-type specifically, via the Epac pathway.
Collapse
Affiliation(s)
- Liang Chen
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hinoi T, Gesina G, Akyol A, Kuick R, Hanash S, Giordano TJ, Gruber SB, Fearon ER. CDX2-regulated expression of iron transport protein hephaestin in intestinal and colonic epithelium. Gastroenterology 2005; 128:946-61. [PMID: 15825077 DOI: 10.1053/j.gastro.2005.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS The homeobox transcription factor CDX2 has a key role in intestinal development and differentiation. Mice heterozygous for Cdx2 inactivation develop colonic polyps with epithelial cells showing gastric or squamous differentiation. Loss of CDX2 expression is seen in some poorly differentiated colon carcinomas in humans. Conversely, ectopic CDX2 expression in the stomach of transgenic mice promotes intestinal metaplasia, and CDX2 expression often is seen in intestinal metaplasia in stomach and esophagus. To enhance knowledge of CDX2 function, we sought to define CDX2-regulated genes. METHODS HT-29 and WiDr colorectal cancer (CRC) cells with low endogenous CDX2 expression were transduced with a CDX2 expression vector, and gene expression changes were assessed by microarrays. RESULTS The gene for ceruloplasmin-related iron transport protein hephaestin (HEPH) was induced by CDX2 in HT-29 and WiDr. In other CRC lines and human and mice tissues, endogenous HEPH expression was linked to CDX2 expression. Activation of CDX2 rapidly induced HEPH expression, and RNA interference-mediated inhibition of CDX2 led to lower HEPH expression. Studies with HEPH reporter gene constructs and chromatin-immunoprecipitation approaches suggested that CDX2 directly regulates HEPH transcription. In CRC cells, CDX2 induction suppressed intracellular iron levels, consistent with the view that HEPH regulates iron export. CDX2 expression was modulated in response to changes in intracellular iron levels, implying a regulatory pathway in which increased iron levels lead to increased expression of CDX2 and HEPH and enhanced iron export. CONCLUSIONS CDX2 has a key role in regulating HEPH expression and iron levels in intestinal cells.
Collapse
Affiliation(s)
- Takao Hinoi
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fukushige T, Krause M. The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development 2005; 132:1795-805. [PMID: 15772130 DOI: 10.1242/dev.01774] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, striated muscle development depends on both the expression of members of the myogenic regulatory factor family (MRFs) and on extrinsic cellular cues, including Wnt signaling. The 81 embryonically born body wall muscle cells in C. elegans are comparable to the striated muscle of vertebrates. These muscle cells all express the gene hlh-1, encoding HLH-1 (CeMyoD) which is the only MRF-related factor in the nematode. However, genetic studies have shown that body wall muscle development occurs in the absence of HLH-1 activity, making the role of this factor in nematode myogenesis unclear. By ectopically expressing hlh-1 in early blastomeres of the C. elegans embryo, we show that CeMyoD is a bona fide MRF that can convert almost all cells to a muscle-like fate, regardless of their lineage of origin. The window during which ectopic HLH-1 can function is surprisingly broad, spanning the first 3 hours of development when cell lineages are normally established and non-muscle cell fate markers begin to be expressed. We have begun to explore the maternal factors controlling zygotic hlh-1 expression. We find that the Caudal-related homeobox factor PAL-1 can activate hlh-1 in blastomeres that either lack POP-1/TCF or that have down-regulated POP-1/TCF in response to Wnt/MAP kinase signaling. The potent myogenic activity of HLH-1 highlights the remarkable developmental plasticity of early C. elegans blastomeres and reveals the evolutionary conservation of MyoD function.
Collapse
Affiliation(s)
- Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
Guo RJ, Huang E, Ezaki T, Patel N, Sinclair K, Wu J, Klein P, Suh ER, Lynch JP. Cdx1 inhibits human colon cancer cell proliferation by reducing beta-catenin/T-cell factor transcriptional activity. J Biol Chem 2004; 279:36865-75. [PMID: 15215241 DOI: 10.1074/jbc.m405213200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cessation of proliferation and the induction of differentiation are highly coordinated processes that occur continuously in the intestinal crypts. The homeodomain transcription factors Cdx1 and Cdx2 regulate intestine-specific gene expression and enterocyte differentiation. Their roles in regulating proliferation are recognized but remain poorly understood. Previously, we demonstrated that Cdx1 expression diminished the proliferation of human colon cancer cells in part by reducing cyclin D1 gene expression. In order to elucidate further the molecular mechanisms underlying this phenomenon, we first hypothesized that Cdx1 or Cdx2 expression reduces colon cancer cell proliferation by inhibiting beta-catenin/T-cell factor (TCF) transcriptional activity. We report that Cdx1 or Cdx2 expression does inhibit beta-catenin/TCF transcriptional activity in colon cancer cells. This inhibitory effect is dose-dependent and is observed in different colon cancer cell lines, and the degree of inhibition correlates with the ability of Cdx1 to reduce cell proliferation. Cdx1 expression does not alter beta-catenin protein levels or intracellular distribution nor does it induce an inhibitory TCF isoform. We also find that Cdx1 expression is lost in Min mouse polyps with increased nuclear localization of beta-catenin, suggesting that Cdx1 does not support beta-catenin-mediated transformation. Finally, we show that colon cancer cells effectively reduce Cdx2-mediated inhibition of Wnt/beta-catenin/TCF transcriptional activity when compared with other model systems. This suggests that colon cancer and possibly crypt epithelial cells can modulate the effects of Cdx2 on beta-catenin signaling and proliferation. We conclude that Cdx1 and Cdx2 inhibit colon cancer cell proliferation by blocking beta-catenin/TCF transcriptional activity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Avian Proteins
- Blotting, Northern
- CDX2 Transcription Factor
- Cell Differentiation
- Cell Division
- Cell Line
- Cell Line, Tumor
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cytoskeletal Proteins/metabolism
- Dose-Response Relationship, Drug
- Enterocytes/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Genotype
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Humans
- Immunohistochemistry
- Intestinal Mucosa/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Phenotype
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Ribonucleases/metabolism
- Signal Transduction
- Trans-Activators/metabolism
- Transcription, Genetic
- Transfection
- Xenopus
- Xenopus Proteins
- beta Catenin
Collapse
Affiliation(s)
- Rong-Jun Guo
- Division of Gastroenterology, the Department of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Amesse LS, Moulton R, Zhang YM, Pfaff-Amesse T. Expression of HOX gene products in normal and abnormal trophoblastic tissue. Gynecol Oncol 2003; 90:512-8. [PMID: 13678718 DOI: 10.1016/s0090-8258(03)00357-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The expression pattern of three homeobox genes products, HOX A11, HOX B6, and HOX C6, was examined in normal human placental tissue and abnormal trophoblastic tissue derived from complete hydatidiform moles and choriocarcinoma tumors. We sought to determine whether expression of these gene products during different states of trophoblastic differentiation and proliferation is constant or demonstrates variation. Variation in expression of these respective homeobox genes may provide insight into predicting which molar tissues are likely to develop into choriocarcinoma tumors. METHODS Tissue sections from a total of 12 samples were studied. Among these, six full-term human placentas, three complete hydatidiform moles, and three choriocarcinoma tumors were examined for expression of the homeobox HOX A11, HOX B6, and HOX C6 gene products, using immunohistochemistry staining methods. RESULTS Expression of HOX homeobox gene products, HOX A11, HOX B6, and HOX C6, was detected in full-term human placenta and tissue from complete hydatiform moles. Abnormal trophoblasts from complete moles demonstrated an immunoreactivity expression pattern comparable to that of normal trophoblasts from term pregnancies. However, definitive expression of these respective homeobox genes was not identified in tissue obtained from choriocarcinoma tumors. CONCLUSION Variation in expression of HOX homeobox gene products, HOX A11, HOX B6, and HOX C6, was established in trophoblast tissue obtained from full-term human placentas, complete hydatiform moles, and choriocarcinoma tumors. This finding indicates that normal full-term trophoblasts and abnormal molar trophoblasts may share similar fundamental regulatory control mechanisms. The absence of definitive expression of these HOX gene products in trophoblastic cells derived from choriocarcinoma tumors indicates that while HOX A11, HOX B6, and HOX C6 genes may be involved in maintenance of some trophoblastic cell states, they may be either downregulated or have alterations in their expression in trophoblasts from choriocarcinoma tumors.
Collapse
Affiliation(s)
- Lawrence S Amesse
- Department of Obstetrics and Gynecology, Wright State University School of Medicine, Dayton, OH 45409, USA.
| | | | | | | |
Collapse
|
39
|
Gautier-Stein A, Domon-Dell C, Calon A, Bady I, Freund JN, Mithieux G, Rajas F. Differential regulation of the glucose-6-phosphatase TATA box by intestine-specific homeodomain proteins CDX1 and CDX2. Nucleic Acids Res 2003; 31:5238-46. [PMID: 12954759 PMCID: PMC203330 DOI: 10.1093/nar/gkg747] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glucose-6-phosphatase (Glc6Pase), the last enzyme of gluconeogenesis, is only expressed in the liver, kidney and small intestine. The expression of the Glc6Pase gene exhibits marked specificities in the three tissues in various situations, but the molecular basis of the tissue specificity is not known. The presence of a consensus binding site of CDX proteins in the minimal Glc6Pase gene promoter has led us to consider the hypothesis that these intestine-specific CDX factors could be involved in the Glc6Pase-specific expression in the small intestine. We first show that the Glc6Pase promoter is active in both hepatic HepG2 and intestinal CaCo2 cells. Using gel shift mobility assay, mutagenesis and competition experiments, we show that both CDX1 and CDX2 can bind the minimal promoter, but only CDX1 can transactivate it. Consistently, intestinal IEC6 cells stably overexpressing CDX1 exhibit induced expression of the Glc6Pase protein. We demonstrate that a TATAAAA sequence, located in position -31/-25 relating to the transcription start site, exhibits separable functions in the preinitiation of transcription and the transactivation by CDX1. Disruption of this site dramatically suppresses both basal transcription and the CDX1 effect. The latter may be restored by inserting a couple of CDX- binding sites in opposite orientation similar to that found in the sucrase-isomaltase promoter. We also report that the specific stimulatory effect of CDX1 on the Glc6Pase TATA-box, compared to CDX2, is related to the fact that CDX1, but not CDX2, can interact with the TATA-binding protein. Together, these data strongly suggest that CDX proteins could play a crucial role in the specific expression of the Glc6Pase gene in the small intestine. They also suggest that CDX transactivation might be essential for intestine gene expression, irrespective of the presence of a functional TATA box.
Collapse
Affiliation(s)
- Amandine Gautier-Stein
- INSERM U.449, Faculté de Médecine Laennec, Rue Guillaume Paradin, 69372 Lyon cedex 08, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Gastric cancer is one of the world's most common cancers. Its carcinogenic pathway is mainly associated with Helicobacter pylori infection, subsequent inflammation and tissue regeneration. During the regeneration process, cells deviate from the normal pathway of gastric differentiation to an 'intestinal phenotype', which is thought to be precancerous and associated with the intestinal type of gastric cancer. Inappropriate activation of intestine-specific transcription factors could contribute to the occurrence of the intestinal-type cancer of the stomach.
Collapse
Affiliation(s)
- Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
41
|
Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and beta-catenin in intestinal endocrine L cells. J Biol Chem 2003; 278:1380-7. [PMID: 12421827 DOI: 10.1074/jbc.m206006200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proglucagon gene encodes several peptide hormones that regulate blood glucose homeostasis, growth of the small intestine, and satiety. Among them, glucagon-like peptide 1 (GLP-1) lowers blood glucose levels in patients with diabetes and inhibits eating and drinking in fasted rats. Although proglucagon transcription and GLP-1 synthesis were shown to be activated by forskolin and other protein kinase A (PKA) activators, deleting or mutating the cAMP-response element (CRE) only moderately attenuates the proglucagon gene promoter in response to PKA activation. Therefore, PKA may activate proglucagon transcription via a mechanism independent of the CRE motif. Recently, PKA was shown to phosphorylate and inactivate GSK-3beta, a key mediator in the Wnt signaling pathway. We show here that lithium, an inhibitor of GSK-3beta, activates proglucagon gene transcription and stimulates GLP-1 synthesis in an intestinal endocrine L cell line, GLUTag. The activation was also observed in primary fetal rat intestinal cell (FRIC) cultures, but not in a pancreatic A cell line. Co-transfection of beta-catenin, a downstream effector of GSK-3beta activities, activated the proglucagon gene promoter without a CRE. Furthermore, forskolin and 8-Br-cAMP phosphorylated GSK-3beta at serine 9 in intestinal proglucagon-producing cells, and both lithium and forskolin induced the accumulation of free beta-catenin in these cell lines. These observations indicate that the proglucagon gene is among the targets of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zuyao Ni
- Division of Cell & Molecular Biology, Toronto General Research Institute, University Health Network, Ontario M5G 2M1, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Cdx homeodomain proteins in vertebral patterning. MURINE HOMEOBOX GENE CONTROL OF EMBRYONIC PATTERNING AND ORGANOGENESIS 2003. [DOI: 10.1016/s1569-1799(03)13003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
43
|
van Wering HM, Moyer L, Grand RJ, Krasinski SD. Novel interaction at the Cdx-2 binding sites of the lactase-phlorizin hydrolase promoter. Biochem Biophys Res Commun 2002; 299:587-93. [PMID: 12459179 DOI: 10.1016/s0006-291x(02)02697-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cdx-2 is an intestine-specific homeodomain-containing transcription factor that activates the promoters of intestinal genes through specific interactions with the consensus, TTTAT/C. Here, we demonstrate that Cdx-2 interacts with the lactase-phlorizin hydrolase (LPH) promoter at cis-element (CE)-LPH1a (-54 to -40 bp) as well as the LPH TATA-box. Affinity comparisons between SIF-1, CE-LPH1a, and the LPH TATA-box revealed that the TATA-box has the lowest affinity for Cdx-2. Characterization of CE-LPH1a using EMSAs revealed binding of a novel, non-Cdx-2 complex in multiple cell lines that bind to sequence that is different from that of the Cdx-2 binding site. Heterologous promoter analysis in transient transfection assays revealed a repressor function for this protein, and thus, it was designated as nuclear factor-LPH1/repressor (NF-LPH1/R). These data are consistent with the hypothesis that NF-LPH1/R represses LPH gene expression in non-Cdx-2-producing cells, and that this repression is released in cells that synthesize Cdx-2, such as those in the intestinal epithelium.
Collapse
Affiliation(s)
- Herbert M van Wering
- Division of Gastroenterology and Nutrition, Department of Medicine, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Moucadel V, Totaro MS, Dell CD, Soubeyran P, Dagorn JC, Freund JN, Iovanna JL. The homeobox gene Cdx1 belongs to the p53-p21(WAF)-Bcl-2 network in intestinal epithelial cells. Biochem Biophys Res Commun 2002; 297:607-15. [PMID: 12270138 DOI: 10.1016/s0006-291x(02)02250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because the Cdx1 homeobox gene stimulates proliferation and induces transformation and tumorigenesis, it has been investigated whether it is involved in the complex network comprising p53, p21(WAF), and Bcl-2 in intestinal epithelial cells. Non-transformed intestinal IEC-6 cells and colon adenocarcinoma SW480 cells were used to study the putative molecular relationship between Cdx1, p53, p21(WAF), and Bcl-2. Wild-type p53 inhibited the transcriptional activity of the Cdx1 promoter whereas the inactive mutant p53(mut22/23) had no effect. Induction of Cdx1 expression had no direct effect on p53 expression and activity. However, it inhibited the transcriptional activity of the p21(WAF) promoter through Cdx1 binding to the p21(WAF) TATA-box and increased the transcriptional activity of the Bcl-2 promoter P2 through a consensus Cdx-binding site. Finally, compared to control cells, Cdx1-overexpressing cells were more resistant to adriamycin-induced apoptosis, probably because they do not show concomitant decrease in endogenous Bcl-2 level. In conclusion, Cdx1 is a negatively regulated target of p53 in intestinal cells. Its regulation of p21(WAF) and Bcl-2 is opposite to that of p53 and is p53-independent. Cdx1 belongs to the regulatory networks of apoptosis, proliferation, and differentiation. These results emphasize the oncogenic potential of Cdx1.
Collapse
Affiliation(s)
- Virginie Moucadel
- Centre de Recherche INSERM, EMI 0116, 163 av de Luminy, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang YM, Xu B, Rote N, Peterson L, Amesse LS. Expression of homeobox gene transcripts in trophoblastic cells. Am J Obstet Gynecol 2002; 187:24-32. [PMID: 12114884 DOI: 10.1067/mob.2002.122850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study was conducted to examine the dynamics of homeobox gene expression in the differentiation of trophoblasts as a key to the understanding of the regulatory mechanisms that are involved in placental development. STUDY DESIGN Expression of homeobox genes was examined in primary trophoblastic cells and in the BeWo choriocarcinoma model cell lines by molecular and immunocytochemistry techniques. RESULTS We demonstrated the expression of 3 homeobox genes (HOX B6, HOX C6, and HOX A11) in primary trophoblastic cells. BeWo cells showed an expression pattern similar to that of the primary cell lines. In both primary trophoblasts and BeWo cells, the HOX A11 gene, but not the HOX B6 or HOX C6 genes, were found to down-regulate with differentiation from single- to multinucleate giant cells. CONCLUSION This study demonstrates a novel expression pattern for HOX A11 gene in trophoblastic differentiation and suggests that the down-regulation of HOX A11 may be necessary for the differentiation of cytotrophoblasts into syncytiotrophoblasts.
Collapse
Affiliation(s)
- Yue Mei Zhang
- Department of Obstetrics/Gynecology, Wright State University School of Medicine and College of Science and Mathematics, Dayton, Ohio 45409-2793, USA
| | | | | | | | | |
Collapse
|
46
|
Sakaguchi T, Gu X, Golden HM, Suh E, Rhoads DB, Reinecker HC. Cloning of the human claudin-2 5'-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1alpha. J Biol Chem 2002; 277:21361-70. [PMID: 11934881 DOI: 10.1074/jbc.m110261200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Claudin-2 is a structural component of tight junctions in the kidneys, liver, and intestine, but the mechanisms regulating its expression have not been defined. The 5'-flanking region of the claudin-2 gene contains binding sites for intestine-specific Cdx homeodomain proteins and hepatocyte nuclear factor (HNF)-1, which are conserved in human and mouse. Both Cdx1 and Cdx2 activated the claudin-2 promoter in the human intestinal epithelial cell line Caco-2. HNF-1alpha augmented the Cdx2-induced but not Cdx1-induced transcriptional activation of the human claudin-2 promoter. In mice, HNF-1alpha was required for claudin-2 expression in the villus epithelium of the ileum and within the liver but not in the kidneys, indicating an organ-specific function of HNF-1alpha in the regulation of claudin-2 gene expression. Tight junction structural components, which determine epithelial polarization and intestinal barrier function, can be regulated by homeodomain proteins that control the differentiation of the intestinal epithelium.
Collapse
Affiliation(s)
- Takanori Sakaguchi
- Gastrointestinal Unit, Department of Medicine, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
47
|
Gerrish K, Cissell MA, Stein R. The role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional regulation of the pdx-1 gene. J Biol Chem 2001; 276:47775-84. [PMID: 11590182 DOI: 10.1074/jbc.m109244200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The PDX-1 homeodomain transcription factor regulates pancreatic development and adult islet beta cell function. Expression of the pdx-1 gene is almost exclusively localized to beta cells within the adult endocrine pancreas. Islet beta cell-selective transcription is controlled by evolutionarily conserved subdomain sequences (termed Areas I (-2839 to -2520 base pairs (bp)), II (-2252 to -2023 bp), and III (-1939 to -1664 bp)) found within the 5'-flanking region of the pdx-1 gene. Areas I and II are independently capable of directing beta cell-selective reporter gene activity in transfection assays, with Area I-mediated stimulation dependent upon binding of hepatic nuclear factor 3 beta (HNF3 beta), a key regulator of islet beta cell function. To identify other transactivators of Area I, highly conserved sequence segments within this subdomain were mutagenized, and their effect on activation was determined. Several of the sensitive sites were found by transcription factor data base analysis to potentially bind endodermally expressed transcription factors, including HNF1 alpha (-2758 to -2746 bp, Segment 2), HNF4 (-2742 to -2730 bp, Segment 4; -2683 to -2671 bp, Segment 7-8), and HNF6 (-2727 to -2715 bp, Segment 5). HNF1 alpha, but not HNF4 and HNF6, binds specifically to Area I sequences in vitro. HNF1 alpha was also shown to specifically activate Area I-driven transcription through Segment 2. In addition, PDX-1 itself was found to stimulate Area I activation. The chromatin immunoprecipitation assay performed with PDX-1 antisera also demonstrated that this factor bound to Area I within the endogenous pdx-1 gene in beta cells. Our results indicate that regulatory factors binding to Area I conserved sequences contribute to the selective transcription pattern of the pdx-1 gene and that control is mediated by endodermal regulators like HNF1 alpha, HNF3 beta, and PDX-1.
Collapse
Affiliation(s)
- K Gerrish
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37215, USA
| | | | | |
Collapse
|
48
|
Prinos P, Joseph S, Oh K, Meyer BI, Gruss P, Lohnes D. Multiple pathways governing Cdx1 expression during murine development. Dev Biol 2001; 239:257-69. [PMID: 11784033 DOI: 10.1006/dbio.2001.0446] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cdx1 encodes a mammalian homeobox gene involved in vertebral patterning. Retinoic acid (RA) is likewise implicated in vertebral patterning. We have previously shown that Cdx1 is a direct retinoid target gene, suggesting that Cdx1 may convey some of the effects of retinoid signaling. However, RA appears to be essential for only early stages of Cdx1 expression, and therefore other factors must be involved in maintaining later stages of expression. Based on function and pattern of expression, Wnt family members, in particular Wnt3a, are candidates for regulation of expression of Cdx1. Consistent with this, we confirm prior results which demonstrated that Cdx1 can be directly regulated by Wnt signaling, and identify functional LEF/TCF response motifs essential for this response. We also find that Cdx1 expression is markedly attenuated in a stage- and tissue-specific fashion in the Wnt3a hypomorph vestigial tail, and present data demonstrating that Wnt3a and RA synergize strongly to activate Cdx1. Finally, we show that Cdx1 positively regulates its own expression. These data prompt a model whereby retinoid and Wnt signaling function directly and synergistically to initiate Cdx1 expression in the caudal embryo. Expression is then maintained, at least in part, by an autoregulatory mechanism at later stages.
Collapse
Affiliation(s)
- P Prinos
- Institut de Recherches Cliniques de Montréal, 110 ave des Pins, ouest, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|
49
|
Jin T, Li H. Pou homeodomain protein OCT1 is implicated in the expression of the caudal-related homeobox gene Cdx-2. J Biol Chem 2001; 276:14752-8. [PMID: 11278400 DOI: 10.1074/jbc.m008277200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caudal homeobox gene Cdx-2 is a transcriptional activator for approximately a dozen genes specifically expressed in pancreatic islets and intestinal cells. It is also involved in preventing the development of colorectal tumors. Studies using "knockout" approaches demonstrated that Cdx-2 is haplo-insufficient in certain tissues including the intestines but not the pancreatic islets. The mechanisms, especially transcription factors, which regulate Cdx-2 expression, are virtually unknown. We found previously that Cdx-2 expression could be autoregulated in a cell type-specific manner. In this study, we located an octamer (OCT) binding site within the mouse Cdx-2 gene promoter. This site, designated as Cdx-2(P)OCT, is involved in the expression of the Cdx-2 promoter. Both pancreatic and intestinal cell lines were found to express a number of POU (OCT binding) homeodomain proteins examined by electrophoretic mobility shift assay. However, it appears that Cdx-2(P)OCT interacts only with OCT1 in the nuclear extracts of the intestinal cell lines examined, although it interacts with OCT1 and at least two other POU proteins that are to be identified in the pancreatic InR1-G9 cell nuclear extract. Co-transfecting OCT1 cDNA but not five other POU gene cDNAs activates the Cdx-2 promoter in the pancreatic InR1-G9 and the intestinal Caco-2 cell lines. In contrast, Cdx-2(P)OCT cannot act as an enhancer element if it is fused to a thymidine kinase promoter. Furthermore, Cdx-2(P)OCT-thymidine kinase fusion promoters cannot be activated by OCT1 co-transfection. Cell type-specific expression, cell type-specific binding affinity of POU proteins to the cis-element Cdx-2(P)OCT, and the DNA content-dependent activation of Cdx-2 promoter via Cdx-2(P)OCT by OCT1 suggest that POU proteins play important and complicated roles in modulating Cdx-2 expression in cell type-specific manners.
Collapse
Affiliation(s)
- T Jin
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2M1, Canada.
| | | |
Collapse
|
50
|
Ohgishi M, Oka A, Morelli G, Ruberti I, Aoyama T. Negative autoregulation of the Arabidopsis homeobox gene ATHB-2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:389-398. [PMID: 11260495 DOI: 10.1046/j.1365-313x.2001.00966.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis homeobox gene ATHB-2 is tightly regulated by light signals, and is thought to direct morphological changes during shade avoidance responses. To understand how ATHB-2 mediates light signals in plant morphogenesis, we investigated its transcriptional network. We constructed a gene encoding a chimeric transcription factor (HD-Zip-2-V-G) that is expected to activate target genes of ATHB-2 in a glucocorticoid-dependent manner. In transgenic Arabidopsis plants expressing HD-Zip-2-V-G, glucocorticoid treatment activates the ATHB-2 gene itself, independent of de novo protein synthesis. An in vitro DNase I-footprinting experiment showed that recombinant ATHB-2 protein specifically bound to an ATHB-2 promoter region. These complementary results indicate that ATHB-2 recognizes its own promoter. Consistent with the fact that ATHB-2 itself has been shown to act as a repressor, expression of the endogenous ATHB-2 gene was repressed in transgenic plants overexpressing an ATHB-2 transgene. Moreover, target-gene analysis using the HD-Zip-2-V-G suggested that ATHB-2 recognizes other HD-Zip II subfamily genes. We conclude that ATHB-2 has a negative autoregulatory loop and may be involved in a complicated transcriptional network involving paralogous genes, as is the case with animal homeobox genes.
Collapse
Affiliation(s)
- M Ohgishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | |
Collapse
|