1
|
Zhang J, Zhang X, Li L, Bai L, Gao Y, Yang Y, Wang L, Qiao Y, Wang X, Xu JT. Activation of Double-Stranded RNA-Activated Protein Kinase in the Dorsal Root Ganglia and Spinal Dorsal Horn Regulates Neuropathic Pain Following Peripheral Nerve Injury in Rats. Neurotherapeutics 2022; 19:1381-1400. [PMID: 35655111 PMCID: PMC9587175 DOI: 10.1007/s13311-022-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-activated kinase (PKR) is an important component in inflammation and immune dysfunction. However, the role of PKR in neuropathic pain remains unclear. Here, we showed that lumbar 5 spinal nerve ligation (SNL) led to a significant increase in the level of phosphorylated PKR (p-PKR) in both the dorsal root ganglia (DRG) and spinal dorsal horn. Images of double immunofluorescence staining revealed that p-PKR was expressed in myelinated A-fibers, unmyelinated C-fibers, and satellite glial cells in the DRG. In the dorsal horn, p-PKR was located in neuronal cells, astrocytes, and microglia. Data from behavioral tests showed that intrathecal (i.t.) injection of 2-aminopurine (2-AP), a specific inhibitor of PKR activation, and PKR siRNA prevented the reductions in PWT and PWL following SNL. Established neuropathic pain was also attenuated by i.t. injection of 2-AP and PKR siRNA, which started on day 7 after SNL. Prior repeated i.t. injections of PKR siRNA prevented the SNL-induced degradation of IκBα and IκBβ in the cytosol and the nuclear translocation of nuclear factor κB (NF-κB) p65 in both the DRG and dorsal horn. Moreover, the SNL-induced increase in interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production was diminished by this treatment. Collectively, these results suggest that peripheral nerve injury-induced PKR activation via NF-κB signaling-regulated expression of proinflammatory cytokines in the DRG and dorsal horn contributes to the pathogenesis of neuropathic pain. Our findings suggest that pharmacologically targeting PKR might be an effective therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
3
|
Mao D, Reuter CM, Ruzhnikov MRZ, Beck AE, Farrow EG, Emrick LT, Rosenfeld JA, Mackenzie KM, Robak L, Wheeler MT, Burrage LC, Jain M, Liu P, Calame D, Küry S, Sillesen M, Schmitz-Abe K, Tonduti D, Spaccini L, Iascone M, Genetti CA, Koenig MK, Graf M, Tran A, Alejandro M, Lee BH, Thiffault I, Agrawal PB, Bernstein JA, Bellen HJ, Chao HT. De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation. Am J Hum Genet 2020; 106:570-583. [PMID: 32197074 PMCID: PMC7118694 DOI: 10.1016/j.ajhg.2020.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/28/2020] [Indexed: 02/03/2023] Open
Abstract
EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.
Collapse
Affiliation(s)
- Dongxue Mao
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chloe M Reuter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 94305, USA; Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Maura R Z Ruzhnikov
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA; Division of Medical Genetics, Department of Pediatrics, Stanford Medicine, Stanford, CA 94305, USA
| | - Anita E Beck
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Emily G Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospitals, Kansas City, MO 64108, USA
| | - Lisa T Emrick
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Laurie Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Mahim Jain
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Daniel Calame
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Sébastien Küry
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes 44007, France; INSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes 44007, France
| | - Martin Sillesen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Klaus Schmitz-Abe
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Davide Tonduti
- Unit of Child Neurology, V. Buzzi Children's Hospital, Milan 20154, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children's Hospital, University of Milan, Milan 20154, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo 24127, Italy
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mary K Koenig
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Madeline Graf
- Stanford Cancer Genetics, Stanford Healthcare, Stanford, CA 94305, USA
| | - Alyssa Tran
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Brendan H Lee
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO 64108, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan A Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Program in Development, Disease Models, and Therapeutics, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA.
| | - Hsiao-Tuan Chao
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models, and Therapeutics, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Halliday M, Hughes D, Mallucci GR. Fine-tuning PERK signaling for neuroprotection. J Neurochem 2017; 142:812-826. [PMID: 28643372 PMCID: PMC5601187 DOI: 10.1111/jnc.14112] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/06/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Abstract
Protein translation and folding are tightly controlled processes in all cells, by proteostasis, an important component of which is the unfolded protein response (UPR). During periods of endoplasmic reticulum stress because of protein misfolding, the UPR activates a coordinated response in which the PERK branch activation restricts translation, while a variety of genes involved with protein folding, degradation, chaperone expression and stress responses are induced through signaling of the other branches. Chronic overactivation of the UPR, particularly the PERK branch, is observed in the brains of patients in a number of protein misfolding neurodegenerative diseases, including Alzheimer's, and Parkinson's diseases and the tauopathies. Recently, numerous genetic and pharmacological studies in mice have demonstrated the effectiveness of inhibiting the UPR for eliciting therapeutic benefit and boosting memory. In particular, fine-tuning the level of PERK inhibition to provide neuroprotection without adverse side effects has emerged as a safe, effective approach. This includes the recent discovery of licensed drugs that can now be repurposed in clinical trials for new human treatments for dementia. This review provides an overview of the links between UPR overactivation and neurodegeneration in protein misfolding disorders. It discusses recent therapeutic approaches targeting this pathway, with a focus on treatments that fine-tune PERK signaling.
Collapse
Affiliation(s)
| | | | - Giovanna R. Mallucci
- MRC Toxicology UnitLeicesterUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeUK
- UK Dementia Research Institute at University of CambridgeIsland Research BuildingCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
5
|
Human Herpesvirus 6A Exhibits Restrictive Propagation with Limited Activation of the Protein Kinase R-eIF2α Stress Pathway. J Virol 2017; 91:JVI.02120-16. [PMID: 28202752 PMCID: PMC5391470 DOI: 10.1128/jvi.02120-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/06/2017] [Indexed: 11/28/2022] Open
Abstract
The eIF2α protein plays a critical role in the regulation of translation. The production of double-stranded RNA (dsRNA) during viral replication can activate protein kinase R (PKR), which phosphorylates eIF2α, leading to inhibition of the initial step of translation. Many viruses have evolved gene products targeting the PKR-eIF2a pathway, indicating its importance in antiviral defense. In the present study, we focused on alternations of PKR-eIF2a pathway during human herpesvirus 6A (HHV-6A) infection while monitoring viral gene expression and infectious viral yields. We have found increased phosphorylated PKR as well as phosphorylated eIF2α coincident with accumulation of the late gp82-105 viral protein. The level of total PKR was relatively constant, but it decreased by 144 h postinfection. The phosphorylation of eIF2a led to a moderate increase in activating transcription factor 4 (ATF4) accumulation, indicating moderate inhibition of protein translation during HHV-6A infection. The overexpression of PKR led to decreased viral propagation coincident with increased accumulation of phosphorylated PKR and phosphorylated eIF2a. Moreover, addition of a dominant negative PKR mutant resulted in a moderate increase in viral replication. HHV-6A exhibits relatively low efficiency of propagation of progeny virus secreted into the culture medium. This study suggests that the replicative strategy of HHV-6A involves a mild infection over a lengthy life cycle in culture, while preventing severe activation of the PKR-eIF2α pathway. IMPORTANCE Human herpesvirus 6A (HHV-6A) and HHV-6B are common, widely prevalent viruses, causing from mild to severe disease. Our study focused on the PKR-eIF2α stress pathway, which limits viral replication. The HHV-6 genome carries multiple genes transcribed from the two strands, predicting accumulation of dsRNAs which can activate PKR and inhibition of protein synthesis. We report that HHV-6A induced the accumulation of phosphorylated PKR and phosphorylated eIF2α and a moderate increase of activating transcription factor 4 (ATF4), which is known to transcribe stress genes. Overexpression of PKR led to increased eIF2α phosphorylation and decreased viral replication, whereas overexpression of a dominant negative PKR mutant resulted in a moderate increase in viral replication. These results suggest that the HHV-6A replication strategy involves restricted activation of the PKR-eIF2α pathway, partial translation inhibition, and lower yields of infectious virus. In essence, HHV-6A limits its own replication due to the inability to bypass the eIF2α phosphorylation.
Collapse
|
6
|
Slomiany B, Piotrowski J, Slomiany A. Effect of ebrotidine on Helicobacter pylori lipopolysaccharide-induced up-regulation of endothelin-1 in gastric mucosa. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050050401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helicobacter pylori is recognized as a primary etiologic factor in the development of gastric disease. We applied the animal model of H. pylori lipopolysaccharide-induced acute gastritis to study the effect of the anti-ulcer agent, ebrotidine, on the course of mucosal inflammatory responses by analyzing over a period of 10 days the extent of epithelial cell apoptosis and the mucosal expression of endothelin-1 (ET-1), tumor necrosis factor α (TNFα), and the activity of constitutive (cNOS) and inducible (NOS-2) nitric oxide synthase. Rats, pretreated twice daily for 3 days with ebrotidine at 100 mg/kg or the vehicle, were subjected to intragastric application of H. pylori lipopolysaccharide at 50 µg/animal, and after 2, 4, and 10 additional days on the drug or vehicle regimen their mucosal tissue was used for histological and biochemical assessment. In the absence of ebrotidine, H. pylori lipopolysaccharide elicited within 2 days extensive mucosal inflammation accompanied by a significant increase in epithelial cell apoptosis (13.5-fold) and the mucosal expression of TNFα (11.7-fold), NOS-2 (9.3-fold), and ET-1 (2.9-fold), while cNOS activity showed a 5.5-fold decrease. The extent of mucosal inflammatory involvement reached a maximum by the 4th day and showed a decline by the 10th day. This was reflected in a marked reduction in epithelial cell apoptosis, a decrease in the mucosal expression of ET-1, TNFα and NOS-2, and the recovery in cNOS activity. Treatment with ebrotidine caused a reduction in the extent of mucosal inflammatory involvement elicited by the lipopolysaccharide and this effect of ebrotidine was reflected at the end of a 10 day period in a 61.3% reduction in inflammation, and a decrease in apoptosis (83%), TNFα (51.8%), ET-1 (27.6%) and NOS-2 (62.9%), while the expression of cNOS increased by 78.6%. The findings indicate that an increase in the ET-1 level elicited by H. pylori lipopolysaccharide, combined with a decline in cNOS, trigger the induction of TNFα which propagates the inflammatory process. We also show that ebrotidine is capable of suppressing the H. pylori-induced gastric mucosal inflammatory responses.
Collapse
Affiliation(s)
- B.L. Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA,
| | - J. Piotrowski
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | - A. Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
7
|
Krishna KH, Vadlamudi Y, Kumar MS. Viral Evolved Inhibition Mechanism of the RNA Dependent Protein Kinase PKR's Kinase Domain, a Structural Perspective. PLoS One 2016; 11:e0153680. [PMID: 27088597 PMCID: PMC4835081 DOI: 10.1371/journal.pone.0153680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
The protein kinase PKR activated by viral dsRNA, phosphorylates the eIF2α, which inhibit the mechanism of translation initiation. Viral evolved proteins mimicking the eIF2α block its phosphorylation and help in the viral replication. To decipher the molecular basis for the PKR’s substrate and inhibitor interaction mechanisms, we carried the molecular dynamics studies on the catalytic domain of PKR in complex with substrate eIF2α, and inhibitors TAT and K3L. The studies conducted show the altered domain movements of N lobe, which confers open and close state to the substrate-binding cavity. In addition, PKR exhibits variations in the secondary structural transition of the activation loop residues, and inter molecular contacts with the substrate and the inhibitors. Phosphorylation of the P+1 loop at the Thr-451 increases the affinity of the binding proteins exhibiting its role in the phosphorylation events. The implications of structural mechanisms uncovered will help to understand the basis of the evolution of the host-viral and the viral replication mechanisms.
Collapse
Affiliation(s)
- K. Hari Krishna
- Centre for Bioinformatics, Pondicherry University, Kalapet, Pondicherry, India
| | | | - Muthuvel Suresh Kumar
- Centre for Bioinformatics, Pondicherry University, Kalapet, Pondicherry, India
- * E-mail:
| |
Collapse
|
8
|
Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci 2013; 70:3493-511. [PMID: 23354059 PMCID: PMC11113696 DOI: 10.1007/s00018-012-1252-6] [Citation(s) in RCA: 646] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2). Phosphorylation of eIF2α on serine 51 results in a severe decline in de novo protein synthesis and is an important strategy in the cell's armory against stressful insults including viral infection, the accumulation of misfolded proteins, and starvation. The phosphorylation of eIF2α is carried out by a family of four kinases, PERK (PKR-like ER kinase), PKR (protein kinase double-stranded RNA-dependent), GCN2 (general control non-derepressible-2), and HRI (heme-regulated inhibitor). Each primarily responds to a distinct type of stress or stresses. Thus, while significant sequence similarity exists between the eIF2α kinases in their kinase domains, underlying their common role in phosphorylating eIF2α, additional unique features determine the regulation of these four proteins, that is, what signals activate them. This review will describe the structure of each eIF2α kinase and discuss how this is linked to their activation and function. In parallel to the general translational attenuation elicited by eIF2α kinase activation the translation of stress-induced mRNAs, most notably activating transcription factor 4 (ATF4) is enhanced and these set in motion cascades of gene expression constituting the integrated stress response (ISR), which seek to remediate stress and restore homeostasis. Depending on the cellular context and concurrent signaling pathways active, however, translational attenuation can also facilitate apoptosis. Accordingly, the role of the kinases in determining cell fate will also be discussed.
Collapse
Affiliation(s)
- Neysan Donnelly
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
- Present Address: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, 82152 Germany
| | - Adrienne M. Gorman
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sanjeev Gupta
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
9
|
The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog 2013; 9:e1003557. [PMID: 23990781 PMCID: PMC3749959 DOI: 10.1371/journal.ppat.1003557] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/01/2013] [Indexed: 01/08/2023] Open
Abstract
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR(-/-) mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.
Collapse
|
10
|
Kippner LE, Finn NA, Shukla S, Kemp ML. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase. BMC SYSTEMS BIOLOGY 2011; 5:164. [PMID: 21995976 PMCID: PMC3199260 DOI: 10.1186/1752-0509-5-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. RESULTS Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. CONCLUSIONS Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off-target effects on dynamic responses to oxidative stress due to the changes in species concentrations.
Collapse
Affiliation(s)
- Linda E Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
11
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Chen HM, Wang L, D’Mello SR. A chemical compound commonly used to inhibit PKR, {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g] benzothiazol-7-one}, protects neurons by inhibiting cyclin-dependent kinase. Eur J Neurosci 2008; 28:2003-16. [PMID: 19046382 PMCID: PMC3320856 DOI: 10.1111/j.1460-9568.2008.06491.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of the double-stranded RNA-dependent protein kinase (PKR) has been implicated in the pathogenesis of several neurodegenerative diseases. We find that a compound widely used as a pharmacological inhibitor of this enzyme, referred to as PKR inhibitor (PKRi), {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g]benzothiazol-7-one}, protects against the death of cultured cerebellar granule and cortical neurons. PKRi also prevents striatal neurodegeneration and improves behavioral outcomes in a chemically induced mouse model of Huntington's disease. Surprisingly, PKRi fails to block the phosphorylation of eIF2alpha, a downstream target of PKR, and does not reduce the autophosphorylation of PKR enzyme immunoprecipitated from neurons. Furthermore, neurons lacking PKR are fully protected from apoptosis by PKRi, demonstrating that neuroprotection by this compound is not mediated by PKR inhibition. Using in vitro kinase assays we investigated whether PKRi affects any other protein kinase. These analyses demonstrated that PKRi has no major inhibitory effect on pro-apoptotic kinases such as the c-Jun N-terminal kinases, the p38 MAP kinases and the death-associated protein kinases, or on other kinases including c-Raf, MEK1, MKK6 and MKK7. PKRi does, however, inhibit the activity of certain cyclin-dependent kinases (CDKs), including CDK1, CDK2 and CDK5 both in vitro and in low potassium-treated neurons. Consistent with its inhibitory action on mitotic CDKs, the treatment of HT-22 and HEK293T cell lines with PKRi sharply reduces the rate of cell cycle progression. Taken together with the established role of CDK activation in the promotion of neurodegeneration, our results suggest that PKRi exerts its neuroprotective action by inhibiting CDK.
Collapse
Affiliation(s)
- Hsin-Mei Chen
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Rd., Richardson, TX 75083, and Department of Molecular Biology
| | - Lulu Wang
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Rd., Richardson, TX 75083, and Department of Molecular Biology
| | - Santosh R. D’Mello
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Rd., Richardson, TX 75083, and Department of Molecular Biology
| |
Collapse
|
13
|
Morishima H, Kajiwara K, Akiyama K, Yanagihara Y. Ligation of Toll-like receptor 3 differentially regulates M2 and M3 muscarinic receptor expression and function in human airway smooth muscle cells. Int Arch Allergy Immunol 2007; 145:163-74. [PMID: 17851256 DOI: 10.1159/000108141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 06/05/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Viral infection causes asthma exacerbations and airway hyperreactivity. Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) of viral or synthetic origin in a fashion different from protein kinase R (PKR). The aim of this study was to examine the expression and function of TLR3 in human airway smooth muscle (ASM) cells. METHODS Expression of TLR3 and muscarinic receptor (MR), histamine receptor (HR), and cysteinyl leukotriene receptor (CysLTR) subtypes was analyzed by quantitative real-time PCR, flow cytometry, or Western blotting. It was assessed whether ASM cells respond to polyinosinic-polycytidylic acid (poly I:C), a synthetic analog of dsRNA, with alterations in M2R, M3R, H1R, and CysLT1R expression. The function of these subtypes was evaluated by cholinergic regulation of forskolin-stimulated cyclic AMP accumulation or by mobilization of intracellular calcium upon stimulation. RESULTS ASM cells expressed TLR3 and PKR, and intracellular TLR3 expression was demonstrated. Poly I:C caused decreased M2R and increased M3R expression, without affecting H1R and CysLT1R expression. Poly I:C-treated cells showed decreased cholinergic inhibition of forskolin-stimulated cyclic AMP accumulation and enhanced calcium flux in response to acetylcholine, but not to histamine and LTD4. These modulating effects of poly I:C were reversed by chloroquine, but not by 2-aminopurine. CONCLUSIONS The data indicate that poly I:C internalized by ASM cells differentially regulates M2R and M3R expression and function by interacting with TLR3 rather than with PKR, suggesting that these changes may contribute to airway hyperreactivity.
Collapse
MESH Headings
- 2-Aminopurine/pharmacology
- Bronchial Hyperreactivity/physiopathology
- Calcium Signaling/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chloroquine/pharmacology
- Colforsin/pharmacology
- Cyclic AMP/physiology
- Gene Expression Regulation/drug effects
- Histamine/pharmacology
- Humans
- Leukotriene D4/pharmacology
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Muscarinic Antagonists/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Poly I-C/pharmacology
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/biosynthesis
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptors, Histamine H1/biosynthesis
- Receptors, Histamine H1/genetics
- Receptors, Leukotriene/biosynthesis
- Receptors, Leukotriene/genetics
- Signal Transduction/drug effects
- Toll-Like Receptor 3/physiology
- eIF-2 Kinase/physiology
Collapse
Affiliation(s)
- Hirotaka Morishima
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara Hospital, Sagamihara, Japan
| | | | | | | |
Collapse
|
14
|
Ji LL. Antioxidant signaling in skeletal muscle: A brief review. Exp Gerontol 2007; 42:582-93. [PMID: 17467943 DOI: 10.1016/j.exger.2007.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 01/22/2023]
Abstract
Generation of reactive oxygen species (ROS) is a ubiquitous biological phenomenon in eukaryotic cell life. During the past two decades, much attention has been paid to the detrimental effects of ROS such as oxidative stress, pathogenesis and aging. However, there is now increasing evidence and recognition that ROS are not merely damaging agents inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, differentiation, proliferation, and apoptosis, at least within the physiological concentration. In skeletal muscle contractile activity has been shown to upregulate antioxidant defense systems and ROS has been postulated to be essential in this adaptation. Available research data suggest that nuclear factor (NF)kappaB and mitogen-activated protein kinase (MAPK) play a critical role in the relay of oxidative stress signals to gene expression apparatus in the myocytes under a variety of physiological and pathological conditions. This mini-review will discuss the main mechanisms and gene targets for these antioxidant signaling pathways during exercise, inflammation and aging.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PW. Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther 2007; 15:1522-30. [PMID: 17457318 DOI: 10.1038/sj.mt.6300179] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reovirus, a potential cancer therapy, replicates more efficiently in Ras-transformed cells than in non-transformed cells. It was presumed that increased translation was the mechanistic basis of reovirus oncolysis. Analyses of each step of the reovirus life cycle now show that cellular processes deregulated by Ras transformation promote not one but three viral replication steps. First, in Ras-transformed cells, proteolytic disassembly (uncoating) of the incoming virions, required for onset of infection, occurs more efficiently. Consequently, threefold more Ras-transformed cells become productively infected with reovirus than non-transformed cells, which accounts for the observed increase of reovirus proteins in Ras-transformed cells. Second, Ras transformation increases the infectious-to-noninfectious virus particle ratio, as virions purified from Ras-transformed cells are fourfold more infectious than those purified from non-transformed cells. Progeny assembled in non- and Ras-transformed cells appear similar by electron microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, suggesting that Ras transformation introduces a subtle change necessary for virus infectivity. Finally, reovirus release, mediated by caspase-induced apoptosis, is ninefold more efficient in Ras-transformed cells. The combined effects of enhanced virus uncoating, infectivity, and release result in >100-fold differences in virus titers within one round of replication. Our analysis reveals previously unrecognized mechanisms by which Ras transformation mediates selective viral oncolysis.
Collapse
Affiliation(s)
- Paola Marcato
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
16
|
Kanda N, Shimizu T, Tada Y, Watanabe S. IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur J Immunol 2007; 37:338-50. [PMID: 17274000 DOI: 10.1002/eji.200636420] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IL-18 is involved in the pathogenesis of atopic dermatitis, psoriasis, and allergic contact dermatitis. CXCL9, CXCL10, and CXCL11 recruit type 1 T cells, and the production of these chemokines by keratinocytes is enhanced in these dermatoses. We examined the in vitro effects of IL-18 on IFN-gamma-induced CXCL9, CXCL10, and CXCL11 production in human keratinocytes. IL-18 enhanced the IFN-gamma-induced secretion and mRNA expression of CXCL9, CXCL10, and CXCL11 in parallel to the activation of NF-kappaB, STAT1, and IFN-regulatory factor (IRF)-1. Antisense oligonucleotides against NF-kappaB p50, p65, or STAT1 suppressed CXCL9, CXCL10, and CXCL11 production, and antisense IRF-1 suppressed CXCL11 production. Inhibitors of PI3 K, p38 MAPK, and MEK suppressed IL-18 plus IFN-gamma-induced CXCL9, CXCL10, and CXCL11 production and NF-kappaB, STAT1, and IRF-1 activities. IL-18 induced phosphorylation of ERK and Akt, while IFN-gamma induced phosphorylation of p38 MAPK. These results suggest that IL-18 may potentiate IFN-gamma-induced CXCL9, CXCL10, and CXCL11 production in keratinocytes by activating NF-kappaB, STAT1, or IRF-1 through PI3 K/Akt and MEK/ERK pathways. These effects of IL-18 may promote the infiltration of type 1 T cells into lesions with inflammatory dermatoses and amplify the skin inflammation. IL-18 may act as a pro-inflammatory cytokine in these dermatoses and thus is a candidate therapeutic target.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
17
|
Gilbert SJ, Blain EJ, Jones P, Duance VC, Mason DJ. Exogenous sphingomyelinase increases collagen and sulphated glycosaminoglycan production by primary articular chondrocytes: an in vitro study. Arthritis Res Ther 2007; 8:R89. [PMID: 16696862 PMCID: PMC1779424 DOI: 10.1186/ar1961] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 01/15/2023] Open
Abstract
We previously established a role for the second messenger ceramide in protein kinase R (PKR)-mediated articular cartilage degradation. Ceramide is known to play a dual role in collagen gene regulation, with the effect of ceramide on collagen promoter activity being dependent on its concentration. Treatment of cells with low doses of sphingomyelinase produces small increases in endogenous ceramide. We investigated whether ceramide influences articular chondrocyte matrix homeostasis and, if so, the role of PKR in this process. Bovine articular chondrocytes were stimulated for 7 days with sphingomyelinase to increase endogenous levels of ceramide. To inhibit PKR, 2-aminopurine was added to duplicate cultures. De novo sulphated glycosaminoglycan and collagen synthesis were measured by adding [35S]-sulphate and [3H]-proline to the media, respectively. Chondrocyte phenotype was investigated using RT-PCR and Western blot analysis. Over 7 days, sphingomyelinase increased the release of newly synthesized sulphated glycosaminoglycan and collagen into the media, whereas inhibition of PKR in sphingomyelinase-treated cells reduced the level of newly synthesized sulphated glycosaminoglycan and collagen. Sphingomyelinase treated chondrocytes expressed col2a1 mRNA, which is indicative of a normal chondrocyte phenotype; however, a significant reduction in type II collagen protein was detected. Therefore, small increments in endogenous ceramide in chondrocytes appear to push the homeostatic balance toward extracellular matrix synthesis but at the expense of the chondrocytic phenotype, which was, in part, mediated by PKR.
Collapse
Affiliation(s)
- Sophie J Gilbert
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Emma J Blain
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Pamela Jones
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Victor C Duance
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| | - Deborah J Mason
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, UK
| |
Collapse
|
18
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 614] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Bennett RL, Blalock WL, Abtahi DM, Pan Y, Moyer SA, May WS. RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection. Blood 2006; 108:821-9. [PMID: 16861340 PMCID: PMC1617065 DOI: 10.1182/blood-2005-11-006817] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
While the interferon (IFN)-inducible double-stranded RNA (dsRNA)-dependent protein kinase PKR is reported to initiate apoptosis in some instances, the mechanism by which diverse stress stimuli activate PKR remains unknown. Now we report that RAX, the only known cellular activator for PKR, initiates PKR activation in response to a broad range of stresses including serum deprivation, cytotoxic cytokine or chemotherapy treatment, or viral infection. Thus, knock-down of RAX expression by 80% using small interfering RNA (siRNA) prevents IFNgamma/tumor necrosis factor alpha (TNFalpha)-induced PKR activation and eIF2alpha phosphorylation, IkappaB degradation, IRF-1 expression, and STAT1 phosphorylation, resulting in enhanced murine embryonic fibroblast (MEF) cell survival. In contrast, expression of exogenous RAX, but not of the nonphosphorylatable, dominant-negative RAX(S18A) mutant, sensitizes cells to IFNgamma/TNFalpha, mitomycin C (MMC), or serum deprivation in association with increased PKR activity and apoptosis. Furthermore, RAX(S18A) expression in Fanconi anemia complementation group C-null MEF cells not only prevents PKR activation but also blocks hypersensitivity to IFNgamma/TNFalpha or mitomycin C that results in enhanced apoptosis. In addition, reduced RAX expression facilitates productive viral infection with vesicular stomatitis virus (VSV) and promotes anchorage-independent colony growth of MEF cells. Collectively, these data indicate that RAX may function as a negative regulator of growth that is required to activate PKR in response to a broad range of apoptosis-inducing stress.
Collapse
Affiliation(s)
- Richard L Bennett
- Department of Immunology and Molecular Genetics, Shands Cancer Center, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
20
|
Takada Y, Ichikawa H, Pataer A, Swisher S, Aggarwal BB. Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. Oncogene 2006; 26:1201-12. [PMID: 16924232 DOI: 10.1038/sj.onc.1209906] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Double-stranded RNA-dependent protein kinase (PKR), a ubiquitously expressed serine/threonine kinase, has been implicated in the regulation or modulation of cell growth through multiple signaling pathways, but how PKR regulates tumor necrosis factor (TNF)-induced signaling pathways is poorly understood. In the present study, we used fibroblasts derived from PKR gene-deleted mice to investigate the role of PKR in TNF-induced activation of nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinases (MAPKs) and growth modulation. We found that in wild-type mouse embryonic fibroblast (MEF), TNF induced NF-kappaB activation as measured by DNA binding but deletion of PKR abolished this activation. This inhibition was associated with suppression of inhibitory subunit of NF-kappaB (IkappaB)alpha kinase (IKK) activation, IkappaBalpha phosphorylation and degradation, p65 phosphorylation and nuclear translocation, and NF-kappaB-dependent reporter gene transcription. TNF-induced Akt activation needed for IKK activation was also abolished by deletion of PKR. NF-kappaB activation was diminished in PKR-deleted cells transfected with TNF receptor (TNFR) 1, TNFR-associated death domain and TRAF2 plasmids; NF-kappaB activated by NF-kappaB-inducing kinase, IKK or p65, however, was minimally affected. Among the MAPKs, it was interesting that whereas TNF-induced c-Jun N-terminal kinase (JNK) activation was abolished, activation of p44/p42 MAPK and p38 MAPK was potentiated in PKR-deleted cells. TNF induced the expression of NF-kappaB-regulated gene products cyclin D1, c-Myc, matrix metalloproteinase-9, survivin, X-linked inhibitor-of-apoptosis protein (IAP), IAP1, Bcl-x(L), A1/Bfl-1 and Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory protein in wild-type MEF but not in PKR-/- cells. Similarly, TNF induced the proliferation of wild-type cells, but this proliferation was completely suppressed in PKR-deleted cells. Overall, our results indicate that PKR differentially regulates TNF signaling; IKK, Akt and JNK were positively regulated, whereas p44/p42 MAPK and p38 MAPK were negatively regulated.
Collapse
Affiliation(s)
- Y Takada
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Kiss-Toth E, Wyllie DH, Holland K, Marsden L, Jozsa V, Oxley KM, Polgar T, Qwarnstrom EE, Dower SK. Functional mapping and identification of novel regulators for the Toll/Interleukin-1 signalling network by transcription expression cloning. Cell Signal 2006; 18:202-14. [PMID: 15990277 DOI: 10.1016/j.cellsig.2005.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/16/2005] [Accepted: 04/19/2005] [Indexed: 11/30/2022]
Abstract
Sustained inflammatory responses are central to the development and progression of chronic diseases, including atherosclerosis and rheumatoid arthritis. A large number of stimuli initiate inflammation by acting on Toll-Interleukin-1 related (TIR) domain containing receptors, producing multiple second messengers and thence large scale transcriptional changes. The mechanism by which this activation occurs is complex, and the continuing isolation of novel pathway components, mostly based on sequence similarities and protein-protein interaction studies, suggests that many elements of the TIR-initiated signalling network remain to be identified. Here we use a new technique, allowing identification of components based on function. We report the performance of the screen, our identification of human tribbles as a novel protein family regulating inflammatory signalling networks, and the detection of ten other components with poorly characterized roles in inflammatory signalling pathways. In total, we have identified 28 signalling molecules of diverse molecular mechanism by screening 11% of a cDNA library for the ability to modulation expression of human IL-8, and other molecules remain to be followed up. The results suggest that the number of human genes involved in IL-8 induction pathways exceed 100. The isolation of signalling components by the approach we describe allows detection of new classes of signalling components independent of existing techniques for doing so; it is simple and robust, and constitutes a general method for mapping signal transduction systems controlling gene expression.
Collapse
Affiliation(s)
- Endre Kiss-Toth
- Cardiovascular Research Unit, Division of Clinical Sciences (North), University of Sheffield, Northern General Hospital, Herries road, Sheffield S5 7AU, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheung BKW, Lee DCW, Li JCB, Lau YL, Lau ASY. A role for double-stranded RNA-activated protein kinase PKR in Mycobacterium-induced cytokine expression. THE JOURNAL OF IMMUNOLOGY 2006; 175:7218-25. [PMID: 16301626 DOI: 10.4049/jimmunol.175.11.7218] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following infection of the host by Mycobacterium tuberculosis, induction of cytokines is a major defense mechanism to limit the pathogen invasion. Cytokines interact with each other to form an intertwined network of pathways. For example, IFN and TNF have been shown to interact through common pathways including IFN-inducible, dsRNA-activated serine/threonine protein kinase (PKR) induction. As a signal transducer, it has been conventionally known to regulate the induction of cytokine expression in response to virus infection through NF-kappaB. In light of the critical role of TNF in immunity and its cytotoxic effects mediated by PKR, we examined the role of the kinase in the regulation of immune response against M. tuberculosis using the interaction of bacillus Calmette-Guérin (BCG) and primary human blood monocytes as a model. Our results showed that BCG stimulates the induction of cytokine expression in human primary blood monocytes including TNF-alpha, IL-6, and IL-10. With the suppression of PKR by using PKR-mutant gene or 2-aminopurine as PKR inhibitor, we showed that the BCG-induced cytokine expression in human monocytes is regulated by the phosphorylation and activation of PKR. We also demonstrated that downstream of PKR induction is the activation of MAPK and translocation of NF-kappaB into the nucleus. NF-kappaB in turn mediates the transcription of specific cytokine genes. Taken together, PKR plays a critical role in the regulation of immune responses to mycobacterial infection and may serve as an important molecule in the innate antimycobacterial defense.
Collapse
Affiliation(s)
- Benny K W Cheung
- Immunology Research Laboratory, Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Frémont M, Vaeyens F, Herst CV, De Meirleir KL, Englebienne P. Double-stranded RNA-dependent protein kinase (PKR) is a stress-responsive kinase that induces NFkappaB-mediated resistance against mercury cytotoxicity. Life Sci 2005; 78:1845-56. [PMID: 16324719 DOI: 10.1016/j.lfs.2005.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/18/2005] [Indexed: 11/29/2022]
Abstract
The interferon-inducible, double-stranded (ds)RNA-dependent protein kinase (PKR) plays a major role in antiviral defense mechanisms where it down-regulates translation via phosphorylation of eukaryotic translation initiation factor 2alpha. PKR is also involved in the activation of nuclear factor kappaB (NFkappaB) through activation of the IkappaB kinase complex. Activation of PKR can occur in the absence of dsRNA and in such case is controlled by intracellular regulators like the PKR-activating protein (PACT), the PKR inhibitor p58(IPK), or heat-shock proteins (Hsp). These regulators are activated by stress stimuli, supporting a role for PKR in response to stress; however the final outcome of PKR activation in stress situations is unclear. We present here evidence that expression and activation of PKR contributes to an increased cellular resistance to mercury cytotoxicity. In two cell lines constitutively expressing PKR (THP-1 and Molt-3), treatment with the PKR inhibitor 2-aminopurine increases their sensitivity to mercury. In contrast, Ramos cells, which do not constitutively express PKR, present an increased resistance to mercury when PKR expression is induced by polyIC or interferon-beta treatment. This protective effect is inhibited by 2-aminopurine. We also show that exposure of Ramos cells to mercury leads to the induction of Hsp70. Treatment of cells with Hsp70 or NFkappaB inhibitors suppresses the PKR-dependent protection. We propose a model where PKR, modulated by Hsp70, activates a NFkappaB-mediated protective pathway. Because the cytotoxicity of mercury is primarily due to the generation of reactive oxygen species, our results suggest a more general function of PKR in the mechanisms of cellular response to oxidative stress.
Collapse
Affiliation(s)
- Marc Frémont
- R.E.D. Laboratories, Pontbeek 61, B-1731 Zellik, Belgium
| | | | | | | | | |
Collapse
|
24
|
Frankel SK, Cosgrove GP, Cha SI, Cool CD, Wynes MW, Edelman BL, Brown KK, Riches DWH. TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis. Am J Respir Cell Mol Biol 2005; 34:293-304. [PMID: 16272460 PMCID: PMC2644194 DOI: 10.1165/rcmb.2005-0155oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pulmonary accumulation of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis/usual interstitial pneumonia (IFP/UIP) has been linked to (1) increased migration of a circulating pool of fibrocytes, (2) cell proliferation, and (3) resistance to apoptosis. The mechanism of physiologic apoptosis of lung fibroblasts is poorly understood. Using normal and fibrotic human lung fibroblasts and the human lung fibroblast cell line, MRC-5, we examined the regulation of Fas-induced apoptosis by the proinflammatory cytokines TNF-alpha and IFN-gamma. Herein, we show that the basal resistance of lung fibroblasts and myofibroblasts to Fas-induced apoptosis is overcome by sensitization with TNF-alpha. IFN-gamma did not sensitize cells to Fas-induced apoptosis, but exhibited synergistic activity with TNF-alpha. Sensitization by TNF-alpha was observed in MRC-5 cells and in fibroblasts and myofibroblasts from normal and fibrotic human lung, suggesting that this represents a conserved mechanism to engage Fas-induced apoptosis. The mechanism of sensitization was localized at the level of recruitment of the adapter protein, FADD, to the cytoplasmic domain of Fas. Collectively, these findings suggest that fibroblast apoptosis involves two steps, sensitization and induction, and that inadequate pulmonary inflammation in IPF/UIP may favor fibroblast accumulation by reducing sensitization to apoptosis.
Collapse
Affiliation(s)
- Stephen K Frankel
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 2005; 18:1499-506. [PMID: 15466358 DOI: 10.1096/fj.04-1846com] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two studies were performed to investigate the effects of an acute bout of physical exercise on the nuclear protein kappaB (NF-kappaB) signaling pathway in rat skeletal muscle. In Study 1, a group of rats (n=6) was run on the treadmill at 25 m/min, 5% grade, for 1 h or until exhaustion (Ex), and compared with a second group (n=6) injected with two doses of pyrrolidine dithiocarbamate (PDTC, 100 mg/kg, i.p.) 24 and 1 h prior to the acute exercise bout. Three additional groups of rats (n=6) were injected with either 8 mg/kg (i.p.) of lipopolysaccharide (LPS), 1 mmol/kg (i.p.) t-butylhydroperoxide (tBHP), or saline (C) and killed at resting condition. Ex rats showed higher levels of NF-kappaB binding and P50 protein content in muscle nuclear extracts compared with C rats. Cytosolic IkappaBalpha and IkappaB kinase (IKK) contents were decreased, whereas phospho-IkappaBalpha and phospho-IKK contents were increased, comparing Ex vs. C. The exercise-induced activation of NF-kappaB signaling cascade was partially abolished by PDTC treatment. LPS, but not tBHP, treatment mimicked and exaggerated the effects observed in Ex rats. In Study 2, the time course of exercise-induced NF-kappaB activation was examined. Highest levels of NF-kappaB binding were observed at 2 h postexercise. Decreased cytosolic IkappaBalpha and increased phosphor-IkappaBalpha content were found 0-1 h postexercise whereas P65 reached peak levels at 2-4 h. These data suggest that the NF-kappaB signaling pathway can be activated in a redox-sensitive manner during muscular contraction, presumably due to increased oxidant production. The cascade of intracellular events may be the overture to elevated gene expression of manganese superoxide dismutase reported earlier (Pfluegers Arch. 442, 426-434, 2001).
Collapse
Affiliation(s)
- L L Ji
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
26
|
Macedo C, Popescu I, Abu-Elmagd K, Reyes J, Shapiro R, Zeevi A, Berghaus JM, Wang LF, Lu L, Thomson AW, Storkus WJ, Fung JJ, Metes D. Augmentation of type-1 polarizing ability of monocyte-derived dendritic cells from chronically immunosuppressed organ-transplant recipients. Transplantation 2005; 79:451-9. [PMID: 15729172 DOI: 10.1097/01.tp.0000146589.49756.7f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic immunosuppressive (IS) therapy impairs normal T-cell immune surveillance and may predispose to opportunistic infections and malignancies that represent life-threatening complication of solid-organ transplantation (SOTx). Our study was designed to ascertain the impact of chronic in vivo administration of IS on the ability of monocyte-derived dendritic cells (MoDC) to differentiate, mature, and function ex vivo. The potential of these cells to be implemented for DC-based adoptive immunotherapy was also considered. METHODS MoDCs were propagated by conventional procedures, their phenotype was analyzed by flow cytometry, and their function was assessed by mixed leukocyte reaction, enzyme-linked immunoadsorbent assay, and ELISPOT assays. Nuclear translocation of nuclear factor (NF)-kB was analyzed by electrophoretic mobility shift assay. RESULTS Circulating DC1s in peripheral blood were reduced in SOTx patients. MoDCs generated from patients displayed higher endocytic activity versus normal DCs, indicating their comparative immaturity. Patients' DCs exposed to pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin [IL]-1beta, and IL-6) were less able to mature, to stimulate recall antigen (Ag)- or allo-Ag-induced proliferation responses, or to secrete IL-12p70. These deficiencies were associated with a decrease in NF-kB translocation. In contrast, combination of pro-inflammatory cytokines and interferon (IFN)-gamma (a Th1-polarizing factor) augmented patients' DC1-type function and IL-12p70 production by way of an NF-kB-independent mechanism. CONCLUSIONS Chronic IS restrains DC differentiation, maturation, and function at a transcriptional level; however, type-1 polarizing potential of patients' DC1 can be augmented ex vivo by a two-signal stimulation provided by pro-inflammatory cytokines and IFN-gamma. These results may have implications for DC-based immunotherapy of malignancies in the transplantation setting.
Collapse
Affiliation(s)
- Camila Macedo
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E1551 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cho SG, Yi SY, Yoo YS. IFNgamma and TNFalpha synergistically induce neurite outgrowth on PC12 cells. Neurosci Lett 2005; 378:49-54. [PMID: 15763171 DOI: 10.1016/j.neulet.2004.12.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 11/25/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
PC12 cells are commonly used in the study of neuronal cells. It was reported that IFNgamma enhances neurite outgrowth of PC12 cells by NGF-stimuli. Accordingly, IFNgamma was examined to determine if it could solely produce neurite outgrowth. In addition, because the synergism between TNFalpha and IFNgamma is well-known, this study investigated whether or not a mixture of IFNgamma and TNFalpha might augment neurite outgrowth on PC12 cells. Finally, this study examined how an AG490 treatment, which was used to inhibit the IFNgamma signal in this study, affected the cytokine-mediated phenomenon. The results showed that the cytokines did not cause an increase in apoptosis in the PC12 cells and the serum-starved condition blocked the cytokine-mediated neurite outgrowth. Interestingly, AG490 enhanced this effect. In conclusion, it was shown that IFNgamma has the potential to form neurites, and TNFalpha can enhance this ability.
Collapse
Affiliation(s)
- Sung Gook Cho
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul 130-650, South Korea
| | | | | |
Collapse
|
28
|
Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2005; 24:10161-8. [PMID: 15542827 PMCID: PMC529034 DOI: 10.1128/mcb.24.23.10161-10168.2004] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.
Collapse
Affiliation(s)
- Jing Deng
- New York University Medical Center, SI 3-10, 540 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Aggarwal S, Takada Y, Mhashilkar AM, Sieger K, Chada S, Aggarwal BB. Melanoma differentiation-associated gene-7/IL-24 gene enhances NF-kappa B activation and suppresses apoptosis induced by TNF. THE JOURNAL OF IMMUNOLOGY 2004; 173:4368-76. [PMID: 15383566 DOI: 10.4049/jimmunol.173.7.4368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis.
Collapse
Affiliation(s)
- Sita Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Suh HW, Choi SS, Lee JK, Lee HK, Han EJ, Lee J. Regulation of c-fos and c-jun gene expression by lipopolysaccharide and cytokines in primary cultured astrocytes: effect of PKA and PKC pathways. Arch Pharm Res 2004; 27:396-401. [PMID: 15180304 DOI: 10.1007/bf02980080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of lipopolysaccharide (LPS) and several cytokines on the c-fos and c-jun mRNA expression were examined in primary cultured astrocytes. Either LPS (500 ng/mL) or interferon-gamma (IFN-gamma; 5 ng/mL) alone increased the level of c-fos mRNA (1 h). However, tumor necrosis factor-alpha (TNF-alpha; 10 ng/mL) or interleukin-1beta (IL-1beta; 5 ng/mL) alone showed no significant induction of the level of c-fos mRNA. TNF-alpha showed a potentiating effect in the regulation of LPS-induced c-fos mRNA expression, whereas LPS showed an inhibitory action against IFN-gamma-induced c-fos mRNA expression. LPS, but not TNF-alpha, IL-1beta and IFN-gamma, increased the level of c-jun mRNA (1 h). TNF-alpha and IFN-gamma showed an inhibitory action against LPS-induced c-jun mRNA expression. Both phorbol 12-myristate 13-acetate (PMA; 2.5 mM) and forskolin (FSK; 5 mM) increased the c-fos and c-jun mRNA expressions. In addition, the level of c-fos mRNA was expressed in an antagonistic manner when LPS was combined with PMA. When LPS was co-treated with either PMA or FSK, it showed an additive interaction for the induction of c-jun mRNA expression. Our results suggest that LPS and cytokines may be actively involved in the regulation of c-fos and c-jun mRNA expressions in primary cultured astrocytes. Moreover, both the PKA and PKC pathways may regulate the LPS-induced c-fos and c-jun mRNA expressions in different ways.
Collapse
Affiliation(s)
- Hong-Won Suh
- Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do 200-702, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Wesemann DR, Benveniste EN. STAT-1 alpha and IFN-gamma as modulators of TNF-alpha signaling in macrophages: regulation and functional implications of the TNF receptor 1:STAT-1 alpha complex. THE JOURNAL OF IMMUNOLOGY 2004; 171:5313-9. [PMID: 14607933 DOI: 10.4049/jimmunol.171.10.5313] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF-alpha and IFN-gamma cooperate in the activation of macrophages. TNF-alpha-dependent activation of NF-kappaB is stronger in the presence of IFN-gamma. STAT-1alpha associates with TNFR1 in TNF-alpha-treated cells, and this association attenuates TNF-alpha-mediated NF-kappaB activation. We hypothesized that nuclear localization of STAT-1alpha due to IFN-gamma signaling would preclude it from being recruited to the TNFR1 and therefore enhance TNF-alpha-induced NF-kappaB activation. In the RAW264.7 macrophage cell line, TNF-alpha treatment indeed recruits STAT-1alpha to the TNFR1, and this association is abrogated when cells are exposed to IFN-gamma. TNF-alpha treatment induces a more robust activation of NF-kappaB in STAT-1alpha-deficient cells, and restoration of STAT-1alpha inhibits TNF-alpha-dependent NF-kappaB activation. Our results suggest that a receptor-proximal level of cross-talk exists between these two cytokine pathways: IFN-gamma limits STAT-1alpha availability to the TNFR1 by depleting STAT-1alpha from the cytoplasm, thus allowing for optimal NF-kappaB activation upon TNF-alpha ligation.
Collapse
Affiliation(s)
- Duane R Wesemann
- Department of Cell Biology, University of Alabama, Birmingham, AL 35294, USA
| | | |
Collapse
|
32
|
Gilbert SJ, Duance VC, Mason DJ. Does protein kinase R mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res Ther 2003; 6:R46-R55. [PMID: 14979937 PMCID: PMC400415 DOI: 10.1186/ar1024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/14/2003] [Accepted: 10/21/2003] [Indexed: 02/08/2023] Open
Abstract
We investigated the role of the proinflammatory cytokine TNF-alpha, the second messenger C2-ceramide, and protein kinase R (PKR) in bovine articular cartilage degradation. Bovine articular cartilage explants were stimulated with C2-ceramide or TNF-alpha for 24 hours. To inhibit the activation of PKR, 2-aminopurine was added to duplicate cultures. Matrix metalloproteinase (MMP) expression and activation in the medium were analysed by gelatin zymography, proteoglycan release by the dimethylmethylene blue assay, and cell viability by the Cytotox 96(R) assay. C2-ceramide treatment of cartilage explants resulted in a significant release of both pro- and active MMP-2 into the medium. Small increases were also seen with TNF-alpha treatment. Incubation of explants with 2-aminopurine before TNF-alpha or C2-ceramide treatment resulted in a marked reduction in expression and activation of both MMP-2 and MMP-9. TNF-alpha and C2-ceramide significantly increased proteoglycan release into the medium, which was also inhibited by cotreatment with 2-aminopurine. A loss of cell viability was observed when explants were treated with TNF-alpha and C2-ceramide, which was found to be regulated by PKR. We have shown that C2-ceramide and TNF-alpha treatment of articular cartilage result in the increased synthesis and activation of MMPs, increased release of proteoglycan, and increased cell death. These effects are abrogated by treatment with the PKR inhibitor 2-aminopurine. Collectively, these results suggest a novel role for PKR in the synthesis and activation of MMPs and support our hypothesis that PKR and its activator, PACT, are implicated in the cartilage degradation that occurs in arthritic disease.
Collapse
Affiliation(s)
- Sophie J Gilbert
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | |
Collapse
|
33
|
Varley CL, Armitage S, Hassanshahiraviz G, Dickson AJ. Regulation of the C-X-C chemokine, mob-1, gene expression in primary rat hepatocytes. Cytokine 2003; 23:64-75. [PMID: 12906869 DOI: 10.1016/s1043-4666(03)00198-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chemokine, mob-1, is involved in inflammatory and immune responses and may be an important mediator of the inflammatory response in the liver. Here, we investigated the upstream signal pathways that could be involved in the regulation of mob-1 expression. We have found that in primary rat hepatocytes the isolation and subsequent culture of these cells induced mob-1 expression. A similar induction of mob-1 mRNA was observed when the hepatocytes were stimulated with interferon-gamma (IFN-gamma). When hepatocytes were stimulated with IFN-gamma or cytokine mixture (IFN-gamma, interleukin-1beta and tumour necrosis factor-alpha), c-Jun N-terminal kinase (JNK), p38 and extracellular-regulated kinase (ERK) were phosphorylated, suggesting an involvement of the mitogen-activated protein kinases (MAPK) in the induction of mob-1 expression. The p38 kinase inhibitor, SB 203580, and the NF-kappaB inhibitor, MG-132, inhibited the induction of mob-1 mRNA and the effects were not additive. These results demonstrate that in primary rat hepatocytes the transient induction of mob-1 expression was regulated by p38 kinase and NF-kappaB through a common regulatory pathway.
Collapse
Affiliation(s)
- Claire L Varley
- Biochemistry Research Division, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
34
|
Chen CW, Chang YH, Tsi CJ, Lin WW. Inhibition of IFN-gamma-mediated inducible nitric oxide synthase induction by the peroxisome proliferator-activated receptor gamma agonist, 15-deoxy-delta 12,14-prostaglandin J2, involves inhibition of the upstream Janus kinase/STAT1 signaling pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:979-88. [PMID: 12847270 DOI: 10.4049/jimmunol.171.2.979] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been reported to exert anti-inflammatory activities in macrophages by competition for transcriptional coactivators with some transcriptional factors, including NF-kappaB. In the present study the influence of PPARgamma activators on IFN-gamma-elicited macrophage stimulation and signaling cascades was investigated. The results show that IFN-gamma-induced inducible NO synthase (iNOS) gene transcription, iNOS protein induction, and NO production are more sensitive to inhibition by 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) than by the other two PPARgamma agonists, GW1929 and ciglitazone. Delayed addition of 15dPGJ(2) for 2 h resulted in reduced inhibition, suggesting action by 15dPGJ(2) on the upstream signaling cascades. Immunoblotting, DNA binding, and reporter gene assays consistently revealed the inhibitory ability of 15dPGJ(2), but not GW1929 or ciglitazone, on IFN-gamma-elicited signaling cascades, including tyrosine phosphorylation of Janus tyrosine protein kinase 2 and STAT1, DNA binding, and IFN regulatory factor-1 trans-activation of STAT1. These effects of 15dPGJ(2) were not abrogated by the PPARgamma antagonist, bisphenol A diglycidyl ether, indicating the PPARgamma-independent actions. 15dPGJ(2) also attenuated IL-6-induced tyrosine phosphorylation of STAT1 and STAT3 in Hep3B hepatoma cells. Consistent with the inhibitory effect of reactive oxygen species on STAT1 signaling, STAT1 inhibition by 15dPGJ(2) was abrogated by N-acetylcysteine, glutathione, superoxide dismutase, and catalase. Furthermore, 15dPGJ(2)-induced inhibition of STAT1 phosphorylation and NO production still occurred in the presence of peroxovanadate, ruling out the action mechanism of 15dPGJ(2) on tyrosine phosphatase. Taken together, for the first time in this study we demonstrate that 15dPGJ(2) can inhibit cytokine-stimulated Janus kinase 2-STAT signaling through a PPARgamma-independent, reactive oxygen species-dependent mechanism. These data provide a novel molecular mechanism of iNOS inhibition by 15dPGJ(2) and confirm its physiological role in anti-inflammation.
Collapse
Affiliation(s)
- Ching-Wen Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
35
|
Nussbaum JM, Major M, Gunnery S. Transcriptional upregulation of interferon-induced protein kinase, PKR, in breast cancer. Cancer Lett 2003; 196:207-16. [PMID: 12860279 DOI: 10.1016/s0304-3835(03)00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PKR (double-stranded RNA activated protein kinase) is overexpressed and overactive in human breast carcinoma (BC) cells. Here, we report that BC cells also have higher PKR mRNA levels and exhibit increased transcription from the PKR promoter. Mutational analysis of the PKR promoter indicated that the interferon stimulation response element (ISRE) is responsible for the increased transcription in BC cells. By gel retardation assay, ISRE-protein complexes formed by BC and non-transformed nuclear extracts were compared. A BC-specific ISRE-protein complex resembles the multimeric factor, ISGF3.
Collapse
Affiliation(s)
- Jean M Nussbaum
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, MSB, E609, 185 South Orange Avenue, Newark NJ 07103-2714, USA
| | | | | |
Collapse
|
36
|
Huang S, Qu LK, Cuddihy AR, Ragheb R, Taya Y, Koromilas AE. Protein kinase inhibitor 2-aminopurine overrides multiple genotoxic stress-induced cellular pathways to promote cell survival. Oncogene 2003; 22:3721-33. [PMID: 12802279 DOI: 10.1038/sj.onc.1206490] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2-Aminopurine (2-AP) is an adenine analog shown to cause cells to bypass chemical- and radiation-induced cell cycle arrest through as-yet unidentified mechanisms. 2-AP has also been shown to act as a kinase inhibitor. Tumor suppressor p53 plays an important role in the control of cell cycle and apoptosis in response to genotoxic stress. We were interested in examining the effect of 2-AP on p53 phosphorylation and its possible consequences on checkpoint control in cells subjected to various forms of DNA damage. Here, we show that 2-AP suppresses p53 phosphorylation in response to gamma radiation, adriamycin, or ultraviolet treatment. This is partly explained by the ability of the kinase inhibitor to inhibit ATM or ATR activities in vitro and impair ATM- or ATR-dependent p53 phosphorylation in vivo. However, 2-AP is also capable of inhibiting p53 phosphorylation in cells deficient in ATM, DNA-PK, or ATR suggesting the existence of multiple pathways by which this kinase inhibitor modulates p53 activation. Biologically, the 2-AP-mediated inhibition of p53 stabilization enables wild-type p53-containing cells to bypass adriamycin-induced G(2)/M arrest. In the long term, however, 2-AP facilitates cells to resist DNA damage-induced cell death independently of p53.
Collapse
Affiliation(s)
- Shirley Huang
- Department of Microbiology and Immunology, McGill University, Montreal, Canada H3A 2T5
| | | | | | | | | | | |
Collapse
|
37
|
Kimura M, Haisa M, Uetsuka H, Takaoka M, Ohkawa T, Kawashima R, Yamatsuji T, Gunduz M, Kaneda Y, Tanaka N, Naomoto Y. TNF combined with IFN-alpha accelerates NF-kappaB-mediated apoptosis through enhancement of Fas expression in colon cancer cells. Cell Death Differ 2003; 10:718-28. [PMID: 12761580 DOI: 10.1038/sj.cdd.4401219] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Immunostaining and EMSA revealed that NF-kappaB was activated strongly by TNF/IFN-alpha compared to TNF alone in a human colon adenocarcinoma cell line, RPMI4788. Although inhibition of activated NF-kappaB, by using an NF-kappaB decoy, reduced cell viability after treatment with TNF only, NF-kappaB decoy resulted in recovery of cell viability after TNF/IFN-alpha treatment. Caspase-3 activity was increased in cells induced by TNF/IFN-alpha, while suppression of caspase-3 activity was observed in cells transfected with NF-kappaB decoy and then treated by TNF/IFN-alpha. On the other hand, Fas expression was strongly enhanced by TNF/IFN-alpha, and inhibition of TNF/IFN-alpha-induced NF-kappaB activation, by using NF-kappaB decoy, decreased Fas expression. Cell viability and caspase-3 activity decreased in cells treated with TNF/IFN-alpha and anti-FasL antibody. Taken together, our findings suggest that activated NF-kappaB induced by the crosstalk between TNF and IFN-alpha is a novel pro-apoptotic signal acting via enhancement of Fas expression.
Collapse
Affiliation(s)
- M Kimura
- First Department of Surgery, Graduate School of Medicine and Dentistry, Okayama University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nguyen H, Chatterjee-Kishore M, Jiang Z, Qing Y, Ramana CV, Bayes J, Commane M, Li X, Stark GR. IRAK-dependent phosphorylation of Stat1 on serine 727 in response to interleukin-1 and effects on gene expression. J Interferon Cytokine Res 2003; 23:183-92. [PMID: 12856330 DOI: 10.1089/107999003765027384] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Interleukin-1 (IL-1) induces the phosphorylation of Stat1 on serine 727 but not on tyrosine 701. Analyses of mutant I1A cells, which lack the IL-1 receptor-associated kinase (IRAK), and of I1A cells reconstituted with deletion mutants of IRAK show that the IL-1-mediated phosphorylation of Stat1 on serine requires the IRAK protein but not its kinase activity and does not involve phosphatidylinositol-3'-kinase (PI3K) or the mitogen-activated protein (MAP) kinases p38 or ERK. IRAK and Stat1 interact in vivo, and this interaction is increased in response to IL-1, suggesting that IRAK may serve to recruit the as yet unknown IL-1-induced Stat1 serine kinase. Chemical inhibitors or dominant-negative forms of signaling components required to activate NF-kappa B, ATF, or AP-1 in response to IL-1 do not affect the phosphorylation of Stat1 on serine. IL-1 and tumor necrosis factor (TNF) enhance the serine phosphorylation of Stat1 that occurs in response to interferon-gamma (IFN-gamma) and potentiate IFN-gamma-mediated, Stat1-driven gene expression, thus contributing to the synergistic activities of these proinflammatory cytokines.
Collapse
Affiliation(s)
- Hannah Nguyen
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
40
|
Suzuki K, Yanagi M, Mori-Aoki A, Moriyama E, Ishii KJ, Kohn LD. Transfection of single-stranded hepatitis A virus RNA activates MHC class I pathway. Clin Exp Immunol 2002; 127:234-42. [PMID: 11876745 PMCID: PMC1906343 DOI: 10.1046/j.1365-2249.2002.01767.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2001] [Indexed: 11/20/2022] Open
Abstract
Although infection of single-stranded RNA viruses can enhance expression of major histocompatibility complex (MHC) class I genes, the mechanism underlying this process remains unclear. Recent studies have indicated that exposure of non-immune cells to double-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) of viral origin can directly increase the expression of MHC class I and related molecules without immune cell interaction. In this report, we show that transfection of single-stranded hepatitis A virus RNA into cultured hepatocytes results in the induction of genes for MHC class I, LMP2 and transporter for antigen processing (TAP1), in addition to the generation of viral proteins. We suggest that this stimulatory effect is due to the double-stranded RNA formed during replication of single-stranded viral RNA, and involves both double-stranded, RNA-dependent protein kinase PKR and the secretion of IFNbeta.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Cells, Cultured/immunology
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral
- Genes, MHC Class I
- Hepatitis A virus/genetics
- Hepatitis A virus/physiology
- Hepatoblastoma/pathology
- Hepatocytes/immunology
- Histocompatibility Antigens Class I/biosynthesis
- Humans
- I-kappa B Proteins
- Interferon-beta/metabolism
- Liver Neoplasms/pathology
- NF-kappa B/metabolism
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phosphorylation
- Protein Processing, Post-Translational
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/physiology
- RNA, Messenger/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/physiology
- Transfection
- Tumor Cells, Cultured/immunology
- Viral Matrix Proteins/biosynthesis
- Viral Matrix Proteins/genetics
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Virus Replication
- eIF-2 Kinase/physiology
Collapse
Affiliation(s)
- K Suzuki
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Yasuoka Y, Naomoto Y, Yamatsuji T, Takaoka M, Kimura M, Uetsuka H, Matsubara N, Fujiwara T, Gunduz M, Tanaka N, Haisa M. Combination of tumor necrosis factor alpha and interferon alpha induces apoptotic cell death through a c-myc-dependent pathway in p53 mutant H226br non-small-cell lung cancer cell line. Exp Cell Res 2001; 271:214-22. [PMID: 11716533 DOI: 10.1006/excr.2001.5383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We investigated the role of wild-type p53 and c-myc activity in apoptosis induced by a combination of natural human tumor necrosis factor alpha (TNF-alpha) and natural human interferon alpha (IFN-alpha). Studies were performed with two human non-small-cell lung cancer cell lines, H226b, which has wild-type p53, and H226br, which has a mutant p53. The combination of IFN-alpha and TNF-alpha significantly inhibited cell growth and induced apoptotic cell death of both H226b and H226br, compared with IFN-alpha or TNF-alpha alone. Treatment with one or both cytokines did not affect the expression level of p53 in both cell lines. These results suggest that the combination of IFN-alpha/TNF-alpha induces apoptotic cell death through a p53- independent pathway. The c-myc oncogene is known to be involved in apoptosis induced by TNF. Antisense c-myc oligonucleotides have been reported to modulate cell growth or apoptosis in several cell lines. Antisense oligodeoxynucleotides were added to the culture of H226br cells before the addition of IFN-alpha/TNF-alpha. Antisense c-myc inhibited IFN-alpha/TNF-alpha cytotoxicity and apoptotic cell death. In conclusion, this study provides support for the speculation that TNF-alpha/IFN-alpha induce apoptosis through a c-myc-dependent pathway rather than a p53-dependent pathway. (c)2001 Elsevier Science.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Division/drug effects
- Cell Division/genetics
- Drug Interactions/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Genes, myc/drug effects
- Genes, myc/genetics
- Humans
- Immunohistochemistry
- Interferon-alpha/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mutation/drug effects
- Mutation/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Tumor Suppressor Protein p53/drug effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Y Yasuoka
- First Department of Surgery, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Poligone B, Baldwin AS. Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J Biol Chem 2001; 276:38658-64. [PMID: 11509575 DOI: 10.1074/jbc.m106599200] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prostaglandin H synthases (PGHS) catalyze the conversion of arachidonic acid to prostaglandin H(2), the committed step in prostanoid synthesis. Two forms of PGHS exist, PGHS-1 (COX-1) and PGHS-2 (COX-2). The gene encoding the latter form is known to be inducible by a number of stimuli including several inflammatory mediators. Recent evidence indicates that the inducible cyclooxygenase may have both pro- and anti-inflammatory properties through the generation of different prostaglandins. Previous reports indicate that the transcription factor NF-kappaB can function upstream of COX-2 to control transcription of this gene and that the cyclopentenone prostaglandins can inhibit NF-kappaB activation via the inhibition of the IkappaB kinase. Thus, it is suggested that cyclopentenones feed back to inhibit continued nuclear accumulation of NF-kappaB. In this report we demonstrate COX-2 expression inhibits nuclear translocation of NF-kappaB, and we confirm that the cyclopentenone prostaglandins inhibit NF-kappaB. In addition, we show that prostaglandin E(2) and its analogs promote the inherent transcriptional activity of the p65/RelA subunit of NF-kappaB in a manner independent of induced nuclear accumulation. Consistent with this evidence, prostaglandin E(2) strongly synergizes with the inflammatory cytokine tumor necrosis factor-alpha to promote NF-kappaB-dependent transcription and gene expression. The data provide a molecular rationale to explain both the pro- and anti-inflammatory nature of COX-2.
Collapse
Affiliation(s)
- B Poligone
- Curriculum in Molecular Biology and Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
43
|
Williams BR. Signal integration via PKR. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re2. [PMID: 11752661 DOI: 10.1126/stke.2001.89.re2] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The vital role of interferons (IFNs) as mediators of innate immunity is well established. It has recently become apparent that one of the pivotal proteins in mediating the antiviral activity of IFNs, the double-stranded RNA (dsRNA)-activated protein kinase (PKR), also functions as a signal transducer in the proinflammatory response to different agents. PKR is a member of a small family of kinases that are activated by extracellular stresses and that phosphorylate the alpha subunit of protein synthesis initiation factor eIF-2, thereby inhibiting protein synthesis. The activation of PKR during infection by viral dsRNA intermediates results in the inhibition of viral replication. PKR also mediates the activation of signal transduction pathways by proinflammatory stimuli, including bacterial lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), and interleukin 1 (IL-1). PKR is a component of the inhibitor of kappaB (IkappaB) kinase complex and plays either a catalytic or structural role in the activation of IkappaB kinase, depending on the stimulus. The activities of the stress-activated protein kinases p38 and c-Jun NH(2)-terminal kinase (JNK) are also regulated by PKR in a pathway that leads to the production of proinflammatory cytokines. This review will focus on the role of PKR in nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK) pathways, because these have been the subjects of a series of publications over the past year that have reported conflicting findings. Although the conflicts may not be resolved in this review, suggestions are made for experiments that could lead to a clearer understanding of the mechanisms involved.
Collapse
Affiliation(s)
- B R Williams
- The author is in the Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
44
|
D'Acquisto F, Ghosh S. PACT and PKR: turning on NF-kappa B in the absence of virus. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752660 DOI: 10.1126/stke.2001.89.re1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) has been generally thought to be solely regulated by dsRNA, an intermediate in the replication of many viruses. However, the notion that PKR acts solely as a sensor for viral infection has been challenged by recent findings that alteration of PKR activity has effects on cellular growth and by the discovery of a virus-independent activator of PKR, a cellular protein called PACT (PKR-activating protein). The activation of the transcription factor nuclear factor kappa B (NF-kappaB) by PKR has been shown to account for the host antiviral response. We summarize the most recent findings on the molecular mechanisms leading to the activation of NF-kappaB by PKR and discuss three major unanswered questions. First, is PACT an alternative to dsRNA as a direct activator of the PKR-NF-kappaB pathway? Second, how is PACT itself activated and targeted to PKR? And third, what are the biological functions of PKR in the absence of viral infection?
Collapse
Affiliation(s)
- F D'Acquisto
- Section of Immunobiology, Department of Molecular Biophysics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
45
|
Deb A, Haque SJ, Mogensen T, Silverman RH, Williams BR. RNA-dependent protein kinase PKR is required for activation of NF-kappa B by IFN-gamma in a STAT1-independent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6170-80. [PMID: 11342638 DOI: 10.4049/jimmunol.166.10.6170] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The IFN-inducible dsRNA-activated protein kinase PKR regulates protein synthesis through phosphorylation of eukaryotic initiation factor-2alpha. It also acts as a signal transducer for transcription factors NF-kappaB, IFN regulatory factor-1, and activating transcription factor-2. IFN-gamma, a pleiotropic cytokine, elicits gene expression by activating the Janus kinase-STAT signaling pathway. IFN-gamma can synergize with TNF-alpha to activate NF-kappaB in a number of cell lines. Here we show that IFN-gamma alone can activate NF-kappaB, by a Janus kinase-1-mediated, but Stat1-independent, mechanism. NF-kappaB activation by IFN-gamma is associated with degradation of IkappaB beta. The IFN-gamma response can be blocked by 2',5'-oligoadenylate-linked antisense chimeras against PKR mRNA. There was no activation of NF-kappaB by IFN in PKR-null cells, indicating that PKR is required for IFN-gamma signaling to NF-kappaB.
Collapse
Affiliation(s)
- A Deb
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
46
|
Gil J, Rullas J, García MA, Alcamí J, Esteban M. The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-kappaB activation. Oncogene 2001; 20:385-94. [PMID: 11313968 DOI: 10.1038/sj.onc.1204109] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2000] [Revised: 10/30/2000] [Accepted: 11/13/2000] [Indexed: 01/25/2023]
Abstract
The double stranded RNA-dependent protein kinase (PKR), in addition to its role as a translational controlling factor, is a key transcriptional regulator exerting antiviral and antitumoral activities. We have previously shown that induction of NF-kappaB by PKR is involved in apoptosis commitment and this process is mediated through activation of the IKK complex. To gain insights into the mechanism of activation of NF-kappaB by PKR, we have analysed the domains of PKR involved in IKK activation and subsequent NF-kappaB induction. In PKR(0/0) cells infected with a collection of vaccinia virus (VV) recombinants expressing different mutant forms of PKR, we found that only PKR forms conserving the catalytic activity are able to activate NF-kappaB. An inactive PKR mutant (K296R), was unable to induce NF-kappaB activation despite full expression of the protein in a wide range of concentrations, as defined by Western blot, EMSA, IKK kinase activity and NF-kappaB transactivation assays. Moreover, the mutant PKR (K296R) acts as a dominant negative of PKR-induced eIF-2alpha phosphorylation and NF-kappaB activation. However, PKR mutants unable to activate NF-kappaB still retain their ability to associate with the IKK complex, as confirmed by immunoprecipitation analysis. We conclude that the catalytic activity of PKR and not only a protein-protein interaction with the IKK complex, is needed for activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- J Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CSIC), Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Kim YH, Choi MR, Song DK, Huh SO, Jang CG, Suh HW. Regulation of c-fos gene expression by lipopolysaccharide and cycloheximide in C6 rat glioma cells. Brain Res 2000; 872:227-30. [PMID: 10924699 DOI: 10.1016/s0006-8993(00)02477-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of lipopolysaccharide (LPS) on the expression of immediate early genes, such as c-fos and c-jun, was examined in C6 rat glioma cells. LPS (1 microg/ml) alone did not affect c-fos mRNA level. LPS, however, transiently increased c-jun mRNA level. Cycloheximide (CHX, 20 microM), a protein synthesis inhibitor, alone caused increases of c-fos and c-jun mRNA levels. LPS showed a potentiating effect in the regulation of c-fos mRNA level, whereas LPS showed an additive action for the regulation of CHX-induced c-jun mRNA expression. To determine if CREB and mitogen-activated protein kinases (MAPKs) are involved in the regulation of c-fos mRNA expression by LPS and CHX, Western blot was carried out using the phosphorylated form of antibodies against ERK, JNK, p38, and CREB. LPS transiently increased the phosphorylation of p38-MAPK and CREB. In addition, LPS alone elevated phosphorylation of ERK (p44/p42) MAPK in a time-dependent manner. Furthermore, LPS plus CHX enhanced phosphorylation of ERK, p38, and CREB in a synergistic manner. Our results suggest that the phosphorylation of ERK, p38, and CREB may be involved in the regulation of synergistic c-fos mRNA expression induced by LPS plus CHX in C6 rat glioma cells.
Collapse
Affiliation(s)
- Y H Kim
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, chunchon, 200-702, Kangwon-Do, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Bandyopadhyay SK, de La Motte CA, Williams BR. Induction of E-selectin expression by double-stranded RNA and TNF-alpha is attenuated in murine aortic endothelial cells derived from double-stranded RNA-activated kinase (PKR)-null mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2077-83. [PMID: 10657661 DOI: 10.4049/jimmunol.164.4.2077] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The adherence of leukocytes on the endothelium is mediated in part by the transient expression of the E-selectin adhesion molecule. Because we have previously shown that the dsRNA-activated kinase PKR mediates dsRNA induction of NF-kappaB, we used murine aortic endothelial (MuAE) cells isolated from wild-type and PKR-null mice to investigate the role of PKR in the induction of E-selectin expression by dsRNA (pIC) and TNF-alpha. E-selectin mRNA and protein expression was inducible by both pIC and TNF-alpha in wild-type MuAE cells, whereas induction of E-selectin expression by these agents was defective in PKR-null MuAE cells. Induction of E-selectin promoter activity and NF-kappaB DNA binding activity were substantially reduced in pIC- or TNF-alpha-treated PKR-null cells, indicating a role for PKR in both pIC and TNF-alpha induction of E-selectin via an NF-kappaB-dependent pathway. In PKR-null cells, pIC-mediated degradation of IkappaBbeta is deficient. Activation of this pathway requires the PKR-dependent degradation of the IkappaBbeta protein. Moreover, both phosphorylated and unphosphorylated activating transcription factor 2 DNA-binding activities were reduced in PKR-null aortic endothelial cells. These results indicate that the PKR is required for full activation of E-selectin expression by pIC and TNF-alpha in primary mouse aortic endothelial cells identifying activating transcription factor 2 as a new target for PKR-dependent regulation and suggest a role for PKR in leukocyte adhesion.
Collapse
MESH Headings
- Animals
- Aorta
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- E-Selectin/biosynthesis
- E-Selectin/genetics
- E-Selectin/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Enzyme Activation/immunology
- Enzyme Induction/drug effects
- Enzyme Induction/genetics
- Enzyme Induction/immunology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Luciferases/biosynthesis
- Luciferases/genetics
- Macromolecular Substances
- Mice
- Mice, Knockout
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/immunology
- Protein Binding/drug effects
- Protein Binding/immunology
- RNA, Double-Stranded/pharmacology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Tumor Necrosis Factor-alpha/pharmacology
- eIF-2 Kinase/deficiency
- eIF-2 Kinase/genetics
- eIF-2 Kinase/physiology
Collapse
Affiliation(s)
- S K Bandyopadhyay
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
49
|
Zamanian-Daryoush M, Mogensen TH, DiDonato JA, Williams BR. NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. Mol Cell Biol 2000; 20:1278-90. [PMID: 10648614 PMCID: PMC85265 DOI: 10.1128/mcb.20.4.1278-1290.2000] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 11/18/1999] [Indexed: 11/20/2022] Open
Abstract
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.
Collapse
Affiliation(s)
- M Zamanian-Daryoush
- Department of Cancer Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
50
|
Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol 2000; 162:207-17. [PMID: 10652249 DOI: 10.1006/taap.1999.8842] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which trichothecene mycotoxins cause immunological effects in leukocytes such as cytokine up-regulation, aberrant IgA production, or apoptotic cell death are not fully understood. In the present study, mRNA differential display analysis was used to evaluate changes in gene expression induced by the trichothecene vomitoxin (VT or deoxynivalenol) in a T-cell model, the murine EL-4 thymoma, that was stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (ION). Ten differentially expressed fragments of cDNA were isolated and sequenced and three of these were identified as the known genes GRP78/BiP, P58(IPK), and RAD17. Most notably, expression of GRP78/BiP (a 78-kDa glucose-regulated protein), a stress-response gene induced by agents or conditions that adversely affect endoplasmic reticulum (ER) function, was found to decrease in VT-exposed cells. Competitive RT-PCR analysis revealed that 250 ng/ml VT decreased GRP78/BiP mRNA expression in both unstimulated and PMA/ION-stimulated EL-4 cells at 6 and 24 h after VT treatment. Western blotting confirmed that VT (50 to 1000 ng/ml) also significantly diminished GRP/BiP protein levels in a dose-response manner in PMA/ION-stimulated cells. GRP78/BiP has been shown to play a role in regulation of protein folding and secretion, and to protect cells from apoptosis. When PMA/ION-stimulated cells were incubated with 50 to 1000 ng/ml VT for 24 h, 200-bp DNA laddering, a hallmark of apoptosis, increased in a dose-dependent manner. In addition to GRP78, mRNA expression of the cochaperone P58(IPK), which is the 58-kDa cellular inhibitor of the double-stranded RNA-regulated protein kinase (PKR), was also shown to be suppressed by VT-treatment. GRP78 and P58(IPK) are critical for maintenance of cell homeostasis and prevention of apoptosis. The down-regulation of these molecular chaperones by VT represent a novel observation and has the potential to impact immune function at multiple levels.
Collapse
Affiliation(s)
- G H Yang
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | | |
Collapse
|