1
|
Naberezhnykh G, Yuferova А, Bakholdina S, Solov'eva T. Biochemical characterization and antibacterial activity of lipopolysaccharide binding proteins of the jellyfish Aurelia aurita and Rhopilema asamushi. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110298. [PMID: 40158763 DOI: 10.1016/j.fsi.2025.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Proteins capable of binding lipopolysaccharides (LPSs) of Gram-negative bacteria were isolated from the jellyfish of the Sea of Japan. LPS-binding proteins (ILBP - invertebrate lipopolysaccharide-binding proteins) were found in lysates of the jellyfish mesogloea by immunofluorescence assay with fluorescein-labeled LPS (F-LPS). Cation exchange chromatography was used isolate and purify ILBPs from jellyfish lysate. Fractions of jellyfish lysate after cation exchange chromatography were shown to contain high-molecular-weight ILBPs. By ligand enzyme solid phase assay it was shown that isolated ILBP of jellyfishes was bound to LPS directly by concentration-dependent manner in saturation process. The Scatchard analysis plot of the binding data gave a biphasic curve, suggesting that there were two types of independent binding sites in ILBP. Both isolated R-LPS and free lipid A inhibited binding of LBP with B LPS. The O-specific side chain of LPS was not involved in the interaction with ILBP. This suggested that the binding proteins recognized the core oligosaccharide and the lipid A portion of LPS. The disaggregation of various forms of LPS upon interaction with ILBPs from two species of jellyfish was also studied by dynamic light scattering (DLS). The distribution pattern and particle size (34 nm and 88.8 nm) of R-LPS in complex with ILBP from R. asamushi indicate disaggregation of R-LPS. The negative charge of Rd-LPS (-42.2 mV) in the LPS-ILBP-Ropilema complex is neutralized to -4.4 mV. It was shown that the ILBP was involved in the defense mechanism of the jellyfish by agglutinating the Gram-negative bacteria Escherichia coli and Yersinia pseudotuberculosis. We studied the effects of ILBP concentration on the permeability of bacterial walls. Responses to ILBP varied across the studied Gram-negative bacteria. Y. pseudotuberculosis was more tolerant to the effects of ILBP compared to E. coli K-12. We attributed the observed distinctions to the different structure of LPSs. E. coli K-12 contains LPS with short carbohydrate chains, and lipid A is more easily available for binding to ILBP. These invertebrate species are abundant and are of interest as new sources of LPS binding proteins for potential antimicrobial agents. Proteins modulating the biological activity of endotoxin are important not only because they provide insights into the mechanisms of host defense against Gram-negative bacteria but also because they may suggest new therapeutic approaches to control the deleterious effects of endotoxins.
Collapse
Affiliation(s)
- Gennadii Naberezhnykh
- Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, 690022, Russia.
| | - Аleksandra Yuferova
- Department of Biotechnology and Functional Nutrition, School of Biomedicine, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Svetlana Bakholdina
- Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, 690022, Russia
| | - Tamara Solov'eva
- Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, 690022, Russia
| |
Collapse
|
2
|
Boštjančić LL, Dragičević P, Bonassin L, Francesconi C, Tarandek A, Schardt L, Rutz C, Hudina S, Schwenk K, Lecompte O, Theissinger K. Expression of C/EBP and Kr-h1 transcription factors under immune stimulation in the noble crayfish. Gene 2024; 929:148813. [PMID: 39094714 DOI: 10.1016/j.gene.2024.148813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Transcription factors (TFs) have an important role in the regulation of the gene expression network. The role of TFs in the immune response of freshwater crayfish is poorly understood, but leveraging the regulatory mechanisms of immune response could augment the resistance against the invasive oomycete pathogen, Aphanomyces astaci. Previous studies indicated that the TFs CCAAT/enhancer-binding protein (C/EBP) and putative Krüppel homolog-1 protein (Kr-h1) might play a role in immune and stress response of the noble crayfish (Astacus astacus). Here, we aimed to further characterise these two gene products to gain a better understanding of their evolutionary origin, domain organisation and expression patterns across different crayfish tissues. Furthermore, we conducted an immune stimulation experiment to observe the potential changes in the gene expression of C/EBP and Kr-h1 under immune challenge in different crayfish tissues. Our results showed that both C/EBP and Kr-h1 are closely related to other C/EBPs and Kr-h1s in Malacostraca. Gene expression analysis revealed that both TFs are present in all analysed tissues, with higher expression of C/EBP in the gills and Kr-h1 in the abdominal muscle. Immune stimulation with laminarin (mimicking β-1-3-glucan in the oomycete cell wall) showed an activation of the crayfish immune system, with an overall increase in the total haemocyte count (THC) compared to untreated control and crayfish buffered saline (CBS) treatment. On the gene expression level, an up-regulation of the C/EBP gene was detected in the laminarin treated group in hepatopancreas and heart, while no changes were observed for the Kr-h1 gene. Our results indicate an early change in C/EBP expression in multiple tissues during immune stimulation and suggest its involvement in the immune response of the noble crayfish.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Paula Dragičević
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Lena Bonassin
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Anita Tarandek
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Leonie Schardt
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France
| | - Sandra Hudina
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Klaus Schwenk
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France
| | - Kathrin Theissinger
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
3
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
4
|
Söderhäll K. Invertebrate immunology - some thoughts about past and future research. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105256. [PMID: 39214322 DOI: 10.1016/j.dci.2024.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, 752 36, Uppsala, Sweden.
| |
Collapse
|
5
|
Ren Q, Huang X. The first report of a C-type lectin contains a CLIP domain involved in antibacterial defense in Macrobrachium nipponense. Int J Biol Macromol 2024; 275:133705. [PMID: 38972646 DOI: 10.1016/j.ijbiomac.2024.133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
We identified a novel C-type lectin (CTL) from Macrobrachium nipponense, designated as Mn-clip-Lec. It consists of 1315 bp with an open reading frame of 1098 bp, encoding a polypeptide of 365 amino acids. Mn-clip-Lec contains 6 exons and 5 introns. Mn-clip-Lec possessed a CLIP domain at the N-terminal and two carbohydrate recognition domains at the C-terminal. Interaction between Mn-clip-Lec and MnLec was found by Yeast two-hybrid analysis. The expressions of Mn-clip-Lec, MnLec, prophenoloxidase (proPO)-activating system-associated genes (MnPPAF, MnPPAE, and MnPO), and antimicrobial peptides (AMPs) (MnALF and MnCRU) were up-regulated after the challenge with Staphylococcus aureus. RNA interference (RNAi)-mediated suppression of the Mn-clip-Lec and MnLec genes in S. aureus-challenged prawns reduced the transcripts of MnPPAF, MnPPAE, MnPO, MnALF and MnCRU. Knockdown of Mn-clip-Lec and MnLec resulted in decrease in PO activity in M. nipponense infected with S. aureus. The recombinant Mn-clip-Lec (rMn-clip-Lec) protein bound all tested bacteria and agglutinated S. aureus. A sugar-binding assay revealed that rMn-clip-Lec could bind to LPS or PGN. rMn-clip-Lec accelerated the clearance of S. aureus in vivo. Our findings suggest that Mn-clip-Lec and its interacting MnLec play important roles in the induction of the proPO system and AMPs expression in M. nipponense during bacterial infection.
Collapse
Affiliation(s)
- Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu Province, PR China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, PR China
| |
Collapse
|
6
|
López-Landavery EA, Urquizo-Rosado Á, Saavedra-Flores A, Tapia-Morales S, Fernandino JI, Zelada-Mázmela E. Cellular and transcriptomic response to pathogenic and non-pathogenic Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND) in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109472. [PMID: 38438059 DOI: 10.1016/j.fsi.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| | - Ángela Urquizo-Rosado
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Anaid Saavedra-Flores
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Sandra Tapia-Morales
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Juan I Fernandino
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru; Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, Argentina.
| | - Eliana Zelada-Mázmela
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| |
Collapse
|
7
|
Shao S, Liu K, Du J, Yin C, Wang M, Wang Y. Functional characterization of serine proteinase inhibitor Kazal-Type in the red claw crayfish Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109525. [PMID: 38537926 DOI: 10.1016/j.fsi.2024.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Serine protease inhibitors Kazal type (SPINKs) function in physiological and immunological processes across multicellular organisms. In the present study, we identified a SPINK gene, designated as CqSPINK, in the red claw crayfish Cherax quadricarinatus, which is the ortholog of human SPINK5. The deduced CqSPINK contains two Kazal domains consisting of 45 amino acid residues with a typical signature motif C-X3-C-X5-PVCG-X5-Y-X3-C-X6-C-X12-14-C. Each Kazal domain contains six conserved cysteine residues forming three pairs of disulfide bonds, segmenting the structure into three rings. Phylogenetic analysis revealed CqSPINK as a homolog of human SPINK5. CqSPINK expression was detected exclusively in hepatopancreas and epithelium, with rapid up-regulation in hepatopancreas upon Vibrio parahaemolyticus E1 challenge. Recombinant CqSPINK protein (rCqSPINK) was heterologously expressed in Escherichia coli and purified for further study. Proteinase inhibition assays demonstrated that rCqSPINK could potently inhibit proteinase K and subtilisin A, weakly inhibit α-chymotrypsin and elastase, but extremely weak inhibit trypsin. Furthermore, CqSPINK inhibited bacterial secretory proteinase activity from Bacillus subtilis, E. coli, and Staphylococcus aureus, and inhibited B. subtilis growth. These findings suggest CqSPINK's involvement in antibacterial immunity through direct inhibition of bacterial proteases, contributing to resistance against pathogen invasion.
Collapse
Affiliation(s)
- Shuoru Shao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Kexin Liu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Jiansen Du
- Qingdao International Travel Healthcare Center, Qingdao Customs District PR China, Qingdao, 266000, China
| | - Chenlin Yin
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Yan Wang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
8
|
Sahoo S, Badhe MR, Paul A, Sahoo PK, Suryawanshi AR, Panda D, Pillai BR, Patnaik BB, Mohanty J. Characterization of a Lipopolysaccharide- and Beta-1,3-Glucan Binding Protein (LGBP) from the Hepatopancreas of Freshwater Prawn, Macrobrachium rosenbergii, Possessing Lectin-Like Activity. Probiotics Antimicrob Proteins 2023; 15:1596-1607. [PMID: 36593373 DOI: 10.1007/s12602-022-10021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/04/2023]
Abstract
The study focuses on the isolation, characterization, and expression analysis of a lectin from the hepatopancreas of Macrobrachium rosenbergii. The protein was isolated by affinity chromatography on a melibiose-agarose column. The molecular weight of the native protein was found to be ~120 kDa which consists of a single polypeptide of ~39.5 kDa. On mass spectrometric analysis, the protein was identified as lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP). LGBP showed hemagglutination with rabbit RBC like a lectin and its carbohydrate-binding specificity was determined by the hemagglutination inhibition test. The protein also showed antibacterial activity against two Gram-negative bacteria Vibrio harveyi and Aeromonas sobria, and one Gram positive bacteria Bacillus cereus in the disc diffusion test. Rabbit antiserum was raised against the purified LGBP and used to develop a sandwich ELISA system for quantitation of the protein in hepatopancreas and serum samples of M. rosenbergii. The expression of the LGBP transcripts in muscle, hepatopancreas, and gill tissues from M. rosenbergii juveniles at 72 h post-challenge of V. harveyi was not modulated as noticed in qPCR analysis. However, significant increases in the concentrations of LGBP protein in hepatopancreas (5.23 ± 0.45 against 3.43 ± 0.43 mg/g tissue in control) and serum (1.08 ± 0.14 against 0.61 ± 0.08 µg/ml in control) were observed in the challenged group of prawns in ELISA suggesting its putative role against bacterial infections. The study for the first time characterized the native LGBP of M. rosenbergii showing a multifunctional role in immunity.
Collapse
Affiliation(s)
- Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | - Debabrata Panda
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bindu R Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bharat Bhusan Patnaik
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungcheongnam-do, 31538, Korea
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
9
|
Solov'eva TF, Bakholdina SI, Naberezhnykh GA. Host Defense Proteins and Peptides with Lipopolysaccharide-Binding Activity from Marine Invertebrates and Their Therapeutic Potential in Gram-Negative Sepsis. Mar Drugs 2023; 21:581. [PMID: 37999405 PMCID: PMC10672452 DOI: 10.3390/md21110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Sepsis is a life-threatening complication of an infectious process that results from the excessive and uncontrolled activation of the host's pro-inflammatory immune response to a pathogen. Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative bacteria's outer membrane, plays a key role in the development of Gram-negative sepsis and septic shock in humans. To date, no specific and effective drug against sepsis has been developed. This review summarizes data on LPS-binding proteins from marine invertebrates (ILBPs) that inhibit LPS toxic effects and are of interest as potential drugs for sepsis treatment. The structure, physicochemical properties, antimicrobial, and LPS-binding/neutralizing activity of these proteins and their synthetic analogs are considered in detail. Problems that arise during clinical trials of potential anti-endotoxic drugs are discussed.
Collapse
Affiliation(s)
- Tamara Fedorovna Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Svetlana Ivanovna Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | | |
Collapse
|
10
|
Mengal K, Kor G, Siino V, Buřič M, Kozák P, Levander F, Niksirat H. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104760. [PMID: 37331675 DOI: 10.1016/j.dci.2023.104760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Hemolymph is the circulatory fluid that fills the body cavity of crustaceans, analogous to blood in vertebrates. Hemolymph coagulation, similar to blood clotting in vertebrates, plays a crucial role in wound healing and innate immune responses. Despite extensive studies on the clotting process in crustaceans, no comparative quantitative analysis of the protein composition of non-clotted and clotted hemolymph in any decapod has been reported. In this study, we used label-free protein quantification with high-resolution mass spectrometry to identify the proteomic profile of hemolymph in crayfish and quantify significant changes in protein abundances between non-clotted and clotted hemolymph. Our analysis identified a total of two-hundred and nineteen proteins in both hemolymph groups. Furthermore, we discussed the potential functions of the top most high and low-abundant proteins in hemolymph proteomic profile. The quantity of most of the proteins was not significantly changed during coagulation between non-clotted and clotted hemolymph, which may indicate that clotting proteins are likely pre-synthesized, allowing for a swift coagulation response to injury. Four proteins still showed abundance differences (p < 0.05, fold change>2), including C-type lectin domain-containing proteins, Laminin A chain, Tropomyosin, and Reverse transcriptase domain-containing proteins. While the first three proteins were down-regulated, the last one was up-regulated. The down-regulation of structural and cytoskeletal proteins may affect the process of hemocyte degranulation needed for coagulation, while the up-regulation of an immune-related protein might be attributed to the phagocytosis ability of viable hemocytes during coagulation.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Golara Kor
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Valentina Siino
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Fredrik Levander
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, 223 87, Sweden
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
11
|
Johnpaul A, Arumugam M. Plasma β-1,3 Glucan Binding Protein Mediated Opsono-Phagocytosis by Hemocytes In Vitro of Marine Mussel Perna viridis. DNA Cell Biol 2023; 42:608-616. [PMID: 37695843 DOI: 10.1089/dna.2023.0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
We have shown in the past decade, for the first time in a bivalve mollusc, detection, isolation, and purification of β-1,3 glucan binding protein (β-GBP) in the plasma of the marine mussel Perna viridis and demonstrated its role in a nonself-induced activation of plasma prophenoloxidase system. In this study, we present evidence for its ability to function as an opsonin during phagocytosis of trypsinized yeast cells by the hemocytes of P. viridis. The in vitro pretreatment of target cells (trypsinized yeast cells) with β-GBP enhanced the phagocytic response of hemocytes. Such β-GBP-mediated enhanced phagocytic response appeared to be dose dependent. This opsono-phagocytic response could be inhibited by the presence of laminarin (a polymer of β-1,3 glucans), glucose, as well as polyclonal antibodies raised against β-GBP. These observations clearly indicate that the plasma β-GBP can possibly recognize and bind to β-1,3 glucans on the surface of targets and facilitate hemocyte recognition processes possibly by forming a bridge between the hemocytes and the target, consequently leading to opsono-phagocytosis. These observations together with our earlier annotations indicate the multifunctional potential of plasma β-GBP in the marine mussel P. viridis.
Collapse
Affiliation(s)
- A Johnpaul
- Department of Zoology, St. Joseph's University, Bangalore, India
| | - M Arumugam
- Laboratory of Pathobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai, India
| |
Collapse
|
12
|
Yang Y, Xu W, Du X, Ye Y, Tian J, Li Y, Jiang Q, Zhao Y. Effects of dietary melatonin on growth performance, antioxidant capacity, and nonspecific immunity in crayfish, Cherax destructor. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108846. [PMID: 37230307 DOI: 10.1016/j.fsi.2023.108846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is an indole hormone widely found in plants and animals. Many studies have shown that MT promotes the growth and immunity of mammals, fish, and crabs. However, the effect on commercial crayfish has not been demonstrated. The purpose of this study was to evaluate the effects of dietary MT on growth performance and innate immunity of Cherax destructor from three aspects of individual level, biochemical level, and molecular level after 8 weeks of culture. In this study, we found that MT supplementation increased weight gain rate, specific growth rate, and digestive enzyme activity in C. destructor compared to the control group. Dietary MT not only promoted the activity of T-AOC, SOD, and GR, increased the content of GSH, and decreased the content of MDA in the hepatopancreas, but also increased the content of hemocyanin and copper ions and AKP activity in hemolymph. Gene expression results showed that MT supplementation at appropriate doses increased the expression of cell cycle-regulated genes (CDK, CKI, IGF, and HGF) and non-specific immune genes (TRXR, HSP60, and HSP70). In conclusion, our study showed that adding MT to the diet improved growth performance, enhanced the antioxidant capacity of hepatopancreas, and immune parameters of hemolymph in C. destructor. In addition, our results showed that the optimal dietary supplementation dose of MT in C. destructor is 75-81 mg/kg.
Collapse
Affiliation(s)
- Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Maurus G, Ho TH, Lee PT. Effects of dietary Scutellaria baicalensis extract on growth performance, immune-related genes expression, and resistance against Vibrio parahaemolyticus in white shrimp (Litopenaeus vannamei). Res Vet Sci 2023; 159:160-170. [PMID: 37148735 DOI: 10.1016/j.rvsc.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
In this study dietary Scutellaria baicalensis extract (SBE) was used to improve the shrimps' immune response and its resistance to Vibrio parahaemolyticus. SBE obtained by solid-liquid extraction (SLE) has shown stronger antibacterial activity against V. parahaemolyticus compared to extracts obtained through the pressurized liquid extraction (PLE) method. A stronger immune response, such as the production of reactive oxygen species and the induction of expression of immune genes in hemocytes was seen in the SBE (SLE) treated group in vitro. SBE (SLE) had better immune stimulation effects and bactericidal activity than SBE (PLE) and therefore was chosen for in vivo feeding trial. The group fed with 1% SBE showed a better growth performance after 2 weeks of the feeding trial, but the growth-promoting effects did not last until the end of the trial at week four. Higher SBE intake reduced shrimp resistance to V. parahaemolyticus on week two but showed better resistance than the control group on the fourth week. Gene expression assays were used to investigate contradictory responses of the SBE-fed groups to V. parahaemolyticus at different times. Most of the genes examined in the selected tissues were not significantly changed, suggesting that the higher mortality of shrimp fed with high dose of SBE was not due to suppression of immune-related genes at earlier time point. Collectively, the bioactivity of SBE is influenced by the extraction conditions. Higher dietary doses of SBE (1% and 5%) improved the resistance of the white shrimp to V. parahaemolyticus after a longer feeding period (week four), but caution should be taken when applying SBE in the feed since a vulnerable status (week two) was seen during the feeding trial.
Collapse
Affiliation(s)
- Germain Maurus
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
14
|
Impact of Dietary Administration of Seaweed Polysaccharide on Growth, Microbial Abundance, and Growth and Immune-Related Genes Expression of The Pacific Whiteleg Shrimp ( Litopenaeus vannamei). Life (Basel) 2023; 13:life13020344. [PMID: 36836701 PMCID: PMC9962296 DOI: 10.3390/life13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
This work aims to determine the impact of dietary supplementation of polysaccharide, extracted from brown seaweeds Sargassum dentifolium on growth indices, feed utilization, biochemical compositions, microbial abundance, expressions of growth and immunity-related genes, and stress genes of the Pacific Whiteleg shrimp Litopenaeus vannamei. A total of 360 post-larvae of L. vannamei were randomly distributed into a 12-glass aquarium (40 L of each) at a stocking density of 30 shrimp with an initial weight of (0.0017 ± 0.001 g). During the 90-day experiment trial, all shrimp larvae were fed their respective diets at 10% of total body weight, three times a day. Three experimental diets were prepared with different seaweed polysaccharide (SWP) levels. The basal control diet had no polysaccharide level (SWP0), while SWP1, SWP2, and SWP3 contained polysaccharides at concentrations of 1, 2, and 3 g kg-1 diet, respectively. Diets supplemented with polysaccharide levels showed significant improvements in weight gain and survival rate, compared to the control diet. Whole-body biochemical composition and the microbial abundance (the total count of heterotrophic bacteria and Vibrio spp.) of L. vannamei showed significant differences among polysaccharide-treated diets compared to the control. At the end of the feeding experiment, the dietary supplementation of polysaccharide levels enhanced the expression of growth-related genes (Insulin-like growth factors (IGF-I, IGF-II), immune-related genes (β -Glucan-binding protein (β-Bgp), Prophenoloxidase (ProPO), Lysozyme (Lys), and Crustin), and stress genes (Superoxide dismutase (SOD) and Glutathione peroxidase (GPx) in the muscle tissue of L. vannamei. However, the current study concluded that the inclusion rate of 2 g kg-1 of polysaccharide as a dietary additive administration enhanced both weight gain and survival rate of L. vannamei, while the incorporation level of 3 g kg-1 reduces the abundance of pathogenic microbes and enhances the growth-, immunity- and stress-related gene expressions of L. vannamei.
Collapse
|
15
|
Kemal R, Fauzi IA, Nuryati S, Wardani WW, Suprayudi MA. Evaluation of Selenoprotein Supplementation on Digestibility, Growth, and Health Performance of Pacific White Shrimp Litopenaeus vannamei. AQUACULTURE NUTRITION 2023; 2023:2008517. [PMID: 36860982 PMCID: PMC9973150 DOI: 10.1155/2023/2008517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Selenoprotein is a feed additive that can overcome oxidative stress in intensive Pacific white shrimp (Litopenaeus vannamei) culture. This study evaluated the effects of selenoprotein supplementation at various doses on Pacific white shrimp's digestibility, growth, and health performance. The experimental design used was a completely randomized design consisting of four feed treatments, namely, control and treatments with selenoprotein supplementation of 2.5, 5, and 7.5 g kg feed-1 with four replications. Shrimps (1.5 g) were reared for 70 days and challenged for 14 days by the bacteria Vibrio parahaemolyticus (107 CFU mL-1). Shrimps used in the digestibility performance evaluation (6.1 g) were reared until sufficient quantities of feces were collected for analysis. Shrimp supplemented with selenoprotein exhibited superior digestibility, growth, and health performance compared to the control (P < 0.05). The use of selenoprotein at a dose of 7.5 g kg of feed-1 (2.72 mg Se kg of feed-1) was considered the most effective for increasing productivity and preventing disease attacks in intensive shrimp culture.
Collapse
Affiliation(s)
- Rafi Kemal
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Ichsan Achmad Fauzi
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Sri Nuryati
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Wira Wisnu Wardani
- PT Aquacell Indo Pasifik, Jl. Pedurenan 5, Gunung Sindur, Bogor 16340, Indonesia
| | - Muhammad Agus Suprayudi
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
16
|
Wang Y, Yang LG, Feng GP, Yao ZL, Li SH, Zhou JF, Fang WH, Chen YH, Li XC. PvML1 suppresses bacterial infection by recognizing LPS and regulating AMP expression in shrimp. Front Immunol 2022; 13:1088862. [PMID: 36643915 PMCID: PMC9832027 DOI: 10.3389/fimmu.2022.1088862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Toll and Toll-like receptors (TLRs) play essential roles in the innate immunity of Drosophila and mammals. Recent studies have revealed the presence of Toll-mediated immune signaling pathways in shrimp. However, the recognition and activation mechanism of Toll signaling pathways in crustaceans remain poorly understood due to the absence of key recognition molecules, such as peptidoglycan recognition proteins. Here, a novel MD2-related lipid-recognition (ML) member named PvML1 was characterized in Penaeus vannamei. We found that PvML1 shared a similar 3D structure with human MD2 that could specifically recognize lipopolysaccharides (LPS) participating in LPS-mediated TLR4 signaling. PvML1 was highly expressed in hemocytes and remarkably upregulated after Vibrio parahemolyticus challenge. Furthermore, the binding and agglutinating assays showed that PvML1 possessed strong binding activities to LPS and its key portion lipid A as well as Vibrio cells, and the binding of PvML1 with bacterial cells led to the agglutination of bacteria, suggesting PvML1 may act as a potential pathogen recognition protein upon interaction with LPS. Besides, coating V. parahemolyticus with recombinant PvML1 promoted bacterial clearance in vivo and increased the survival rate of bacterium-challenged shrimp. This result was further confirmed by RNAi experiments. The knockdown of PvML1 remarkably suppressed the clearance of bacteria in hemolymph and decreased the survival rate of infected shrimp. Meanwhile, the silencing of PvML1 severely impaired the expression of a few antimicrobial peptides (AMPs). These results demonstrated the significant correlation of bacterial clearance mediated by PvML1 with the AMP expression. Interestingly, we found that PvML1 interacted with the extracellular region of PvToll2, which had been previously shown to participate in bacterial clearance by regulating AMP expression. Taken together, the proposed antibacterial model mediated by PvML1 might be described as follows. PvML1 acted as a potential recognition receptor for Gram-negative bacteria by binding to LPS, and then it activated PvToll2-mediated signaling pathway by interacting with PvToll2 to eliminate invading bacteria through producing specific AMPs. This study provided new insights into the recognition and activation mechanism of Toll signaling pathways of invertebrates and the defense functions of ML members.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China,Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Li-Guo Yang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Guang-Peng Feng
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Zong-Li Yao
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Shou-Hu Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jun-Fang Zhou
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wen-Hong Fang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yi-Hong Chen
- Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Yi-Hong Chen, ; Xin-Cang Li,
| | - Xin-Cang Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China,East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China,*Correspondence: Yi-Hong Chen, ; Xin-Cang Li,
| |
Collapse
|
17
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Junprung W, Supungul P, Sangklai N, Tassanakajon A. Heat Shock Protein 70 Is a Damage-Associated Molecular Pattern That by Binding to Lipopolysaccharide and β-1,3-Glucan-Binding Protein Activates the Prophenoloxidase System in Shrimp. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:582-592. [PMID: 35858734 DOI: 10.4049/jimmunol.2100804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/24/2022] [Indexed: 10/17/2023]
Abstract
Recent studies have initiated a paradigm shift in understanding heat shock protein 70 (HSP70) functions in the shrimp immune system. However, the mechanism by which Litopenaeus vannamei (Lv)HSP70 modulates the innate immune response remains unclear. This study shows that LvHSP70 binds to the pattern recognition receptor LPS and β-1,3-glucan-binding protein (LvLGBP), and subsequently leads to the activation of the prophenoloxidase system. Injection of shrimp with rLvHSP70 significantly (p < 0.05) upregulated the gene and protein expression of the key pattern recognition receptor LvLGBP. A coimmunoprecipitation and ELISA-based binding assay strongly confirmed the binding of LvHSP70 to LvLGBP at polysaccharide recognition motifs (PLS motifs) with a Kd of 4.44 μM and its competitive binding with LPS (IC50) is 8.036 μM. Conversely, LPS efficiently competed with LvHSP70 for binding to LvLGBP in a concentration-dependent manner with an IC50 of 7.662 μM, indicating that both are ligands of LvLGBP and likely bind at the same site. Binding of LvHSP70 to LvLGBP highly activated phenoloxidase activity in shrimp hemocyte lysate supernatants. Gene silencing of LvLGBP impaired the activation of phenoloxidase activity in shrimp by rLvHSP70, indicating that LvHSP70-LvLGBP interaction was essential for stimulating the immune cascade. Taken together, these results demonstrated that LvHSP70 is a ligand of LvLGBP similar to LPS and acts as a damage-associated molecular pattern to modulate the shrimp immune system via the prophenoloxidase system, eventually leading to the production of melanin and toxic reactive intermediates against invading pathogens.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; and
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nutthapon Sangklai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; and
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; and
| |
Collapse
|
19
|
Resistance to Crayfish Plague: Assessing the Response of Native Iberian Populations of the White-Clawed Freshwater Crayfish. J Fungi (Basel) 2022; 8:jof8040342. [PMID: 35448573 PMCID: PMC9025747 DOI: 10.3390/jof8040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Crayfish plague, caused by the oomycete pathogen Aphanomyces astaci, is one of the most devastating of the emerging infectious diseases. This disease is responsible for the decline of native European and Asian freshwater crayfish populations. Over the last few decades, some European crayfish populations were reported to display partial to total resistance to the disease. The immune response in these cases was similar to that exhibited by the natural carriers of the pathogen, North American freshwater crayfish, e.g., weak-to-strong melanization of colonizing hyphae. We tested the degree of resistance displayed by 29 native Iberian populations of Austropotamobius pallipes that were challenged by zoospores of the pathogen. We measured the following parameters: (i) mean survival time, (ii) cumulative mortality, and (iii) immune response, and found that the total cumulative mortality of all the challenged populations was 100%. The integration of the results from these parameters did not allow us to find differences in resistance towards A. astaci among the northern and central populations of the Iberian Peninsula. However, in the southern populations, we could identify four distinct population responses based on an evaluation of a GLM analysis. In the first case, the similar response could be explained by the effect of a pathogen strain with a lower-than-expected virulence, and/or an actual increase in resistance. In the Southern populations, these differences appear to be the consequence of either whole population or individual resistance. Individuals that survived for a longer period than the others showed a stronger immune response, i.e., presence of partially or fully melanized hyphae, which is similar to that of North American crayfish species. This might be the consequence of different mechanisms of resistance or/and tolerance towards A. astaci.
Collapse
|
20
|
He Y, Wang Q, Li J, Li Z. Comparative proteomic profiling in Chinese shrimp Fenneropenaeus chinensis under low pH stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:526-535. [PMID: 34953999 DOI: 10.1016/j.fsi.2021.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Lower pH gives rise to a harmful stress to crustacean. Here, we analyzed the proteomic response of Fenneropenaeus chinensis from control pH (pH value 8.2) and low pH (pH value 6.5) - treated groups by employing absolute quantitation-based quantitative proteomic (iTRAQ) analysis. Among the identified proteins, a total of 76 proteins differed in their abundance levels, including 45 upregulated and 31 downregulated proteins. The up-regulation of proteins like citrate synthase, cytochrome c oxidase, V-type proton ATPase, glyceraldehyde-3-phosphate dehydrogenase and fructose 1,6-bisphosphate-aldolase as well as the enrichment of the DEPs in multiple metabolic processes and pathways illustrated that increased energy and substrates metabolism was essential for F. chinensis to counteract low pH stress. Ion transporting related proteins, such as Na+/K+/2Cl- cotransporter and calmodulin, participated in the homeostatic maintenance of pH in F. chinensis. There were significant downregulation expressions of lectin, lipopolysaccharide- and beta-1,3-glucan binding protein, chitinase, cathepsin L and beta-glucuronidase, which indicating the immune dysfunction of F. chinensis when exposure to low pH condition. These findings can extend our understanding on the defensive mechanisms of the low pH stress and accelerate the breeding process of low pH tolerance in F. chinensis.
Collapse
Affiliation(s)
- Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Qiong Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
21
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
22
|
Ekblom C, Söderhäll K, Söderhäll I. Early Changes in Crayfish Hemocyte Proteins after Injection with a β-1,3-glucan, Compared to Saline Injected and Naive Animals. Int J Mol Sci 2021; 22:6464. [PMID: 34208769 PMCID: PMC8234337 DOI: 10.3390/ijms22126464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022] Open
Abstract
Early changes in hemocyte proteins in freshwater crayfish Pacifastacus leniusculus, in response to an injection with the fungal pattern recognition protein β-1,3-glucan (laminarin) were investigated, as well as changes after saline (vehicle) injection and in naïve animals. Injection of saline resulted in rapid recruitment of granular hemocytes from surrounding tissues, whereas laminarin injection on the other hand induced an initial dramatic drop of hemocytes. At six hours after injection, the hemocyte populations therefore were of different composition. The results show that mature granular hemocytes increase in number after saline injection as indicated by the high abundance of proteins present in granular cell vesicles, such as a vitelline membrane outer layer protein 1 homolog, mannose-binding lectin, masquerade, crustin 1 and serine protease homolog 1. After injection with the β-1,3-glucan, only three proteins were enhanced in expression, in comparison with saline-injected animals and uninjected controls. All of them may be associated with immune responses, such as a new and previously undescribed Kazal proteinase inhibitor. One interesting observation was that the clotting protein was increased dramatically in most of the animals injected with laminarin. The number of significantly affected proteins was very few after a laminarin injection when compared to uninjected and saline-injected crayfish. This finding may demonstrate some problematic issues with gene and protein expression studies from other crustaceans receiving injections with pathogens or pattern recognition proteins. If no uninjected controls are included and no information about hemocyte count (total or differential) is given, expressions data for proteins or mRNAs are very difficult to properly interpret.
Collapse
Affiliation(s)
- Charlotta Ekblom
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Irene Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| |
Collapse
|
23
|
Mai HN, Caro LFA, Cruz-Flores R, White BN, Dhar AK. Differentially Expressed Genes in Hepatopancreas of Acute Hepatopancreatic Necrosis Disease Tolerant and Susceptible Shrimp ( Penaeus vannamei). Front Immunol 2021; 12:634152. [PMID: 34054803 PMCID: PMC8155527 DOI: 10.3389/fimmu.2021.634152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal disease in marine shrimp that has caused large-scale mortalities in shrimp aquaculture in Asia and the Americas. The etiologic agent is a pathogenic Vibrio sp. carrying binary toxin genes, pirA and pirB in plasmid DNA. Developing AHPND tolerant shrimp lines is one of the prophylactic approaches to combat this disease. A selected genetic line of Penaeus vannamei was found to be tolerant to AHPND during screening for disease resistance. The mRNA expression of twelve immune and metabolic genes known to be involved in bacterial pathogenesis were measured by quantitative RT-PCR in two populations of shrimp, namely P1 that showed susceptibility to AHPND, and P2 that showed tolerance to AHPND. Among these genes, the mRNA expression of chymotrypsin A (ChyA) and serine protease (SP), genes that are involved in metabolism, and crustin-P (CRSTP) and prophenol oxidase activation system 2 (PPAE2), genes involved in bacterial pathogenesis in shrimp, showed differential expression between the two populations. The differential expression of these genes shed light on the mechanism of tolerance against AHPND and these genes can potentially serve as candidate markers for tolerance/susceptibility to AHPND in P. vannamei. This is the first report of a comparison of the mRNA expression profiles of AHPND tolerant and susceptible lines of P. vannamei.
Collapse
Affiliation(s)
- Hung N Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Luis Fernando Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Brenda Noble White
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
24
|
Lee PT, Quan Tran HT, Huang HT, Nan FH, Lee MC. Sargassumhorneri extracts stimulate innate immunity, enhance growth performance, and upregulate immune genes in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 102:276-285. [PMID: 32360280 DOI: 10.1016/j.fsi.2020.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The white shrimp Litopenaeus vannamei is one of the most commercially important aquatic species. However, intensive farming to meet economic demands has been linked to animal stress and subsequent disease outbreaks. In this study, we explore the immunomodulatory effects of Sargassum horneri hot-water extract (SHE) on the immune parameters of L. vannamei. Hemocytes incubated in vitro with 10 mg/ml of SHE showed the highest response in phenoloxidase (PO) activity and reactive oxygen species production. In the in vivo trials, shrimp were fed diets containing 0 (control), 2.5 (SHE 2.5), 5.0 g (SHE 5.0), and 10 g (SHE10.0) of lyophilized SHE per kg feed for four weeks, after which immune parameters were measured. Group SHE10.0 had the highest total hemocyte count, reactive oxygen species production, and phagocytic rate during the 4-week feeding period, followed by groups SHE5.0 and SHE2.5. However, group SHE5.0 showed a better growth performance among all examined groups after four weeks of rearing. Furthermore, gene expression analysis revealed that L. vannamei fed diets containing 0.5% SHE over 28 days showed significant modulation of 11 immune-related genes, including prophenoloxidase I, prophenoloxidase II, peroxinectin, α2macroglobulin, clotting protein, lysozyme, superoxide dismutase, glutathione peroxidase, penaiedin2-4, and crustin. Combined, these results show that SHE is a functional feed additive that can be applied orally to enhance innate immunity and growth performance of white shrimps.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | | | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan, ROC.
| |
Collapse
|
25
|
Sirikharin R, Söderhäll K, Söderhäll I. The N-terminal peptide generated after activation of prophenoloxidase affects crayfish hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103687. [PMID: 32220618 DOI: 10.1016/j.dci.2020.103687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The circulating hemocytes of invertebrates are important mediators of immunity, and hemocyte homeostasis is of high importance for survival and health of crustaceans. The prophenoloxidase (proPO)-activating system is one of the most essential immune reactions, which can be activated by pattern recognition proteins from microorganisms. Activation of proPO by the proPO activating enzyme generates an N-terminal peptide, with cleavage site after Arg176, as well as the active enzyme phenoloxidase, which is the key enzyme for melanization. In the present study we demonstrate a role for the N-terminal proPO-peptide in hematopoiesis. Injection of this proPO-peptide increased the number of circulating hemocytes and especially granular hemocytes. We also show that the reactive oxygen species (ROS) production in the anterior proliferative center was enhanced after proPO peptide injection, which is a prerequisite for rapid hemocyte release from the hematopoietic tissue. Moreover, this peptide had an effect on ROS production in in vitro cultured hematopoietic cells and induced spreading of these cells within 72 h. Taken together, our findings show a role of the N-terminal proPO peptide in stimulation of hematopoiesis in crayfish, Pacifastacus leniusculus.
Collapse
Affiliation(s)
- Ratchanok Sirikharin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
26
|
Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103569. [PMID: 31830502 DOI: 10.1016/j.dci.2019.103569] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack adaptive immunity and innate immunity plays important roles in combating foreign invasive pathogens. Freshwater crustaceans, which are invertebrates, depend completely on their innate immune system. In recent years, many immune-related molecules in freshwater crustaceans, as well as their functions, have been identified. Three main immune signaling pathways, namely, Toll, immune deficiency (IMD), and Janus kinase-signal transducer activator of transcription (JAK/STAT) pathways, were found in freshwater crustaceans. A series of pattern recognition receptors (PRRs), including Toll receptors, lectins, lipopolysaccharide and β-1,3-glucan binding protein, scavenger receptors, Down syndrome cell adhesion molecules, and thioester-containing proteins, were reported. Prophenoloxidase activation system and antimicrobial peptide synthesis are two important immune effector systems. These components are involved in the innate immunity of freshwater crustaceans, and they function in the innate immune defense against invading pathogens. This review mainly summarizes innate immune signaling pathways, PRRs, and effector molecules in freshwater crustaceans.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
27
|
Zhang Z, Han K, Dai X, Zhang R, Cao X, Zhang C, Wang K, Huang X, Ren Q. Identification of two LGBPs (isoform1 and isoform2) and their function in AMP expression and PO activation in male hepatopancreas. FISH & SHELLFISH IMMUNOLOGY 2019; 95:624-634. [PMID: 31698072 DOI: 10.1016/j.fsi.2019.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Two lipopolysaccharides (LPS) and β-1, 3-glucan binding protein (LGBP), designated as PcLGBP isoform1 and PcLGBP isoform2, respectively, were identified from Procambarus clarkii in this study. The full-length cDNA of PcLGBP isoform1 was 1308 bp containing an open reading frame (ORF) of 1113 bp encoding a protein of 370 amino acids. The full-length cDNA of PcLGBP isoform2 was 1440 bp containing an ORF of 1245 bp encoding a protein of 414 amino acids. Predicted PcLGBP isoform1 and PcLGBP isoform 2 proteins contained a signal peptide, a glycoside hydrolase domain, and a low-complexity region. The difference between the two LGBP isoforms was that PcLGBP isoform2 had 44 more amino acids behind the signal peptide than the PcLGBP isoform1. The PcLGBP isoform1 and PcLGBP isoform2 transcripts mainly expressed in the hepatopancreas in female and male crayfish. Moreover, the expression levels of the two genes in the hepatopancreas were higher in male than that in female crayfish. Upon being challenged with Vibrio parahaemolyticus or LPS, the expression levels of PcLGBP isoform1 and PcLGBP isoform2 in the hepatopancreas of female and male crayfish were most significantly up-regulated at different time points. The transcripts of anti-lipopolysaccharide factors (ALF5, ALF6, ALF8, and ALF9) and crustins (CRU1, CRU2, CRU3, and CRU4) were evidently down-regulated in the hepatopancreas of V. parahaemolyticus-challenged total PcLGBP (including PcLGBP isoform1 and PcLGBP isoform2)-silenced male crayfish. In addition, the phenoloxidase (PO) activity in the hepatopancreas of male crayfish was evidently higher than that of female crayfish. PcLGBP knock down could significantly decrease the PO activity in the hepatopancreas lysate (HLS) in male crayfish. The PO activity of male crayfish HLS was significantly increased when incubated with a mixture of recombinant LGBP protein and LPS or β-1, 3 glucan. We conclude that LGBP isoforms from P. clarkii function as a pattern recognition protein for recognizing and binding LPS and β-1, 3 glucan, and thus regulate the synthesis of antimicrobial peptides and activate the prophenoloxidase system.
Collapse
Affiliation(s)
- Zhuoxing Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Keke Han
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Xiaoling Dai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Ruidong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Xueying Cao
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Chao Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Kaiqiang Wang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Xin Huang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
28
|
Wang Q, Li H, Zhou K, Qin X, Wang Q, Li W. Rab7 controls innate immunity by regulating phagocytosis and antimicrobial peptide expression in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2019; 95:259-267. [PMID: 31655268 DOI: 10.1016/j.fsi.2019.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The Rab family is the most significant subfamily of small GTP-binding proteins. These proteins have widespread intracellular localization and play an important role in many biological processes. Rab7 plays a crucial role in the innate immune system of crustaceans. In the present study, we cloned and characterized Rab7 from Chinese mitten crab (Eriocheir sinensis), designated EsRab7. The full-length of the EsRab7 cDNA sequence is 1,257 bp and contains a 618-bp open reading frame encoding a 205-amino acid polypeptide. Bioinformatics analysis showed that the Rab7 protein was highly conserved during evolution. Quantitative real-time PCR showed the highest tissue expression in muscle, followed by hepatopancreas. EsRab7 was significantly upregulated in hemocytes after stimulation by Gram-positive Staphylococcus aureus or Gram-negative Vibrio parahaemolyticus. Further studies showed that EsRab7 knockdown during bacterial stimulation resulted in decreased bacterial phagocytosis. In addition, EsRab7 regulated the expression of antimicrobial peptides via the Toll signaling pathway. Collectively, these results demonstrate that EsRab7 plays critical roles in antimicrobial function in the Chinese mitten crab.
Collapse
Affiliation(s)
- Qiying Wang
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiang Qin
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weiwei Li
- State Key Laboratory of Estuaeine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
29
|
Sivakamavalli J, Selvaraj C, Singh SK, Park K, Kwak IS, Vaseeharan B. Effect of Amino Acid Substitution in the Penaeus monodon LGBP and Specificity Through Mutational Analysis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09960-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Linton SM. Review: The structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110354. [PMID: 31647988 DOI: 10.1016/j.cbpb.2019.110354] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/01/2022]
Abstract
This review discusses the reaction catalysed, and the structure and function of the cellulase, endo-β-1,4-glucanase and the hemicellulase enzymes, β-1,3-glucanase and endo-β-1,4-mannase that are present in numerous invertebrate groups with a diverse range of feeding specialisations. These range from microbial deposit and filter feeders, micro and macrophagous algal feeders, omnivores to herbivorous leaf litter and wood feeders. Endo-β-1,4-glucanase from glycosyl hydrolase family 9 (GH9) digests cellulose like β-1,4-glucans from a range of materials. As it hydrolyses crystalline cellulose very slowly, it is a poor cellulase. Where tested, the enzyme has dual endo-β-1,4-glucanase and lichenase activity. Its presence does not necessarily indicate the ability of an animal to digest cellulose. It only indicates the ability to digest β-1,4-glucans and its function, which is discussed in this review, should be considered with reference to the substrates present in the diet. β-1,3-glucanase (laminarinase) belongs to glycosyl hydrolase family 16 (GH16) and hydrolyses β-1.3-glucans. These polysaccharides are present in the cell walls of algae, protozoans and yeast, and they also occur as storage polysaccharides within protozoans and algae. Depending on their site of expression, these enzymes may function as a digestive enzyme or may be involved in innate immunity. Enzymes present in the digestive fluids or tissues, would be digestive. Haemolymph GH16 proteins may be involved in innate immunity through the activation of the phenol oxidase system. Insect GH16 proteins expressed within the haemolymph have lost their catalytic residues and function as β-glucan binding proteins. In contrast, crustacean GH16 proteins expressed within the same tissue, have retained the catalytic residues and thus possibly their β-1,3-glucanase activity. The potential function of which is discussed. Endo-β-1,4-mannase from glycosyl hydrolase family 5, subfamily 10 (GH5_10) hydrolyses mannan, glucomannan and galactomannan. These hemicelluloses are present in the cell walls of plants and algae and also function as storage polysaccharides within legume and palm seeds. They are digestive enzymes whose high expression in some species suggests they are a major contributor to hemicellulose digestion. They may also provide the animal with substantial amounts of monosaccharides for energy.
Collapse
Affiliation(s)
- Stuart M Linton
- School of Life and Environmental Sciences, Deakin University, VIC 3216, Australia.
| |
Collapse
|
31
|
Di G, Li Y, Zhao X, Wang N, Fu J, Li M, Huang M, You W, Kong X, Ke C. Differential proteomic profiles and characterizations between hyalinocytes and granulocytes in ivory shell Babylonia areolata. FISH & SHELLFISH IMMUNOLOGY 2019; 92:405-420. [PMID: 31212011 DOI: 10.1016/j.fsi.2019.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The haemocytes of the ivory shell, Babylonia areolata are classified by morphologic observation into the following types: hyalinocytes (H) and granulocytes (G). Haemocytes comprise diverse cell types with morphological and functional heterogene and play indispensable roles in immunological homeostasis of invertebrates. In the present study, two types of haemocytes were morphologically identified and separated as H and G by Percoll density gradient centrifugation. The differentially expressed proteins were investigated between H and G using mass spectrometry. The results showed that total quantitative proteins between H and G samples were 1644, the number of up-regulated proteins in G was 215, and the number of down-regulated proteins in G was 378. Among them, cathepsin, p38 MAPK, toll-interacting protein-like and beta-adrenergic receptor kinase 2-like were up-regulated in G; alpha-2-macroglobulin-like protein, C-type lectin, galectin-2-1, galectin-3, β-1,3-glucan-binding protein, ferritin, mega-hemocyanin, mucin-17-like, mucin-5AC-like and catalytic subunit of protein kinase A were down-regulated in G. The results showed that the most significantly enriched KEGG pathways were the pathways related to ribosome, phagosome, endocytosis, carbon metabolism, protein processing in endoplasmic reticulum and oxidative phosphorylation. For phagosome and endocytosis pathway, the number of down-regulation proteins in G was more than that of up-regulation proteins. For lysosome pathway, the number of up-regulation proteins in G was more than that of down-regulation proteins. These results suggested that two sub-population haemocytes perform the different immune functions in B. areolata.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanfei Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Ning Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
32
|
Ning M, Xiu Y, Yuan M, Bi J, Hou L, Gu W, Wang W, Meng Q. Spiroplasma eriocheiris Invasion Into Macrobrachium rosenbergii Hemocytes Is Mediated by Pathogen Enolase and Host Lipopolysaccharide and β-1, 3-Glucan Binding Protein. Front Immunol 2019; 10:1852. [PMID: 31440244 PMCID: PMC6694788 DOI: 10.3389/fimmu.2019.01852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Spiroplasma eriocheiris is a crustacean pathogen, without a cell wall, that causes enormous economic loss. Macrobrachium rosenbergii hemocytes are the major targets during S. eriocheiris infection. As wall-less bacteria, S. eriocheiris, its membrane protein should interact with host membrane protein directly and firstly when invaded in host cell. In this investigation, six potential hemocyte receptor proteins were identified firstly that mediate interaction between S. eriocheiris and M. rosenbergii. Among these proteins, lipopolysaccharide and β-1, 3-glucan binding protein (MrLGBP) demonstrated to bind to S. eriocheiris using bacterial binding assays and confocal microscopy. Four spiroplasma ligand proteins for MrLGBP were isolated and identified. But, competitive assessment demonstrated that only enolase of S. eriocheiris (SeEnolase) could be a candidate ligand for MrLGBP. Subsequently, the interaction between MrLGBP and SeEnolase was confirmed by co-immunoprecipitation and co-localization in vitro. After the interaction between MrLGBP and SeEnolase was inhibited by antibody neutralization test, the virulence ability of S. eriocheiris was effectively reduced. The quantity of S. eriocheiris decreased in Drosophila S2 cells after overexpression of MrLGBP, compared with the controls. In addition, RNA interference (RNAi) knockdown of MrLGBP made M. rosenbergii more sensitive to S. eriocheiris infection. Further studies found that the immune genes, including MrLGBP and prophenoloxidase (MrproPO), MrRab7A, and Mrintegrin α1 were significantly up-regulated by SeEnolase stimulation. After SeEnolase pre-stimulation, the ability of M. rosenbergii resistance to S. eriocheiris was significantly improved. Collectively, this investigation demonstrated that MrLGBP and pathogen SeEnolase involved in mediating S. eriocheiris invasion into M. rosenbergii hemocytes.
Collapse
Affiliation(s)
- Mingxiao Ning
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunji Xiu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Meijun Yuan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| |
Collapse
|
33
|
Yang D, Han Y, Liu Y, Cao R, Wang Q, Dong Z, Liu H, Zhang X, Zhang Q, Zhao J. A peptidoglycan recognition protein involved in immune recognition and immune defenses in Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2019; 88:441-448. [PMID: 30872031 DOI: 10.1016/j.fsi.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are important pattern recognition receptors in the innate immune system of invertebrates. In the study, a short PGRP (designed as RpPGRP) was identified and characterized from the manila clam Ruditapes philippinarum. The open reading frame of RpPGRP encoded a polypeptide of 249-amino acids with a calculated molecular mass of 27.2 kDa and an isoelectric point of 6.62. Multiple alignments and phylogenetic analysis strongly suggested that RpPGRP was a new member of the PGRP superfamily. In non-stimulated clams, RpPGRP exhibited different tissue expression pattern, and highly expressed in hepatopancreas and hemocytes. Expression of RpPGRP transcripts was significantly up-regulated in hemocytes of clams post Vibrio anguillarum or Micrococcus luteus challenge. The recombinant RpPGRP (rRpPGRP) exhibited high affinity to PGN, LPS and zymosan in a concentration-dependent manner. With a broad spectrum of bacterial binding activities, rRpPGRP exhibited strong agglutination activity to Escherichia coli, Vibrio splendidus, V. anguillarum and M. luteus. Furthermore, rRpPGRP exhibited Zn2+-dependent amidase activity and catalyzed the degradation of insoluble PGN. Especially, rRpPGRP exhibited significant antibacterial activity against E. coli and M. luteus. Moreover, the biofilm formation of E. coli could be inhibited after rRpPGRP incubation in the presence of Zn2+. This inhibitory effect of rRpPGRP might attribute to its amide bactericidal activity. Taken together, rRpPGRP played important roles in PGRP-mediated immune defense mechanisms, especially by recognizing antigens and eliminating bacteria.
Collapse
Affiliation(s)
- Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hui Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China.
| |
Collapse
|
34
|
Söderhäll I, Junkunlo K. A comparative global proteomic analysis of the hematopoietic lineages in the crustacean Pacifastacus leniusculus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:170-178. [PMID: 30481524 DOI: 10.1016/j.dci.2018.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
In crustaceans as in other arthropods, the circulating hemocytes are vital for protecting the animal against attacking microorganisms. As many hemocytes are destroyed early during an infection, new hemocytes must fast get in place to prevent disperse of a pathogenic microbe, In order to understand the hematopoietic process in more detail we here report a complete proteomic analysis from purified cell types from the APC of the hematopoietic tissue, via the remaining parts of the HPT to the mature semigranular and granular hemocytes. Several possible cell type specific proteins are detected and new putative biomarkers within the crayfish hematopoietic lineage that can be used to increase the understanding of how the differentiation process is regulated is described.
Collapse
Affiliation(s)
- Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| | - Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| |
Collapse
|
35
|
Du J, Zhu H, Cao C, Ma Y. Expression of Macrobrachium rosenbergii lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) in Saccharomyces cerevisiae and evaluation of its immune function. FISH & SHELLFISH IMMUNOLOGY 2019; 84:341-351. [PMID: 30053533 DOI: 10.1016/j.fsi.2018.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Pattern recognition proteins (PRPs) activate the innate immune system in invertebrates, and lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) is an important PRP with various biological functions. Here, the open reading frame (ORF) of Macrobrachium rosenbergii LGBP (MrLGBP) was cloned into plasmid vector pHAC181, then integrated into downstream of the GAL1 promoter of Saccharomyces cerevisiae strain GAL1-ScRCH1 via homologous recombination, followed by its expression in the yeast eukaryotic system. The resulting recombinant LGBP contained a 3 × HA-tag at its C terminus and had a molecular weight of about 45 kDa, as evaluated by western blot analysis. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were ranged from 0.340 to 0.802 and 1.189-1.810 μM, respectively. The recombinant MrLGBP protein agglutinated almost all tested bacteria except Bacillus thuringiensis and Staphylococcus aureus. These results revealed that this recombinant protein exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. M. rosenbergii prawns were fed with the recombinant yeast strain MrLGBP for 1 month and challenged with the most common crustacean pathogen, Vibrio parahaemolyticus. These prawns showed lower mortality and higher enzymatic activity and expression levels of immunity genes than did the control groups. All these results suggest that MrLGBP may play important roles in the innate immunity of crustaceans, and recombinant strain S. cerevisiae MrLGBP may be useful for the development of an effective immune feed additive in the future.
Collapse
Affiliation(s)
- Jie Du
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing, China
| | - Huanxi Zhu
- Institute of Animal Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chunlei Cao
- The National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
36
|
Molecular characterization of a pattern recognition protein LGBP highly expressed in the early stages of mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:25-31. [PMID: 30201542 DOI: 10.1016/j.cbpa.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
The early developmental stages of the mud crab Scylla paramamosain suffer from high mortality caused by pathogen infections; however, few immune associated factors are known. Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) functions as a typical pathogen recognition receptor and plays an important role in the innate immune system of invertebrates. In this study we characterized a LGBP gene (SpLGBP) which was highly expressed in the late embryonic, zoea I larval stage and hepatopancreas of S. paramamosain.. It encodes 364 amino acids, composed of several conserved domains like the bacterial glucanase motif. The recombinant SpLGBP protein (rSpLGBP) was obtained through the E.coli expression system, in which two 6◊His-tags were added to both C and N terminals during vector construction for the improvement of purification efficiency. In vivo the study showed that the SpLGBP mRNA was significantly up-regulated under Vibrio parahaemolyticus and a lipopolysaccharide (LPS) challenge in the hemocytes and hepatopancreas. The ELISA binding assay in vitro indicated that the rSpLGBP was capable of binding to LPSs and peptidoglycan (PGN). The rSpLGBP could agglutinate both G+ and G- bacteria in the presence of Ca2+. Our results suggest that SpLGBP may play an immunological role against pathogenic infection in the early developmental stages of S. paramamosain.
Collapse
|
37
|
Chai LQ, Meng JH, Gao J, Xu YH, Wang XW. Identification of a crustacean β-1,3-glucanase related protein as a pattern recognition protein in antibacterial response. FISH & SHELLFISH IMMUNOLOGY 2018; 80:155-164. [PMID: 29870827 DOI: 10.1016/j.fsi.2018.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 05/22/2023]
Abstract
Prophenoloxidase (proPO) activating system is an important immune response for arthropods. β-1, 3-glucanase related protein (previously named as lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) in crustaceans) is a typical pattern recognition receptor family involved in the proPO activation by recognizing the invading microbes. In this study, we pay special attention to a bacteria-induced β-1,3-glucanase related protein from red swamp crayfish Procambarus clarkii, an important aquaculture specie in China. This protein, designated PcBGRP, was found a typical member of crustacean BGRP family with the glucanase-related domain and the characteristic motifs. PcBGRP was expressed in hemcoyes and hepatopancreas, and its expression could be induced by the carbohydrate and bacteria stimulants. The induction by lipopolysaccharide (LPS) and β-1,3-glucan (βG) was more significant than by peptidoglycan (PG). The response of PcBGRP to the native Gram-negative bacterial pathogen Aeromonas hydrophila was more obvious than to Gram-positive bacteria. Using RNA interference and recombinant protein, PcBGRP was found to protect crayfish from A. hydrophila infection revealed by the survival test and morphological analysis. A mechanism study found PcBGRP could bind LPS and βG in a dose-dependent manner, and the LPS recognizing ability determined the Gram-negative bacterium binding activity of PcBGRP. PcBGRP was found to enhance the PO activation both in vitro and in vivo, and the protective role was related to the PO activating ability of PcBGRP. This study emphasized the role of BGRP family in crustacean immune response, and provided new insight to the immunity of red swamp crayfish which suffered serious disease during the aquaculture in China.
Collapse
Affiliation(s)
- Lian-Qin Chai
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jing-Hui Meng
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jie Gao
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yi-Hui Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Xian-Wei Wang
- School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
38
|
Zhang D, Wan W, Kong T, Zhang M, Aweya JJ, Gong Y, Li S. A clip domain serine protease regulates the expression of proPO and hemolymph clotting in mud crab, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2018; 79:52-64. [PMID: 29747010 DOI: 10.1016/j.fsi.2018.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
The clip domain serine proteinases (clip-SPs) play vital roles in embryonic development and in various innate immune functions in invertebrates such as antimicrobial activity, cell adhesion, hemolymph clotting, pattern recognition and regulation of the prophenoloxidase system. However, little is known about the role of the clip domain serine proteinase in Scylla paramamosain (designated SpcSP) immunity. In the present study, we cloned a clip-SP from S. paramamosain hemocytes using rapid amplification of cDNA end (RACE) approach. The full-length cDNA of SpcSP was 1823 bp, containing a 5' untranslated region (UTR) of 334 bp, an open reading frame of 1122 bp, and a 3' UTR of 367 bp. The open reading frame encoded a polypeptide of 373 amino acids with a calculated molecular weight of 39.7 kDa and an isoelectric point of 6.64. Structurally, SpcSP has a predicted 21-residue signal peptide and possessed the characteristic features of the clip domain family of serine proteases, namely one clip domain in the amino-terminal with six highly conserved cysteine residues and one enzyme active serine proteinase domain in the carboxyl-terminal with a highly conserved catalytic triad (His156, Asp226, Ser321). Phylogenetic analysis showed that SpcSP was clustered together with PtcSP (clip domain serine proteinase from Portunus trituberculatus). Quantitative real-time PCR (qPCR) analysis showed that the mRNA of SpcSP was constitutively expressed at different levels in all tested tissues in untreated S. paramamosain, with hemocytes and skin expressing the most. The transcriptional level of SpcSP in hemocytes was significantly up-regulated upon challenge with V. parahaemolyticus and LPS, indicating its involvement in antibacterial immune response. Indirect immunofluorescence analysis showed that SpcSP was expressed in the cytoplasm of all three hemocyte cell types (hyaline, semigranular and granular cells). Further, recombinant SpcSP protein exhibited strong binding ability and has antimicrobial activity against both Gram-positive and Gram-negative bacteria as well as fungi. Moreover, knockdown of SpcSP resulted in increased hemolymph clotting time and decreased the mRNA expression of SpproPO mRNA in hemocytes. These findings therefore suggest that SpcSP plays an important role in the antimicrobial defense mechanism of S. paramamosain by regulating the expression of SpproPO and hemolymph clotting in S. paramamosain.
Collapse
Affiliation(s)
- Daimeng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Weisong Wan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Tongtong Kong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China.
| |
Collapse
|
39
|
Yuan M, Ning M, Wei P, Hao W, Jing Y, Gu W, Wang W, Meng Q. The function of serpin-2 from Eriocheir sinensis in Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:21-26. [PMID: 29475048 DOI: 10.1016/j.fsi.2018.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Serpin families classified serine protease inhibitors regulate various physiological processes. However, there is not study on the role of serpin in immune responses against Spiroplasma eriocheiris as a novel causative pathogen in the Chinese mitten crab, Eriocheir sinensis. In our study, quantitative real-time PCR (qRT-PCR) revealed that the mRNA transcripts of Esserpin-2 were ubiquitous in every tissue, relative higher expression in hepatopancreas, gill and hemocytes, while the intestine, muscle, heart and nerve showed relative lower expression. Followed by infection with S. eriocheiris, the transcripts of Esserpin-2 were significantly down-regulated from 1 d to 7 d. After double-stranded RNA injection, the transcripts of Esserpin-2 dramatically declined from 48 h to 96 h. The transcripts of proPO were found to be obviously increased after Esserpin-2 silenced, meanwhile, LGBP with no significant difference. The copy number of S. eriocheiris and subsequently the mortality of crabs in a silencing Esserpin-2 group were significantly less than control groups during infection. The subcellular localization experiment suggested that recombinant Esserpin-2 was mainly located in the cytoplasm. Finally, over-expression assay in Drosophila S2 cells indicated that Esserpin-2 could increase copies of S. eriocheiris and result in cell death. These findings demonstrated that Esserpin-2 involved in the innate immune mechanism of E. sinensis in response to S. eriocheiris infection.
Collapse
Affiliation(s)
- Meijun Yuan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Mingxiao Ning
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Panpan Wei
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wenjing Hao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunting Jing
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
40
|
Phupet B, Pitakpornpreecha T, Baowubon N, Runsaeng P, Utarabhand P. Lipopolysaccharide- and β-1,3-glucan-binding protein from Litopenaeus vannamei: Purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:167-179. [PMID: 29191550 DOI: 10.1016/j.dci.2017.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) existed in diversity of invertebrates including shrimp plays a crucial role in an innate immunity via mediating the recognition of invading pathogens. In this study, LGBP was cloned and characterized from the hepatopancreas of Litopenaeus vannamei, named as LvLGBP. Its full-length cDNA of 1282 bp contained an open reading frame (1101 bp) encoding a peptide of 367 amino acids. The LGBP primary structure contained a glycosyl hydrolase domain, two integrin binding motifs, two kinase C phosphorylation sites, and two polysaccharide recognition motifs which were identified as a polysaccharide binding motif and a β-1,3-glucan recognition motif. The LvLGBP transcripts were expressed mainly in the hepatopancreas. Upon challenge with Vibrio parahaemolyticus or white spot syndrome virus (WSSV), the LvLGBP mRNA expression was significantly up-regulated to reach a maximum at 48 h post injection. Its expression was also induced by lipopolysaccharide (LPS) or β-1,3-glucan stimulation. RNAi-based silencing resulted in the critical suppression of LvLGBP expression. Knockdown of LvLGBP gene with co-inoculation by V. parahaemolyticus or WSSV led to increase in the cumulative mortality and reduce in the median lethal time. Native LGBP was detected only in the hepatopancreas as verified by Western blotting. Purified LGBP from the hepatopancreas exhibited the agglutinating and binding activity towards Gram-negative bacterium V. parahaemolyticus with calcium-dependence. Its agglutinating activity was dominantly inhibited by LPS with higher potential than β-1,3-glucan. Purified LvLGBP could significantly activate the hemocyte phenoloxidase activity in the presence of LPS (12.9 folds), while slight activation was detected with β-1,3-glucan (2.0 folds). It could enhance the encapsulation by hemocytes but did not have antibacterial activity. These results provided evidence that LvLGBP might act as a pathogenic recognition protein to activate shrimp immune defense against invading pathogens via the agglutination, binding and enhancing encapsulation and phenoloxidase activity of the hemocytes.
Collapse
Affiliation(s)
- Benjaporn Phupet
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanawat Pitakpornpreecha
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntaporn Baowubon
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
41
|
Jia Z, Wang M, Zhang H, Wang X, Lv Z, Wang L, Song L. Identification of a clip domain serine proteinase involved in immune defense in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 74:332-340. [PMID: 29305333 DOI: 10.1016/j.fsi.2017.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/25/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Clip-domain serine proteinase is an important serine proteinase family involved in many biological processes, which is only found in invertebrates. In the present study, the full-length cDNA of a clip domain serine proteinase (designed as EsCDSP) gene was cloned from Chinese mitten crab Eriocheir sinensis using rapid amplification of cDNA ends (RACE) technique. It was of 1488 bp with an open reading frame (ORF) of 1134 bp encoding a polypeptide of 377 amino acids. There were a signal peptide, a clip domain, and a Tryp_SPc domain in the deduced amino acid sequence of EsCDSP. Highly conserved cysteine residues were identified in the clip domain and Tryp_SPc domain. EsCDSP shared similarities of 40%-61% with CDSPs from Penaeus monodon (ACP19562.1), Scylla paramamosain (CCW43200.1), Drosophila melanogaster (NP_649734.2) and Delia antiqua (AAW57295.1). It was clustered with other CDSPs from crabs in the phylogenetic tree. EsCDSP transcript was highly expressed in hemocytes and it could response to the stimulations of Vibro anguillarum and Pichia pastoris. rEsCDSP could activate proPO system and significantly increase the PO activity of HLS. In addition, rEsCDSP could bond to Aeromonas hydrophila, Vibro anguillarum and Vibro alginolyticus, and reduced the mortality rate causing by pathogen infection. All the results suggested that EsCDSP was an important immune response participator involved in activation of the proPO system of crab.
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
42
|
Cerenius L, Söderhäll K. Crayfish immunity - Recent findings. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:94-98. [PMID: 28502650 DOI: 10.1016/j.dci.2017.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Freshwater crayfish is an important commodity as well as a successful model for studies on crustacean immunity. Due to the ease with which they are kept and the available methods for hemocyte separation and culture they have proven to be very useful. Here, recent progress regarding pattern recognition, immune effector production and antiviral mechanisms are discussed. Several cases of functional resemblance between vertebrate complement and the crayfish immune reactions are highlighted.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
43
|
Anjugam M, Vaseeharan B, Iswarya A, Amala M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. A study on β-glucan binding protein (β-GBP) and its involvement in phenoloxidase cascade in Indian white shrimp Fenneropenaeus indicus. Mol Immunol 2017; 92:1-11. [DOI: 10.1016/j.molimm.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022]
|
44
|
Yeh YC, Chang CC, Lee PP, Cheng W. The transcription of atypical protein kinase C in hemocytes of the giant freshwater prawn, Macrobrachium rosenbergii, during the molt stage and injection of pathogen-associated compounds. FISH & SHELLFISH IMMUNOLOGY 2017; 69:52-58. [PMID: 28818614 DOI: 10.1016/j.fsi.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Protein kinase C (PKC), which is involved in cell signaling pathways, comprises a family of serine/threonine kinases ubiquitously present in animals and its members are grouped on the basis of structural and activation characteristics into novel, classical, and atypical PKC forms. In this study, an atypical PKC of Macrobrachium rosenbergii, designated MraPKC, was successfully cloned, and its protein comprised structural domains similar to those of atypical PKC homologues, including the Phox and Bem1 (PB1) domain, a zinc finger phorbol-ester/DAG-type signature, protein kinase signatures, and a cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase C-terminal domain. Phylogenetic analyses revealed a close evolutionary relationship between MraPKC and aPKCs of insects. MraPKC transcripts were detected in all tissues examined through an RT-PCR, with the highest level detected in muscles. A quantitative real-time PCR was used to evaluate MraPKC expression in hemocytes of M. rosenbergii in various molt stages, and in prawn challenged with Vibrio alginolyticus, Lactococcus garvieae, and white spot syndrome virus (WSSV) as well as in prawns injected with pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PG), and polyinosinic:polycytidylic acid (Poly:IC). Results revealed that the expression pattern of MraPKC was distinctly modulated during molting, with significant enhancement in the C stage. MraPKC transcripts significantly increased in hemocytes of prawns infected with L. garvieae at 6-24 h and those injected with PG at 12-24 h. In contrast, significantly decreased expression of MraPKC was observed in hemocytes of prawns injected with V. alginolyticus and LPS for 3 and 12 h, respectively, and a similar phenomenon was observed in hemocytes of those injected with WSSV and Poly:IC for 12 h each. Therefore, MraPKC might play crucial roles in biological processes, and it may mediate the signaling pathway induced by varied pathogens for the potential regulation of host innate defense.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC; Eastern Marine Biology Research Center, Fisheries Research Institute, Taitung 96143, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Pai-Po Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
45
|
Iswarya A, Anjugam M, Vaseeharan B. Role of purified β-1, 3 glucan binding protein (β-GBP) from Paratelphusa hydrodromus and their anti-inflammatory, antioxidant and antibiofilm properties. FISH & SHELLFISH IMMUNOLOGY 2017; 68:54-64. [PMID: 28684323 DOI: 10.1016/j.fsi.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
β- 1, 3-glucan binding protein (β-GBP), a pattern recognition protein (PRP), plays a critical role in triggering the innate immune response by detecting β-glucan found on the surface of microbes. In the present study, β-GBP was purified from the haemolymph of rice field crab Paratelphusa hydrodromus by affinity column chromatography. The monomeric protein Ph-β-GBP appeared as a single band with a molecular weight of approximately 95 kDa in SDS-PAGE analysis and its purity was determined to be 89% by HPLC. MALDI-TOF/TOF analysis revealed that, the purified 95 kDa protein display 36% similarity with β-GBP of crayfish Astacus lepidodactylus. Purified Ph-β-GBP exhibited increased agglutination, phagocytic activity and encapsulation in a dose-dependent manner, indicating the involvement of Ph-β-GBP in cellular immune response against pathogens in crustaceans. Moreover, addition of Ph-β-GBP increased the prophenoloxidase (proPO) and serine protease activity, possibly contributing to the clearance of pathogens. The antioxidant activity of Ph-β-GBP was determined by DPPH radical scavenging activity demonstrates maximum scavenging activity of 78.4%. In addition, RBC membrane stabilization and inhibition of protein (albumin) denaturation proved anti-inflammatory property of Ph-β-GBP. Furthermore, light microscopic and confocal laser scanning microscopic analysis revealed that the reactive compound (laminarin and Ph-β-GBP) reduced the biofilm thickness of Gram-positive (Enterococcus faecalis) and Gram-negative (Vibrio parahaemolyticus) bacteria at the concentration of 25 μg/ml. Taken together, our results demonstrate that, the β-GBP triggers proPO activating system in rice field crab P. hydrodromus and plays a vital role in innate defense mechanism against invading pathogens.
Collapse
Affiliation(s)
- Arokiadhas Iswarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Mahalingam Anjugam
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6(th) Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
46
|
Mapanao R, Chang CC, Cheng W. The upregulation of immune responses in tyrosine hydroxylase (TH) silenced Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:30-42. [PMID: 27825820 DOI: 10.1016/j.dci.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Catecholamines (CAs) play a crucial role in maintaining physiological and immune homeostasis in invertebrates and vertebrates under stressful conditions. Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in CA synthesis. To develop an effective CA-related immunological defense system against stress and pathogen infection, various criteria, were evaluated in TH double-stranded (ds) RNA-injected white shrimp, Litopenaeus vannamei. Specifically, the relative transcript quantification of TH, dopamine β-hydroxylase (DBH), crustacean hyperglycemic hormone (CHH), and other immune-related genes; TH activity in the haemolymph; and the estimation of l-dihydroxyphenylalanine (l-DOPA), glucose, and lactate levels in the haemolymph were examined. TH depletion revealed a significant increase in the total haemocyte count; granular cells; semigranular cells; respiratory bursts (RBs, release of superoxide anion); superoxide dismutase (SOD) activity; phagocytic activity and clearance efficiency; and the expression of lipopolysaccharide and β-1,3-glucan-binding protein and peroxinectin, SOD, crustin, and lysozyme genes. In addition, the reduction of TH gene expression and activity was accompanied by a decline of phenoloxidase (PO) activity per granulocyte, lower glucose and lactate levels, and significantly low expression of DBH and CHH genes. However, the number of hyaline cells, activity of PO, RBs per haemocyte, and expression of POI and POII genes were not significantly different in the LvTH-silenced shrimp. Notably, the survival ratio of LvTH-silenced shrimp was significantly higher than that of shrimp injected with diethyl pyrocarbonate-water and nontargeting dsRNA when challenged with Vibrio alginolyticus. Therefore, the depletion of TH can enhance disease resistance in shrimp by upregulating specific immune parameters but downregulating the levels of carbohydrate metabolites.
Collapse
Affiliation(s)
- Ratchaneegorn Mapanao
- Department of Tropical Agriculture and International Cooperation, National Pintung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC.
| |
Collapse
|
47
|
Chaosomboon A, Phupet B, Rattanaporn O, Runsaeng P, Utarabhand P. Lipopolysaccharide- and β-1,3-glucan-binding protein from Fenneropenaeus merguiensis functions as a pattern recognition receptor with a broad specificity for diverse pathogens in the defense against microorganisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:434-444. [PMID: 27431930 DOI: 10.1016/j.dci.2016.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
In crustaceans, lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) plays an important role in innate immunity by mediating the recognition of pathogens to host cells. Hereby, LGBP was cloned from Fenneropenaeus merguiensis hepatopancreas. Its full-length cDNA (1280 bp) had an open reading frame of 1101 bp, encoding a peptide of 366 amino acids. The LGBP primary structure comprises a recognition motif for β-1,3-linkage of polysaccharides, two integrin binding motifs, a kinase C phosphorylation site and a bacterial glucanase motif. The LGBP mRNA was strongly expressed in hepatopancreas and significantly up-regulated to get the maximum at 12 h upon Vibrio harveyi challenge. Recombinant LGBP (rLGBP) could agglutinate Gram-negative and Gram-positive bacteria including yeast with Ca2+-dependence. V. harveyi agglutination induced by rLGBP was intensively inhibited by lipoteichoic acid, less in order were lipopolysaccharide, β-1,3-glucan and N-acetyl neuraminic acid. Western blotting revealed that rLGBP bound widely to Gram-negative and Gram-positive bacteria and also yeast. By ELISA quantification, rLGBP could bind to β-1,3-glucan better than to lipopolysaccharide and lipoteichoic acid. These findings suggest that LGBP may function as a receptor which recognizes invading diverse pathogens and contribute in F. merguiensis immune response.
Collapse
Affiliation(s)
- Areerat Chaosomboon
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Benjaporn Phupet
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Onnicha Rattanaporn
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand.
| |
Collapse
|
48
|
Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai. Mar Drugs 2016; 14:md14120227. [PMID: 27983632 PMCID: PMC5192464 DOI: 10.3390/md14120227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022] Open
Abstract
Antimicrobial peptides are a pivotal component of the invertebrate innate immune system. In this study, we identified a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) gene from the pacific abalone Haliotis discus hannai (HDH), which is involved in the pattern recognition mechanism and plays avital role in the defense mechanism of invertebrates immune system. The HDH-LGBP cDNA consisted of a 1263-bp open reading frame (ORF) encoding a polypeptide of 420 amino acids, with a 20-amino-acid signal sequence. The molecular mass of the protein portion was 45.5 kDa, and the predicted isoelectric point of the mature protein was 4.93. Characteristic potential polysaccharide binding motif, glucanase motif, and β-glucan recognition motif were identified in the LGBP of HDH. We used its polysaccharide-binding motif sequence to design two novel antimicrobial peptide analogs (HDH-LGBP-A1 and HDH-LGBP-A2). By substituting a positively charged amino acid and amidation at the C-terminus, the pI and net charge of the HDH-LGBP increased, and the proteins formed an α-helical structure. The HDH-LGBP analogs exhibited antibacterial and antifungal activity, with minimal effective concentrations ranging from 0.008 to 2.2 μg/mL. Additionally, both were toxic against human cervix (HeLa), lung (A549), and colon (HCT 116) carcinoma cell lines but not much on human umbilical vein cell (HUVEC). Fluorescence-activated cell sorter (FACS) analysis showed that HDH-LGBP analogs disturb the cancer cell membrane and cause apoptotic cell death. These results suggest the use of HDH-LGBP analogs as multifunctional drugs.
Collapse
|
49
|
Zhu YT, Zhang X, Wang SC, Li WW, Wang Q. Antimicrobial functions of EsLecH, a C-type lectin, via JNK pathway in the Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:225-235. [PMID: 27068761 DOI: 10.1016/j.dci.2016.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
C-type lectins (CTLs) are pattern recognition proteins that play significant roles in the innate immune system by identifying and eliminating pathogens. Here, we have reported a CTL (EsLecH) from the Chinese mitten crab that can bind to microorganisms and regulate antimicrobial peptide (AMP) expression via the c-Jun N-terminal kinase (JNK) pathway. EsLecH was found to have an N-terminal signal peptide and a single carbohydrate recognition domain. The EsLecH transcript was detected abundantly in various tissues, and it was significantly upregulated in hemocytes after challenging with lipopolysaccharides and bacteria. Recombinant (r)EsLecH could bind to microorganisms, but at different levels. Ca(2+) significantly increased rEsLecH binding affinity to microorganisms. Furthermore, growth inhibition by rEsLecH increased with increasing rEsLecH levels. Knockdown of EsLecH was accompanied by a significant reduction in AMP expression and JNK phosphorylation; AMP expression was reduced with JNK silencing and can not rescued by rEsLecH when absence of JNK. These results indicate that EsLecH could regulate AMPs via JNK signaling.
Collapse
Affiliation(s)
- You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, PR China
| | - Xing Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, PR China
| | - Shi-Chuang Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, PR China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, PR China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, PR China.
| |
Collapse
|
50
|
Zhang X, Zhu YT, Li XJ, Wang SC, Li D, Li WW, Wang Q. Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) stimulates prophenoloxidase activating system in Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:70-79. [PMID: 26995767 DOI: 10.1016/j.dci.2016.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Melanization mediated by prophenoloxidase (proPO) activating system play an essential role in killing invading microorganisms in invertebrates. Lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) as a pattern recognition protein have been demonstrated to active the proPO cascade in insect and shrimp. In this study, we investigated the role of LGBP in prophenoloxidase cascade-induced melanization in Chinese mitten crab (Eriocheir sinensis). By RT-PCR analysis, EsLGBP was detected in all tested tissues, and showed highest expression in hemocytes, gill, intestine and brain. The expression of EsLGBP was up-regulated in the hemocytes following injections of LPS and β-1, 3-glucan. The recombinant EsLGBP protein (rEsLGBP) was produced via prokaryotic expression system and affinity chromatography. By western blotting, rEsLGBP was discovered to exhibit the ability to bind to all tested microorganisms, including Gram-negative bacteria, Gram-positive bacteria and yeast (Pichia pastoris). Meanwhile we found rEsLGBP has a high binding activity towards microbial immune elicitors such as LPS and β-1, 3-glucan whereas no binding activity is detected with peptidoglycan. Moreover, the effects of RNAi-mediated blockade of EsLGBP were investigated on bacterial counts in the hemolymph and cumulative mortality rate of crabs infected with Vibrio parahaemolyticus in vivo. Further experiments demonstrate that rEsLGBP can trigger the whole hemolymph dependent melanization and stimulate to proPO cascade in vitro. Taken together, these results provide experimental evidence for role of LGBP in innate immunity, especially in the activation of prophenoloxidase activating system.
Collapse
Affiliation(s)
- Xing Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Shi-Chuang Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|