1
|
Tsaplina O. Interaction of Serratia proteamaculans with Integrins Activates Invasion-Promoting Signaling Pathways. Int J Mol Sci 2025; 26:3955. [PMID: 40362195 PMCID: PMC12071730 DOI: 10.3390/ijms26093955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The opportunistic bacteria Serratia proteamaculans are able to penetrate human cells. It was previously shown that the bacterial surface protein OmpX promotes bacterial adhesion. In addition, infection with bacteria that synthesize the OmpX protein enhances the expression of EGFR and β1 integrin involved in the invasion of S. proteamaculans. Therefore, this work was aimed at determining the mechanism of interaction of S. proteamaculans with receptors of eukaryotic cells. Both integrin-linked kinase (ILK) and EGFR tyrosine kinase have been shown to be involved in the invasion of these bacteria. During infection, EGFR is first phosphorylated at Tyr845, which is carried out by c-Src kinase transmitting a signal from nearby receptors. The S. proteamaculans invasion depends on c-Src and focal adhesion kinase (FAK), which can both transmit a signal between β1 integrin and EGFR and participate in cytoskeletal rearrangements. These bacteria have been shown to interact with integrin not through the RGD binding site, and integrin binding to the RGD peptide enhances adhesion, invasion, and expression of α5 and β1 integrin subunits in response to infection. On the other hand, bacterial adhesion and increased expression of integrins during infection are caused by OmpX. Thus, OmpX interacts with integrins, and the participation of the α5 and β1 integrin subunits in the S. proteamaculans invasion allows us to assume that the receptor of OmpX is α5β1 integrin.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
4
|
Shi H, Ye X, Zhang J, Wu T, Yu T, Zhou C, Ye J. A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium. Bioact Mater 2020; 6:1267-1282. [PMID: 33210024 PMCID: PMC7653209 DOI: 10.1016/j.bioactmat.2020.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/25/2020] [Indexed: 01/09/2023] Open
Abstract
Investigation of thermostability will lead the groundbreaking of unraveling the mechanism of influence of ion-doping on the properties of calcium phosphates. In this work, octacalcium phosphate (OCP), a metastable precursor of biological apatite, was used as a stability model for doping ions (Fe3+ and Sr2+) with different ionic charges and radii. After treated under hot air at different temperatures (110–200 °C), the phase, morphology, structure, physicochemical properties, protein affinity, ions release, and cytological responses of the ion-doped OCPs were investigated comparatively. The results showed that the collapse of OCP crystals gradually occurred, accompanying with the dehydration of hydrated layers and the disintegration of plate-like crystals as the temperature increased. The collapsed crystals still retained the typical properties of OCP and the potential of conversion into hydroxyapatite. Compared to the undoped OCP, Fe-OCP, and Sr-OCP had lower and higher thermostability respectively, leading to different material surface properties and ions release. The adjusted thermostability of Fe-OCP and Sr-OCP significantly enhanced the adsorption of proteins (BSA and LSZ) and the cytological behavior (adhesion, spreading, proliferation, and osteogenic differentiation) of bone marrow mesenchymal stem cells to a varying extent under the synergistic effects of corresponding surface characteristics and early active ions release. This work paves the way for understanding the modification mechanism of calcium phosphates utilizing ion doping strategy and developing bioactive OCP-based materials for tissue repair. OCP was used as a stability model for doping ions with different charges and radii. Collapse of OCP crystals occurred with structural dehydration after heat treatment. Fe and Sr doping altered the thermostability of OCP crystals in an opposite way. The thermostable difference affected the surface properties and ion release of OCP. Active surface and ion release of OCP synergistically mediated its biocompatibility.
Collapse
Affiliation(s)
- Haishan Shi
- School of Stomatology, Jinan University, Guangzhou, 510632, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoling Ye
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jing Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, Guangzhou, 510500, China
| | - Tao Yu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jiandong Ye
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Zhang K, Lin S, Feng Q, Dong C, Yang Y, Li G, Bian L. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater 2017; 64:389-400. [PMID: 28963020 DOI: 10.1016/j.actbio.2017.09.039] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hydrogels are appealing biomaterials for applications in regenerative medicine due to their tunable physical and bioactive properties. Meanwhile, therapeutic metal ions, such as magnesium ion (Mg2+), not only regulate the cellular behaviors but also stimulate local bone formation and healing. However, the effective delivery and tailored release of Mg2+ remains a challenge, with few reports on hydrogels being used for Mg2+ delivery. Bisphosphonate exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as Mg2+. Herein, we describe a nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. These nanoparticles bearing acrylate groups on the surface not only function as effective multivalent crosslinkers to strengthen the hydrogel network structure, but also promote the mineralization of hydrogels and mediate sustained release of Mg2+. The released Mg2+ ions facilitate stem cell adhesion and spreading on the hydrogel substrates in the absence of cell adhesion ligands, and promote osteogenesis of the seeded hMSCs in vitro. Furthermore, the acellular porous hydrogels alone can support in situ bone regeneration without using exogenous cells and inductive agents, thereby greatly simplifying the approaches of bone regeneration therapy. STATEMENT OF SIGNIFICANCE In this study, we developed a novel bioactive nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. Such hydrogels are stabilized by the multivalent crosslinking domains formed by the aggregation of Ac-BP-Mg NPs, and therefore show enhanced mechanical properties, improved capacity for mineralization, and controlled release kinetics of Mg2+. Moreover, the released Mg2+ can enhance cell adhesion and spreading, and further promote the osteogenic differentiation of hMSCs. Owing to these unique properties, these acellular hydrogels alone can well facilitate the in vivo bone regeneration at the intended sites. We believe that the strategy reported in this work opens up a new route to develop biopolymer-based nanocomposite hydrogels with enhanced physical and biological functionalities for regenerative medicine.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sien Lin
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Qian Feng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chaoqun Dong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yanhua Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China; Center for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
6
|
Urbaczek AC, Leão PAGC, Souza FZRD, Afonso A, Vieira Alberice J, Cappelini LTD, Carlos IZ, Carrilho E. Endothelial Cell Culture Under Perfusion On A Polyester-Toner Microfluidic Device. Sci Rep 2017; 7:10466. [PMID: 28874818 PMCID: PMC5585355 DOI: 10.1038/s41598-017-11043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
This study presents an inexpensive and easy way to produce a microfluidic device that mimics a blood vessel, serving as a start point for cell culture under perfusion, cardiovascular research, and toxicological studies. Endpoint assays (i.e., MTT reduction and NO assays) were used and revealed that the components making up the microchip, which is made of polyester and toner (PT), did not induce cell death or nitric oxide (NO) production. Applying oxygen plasma and fibronectin improved the adhesion and proliferation endothelial cell along the microchannel. As expected, these treatments showed an increase in vascular endothelial growth factor (VEGF-A) concentration profiles, which is correlated with adherence and cell proliferation, thus promoting endothelialization of the device for neovascularization. Regardless the simplicity of the device, our “vein-on-a-chip” mimetic has a potential to serve as a powerful tool for those that demand a rapid microfabrication method in cell biology or organ-on-a-chip research.
Collapse
Affiliation(s)
- Ana Carolina Urbaczek
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Paulo Augusto Gomes Carneiro Leão
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Fayene Zeferino Ribeiro de Souza
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Ana Afonso
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,GHTM - Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal.,Laboratório de Parasitologia, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Juliana Vieira Alberice
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Luciana Teresa Dias Cappelini
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Escola Paulista de Medicina, Universidade Federal de São Paulo, Unifesp, São Paulo, SP, Brazil
| | - Iracilda Zeppone Carlos
- Faculdade de Ciências Farmacêuticas, FCFar, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Duan B, Niu H, Zhang W, Ma Y, Yuan Y, Liu C. Microporous density-mediated response of MSCs on 3D trimodal macro/micro/nano-porous scaffolds via fibronectin/integrin and FAK/MAPK signaling pathways. J Mater Chem B 2017; 5:3586-3599. [DOI: 10.1039/c7tb00041c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microporous density influences cellular behaviors through mediating Fn–integrin interaction and FA formation, consequently resulting in FAK/MAPK cascade activation.
Collapse
Affiliation(s)
- Bing Duan
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yifan Ma
- Engineering Research Center for Biomaterials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Engineering Research Center for Biomaterials of Ministry of Education
| |
Collapse
|
8
|
Abstract
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.
Collapse
|
9
|
Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, Zhou H, Guo H, Qian J, Liu C. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 2015; 53:251-64. [PMID: 25890724 DOI: 10.1016/j.biomaterials.2015.02.097] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 12/24/2022]
Abstract
The chemical composition, structure and surface characteristics of biomaterials/scaffold can affect the adsorption of proteins, and this in turn influences the subsequent cellular response and tissue regeneration. With magnesium/calcium phosphate cements (MCPC) as model, the effects of magnesium (Mg) on the initial adhesion and osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as the underlying mechanism were investigated. A series of MCPCs with different magnesium phosphate cement (MPC) content (0∼20%) in calcium phosphate cement (CPC) were synthesized. MCPCs with moderate proportion of MPC (5% and 10%, referred to as 5MCPC and 10MCPC) were found to effectively modulate the orientation of the adsorbed fibronectin (Fn) to exhibit enhanced receptor binding affinity, and to up-regulate integrin α5β1 expression of BMSCs, especially for 5MCPC. As a result, the attachment, morphology, focal adhesion formation, actin filaments assembly and osteogenic differentiation of BMSCs on 5MCPC were strongly enhanced. Further in vivo experiments confirmed that 5MCPC induced promoted osteogenesis in comparison to ot her CPC/MCPCs. Our results also suggested that the Mg on the underlying substrates but not the dissolved Mg ions was the main contributor to the above positive effects. Based on these results, it can be inferred that the specific interaction of Fn and integrin α5β1 had predominant effect on the MCPC-induced enhanced cellular response of BMSCs. These results provide a new strategy to regulate BMSCs adhesion and osteogenic differentiation by adjusting the Mg/Ca content and distribution in CPC, guiding the development of osteoinductive scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dan Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hengsong Shi
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Huanjun Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Han Guo
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Nono JK, Lutz MB, Brehm K. EmTIP, a T-Cell immunomodulatory protein secreted by the tapeworm Echinococcus multilocularis is important for early metacestode development. PLoS Negl Trop Dis 2014; 8:e2632. [PMID: 24392176 PMCID: PMC3879249 DOI: 10.1371/journal.pntd.0002632] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/26/2013] [Indexed: 01/05/2023] Open
Abstract
Background Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown. Principal Findings We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro. Conclusions We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host. E. multilocularis is a parasitic helminth causing the chronic human disease alveolar echinococcosis. Current disease control measures are very limited resulting in a high case-fatality rate. A transiently dominating Th1 immune response is mounted at the early phase of the infection, potentially limiting parasite proliferation and disease progression. Understanding the molecular basis of this early anti-Echinococcocus Th1 response would provide valuable information to improve disease control. The authors found that EmTIP, a T-cell immunomodulatory protein homologue, is secreted by the parasite early larva and promotes a Th1 response in host cells. Interestingly, EmTIP binding by antibodies impairs the development of the early parasite larva towards the chronic stage. Altogether the authors propose that E. multilocularis utilizes EmTIP for early larval development, but in the process, the factor is released by the parasite larva and influences host T-cells by directing a parasitocidal Th1 immune response. Therefore, the authors recommend EmTIP as a promising lead for future studies on the development of anti-Echinococcus intervention strategies.
Collapse
Affiliation(s)
- Justin Komguep Nono
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
| | - Manfred B. Lutz
- University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 2013; 9:e1003620. [PMID: 24098113 PMCID: PMC3789753 DOI: 10.1371/journal.ppat.1003620] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP. Cholera is an epidemic disease that has killed millions of people and continues to be a major health problem worldwide. The bacterium V. cholerae, the causative agent of cholera, is highly resistant to antimicrobial peptides, which are important effectors of human innate immunity. Moreover, it is well-established that different antimicrobial peptides are able to work in synergy against bacteria. Currently, little is known about the mechanisms underlying the resistance of bacteria toward synergistic effects of antimicrobial peptides. For the first time, we provide a mechanistic explanation for cross-resistance between two antimicrobial peptides: PmB and LL-37. We report that bacteria incubated with PmB produce OMVs containing high levels of the Bap1 protein. We also decipher the mechanism by which Bap1 binds to OMVs isolated from V. cholerae incubated in presence of PmB. Finally, our data demonstrated that Bap1 protein associated with OMVs is able to trap LL-37, thereby increasing the minimum inhibitory concentration of LL-37 against V. cholerae when the bacteria were grown with a sub-lethal concentration of PmB and therefore produced abundant Bap1.
Collapse
|
12
|
Shimaya M, Muneta T, Ichinose S, Tsuji K, Sekiya I. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthritis Cartilage 2010; 18:1300-9. [PMID: 20633668 DOI: 10.1016/j.joca.2010.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/05/2010] [Accepted: 06/10/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously reported that more than 60% of synovial mesenchymal stem cells (MSCs) placed on osteochondral defects adhered to the defect within 10 min and promoted cartilage regeneration. The efficiency of adherence is considered to depend on the interaction between cells and extracellular matrix (ECM), in which integrins may play some important roles. Divalent cations such as calcium, magnesium, and manganese may affect functions of integrins, and the integrins may be involved in differentiation of MSCs. Among divalent cations, magnesium is used in clinical practice as a therapeutic agent and increases the affinity of integrin to ECM. In this study, we investigated whether magnesium enhanced adherence and chondrogenesis of synovial MSC through integrins. METHODS We performed assays for adherence of human synovial MSCs to collagen-coated slides, in vitro chondrogenesis, ex vivo assays for adherence of human synovial MSCs to osteochondral defect, and in vivo assays for adherence and cartilage formation of synovial MSCs in a rabbit osteochondral defect model. RESULTS Magnesium increased adhesion of human synovial MSCs to collagen, and this effect was inhibited by neutralizing antibodies for integrin α3 and β1. Magnesium also promoted synthesis of cartilage matrix during in vitro chondrogenesis of synovial MSCs, which was diminished by neutralizing antibodies for integrin β1 but not for integrin α3. Ex vivo analyses demonstrated that magnesium enhanced adherence of human synovial MSCs to osteochondral defects. In vivo studies in rabbits showed that magnesium promoted adherence at 1 day and cartilage formation of synovial MSCs at 2 weeks. CONCLUSION Magnesium enhanced adherence of synovial MSCs through integrins, which promoted synthesis of cartilage matrix at an early phase.
Collapse
Affiliation(s)
- M Shimaya
- Section of Orthopedic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
13
|
Seoane AI, Tran VL, Sanchez EE, White SA, Choi JL, Gaytán B, Chavez N, Reyes SR, Ramos CJ, Tran LH, Lucena SE, Sugarek M, Perez JC, Mandal SA, Ghorab S, Rodriguez-Acosta A, Fung BK, Soto JG. The mojastin mutant Moj-DM induces apoptosis of the human melanoma SK-Mel-28, but not the mutant Moj-NN nor the non-mutated recombinant Moj-WN. Toxicon 2010; 56:391-401. [PMID: 20398687 PMCID: PMC2930814 DOI: 10.1016/j.toxicon.2010.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022]
Abstract
In this study, three recombinant mojastin peptides (Moj-WN, Moj-NN, and Moj-DM) were produced and compared functionally. Recombinant Moj peptides were purified as GST-fusions. GST-Moj-WN and GST-Moj-NN inhibited ADP-induced platelet aggregation in platelet rich plasma. The GST-Moj-WN had an IC(50) of 160nM, while the GST-Moj-NN had an IC(50) of 493nM. The GST-Moj-DM did not inhibit platelet aggregation. All three GST-Moj peptides inhibited SK-Mel-28 cell adhesion to fibronectin. The GST-Moj-WN inhibited the binding of SK-Mel-28 cells to fibronectin with an IC(50) of 11nM, followed by the GST-Moj-NN (IC(50) of 28nM), and the GST-Moj-DM (IC(50) of 46nM). The GST-Moj peptides' ability to induce apoptosis on SK-Mel-28 cells was determined using Annexin-V-FITC and nuclear fragmentation assays. Cells were incubated with 5muM GST-Moj peptides for 24h. At 5microM GST-Moj-DM peptide, 13.56%+/-2.08 of treated SK-Mel-28 cells were in early apoptosis. The GST-Moj-DM peptide also caused nuclear fragmentation as determined by fluorescent microscopy and Hoechst staining. The GST-Moj-WN and GST-Moj-NN peptides failed to induce apoptosis. We characterized the SK-Mel-28 integrin expression, as the first step in determining r-Moj binding specificity. Our results indicate that SK-Mel-28 cells express alphavbeta3, alphav, alpha6, beta1, and beta3 integrin receptors.
Collapse
Affiliation(s)
- Agustin I. Seoane
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Victoria L. Tran
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Elda E. Sanchez
- Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363
| | - Stephanie A. White
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Jason L. Choi
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Brandon Gaytán
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Natalie Chavez
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Steven R. Reyes
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
- Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363
| | - Carla J. Ramos
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Luan H. Tran
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Sara E. Lucena
- Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363
| | - Maria Sugarek
- Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363
| | - John C. Perez
- Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363
| | - Stephanie A. Mandal
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Shervin Ghorab
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Alexis Rodriguez-Acosta
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Apartado 47423, Caracas 1041, Venezuela
| | - Branden K. Fung
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| | - Julio G. Soto
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100
| |
Collapse
|
14
|
Dass CL, Walsh MF, Seo S, Shiratsuchi H, Craig DH, Basson MD. Irrigant divalent cation concentrations influence bacterial adhesion. J Surg Res 2009; 156:57-63. [PMID: 19577252 PMCID: PMC2730431 DOI: 10.1016/j.jss.2009.03.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/02/2009] [Accepted: 03/24/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Surgical wounds are frequently contaminated by microbes, but rarely become infected if the bacterial burden is low, and irrigation is used to reduce contamination. Wound fluids are low in calcium and high in magnesium. We hypothesized that manipulating irrigant divalent cation concentrations might influence bacterial adhesion. METHODS Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were stained with fluorescent calcein AM before plating onto fibroblast monolayers, collagen I, or uncoated bacteriologic plastic. After 1 h, wells were washed with HEPES-buffered pH-balanced sterile water without or with 5 mM CaCl(2), 5 mM MgCl(2), or 1 mM EDTA+EGTA, and the remaining adherent bacteria were assayed fluorometrically. RESULTS Supplementing the irrigation with magnesium or chelators increased but calcium-supplemented irrigation reduced bacterial adhesion to collagen or fibroblasts. Nonspecific electrostatic bacterial adhesion to uncoated plastic was unaffected by calcium. CONCLUSION Bacterial adhesion to mammalian cells and matrix proteins is influenced by divalent cations, and pathogenic bacteria may be adapted to adhere under the low calcium high magnesium conditions in wounds. Although these results await confirmation for other bacteria, and in vivo validation and safety-testing, they suggest that supplementing wound irrigation with 5 mM CaCl(2) may reduce bacterial adhesion and subsequent wound infection.
Collapse
Affiliation(s)
- Clarissa L Dass
- Department of Surgery, Michigan State University and the John D Dingell VAMC, Lansing, MI 48912, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kowalczyńska HM, Nowak-Wyrzykowska M, Kołos R, Dobkowski J, Kamiński J. Semiquantitative evaluation of fibronectin adsorption on unmodified and sulfonated polystyrene, as related to cell adhesion. J Biomed Mater Res A 2008; 87:944-56. [DOI: 10.1002/jbm.a.31868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Fong JCN, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 2007; 189:2319-30. [PMID: 17220218 PMCID: PMC1899372 DOI: 10.1128/jb.01569-06] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and vps-II coding regions, separated by an intergenic region. In this study, we generated in-frame deletions of the five genes located in the vps intergenic region, termed rbmB to -F (rugosity and biofilm structure modulators B to F) in the rugose genetic background, and characterized the mutants for rugose colony development and biofilm formation. Deletion of rbmB, which encodes a protein with low sequence similarity to polysaccharide hydrolases, resulted in an increase in colony corrugation and accumulation of exopolysaccharides relative to the rugose variant. RbmC and its homolog Bap1 are predicted to encode proteins with carbohydrate-binding domains. The colonies of the rbmC bap1 double deletion mutant and bap1 single deletion mutant exhibited a decrease in colony corrugation. Furthermore, the rbmC bap1 double deletion mutant was unable to form biofilms at the air-liquid interface after 2 days, while the biofilms formed on solid surfaces detached readily. Although the colony morphology of rbmDEF mutants was similar to that of the rugose variant, their biofilm structure and cell aggregation phenotypes were different than those of the rugose variant. Taken together, these results indicate that vps intergenic region genes encode proteins that are involved in biofilm matrix production and maintenance of biofilm structure and stability.
Collapse
Affiliation(s)
- Jiunn C N Fong
- Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
17
|
Vanoevelen J, Dode L, Raeymaekers L, Wuytack F, Missiaen L. Diseases involving the Golgi calcium pump. Subcell Biochem 2007; 45:385-404. [PMID: 18193645 DOI: 10.1007/978-1-4020-6191-2_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Secretory-pathway Ca2(+)-transport ATPases (SPCA) provide the Golgi apparatus with Ca2+ and Mn2+ needed for the normal functioning of this organelle. Loss of one functional copy of the human SPCA1 gene (ATP2C1) causes Hailey-Hailey disease, a rare skin disorder characterized by recurrent blisters and erosions in the flexural areas. Here, we will review the properties and functional role of the SPCAs. The relationship between Hailey-Hailey disease and its defective gene (ATP2C1) will be adressed as well.
Collapse
Affiliation(s)
- J Vanoevelen
- Laboratory of Physiology, KULeuven Campus Gasthuisberg O&N1, Herestraat 49 bus 802, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
18
|
Yoshida M, Yamasaki K, Daiho T, Iizuka H, Suzuki H. ATP2C1 is specifically localized in the basal layer of normal epidermis and its depletion triggers keratinocyte differentiation. J Dermatol Sci 2006; 43:21-33. [PMID: 16621454 DOI: 10.1016/j.jdermsci.2006.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 03/02/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND ATP2C1 is a calcium/manganese-ATPase localized in the Golgi apparatus and known as responsible gene for Hailey-Hailey disease. But its localization and roles in the epidermis are not fully elucidated. OBJECTIVE To explore the localization and biological role of ATP2C1 in normal epidermis in terms of differentiation states. METHODS We examined the immunohistochemical distribution of ATP2C1 in normal epidermis and measured the expression of ATP2C1 in cultured keratinocytes following forced detachment from culture dish or following treatment with high concentrations of calcium. Furthermore, we knockdown ATP2C1 expression in cultured keratinocytes by using RNA interference procedure to abrogate cation accumulation in cell organelles. RESULTS ATP2C1 is specifically localized at the basal cell layer in normal epidermis. Neither detachment of keratinocyte from culture dish nor treatment with high concentrations of calcium suppressed ATP2C1 expression, while both procedures induced differentiation markers, K10 keratin and involucrin. In contrast, knockdown of ATP2C1 induced these differentiation markers of cultured keratinocytes. Furthermore, treatment of keratinocytes with a calcium ionophore, A23187, did not up-regulate differentiation markers of keratinocytes, while a more manganese selective ionophore Br-A23187 up-regulated these differentiation markers. CONCLUSION Our results suggest that ATP2C1 plays an essential role for basal keratinocytes to keep in the undifferentiated state and that its reduction evokes differentiation and up-localization to suprabasal layers most likely via the manganese starvation in the Golgi apparatus of keratinocytes.
Collapse
Affiliation(s)
- Masaki Yoshida
- Asahikawa Medical College, Department of Biochemistry, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510 Japan.
| | | | | | | | | |
Collapse
|
19
|
Moorthy S, Watnick PI. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 2005; 57:1623-35. [PMID: 16135229 PMCID: PMC2600799 DOI: 10.1111/j.1365-2958.2005.04797.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial biofilm formation has been described as a developmental process. This process may be divided into three stages: the planktonic stage, the monolayer stage and the biofilm stage. Bacteria in the planktonic stage are not attached to each other or to a surface; bacteria in the monolayer stage are attached to surfaces as single cells; and bacteria in the biofilm stage are attached to surfaces as cellular aggregates. In a study limited to the Vibrio cholerae flaA, mshA and vps genes, we previously demonstrated that transcription in monolayer cells is distinct from that in biofilm cells and that the genetic requirements of monolayer formation are distinct from those of biofilm formation. In this work, we sought to identify additional stage-specific genetic requirements through microarray analysis of the V. cholerae transcriptome during biofilm development. These studies demonstrated unique patterns of transcription in the planktonic, monolayer and biofilm stages of biofilm development. Based on our microarray results, we selected cheY-3 as well as two previously uncharacterized genes, bap1 and leuO, for targeted mutation. The DeltacheY-3 mutant displayed a defect in monolayer but not biofilm formation, suggesting that chemotaxis plays a stage-specific role in formation of the V. cholerae monolayer. Mutants carrying deletions in bap1 and leuO formed monolayers that were indistinguishable from those formed by wild-type V. cholerae. In contrast, these mutants displayed greatly decreased biofilm accumulation. Our microarray analyses document modulation of the transcriptome of V. cholerae as it progresses through the stages in biofilm development. These studies demonstrate that microarray analysis of the transcriptome of biofilm development may greatly accelerate the discovery of novel targets for stage-specific inhibition of biofilm development.
Collapse
Affiliation(s)
- Sudha Moorthy
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
20
|
Hirata H, Ohki K, Miyata H. Dynamic change in the distribution of alpha5beta1 integrin on isolated ventral membrane: effect of divalent cation species. ACTA ACUST UNITED AC 2005; 59:131-40. [PMID: 15362117 DOI: 10.1002/cm.20029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the spatial distribution of alpha5beta1 integrin in isolated ventral plasma membranes (VPMs) of human foreskin fibroblasts in order to elucidate how the interaction of integrin with cytoskeletal and extracellular matrix proteins might affect the integrin distribution. Cells were exposed to the jet of buffer to remove the apical surface and most of cellular organelles. After this treatment VPMs, which adhered to the glass surface, possessed the cellular structures such as fibronectin (FN) fibrils and actin stress fibers. The isolated VPMs thus prepared were employed without fixation to investigate the change in the integrin distribution. In isolated VPMs, alpha5beta1 integrin, labeled with Cy3-tagged anti-integrin antibody, was found to accumulate not only at the tips of stress fibers but also along FN fibrils extending from there. When divalent cations were removed with EDTA, the accumulated integrin was dispersed, and the original pattern of distribution was recovered upon restoration of divalent cations. Talin, an integrin-actin cytoskeleton linker protein, was found to accumulate only at the tips of stress fibers in isolated VPMs, but alpha5beta1 integrin did not exhibit strong accumulation there, indicating that talin played little role in integrin distribution in isolated VPMs. The amount of alpha-actinin associated with stress fibers was found to drastically decrease in isolated VPMs, which was presumably related to the failure of localization of integrin at the tips of stress fibers. It was also shown that the association of stress fibers to isolated VPMs seemed to be independent of accumulation of integrin.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Physics Department, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
21
|
Feng Y, Mrksich M. The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 2005; 43:15811-21. [PMID: 15595836 DOI: 10.1021/bi049174+] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work reports on the role of the synergy peptide PHSRN in mediating the adhesion of cells. The attachment of baby hamster kidney cells and 3T3 Swiss fibroblasts to model substrates presenting either GRGDS or PHSRN was evaluated using self-assembled monolayers of alkanethiolates on gold presenting the peptide ligands mixed with tri(ethylene glycol) groups. These substrates permit rigorous control over the structures and densities of peptide ligands and at the same time prevent nonspecific interactions with adherent cells. Both cell types attached efficiently to monolayers presenting either the RGD or the PHSRN peptide but not to monolayers presenting scrambled peptide GRDGS or HRPSN. Cell attachment was comparable on substrates presenting either peptide ligand but less efficient than on substrates presenting the protein fibronectin. The degree of cell spreading, however, was substantially higher on substrates presenting RGD relative to PHSRN. Staining of 3T3 fibroblasts with anti-vinculin and phalloidin revealed clear cytoskeletal filaments and focal adhesions for cells attached by way of either RGD or PHSRN. Inhibition experiments showed that the attachment of 3T3 fibroblasts to monolayers presenting RGD could be inhibited completely by a soluble RGD peptide and partially by a soluble PHSRN peptide. IMR 90 fibroblast attachment to monolayers presenting PHSRN could be inhibited with anti-integrin alpha(5) or anti-integrin beta(1) antibody. This work demonstrates unambiguously that PHSRN alone can support the attachment of cells and that the RGD and PHSRN bind competitively to the integrin receptors.
Collapse
Affiliation(s)
- Yuezhong Feng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
22
|
Nicholas A. K, Jacques P. B. Internal Organization of Basement Membranes. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56009-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Mould AP, Symonds EJH, Buckley PA, Grossmann JG, McEwan PA, Barton SJ, Askari JA, Craig SE, Bella J, Humphries MJ. Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J Biol Chem 2003; 278:39993-9. [PMID: 12871973 DOI: 10.1074/jbc.m304627200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural basis of the interaction of integrin heterodimers with their physiological ligands is poorly understood. We have used solution x-ray scattering to visualize the head region of integrin alpha 5 beta 1 in an inactive (Ca2+-occupied) state, and in complex with a fragment of fibronectin containing the RGD and synergy recognition sequences. Shape reconstructions of the data have been interpreted in terms of appropriate molecular models. The scattering data suggest that the head region undergoes no gross conformational changes upon ligand binding but do lend support to a proposed outward movement of the hybrid domain in the beta subunit. Fibronectin is observed to bind across the top of the head region, which contains an alpha subunit beta-propeller and a beta subunit vWF type A domain. The model of the complex indicates that the synergy region binds on the side of the beta-propeller domain. In support of this suggestion, mutagenesis of a prominent loop region on the side of the propeller identifies two residues (Tyr208 and Ile210) involved in recognition of the synergy region. Our data provide the first view of a complex between an integrin and a macromolecular ligand in solution, at a nominal resolution of approximately 10 A.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baneres JL, Martin A, Hullot P, Girard JP, Rossi JC, Parello J. Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol 2003; 329:801-14. [PMID: 12787679 DOI: 10.1016/s0022-2836(03)00438-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We produced the human leukotriene B(4) (LTB(4)) receptor BLT1, a G-protein-coupled receptor, in Escherichia coli with yields that are sufficient for the first structural characterization of this receptor in solution. Overexpression was achieved through codon optimization and the search for optimal refolding conditions of BLT1 recovered from inclusion bodies. The detergent-solubilized receptor displays a 3D-fold compatible with a seven transmembrane (TM) domain with ca 50% alpha-helix and an essential disulfide bridge (circular dichroism evidence); it binds LTB(4) with K(a)=7.8(+/-0.2)x10(8)M(-1) and a stoichiometric ratio of 0.98(+/-0.02). Antagonistic effects were investigated using a synthetic molecule that shares common structural features with LTB(4). We report evidence that both partners, LTB(4) and BLT1, undergo a rearrangement of their respective conformations upon complex formation: (i) a departure from planarity of the LTB(4) conjugated triene moiety; (ii) a change in the environment of Trp234 (TM-VI helix) and in the exposure of the cytoplasmic region of this transmembrane helix.
Collapse
Affiliation(s)
- Jean-Louis Baneres
- UMR 5074 CNRS, Chimie Biomoléculaire et Interactions Biologiques, Faculté de Pharmacie, 15 Avenue Ch. Flahault, BP 14491, 34093, Cedex 05, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
25
|
Bourguet E, Banères JL, Parello J, Lusinchi X, Girard JP, Vidal JP. Nonpeptide RGD antagonists: a novel class of mimetics, the 5,8-disubstituted 1-azabicyclo[5.2.0]nonan-2-one lactam. Bioorg Med Chem Lett 2003; 13:1561-4. [PMID: 12699755 DOI: 10.1016/s0960-894x(03)00181-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 1-azabicyclo[5.2.0]nonan-2-one lactam 1 adequately substituted on both cycles A and B as scaffolds mimics the conformationally constrained beta-turn of the tripeptide RGD signaling motif of fibronectin. Using an in vitro assay, we establish that trans diastereoisomer 1b dissociates a soluble fibronectin-integrin alpha(5)beta(1) complex at concentrations comparable to those of a linear RGDS peptide as a competitor.
Collapse
Affiliation(s)
- Erika Bourguet
- Laboratoire de Chimie Biomoléculaire et Interactions Biologiques, Unité Mixte de Recherche CNRS 5074, Université Montpellier I, Faculté de Pharmacie, 15 Av. C. Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
26
|
Eble JA, Berditchevski F. Purification of integrins and characterization of integrin-associated proteins. Methods Cell Biol 2003; 69:223-46. [PMID: 12070995 DOI: 10.1016/s0091-679x(02)69015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, Universität Münster, 48149 Münster, Germany
| | | |
Collapse
|
27
|
Gullberg DE, Lundgren-Akerlund E. Collagen-binding I domain integrins--what do they do? PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2002; 37:3-54. [PMID: 11876085 DOI: 10.1016/s0079-6336(02)80008-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Collagens are the most abundant proteins in the mammalian body and it is well recognized that collagens fulfill an important structural role in the extracellular matrix in a number of tissues. Inactivation of the collagen alpha 1(I) gene in mice results in embryonic lethality and collagen mutations in humans cause defects leading to disease. Integrins constitute a major group of receptors for extracellular matrix components, including collagens. Currently four collagen-binding I domain-containing integrins are known, namely alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1 and alpha 11 beta 1. Unlike the undisputed role of collagens as structural elements, the biological importance of integrin mediated cell-collagen interactions is far from clear. This is in part due to the limited information available on the most recent additions of the integrin family, alpha 10 beta 1 and alpha 11 beta 1. Future studies using gene inactivation of individual and multiple integrin genes will allow testing of the hypothesis that collagen-binding integrins have redundant functions but will also shed light on their importance in pathological conditions. In this review we will describe what is currently known about the collagen-binding integrins and discuss their biological functions.
Collapse
Affiliation(s)
- Donald E Gullberg
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Uppsala University, S-75123 Uppsala, Sweden.
| | | |
Collapse
|
28
|
Abstract
The divalent-cation-dependent binding of alphabeta heterodimeric integrins to their ligands regulates most cellular processes. Integrin-ligand interactions are tightly controlled by inside-out activation signals. Ligand-bound integrins in turn transduce outside-in signals typical of other receptors. Precise information of how ligands bind to integrins is restricted to that of a small vWF A-type domain present in some alpha-subunits (alphaA). Both inside-out and outside-in signals elicit tertiary and quaternary changes in integrins, but the precise nature and scope and of these changes are unknown. The recently solved structures of the extracellular segment of integrin alphaVbeta3 in its unliganded and liganded states are generating exciting new insights into the design, wiring, function and regulation of this protein family. The structures reveal a surprising degree of flexibility at defined regions in the structure that is potentially controlled by cations. The quaternary structure of the ligand-binding region bears a striking resemblance to the nucleotide-binding pocket of G-proteins, implying analogous activation and signaling mechanisms. Structural links exist through which ligand-induced tertiary changes may be translated into quaternary changes and vice versa. The structures also raise the tantalizing hypothesis that alphaA is a regulated endogenous integrin ligand, so that no special regulatory features are needed in this integrin. These findings provide the framework for new investigations of structure-activity relationships in integrins, with important implications for targeting these receptors therapeutically [corrected].
Collapse
Affiliation(s)
- M Amin Arnaout
- Renal Unit, Leukocyte Biology & Inflammation Program, Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
29
|
García AJ, Schwarzbauer JE, Boettiger D. Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry 2002; 41:9063-9. [PMID: 12119020 DOI: 10.1021/bi025752f] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
alpha5beta1 integrin can occupy several distinct conformational states which support different strengths of binding to fibronectin [García, A. J., et al. (1998) J. Biol. Chem. 273, 34710-34715]. Using a model system in which specific activating monoclonal antibodies were used to achieve uniform activated states, the binding of alpha5beta1 to full-length wild-type fibronectin and mutants of fibronectin in the defined RGD and PHSRN synergy sites was analyzed using a novel method that measures the strength of the coupling between integrin and its ligand. Neither TS2/16- nor AG89-activated alpha5beta1 showed significant mechanical coupling to RGD-deleted fibronectin. However, peptide competition assays demonstrated a 6-fold difference in the binding affinities of these two states for RGD. The mutant synergy site reduced the AG89 (low)-activated state to background levels, but the TS2/16-activated state still retained approximately 30% of the wild-type activity. Thus, these two active binding states of alpha5beta1 interact differently with both the RGD and synergy domains. The failure of the AG89-activated state to show mechanical coupling to either the RGD or synergy domain mutants was unexpected and implies that the RGD domain itself does not contribute significant mechanical strength to the alpha5beta1-fibronectin interaction. The lack of RGD alone to support alpha5beta1 coupling was further confirmed using a synthetic polymer presenting multiple copies of the RGD loop. These results suggest a model in which the RGD domain serves to activate and align the alpha5beta1-fibronectin interface, and the synergy site provides the mechanical strength to the bond.
Collapse
Affiliation(s)
- Andrés J García
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
30
|
Pepinsky RB, Mumford RA, Chen LL, Leone D, Amo SE, Riper GV, Whitty A, Dolinski B, Lobb RR, Dean DC, Chang LL, Raab CE, Si Q, Hagmann WK, Lingham RB. Comparative assessment of the ligand and metal ion binding properties of integrins alpha9beta1 and alpha4beta1. Biochemistry 2002; 41:7125-41. [PMID: 12033947 DOI: 10.1021/bi020024d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrins alpha9beta1 and alpha4beta1 form a distinct structural class, but while alpha4beta1 has been subjected to extensive study, alpha9beta1 remains poorly characterized. We have used the small molecule N-(benzenesulfonyl)-(L)-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)tyrosine (3) to investigate the biochemical properties of alpha9beta1 and directly compare these properties with those of alpha4beta1. Compound 3 has a high affinity for both integrins with K(D) values of < or =3 and 180 pM for alpha9beta1 in 1 mM Mn2+ (activating) and 1 mM Ca2+ and 1 mM Mg2+ (nonactivating) conditions and < or =5 and 730 pM for alpha4beta1 under the corresponding conditions. Ca2+ treatment promoted the binding of 3 to both integrins (EC50 = 30 microM Ca2+ in both cases). Compound 3 binding to both integrins was also stimulated by the addition of the activating monoclonal antibody TS2/16. These findings indicate that the mechanisms by which metal ions and TS2/16 regulate ligand binding to alpha9beta1 and alpha4beta1 are similar. The binding of 3 to both integrins induced the mAb 9EG7 LIBS epitope, a property consistent with occupancy of the receptor's ligand binding site by 3. But whereas EGTA treatment inhibited the binding of 9EG7 to alpha4beta1, it stimulated the binding of 9EG7 to alpha9beta1. The 9EG7 and TS2/16 effects point to contributions of the beta1-chains on binding. Cross-linking data revealed that the integrin alpha-chains are also involved in binding the small molecule, as stable linkages were observed on both the alpha9 chain of alpha9beta1 and the alpha4 chain of alpha4beta1. Extensive structure-activity analyses with natural and synthetic ligands indicate distinct features of the ligand binding pockets. Most notable was the estimated >1000-fold difference in the affinity of the integrins for VCAM-1, which binds alpha4beta1with an apparent K(D) of 10 nM and alpha9beta1 with an apparent K(D) of >10 microM. Differences were also seen in the binding of alpha9beta1 and alpha4beta1 to osteopontin. Compound 3 competed effectively for the binding of VCAM-1 and osteopontin to both integrins. While these studies show many similarities in the biochemical properties of alpha9beta1 and alpha4beta1, they identify important differences in their structure and function that can be exploited in the design of selective alpha9beta1 and alpha4beta1 inhibitors.
Collapse
Affiliation(s)
- R Blake Pepinsky
- Biogen, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thompson SE, Smithrud DB. Carboxylates stacked over aromatic rings promote salt bridge formation in water. J Am Chem Soc 2002; 124:442-9. [PMID: 11792215 DOI: 10.1021/ja011973h] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several salt bridges observed in protein X-ray crystallographic structures showed a consistent pattern of a carboxylate, situated near the face of an aromatic ring, forming a bond to an arginine residue of a ligand. To determine the driving force for these complexes, (1)H NMR or potentiometric binding titrations were performed on solutions containing N-acetyl arginine methyl ester, N-acetyl lysine methyl ester, guanidinium chloride, or KCl and one member of a series of diacidic templates, which had aromatic or aliphatic groups placed below their carboxylates. Only templates having an aromatic ring were able to form a salt bridge in water. Although most of the obvious interactions, such as ionic and cation-pi, and ion desolvation are important factors, association of an amino acid in water required the presence of the entire amino acid. This result suggests that the interaction between the aliphatic portion of an amino acid and an aromatic ring of a template is an important component of complexation. Aromatic templates also transported N-acetyl arginine methyl ester from water to 1-octanol. The results of the transport studies are discussed in terms of potential intermediate states that could lower some of the activation barriers of protein folding.
Collapse
Affiliation(s)
- Samuel E Thompson
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | | |
Collapse
|
32
|
Kamata T, Takada Y. Platelet integrin alphaIIbbeta3-ligand interactions: what can we learn from the structure? Int J Hematol 2001; 74:382-9. [PMID: 11794692 DOI: 10.1007/bf02982080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Upon vascular injury, platelets initiate interaction with exposed subendothelial matrices through various receptors such as glycoprotein (GP) Ib/IX/V complex, alpha2beta1 integrin, and GPVI/FcRgamma. Although these interactions cannot sustain stable platelet thrombus formation by themselves, they ultimately lead to the activation of alphaIIbbeta3 integrin (GPIIb-IIIa complex [GPIIb-IIIa]), the most abundant receptor in platelets. The alphaIIbbeta3 integrin plays a central role in primary hemostasis by serving as a receptor for fibrinogen and von Willebrand factor (vWf). It establishes a stable interaction with vWf bound to the extracellular matrices and uses fibrinogen as a bridging molecule in platelet aggregate formation. The alphaIIbbeta3 integrin also plays an important role in the pathogenesis of thrombosis. Over the past decades, a tremendous amount of effort has been made to elucidate the ligand-binding mechanisms of alphaIIbbeta3, in part because of its clinical significance. Most of the studies have relied on biochemical analyses of purified alphaIIbbeta3 or recombinant proteins generated in vitro. With the lack of actual 3-dimensional structure, molecular modeling has provided a useful framework for interpreting such experimental data on structure-function correlation of integrin molecules. However, it has also generated disagreement between different models. The aim of this minireview is to summarize the past efforts as well as the recent accomplishments in elucidating the structure/function of alphaIIbbeta3. Finally, we will try to explain all those experimental data using the recently published crystal structure of the extracellular domains of the alphaVbeta3 heterodimeric complex.
Collapse
Affiliation(s)
- T Kamata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
33
|
Kamata T, Tieu KK, Irie A, Springer TA, Takada Y. Amino acid residues in the alpha IIb subunit that are critical for ligand binding to integrin alpha IIbbeta 3 are clustered in the beta-propeller model. J Biol Chem 2001; 276:44275-83. [PMID: 11557768 DOI: 10.1074/jbc.m107021200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several distinct regions of the integrin alpha(IIb) subunit have been implicated in ligand binding. To localize the ligand binding sites in alpha(IIb), we swapped all 27 predicted loops with the corresponding sequences of alpha(4) or alpha(5). 19 of the 27 swapping mutations had no effect on binding to both fibrinogen and ligand-mimetic antibodies (e.g. LJ-CP3), suggesting that these regions do not contain major ligand binding sites. In contrast, swapping the remaining 8 predicted loops completely blocked ligand binding. Ala scanning mutagenesis of these critical predicted loops identified more than 30 discontinuous residues in repeats 2-4 and at the boundary between repeats 4 and 5 as critical for ligand binding. Interestingly, these residues are clustered in the predicted beta-propeller model, consistent with this model. Most of the critical residues are located at the edge of the upper face of the propeller, and several critical residues are located on the side of the propeller domain. None of the predicted loops in repeats 1, 6, and 7, and none of the four putative Ca(2+)-binding predicted loops on the lower surface of the beta-propeller were important for ligand binding. The results map an important ligand binding interface at the edge of the top and on the side of the beta-propeller toroid, centering on repeat 3.
Collapse
Affiliation(s)
- T Kamata
- Department of Cell Biology, the Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
34
|
Bourguet E, Baneres JL, Girard JP, Parello J, Vidal JP, Lusinchi X, Declercq JP. Photochemical rearrangement of oxaziridines and nitrones in the hexahydroindole series: a convenient synthetic route to 1-azabicyclo[5.2.0]nonan-2-ones as novel RGD mimetics. Org Lett 2001; 3:3067-70. [PMID: 11573996 DOI: 10.1021/ol016184j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Photolysis of oxaziridines a or nitrones b provides a convenient synthetic route to fused bicyclic lactams c adequately substituted on both cycles A and B as scaffolds for mimicking conformationally constrained beta-turn peptides as in the tripeptide RGD signaling motif of fibronectin.
Collapse
Affiliation(s)
- E Bourguet
- Laboratoire de Chimie Biomoléculaire et Interactions Biologiques, UMR CNRS 5074, Faculté de Pharmacie, 15, avenue Charles Flahault, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen LL, Whitty A, Scott D, Lee WC, Cornebise M, Adams SP, Petter RC, Lobb RR, Pepinsky RB. Evidence that ligand and metal ion binding to integrin alpha 4beta 1 are regulated through a coupled equilibrium. J Biol Chem 2001; 276:36520-9. [PMID: 11473127 DOI: 10.1074/jbc.m106216200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used the highly selective alpha(4)beta(1) inhibitor 2S-[(1-benzenesulfonyl-pyrrolidine-2S-carbonyl)-amino]-4-[4-methyl-2S-(methyl-[2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl]-amino)-pentanoylamino]-butyric acid (BIO7662) as a model ligand to study alpha(4)beta(1) integrin-ligand interactions on Jurkat cells. Binding of [(35)S]BIO7662 to Jurkat cells was dependent on the presence of divalent cations and could be blocked by treatment with an excess of unlabeled inhibitor or with EDTA. K(D) values for the binding of BIO7662 to Mn(2+)-activated alpha(4)beta(1) and to the nonactivated state of the integrin that exists in 1 mm Mg(2+), 1 mm Ca(2+) were <10 pm, indicating that it has a high affinity for both activated and nonactivated integrin. No binding was observed on alpha(4)beta(1) negative cells. Through an analysis of the metal ion dependences of ligand binding, several unexpected findings about alpha(4)beta(1) function were made. First, we observed that Ca(2+) binding to alpha(4)beta(1) was stimulated by the addition of BIO7662. From solution binding studies on purified alpha(4)beta(1), two types of Ca(2+)-binding sites were identified, one dependent upon and the other independent of BIO7662 binding. Second, we observed that the metal ion dependence of ligand binding was affected by the affinity of the ligand for alpha(4)beta(1). ED(50) values for the metal ion dependence of the binding of BIO7762 and the binding of a lower affinity ligand, BIO1211, differed by 2-fold for Mn(2+), 30-fold for Mg(2+), and >1000-fold for Ca(2+). Low Ca(2+) (ED(50) = 5-10 microm) stimulated the binding of BIO7662 to alpha(4)beta(1). The effects of microm Ca(2+) closely resembled the effects of Mn(2+) on alpha(4)beta(1) function. Third, we observed that the rate of BIO7662 binding was dependent on the metal ion concentration and that the ED(50) for the metal ion dependence of BIO7662 binding was affected by the concentration of the BIO7662. These studies point to an even more complex interplay between metal ion and ligand binding than previously appreciated and provide evidence for a three-component coupled equilibrium model for metal ion-dependent binding of ligands to alpha(4)beta(1).
Collapse
Affiliation(s)
- L L Chen
- Biogen, Inc., Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Coe AP, Askari JA, Kline AD, Robinson MK, Kirby H, Stephens PE, Humphries MJ. Generation of a minimal alpha5beta1 integrin-Fc fragment. J Biol Chem 2001; 276:35854-66. [PMID: 11389148 DOI: 10.1074/jbc.m103639200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tertiary structure of the integrin heterodimer is currently unknown, although several predictive models have been generated. Detailed structural studies of integrins have been consistently hampered for several reasons, including the small amounts of purified protein available, the large size and conformational flexibility of integrins, and the presence of transmembrane domains and N-linked glycosylation sites in both receptor subunits. As a first step toward obtaining crystals of an integrin receptor, we have expressed a minimized dimer. By using the Fc dimerization and mammalian cell expression system designed and optimized by Stephens et al. (Stephens, P. E., Ortlepp, S., Perkins, V. C., Robinson, M. K., and Kirby, H. (2000) Cell. Adhes. Commun. 7, 377-390), a series of recombinant soluble human alpha(5)beta(1) integrin truncations have been expressed as Fc fusion proteins. These proteins were examined for their ligand-binding properties and for their expression of anti-integrin antibody epitopes. The shortest functional alpha(5)-subunit truncation contained the N-terminal 613 residues, whereas the shortest beta(1)-subunit was a fragment containing residues 121-455. Each of these minimally truncated integrins displayed the antibody binding characteristics of alpha(5)beta(1) purified from human placenta and bound ligand with the same apparent affinity as the native receptor.
Collapse
Affiliation(s)
- A P Coe
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Xiong YM, Zhang L. Structure-function of the putative I-domain within the integrin beta 2 subunit. J Biol Chem 2001; 276:19340-9. [PMID: 11278448 DOI: 10.1074/jbc.m008903200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central region (residues 125-385) of the integrin beta(2) subunit is postulated to adopt an I-domain-like fold (the beta(2)I-domain) and to play a critical role in ligand binding and heterodimer formation. To understand structure-function relationships of this region of beta(2), a homolog-scanning mutagenesis approach, which entails substitution of nonconserved hydrophilic sequences within the beta(2)I-domain with their homologous counterparts of the beta(1)I-domain, has been deployed. This approach is based on the premise that beta(1) and beta(2) are highly homologous, yet recognize different ligands. Altogether, 16 segments were switched to cover the predicted outer surface of the beta(2)I-domain. When these mutant beta(2) subunits were transfected together with wild-type alpha(M) in human 293 cells, all 16 beta(2) mutants were expressed on the cell surface as heterodimers, suggesting that these 16 sequences within the beta(2)I-domain are not critically involved in heterodimer formation between the alpha(M) and beta(2) subunits. Using these mutant alpha(M)beta(2) receptors, we have mapped the epitopes of nine beta(2)I-domain specific mAbs, and found that they all recognized at least two noncontiguous segments within this domain. The requisite spatial proximity among these non-linear sequences to form the mAb epitopes supports a model of an I-domain-like fold for this region. In addition, none of the mutations that abolish the epitopes of the nine function-blocking mAbs, including segment Pro(192)-Glu(197), destroyed ligand binding of the alpha(M)beta(2) receptor, suggesting that these function-blocking mAbs inhibit alpha(M)beta(2) function allosterically. Given the recent reports implicating the segment equivalent to Pro(192)-Glu(197) in ligand binding by beta(3) integrins, these data suggest that ligand binding by the beta(2) integrins occurs via a different mechanism than beta(3). Finally, both the conformation of the beta(2)I-domain and C3bi binding activity of alpha(M)beta(2) were dependent on a high affinity Ca(2+) binding site (K(d) = 105 microm), which is most likely located within this region of beta(2).
Collapse
Affiliation(s)
- Y M Xiong
- Department of Vascular Biology, American Red Cross Holland Laboratory, Rockville, Maryland 20855, USA
| | | |
Collapse
|
38
|
Wattam B, Shang D, Rahman S, Egglezou S, Scully M, Kakkar V, Lu X. Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins. Biochem J 2001; 356:11-7. [PMID: 11336631 PMCID: PMC1221807 DOI: 10.1042/0264-6021:3560011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arg-Gly-Asp (RGD) is a unique minimal integrin-binding sequence that is found within several glycoprotein ligands. This sequence has also been found in snake-venom anti-platelet proteins, including the disintegrins and dendroaspin, a natural variant of short-chain neurotoxins isolated from the venom of Dendroaspis jamesonii. In the present study, the motifs RYD and RCD were introduced into the dendroaspin scaffold to replace RGD. Both motifs in dendroaspin caused inhibition of ADP-induced platelet aggregation with IC(50) values of 200 and 300 nM respectively, similar to that of the wild-type RGD motif (170 nM). In comparison with wild-type dendroaspin, both RYD- and RCD-containing dendroaspins were more selective in the inhibition of the adhesion of K562 cells to laminin rather than to fibrinogen and fibronectin, even though they were 10-30-fold less potent at inhibiting K562 cell (containing alpha(5)beta(1) integrin) adhesion to laminin compared with wild-type. Interestingly, the RYD motif produced a similar IC(50) value to the RGD motif at inhibiting A375-SM cell (beta(3) integrin) adhesion to collagen, whereas the RCD motif was approx. 2-6-fold less potent compared with either RGD or RYD. These findings show that the selectivity of dendroaspin binding to beta(1) and beta(3) integrins can be modulated by the introduction of alternative cell recognition sequences.
Collapse
Affiliation(s)
- B Wattam
- Thrombosis Research Institute, Manresa Road, London SW3 6LR, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Leitinger B, McDowall A, Stanley P, Hogg N. The regulation of integrin function by Ca(2+). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:91-8. [PMID: 11108953 DOI: 10.1016/s0167-4889(00)00086-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrins are metalloproteins whose receptor function is dependent on the interplay between Mg(2+) and Ca(2+). Although the specificity of the putative divalent cation binding sites has been poorly understood, some issues are becoming clearer and this review will focus on the more recent information. The MIDAS motif is a unique Mg(2+)/Mn(2+) binding site located in the integrin alpha subunit I domain. Divalent cation bound at this site has a structural role in coordinating the binding of ligand to the I domain containing integrins. The I-like domain of the integrin beta subunit also has a MIDAS-like motif but much less is known about its cation binding preferences. The N-terminal region of the integrin alpha subunit has been modelled as a beta-propeller, containing three or four 'EF hand' type divalent cation binding motifs for which the function is ill defined. It seems certain that most integrins have a high affinity Ca(2+) site which is critical for alphabeta heterodimer formation, but the location of this site is unknown. Finally intracellular Ca(2+) fluxes activate the Ca(2+) requiring enzyme, calpain, which regulates cluster formation of leucocyte integrins.
Collapse
Affiliation(s)
- B Leitinger
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | | | | | |
Collapse
|
40
|
Redick SD, Settles DL, Briscoe G, Erickson HP. Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. J Cell Biol 2000; 149:521-7. [PMID: 10769040 PMCID: PMC2175162 DOI: 10.1083/jcb.149.2.521] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Accepted: 03/09/2000] [Indexed: 12/02/2022] Open
Abstract
Fibronectin's RGD-mediated binding to the alpha5beta1 integrin is dramatically enhanced by a synergy site within fibronectin III domain 9 (FN9). Guided by the crystal structure of the cell-binding domain, we selected amino acids in FN9 that project in the same direction as the RGD, presumably toward the integrin, and mutated them to alanine. R1379 in the peptide PHSRN, and the nearby R1374 have been shown previously to be important for alpha5beta1-mediated adhesion (Aota, S., M. Nomizu, and K.M. Yamada. 1994. J. Biol. Chem. 269:24756-24761). Our more extensive set of mutants showed that R1379 is the key residue in the synergistic effect, but other residues contribute substantially. R1374A decreased adhesion slightly by itself, but the double mutant R1374A-R1379A was significantly less adhesive than R1379A alone. Single mutations of R1369A, R1371A, T1385A, and N1386A had negligible effects on cell adhesion, but combining these substitutions either with R1379A or each other gave a more dramatic reduction of cell adhesion. The triple mutant R1374A/P1376A/R1379A had no detectable adhesion activity. We conclude that, in addition to the R of the PHRSN peptide, other residues on the same face of FN9 are required for the full synergistic effect. The integrin-binding synergy site is a much more extensive surface than the small linear peptide sequence.
Collapse
Affiliation(s)
- Sambra D. Redick
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daniel L. Settles
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Gina Briscoe
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|