1
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
2
|
He Y, Liu S, Zhang Y, Zuo Y, Huang K, Deng L, Liao B, Zhong Y, Feng J. Takeda G protein-coupled receptor 5 (TGR5): an attractive therapeutic target for aging-related cardiovascular diseases. Front Pharmacol 2025; 16:1493662. [PMID: 40183075 PMCID: PMC11966115 DOI: 10.3389/fphar.2025.1493662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Aging is an independent risk factor for many chronic diseases, including cancer and cardiovascular, pulmonary, and neurodegenerative diseases. In recent years, the mechanisms of aging-related cardiovascular diseases (CVDs) have been studied intensively. Takeda G protein-coupled receptor 5 (TGR5) is a membrane receptor for bile acids that has been found to play an important role in various disease processes, such as inflammation, oxidative stress, and metabolic disorders, all of which contribute to aging-related CVDs. In this review, we summarise the role of TGR5 in aging-related CVDs and propose TGR5 as an attractive therapeutic target based on its mechanism of involvement, which may contribute to future drug target design.
Collapse
Affiliation(s)
- Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Zhang L, Yu J, Gao X, Yan Y, Wang X, Shi H, Fang M, Liu Y, Kim YB, Zhu H, Wu X, Huang C, Fan S. Targeting farnesoid X receptor as aging intervention therapy. Acta Pharm Sin B 2025; 15:1359-1382. [PMID: 40370561 PMCID: PMC12069902 DOI: 10.1016/j.apsb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 05/16/2025] Open
Abstract
Environmental toxicants have been linked to aging and age-related diseases. The emerging evidence has shown that the enhancement of detoxification gene expression is a common transcriptome marker of long-lived mice, Drosophila melanogaster, and Caenorhabditis elegans. Meanwhile, the resistance to toxicants was increased in long-lived animals. Here, we show that farnesoid X receptor (FXR) agonist obeticholic acid (OCA), a marketed drug for the treatment of cholestasis, may extend the lifespan and healthspan both in C. elegans and chemical-induced early senescent mice. Furthermore, OCA increased the resistance of worms to toxicants and activated the expression of detoxification genes in both mice and C. elegans. The longevity effects of OCA were attenuated in Fxr -/- mice and Fxr homologous nhr-8 and daf-12 mutant C. elegans. In addition, metabolome analysis revealed that OCA increased the endogenous agonist levels of the pregnane X receptor (PXR), a major nuclear receptor for detoxification regulation, in the liver of mice. Together, our findings suggest that OCA has the potential to lengthen lifespan and healthspan by activating nuclear receptor-mediated detoxification functions, thus, targeting FXR may offer to promote longevity.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Liu P, Jin M, Hu P, Sun W, Tang Y, Wu J, Zhang D, Yang L, He H, Xu X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100315. [PMID: 39726973 PMCID: PMC11670419 DOI: 10.1016/j.crmicr.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The intestinal microbiota comprises approximately 1013-1014 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes. These modified BA then activate specific receptors that regulate multiple metabolic pathways in the host, such as lipid and glucose metabolism, energy balance, inflammatory response, and cell proliferation and death. Recent attention has been given to intestinal flora disorders in diabetic kidney disease (DKD), where activation of BA receptors has shown promise in alleviating diabetic kidney damage by modulating renal lipid metabolism and mitochondrial production. Imbalances in the intestinal flora can influence the progression of DKD through the regulation of bile acid and its receptor pathways. This review aims to propose a mechanism involving the gut-BA-diabetes and nephropathy axes with the goal of optimizing new strategies for treating DKD.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiajun Wu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Fang Y, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep 2024; 9:3116-3133. [PMID: 39534198 PMCID: PMC11551060 DOI: 10.1016/j.ekir.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a prevalent microvascular complication that occurs often in individuals with diabetes. It significantly raises the mortality rate of affected patients. Therefore, there is an urgent need to identify therapeutic targets for controlling and preventing the occurrence and development of DN. Bile acids (BAs) are now recognized as intricate metabolic integrators and signaling molecules. The activation of BAs has great promise as a therapeutic approach for preventing DN, renal damage caused by obesity, and nephrosclerosis. The nuclear receptors (NRs), farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR); and the G protein-coupled BA receptor, Takeda G-protein-coupled receptor 5 (TGR5) have important functions in controlling lipid, glucose, and energy metabolism, inflammation, as well as drug metabolism and detoxification. Over the past 10 years, there has been advancement in comprehending the biology and processes of BA receptors in the kidney, as well as in the creation of targeted BA receptor agonists. In this review, we discuss the role of BA receptors, FXR, PXR, VDR, and TGR5 in DN and their role in renal physiology, as well as the development and application of agonists that activate BA receptors for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Madreiter-Sokolowski CT, Hiden U, Krstic J, Panzitt K, Wagner M, Enzinger C, Khalil M, Abdellatif M, Malle E, Madl T, Osto E, Schosserer M, Binder CJ, Olschewski A. Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacol Ther 2024; 262:108710. [PMID: 39179117 DOI: 10.1016/j.pharmthera.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In an aging society, unveiling new anti-aging strategies to prevent and combat aging-related diseases is of utmost importance. Mitochondria are the primary ATP production sites and key regulators of programmed cell death. Consequently, these highly dynamic organelles play a central role in maintaining tissue function, and mitochondrial dysfunction is a pivotal factor in the progressive age-related decline in cellular homeostasis and organ function. The current review examines recent advances in understanding the interplay between mitochondrial dysfunction and organ-specific aging. Thereby, we dissect molecular mechanisms underlying mitochondrial impairment associated with the deterioration of organ function, exploring the role of mitochondrial DNA, reactive oxygen species homeostasis, metabolic activity, damage-associated molecular patterns, biogenesis, turnover, and dynamics. We also highlight emerging therapeutic strategies in preclinical and clinical tests that are supposed to rejuvenate mitochondrial function, such as antioxidants, mitochondrial biogenesis stimulators, and modulators of mitochondrial turnover and dynamics. Furthermore, we discuss potential benefits and challenges associated with the use of these interventions, emphasizing the need for organ-specific approaches given the unique mitochondrial characteristics of different tissues. In conclusion, this review highlights the therapeutic potential of addressing mitochondrial dysfunction to mitigate organ-specific aging, focusing on the skin, liver, lung, brain, skeletal muscle, and lung, as well as on the reproductive, immune, and cardiovascular systems. Based on a comprehensive understanding of the multifaceted roles of mitochondria, innovative therapeutic strategies may be developed and optimized to combat biological aging and promote healthy aging across diverse organ systems.
Collapse
Affiliation(s)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Research Unit of Early Life Determinants, Medical University of Graz, Austria
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Katrin Panzitt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Medical University of Graz
| | - Markus Schosserer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Olschewski
- Department of Anesthesiology and Intensive Care Medicine, LBI for Lung Vascular Research, Medical University of Graz, Austria.
| |
Collapse
|
7
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
8
|
Komaniecka N, Maroszek S, Drozdzik M, Oswald S, Drozdzik M. Transporter Proteins as Therapeutic Drug Targets-With a Focus on SGLT2 Inhibitors. Int J Mol Sci 2024; 25:6926. [PMID: 39000033 PMCID: PMC11241231 DOI: 10.3390/ijms25136926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family-SLC and SLCO) and efflux (ATP-binding cassette family-ABC, multidrug and toxic compound extrusion family-MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function.
Collapse
Affiliation(s)
- Nina Komaniecka
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| | - Sonia Maroszek
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| | - Maria Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| |
Collapse
|
9
|
Yang X, Delsante M, Daneshpajouhnejad P, Fenaroli P, Mandell KP, Wang X, Takahashi S, Halushka MK, Kopp JB, Levi M, Rosenberg AZ. Bile Acid Receptor Agonist Reverses Transforming Growth Factor-β1-Mediated Fibrogenesis in Human Induced Pluripotent Stem Cells-Derived Kidney Organoids. J Transl Med 2024; 104:100336. [PMID: 38266922 DOI: 10.1016/j.labinv.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-β1 (TGF-β1) induced the production of extracellular matrix. TGF-β1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-β1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Marco Delsante
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Paride Fenaroli
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Xiaoxin Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shogo Takahashi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
10
|
Geng T, Lu Q, Jiang L, Guo K, Yang K, Liao YF, He M, Liu G, Tang H, Pan A. Circulating concentrations of bile acids and prevalent chronic kidney disease among newly diagnosed type 2 diabetes: a cross-sectional study. Nutr J 2024; 23:28. [PMID: 38429722 PMCID: PMC10908139 DOI: 10.1186/s12937-024-00928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The relationship between circulating bile acids (BAs) and kidney function among patients with type 2 diabetes is unclear. We aimed to investigate the associations of circulating concentrations of BAs, particularly individual BA subtypes, with chronic kidney disease (CKD) in patients of newly diagnosed type 2 diabetes. METHODS In this cross-sectional study, we included 1234 newly diagnosed type 2 diabetes who participated in an ongoing prospective study, the Dongfeng-Tongji cohort. Circulating primary and secondary unconjugated BAs and their taurine- or glycine-conjugates were measured using ultraperformance liquid chromatography-tandem mass spectrometry. CKD was defined as eGFR < 60 ml/min per 1.73 m2. Logistic regression model was used to compute odds ratio (OR) and 95% confidence interval (CI). RESULTS After adjusting for multiple testing, higher levels of total primary BAs (OR per standard deviation [SD] increment: 0.78; 95% CI: 0.65-0.92), cholate (OR per SD: 0.78; 95% CI: 0.66-0.92), chenodeoxycholate (OR per SD: 0.81; 95% CI: 0.69-0.96), glycocholate (OR per SD: 0.81; 95% CI: 0.68-0.96), and glycochenodeoxycholate (OR per SD: 0.82; 95% CI: 0.69-0.97) were associated with a lower likelihood of having CKD in patients with newly diagnosed type 2 diabetes. No significant relationships between secondary BAs and odds of CKD were observed. CONCLUSIONS Our findings showed that higher concentrations of circulating unconjugated primary BAs and their glycine-conjugates, but not taurine-conjugates or secondary BAs, were associated with lower odds of having CKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limiao Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kunquan Guo
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Yang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
11
|
Khan MAH, Nolan B, Stavniichuk A, Merk D, Imig JD. Dual soluble epoxide hydrolase inhibitor - farnesoid X receptor agonist interventional treatment attenuates renal inflammation and fibrosis. Front Immunol 2024; 14:1269261. [PMID: 38235144 PMCID: PMC10791967 DOI: 10.3389/fimmu.2023.1269261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Renal fibrosis associated with inflammation is a critical pathophysiological event in chronic kidney disease (CKD). We have developed DM509 which acts concurrently as a farnesoid X receptor agonist and a soluble epoxide hydrolase inhibitor and investigated DM509 efficacy as an interventional treatment using the unilateral ureteral obstruction (UUO) mouse model. Methods Male mice went through either UUO or sham surgery. Interventional DM509 treatment (10mg/kg/d) was started three days after UUO induction and continued for 7 days. Plasma and kidney tissue were collected at the end of the experimental protocol. Results UUO mice demonstrated marked renal fibrosis with higher kidney hydroxyproline content and collagen positive area. Interventional DM509 treatment reduced hydroxyproline content by 41% and collagen positive area by 65%. Renal inflammation was evident in UUO mice with elevated MCP-1, CD45-positive immune cell positive infiltration, and profibrotic inflammatory gene expression. DM509 treatment reduced renal inflammation in UUO mice. Renal fibrosis in UUO was associated with epithelial-to-mesenchymal transition (EMT) and DM509 treatment reduced EMT. UUO mice also had tubular epithelial barrier injury with increased renal KIM-1, NGAL expression. DM509 reduced tubular injury markers by 25-50% and maintained tubular epithelial integrity in UUO mice. Vascular inflammation was evident in UUO mice with 9 to 20-fold higher ICAM and VCAM gene expression which was reduced by 40-50% with DM509 treatment. Peritubular vascular density was reduced by 35% in UUO mice and DM509 prevented vascular loss. Discussion Interventional treatment with DM509 reduced renal fibrosis and inflammation in UUO mice demonstrating that DM509 is a promising drug that combats renal epithelial and vascular pathological events associated with progression of CKD.
Collapse
Affiliation(s)
- Md. Abdul Hye Khan
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin Nolan
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna Stavniichuk
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians Universität München, Munich, Germany
| | - John D. Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
12
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
13
|
Wang XX, Myakala K, Libby AE, Krawczyk E, Panov J, Jones BA, Bhasin K, Shults N, Qi Y, Krausz KW, Zerfas PM, Takahashi S, Daneshpajouhnejad P, Titievsky A, Taranenko E, Billon C, Chatterjee A, Elgendy B, Walker JK, Albanese C, Kopp JB, Rosenberg AZ, Gonzalez FJ, Guha U, Brodsky L, Burris TP, Levi M. Estrogen-Related Receptor Agonism Reverses Mitochondrial Dysfunction and Inflammation in the Aging Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1969-1987. [PMID: 37717940 PMCID: PMC10734281 DOI: 10.1016/j.ajpath.2023.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 09/19/2023]
Abstract
A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Andrew E Libby
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, District of Columbia
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel; Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| | - Kanchan Bhasin
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Nataliia Shults
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yue Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Parnaz Daneshpajouhnejad
- Renal Pathology Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Titievsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | | | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Arindam Chatterjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Chris Albanese
- Department of Oncology and Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia
| | - Jeffrey B Kopp
- Kidney Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Avi Z Rosenberg
- Renal Pathology Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
14
|
Cui Y, Wang K, Jiang D, Jiang Y, Shi D, DeGregori J, Waxman S, Ren R. Promoting longevity with less cancer: The 2022 International Conference on Aging and Cancer. AGING AND CANCER 2023; 4:111-120. [DOI: 10.1002/aac2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2024]
Abstract
AbstractAging and cancer are increasingly becoming big challenges for public health worldwide due to increased human life expectancy. Meanwhile, aging is one of the major risk factors for cancer. In December 2019, the first International Conference on Aging and Cancer was held in Haikou, Hainan province (island), China, preluding the establishment of the International Center for Aging and Cancer (ICAC) at Hainan, an institute dedicated to the research at the intersection of aging and cancer. Since then, the ICAC has hosted the annual conference each December in Hainan. The 2022 ICAC conference, with the theme of “promoting longevity with less cancer,” invited 17 internationally renowned scientists to share their new research and insights. Topics included DNA methylation in rejuvenation, development, and cellular senescence; lifespan regulation and longevity manipulation; metabolism and aging; cellular senescence and diseases; and novel therapeutics for cancer and antiaging/anticancer drug discovery. The forum highlighted the interconnectedness of aging and senescence with cancer evolution and risk. Although there is hope for preventing diseases like cancer by modulating systems that also control lifespan, attention has to be paid to the conflicting needs and competing demands in human biology.
Collapse
Affiliation(s)
- Yan Cui
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Kai Wang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Danli Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Yizhou Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Dawei Shi
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora Colorado USA
| | - Samuel Waxman
- Department of Hematology/Oncology Icahn School of Medicine at Mount Sinai New York City New York USA
| | - Ruibao Ren
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| |
Collapse
|
15
|
Guo Y, Luo T, Xie G, Zhang X. Bile acid receptors and renal regulation of water homeostasis. Front Physiol 2023; 14:1322288. [PMID: 38033333 PMCID: PMC10684672 DOI: 10.3389/fphys.2023.1322288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The kidney is the key organ responsible for maintaining the body's water and electrolyte homeostasis. About 99% of the primary urine filtered from the Bowman's capsule is reabsorbed along various renal tubules every day, with only 1-2 L of urine excreted. Aquaporins (AQPs) play a vital role in water reabsorption in the kidney. Currently, a variety of molecules are found to be involved in the process of urine concentration by regulating the expression or activity of AQPs, such as antidiuretic hormone, renin-angiotensin-aldosterone system (RAAS), prostaglandin, and several nuclear receptors. As the main bile acid receptors, farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor 1 (TGR5) play important roles in bile acid, glucose, lipid, and energy metabolism. In the kidney, FXR and TGR5 exhibit broad expression across all segments of renal tubules, and their activation holds significant therapeutic potential for numerous acute and chronic kidney diseases through alleviating renal lipid accumulation, inflammation, oxidative stress, and fibrosis. Emerging evidence has demonstrated that the genetic deletion of FXR or TGR5 exhibits increased basal urine output, suggesting that bile acid receptors play a critical role in urine concentration. Here, we briefly summarize the function of bile acid receptors in renal water reabsorption and urine concentration.
Collapse
Affiliation(s)
- Yanlin Guo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Taotao Luo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Guixiang Xie
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Xiaoyan Zhang
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
Fiorucci S, Sepe V, Biagioli M, Fiorillo B, Rapacciuolo P, Distrutti E, Zampella A. Development of bile acid activated receptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem Pharmacol 2023; 216:115776. [PMID: 37659739 DOI: 10.1016/j.bcp.2023.115776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Valentina Sepe
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
17
|
Yang G, Liu R, Rezaei S, Liu X, Wan YJY. Uncovering the Gut-Liver Axis Biomarkers for Predicting Metabolic Burden in Mice. Nutrients 2023; 15:3406. [PMID: 37571345 PMCID: PMC10421148 DOI: 10.3390/nu15153406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Western diet (WD) intake, aging, and inactivation of farnesoid X receptor (FXR) are risk factors for metabolic and chronic inflammation-related health issues ranging from metabolic dysfunction-associated steatotic liver disease (MASLD) to dementia. The progression of MASLD can be escalated when those risks are combined. Inactivation of FXR, the receptor for bile acid (BA), is cancer prone in both humans and mice. The current study used multi-omics including hepatic transcripts, liver, serum, and urine metabolites, hepatic BAs, as well as gut microbiota from mouse models to classify those risks using machine learning. A linear support vector machine with K-fold cross-validation was used for classification and feature selection. We have identified that increased urine sucrose alone achieved 91% accuracy in predicting WD intake. Hepatic lithocholic acid and serum pyruvate had 100% and 95% accuracy, respectively, to classify age. Urine metabolites (decreased creatinine and taurine as well as increased succinate) or increased gut bacteria (Dorea, Dehalobacterium, and Oscillospira) could predict FXR deactivation with greater than 90% accuracy. Human disease relevance is partly revealed using the metabolite-disease interaction network. Transcriptomics data were also compared with the human liver disease datasets. WD-reduced hepatic Cyp39a1 (cytochrome P450 family 39 subfamily a member 1) and increased Gramd1b (GRAM domain containing 1B) were also changed in human liver cancer and metabolic liver disease, respectively. Together, our data contribute to the identification of noninvasive biomarkers within the gut-liver axis to predict metabolic status.
Collapse
Affiliation(s)
- Guiyan Yang
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| | - Rex Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Shahbaz Rezaei
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Xin Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| |
Collapse
|
18
|
Imig JD. Peroxisome proliferator-activated receptors, farnesoid X receptor, and dual modulating drugs in hypertension. Front Physiol 2023; 14:1186477. [PMID: 37427406 PMCID: PMC10326315 DOI: 10.3389/fphys.2023.1186477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Hypertension characterized by an elevated blood pressure is a cardiovascular disease that afflicts greater than one in every three adults worldwide. Nuclear receptors are large superfamily of DNA-binding transcription factors that target genes to regulate metabolic and cardiovascular function. Drugs have been developed for nuclear receptors such as peroxisome proliferator-activated receptors (PPARα and PPARγ) and farnesoid X receptor (FXR). PPARα, PPARγ, and FXR agonists are used clinically to treat lipid disorders and metabolic diseases. Evidence from clinical studies and animal hypertension models have demonstrated that PPARα, PPARγ, and FXR agonism can lower blood pressure and decrease end organ damage which could be useful for the treatment of hypertension in patients with metabolic diseases. Unfortunately, PPAR and FXR agonists have unwanted clinical side effects. There have been recent developments to limit side effects for PPAR and FXR agonists. Combining PPAR and FXR agonism with soluble epoxide hydrolase (sEH) inhibition or Takeda G protein receptor 5 (TGR5) agonism has been demonstrated in preclinical studies to have actions that would decrease clinical side effects. In addition, these dual modulating drugs have been demonstrated in preclinical studies to have blood pressure lowering, anti-fibrotic, and anti-inflammatory actions. There is now an opportunity to thoroughly test these novel dual modulators in animal models of hypertension associated with metabolic diseases. In particular, these newly developed dual modulating PPAR and FXR drugs could be beneficial for the treatment of metabolic diseases, organ fibrosis, and hypertension.
Collapse
|
19
|
Ha S, Yang Y, Won Kim J, Son M, Kim D, Kim MJ, Im DS, Young Chung H, Chung KW. Diminished Tubule Epithelial Farnesoid X Receptor Expression Exacerbates Inflammation and Fibrosis Response in Aged Rat Kidney. J Gerontol A Biol Sci Med Sci 2023; 78:60-68. [PMID: 35867996 DOI: 10.1093/gerona/glac148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/31/2023] Open
Abstract
The age-associated functional decline of the kidney is accompanied by structural changes including glomerular sclerosis and interstitial fibrosis. Aging kidneys also exhibit increased vulnerability in stressful environmental conditions. In this study, we assessed the differences in responses between young and aged animals to folic acid (FA)-induced renal fibrosis. To monitor the effects of aging on FA-induced kidney fibrosis, we administered FA (250 mg/kg) to young (6-month old) and aged (20-month old) rats. The development of severe fibrosis was only detected in aged rat kidneys, which was accompanied by increased kidney injury and inflammation. Furthermore, we found that FA-treated aged rats had significantly lower farnesoid X receptor (FXR) expression in the tubular epithelial cells than the rats not treated with FA. Interestingly, the extent of inflammation was severe in the kidneys of aged rat, where the FXR expression was low. To explore the role of FXR in kidney inflammation, in vitro studies were performed using NRK52E kidney tubule epithelial cells. NF-κB activation by lipopolysaccharide treatment induces chemokine production in NRK52E cells. The activation of FXR by obeticholic acid significantly reduced the transcriptional activity of NF-κB and chemokine production. In contrast, FXR knockdown increased LPS-induced chemokine production in NRK52E cells. Finally, FXR-knockout mice that were administered FA showed increased inflammation and severe fibrosis. In summary, we demonstrated that diminished FXR expression in the epithelial cells of the renal tubules exacerbated the fibrotic response in aged rat kidneys by upregulating pro-inflammatory NF-κB activation.
Collapse
Affiliation(s)
- Sugyeong Ha
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yejin Yang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jeong Won Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Minjung Son
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Doyeon Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi-Jeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, and Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
20
|
Hu J, Zheng P, Qiu J, Chen Q, Zeng S, Zhang Y, Lin S, Zheng B. High-Amylose Corn Starch Regulated Gut Microbiota and Serum Bile Acids in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23115905. [PMID: 35682591 PMCID: PMC9180756 DOI: 10.3390/ijms23115905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary High-amylose corn starch, as a kind of resistant starch, could profoundly regulate the gut microbiota and exert anti-obesity properties. Since the gut microbiota was found to improve metabolic health by altering circulating bile acids, therefore, here we investigated the association between the gut microbiota and serum bile acids in high fat diet induced obese mice fed with high-amylose corn starch. We found high-amylose corn starch could modulate the gut microbiota composition and partially restore the alternations in circulating bile acid profiles in obese mice. These influences on gut microbiota and circulating bile acids could be the underlying mechanisms of anti-obesity activity of high-amylose corn starch. Abstract High-amylose corn starch is well known for its anti-obesity activity, which is mainly based on the regulatory effects on gut microbiota. Recently, the gut microbiota has been reported to improve metabolic health by altering circulating bile acids. Therefore, in this study, the influence of high-amylose corn starch (HACS) on intestinal microbiota composition and serum bile acids was explored in mice fed with a high fat diet (HFD). The results demonstrated HACS treatment reduced HFD-induced body weight gain, hepatic lipid accumulation, and adipocyte hypertrophy as well as improved blood lipid profiles. Moreover, HACS also greatly impacted the gut microbiota with increased Firmicutes and decreased Bacteroidetes relative abundance being observed. Furthermore, compared to ND-fed mice, the mice with HFD feeding exhibited more obvious changes in serum bile acids profiles than the HFD-fed mice with the HACS intervention, showing HACS might restore HFD-induced alterations to bile acid composition in blood. In summary, our results suggested that the underlying mechanisms of anti-obesity activity of HACS may involve its regulatory effects on gut microbiota and circulating bile acids.
Collapse
Affiliation(s)
- Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Peiying Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Jinhui Qiu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qingyan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| |
Collapse
|
21
|
Wang TY, Wang RF, Bu ZY, Targher G, Byrne CD, Sun DQ, Zheng MH. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol 2022; 18:259-268. [PMID: 35013596 DOI: 10.1038/s41581-021-00519-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat in more than 5% of hepatocytes in the absence of excessive alcohol consumption and other secondary causes of hepatic steatosis. In 2020, the more inclusive term metabolic (dysfunction)-associated fatty liver disease (MAFLD) - defined by broader diagnostic criteria - was proposed to replace the term NAFLD. The new terminology and revised definition better emphasize the pathogenic role of metabolic dysfunction and uses a set of definitive, inclusive criteria for diagnosis. Diagnosis of MAFLD is based on evidence of hepatic steatosis (as assessed by liver biopsy, imaging techniques or blood biomarkers and scores) in persons who are overweight or obese and have type 2 diabetes mellitus or metabolic dysregulation, regardless of the coexistence of other liver diseases or excessive alcohol consumption. The known association between NAFLD and chronic kidney disease (CKD) and our understanding that CKD can occur as a consequence of metabolic dysfunction suggests that individuals with MAFLD - who by definition have fatty liver and metabolic comorbidities - are at increased risk of CKD. In this Perspective article, we discuss the clinical associations between MAFLD and CKD, the pathophysiological mechanisms by which MAFLD may increase the risk of CKD and the potential drug treatments that may benefit both conditions.
Collapse
Affiliation(s)
- Ting-Yao Wang
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui-Fang Wang
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhi-Ying Bu
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Dan-Qin Sun
- Department of Nephrology, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China.
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
22
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
23
|
Yoo JY, Sniffen S, McGill Percy KC, Pallaval VB, Chidipi B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2022; 10:108. [PMID: 35056557 PMCID: PMC8780459 DOI: 10.3390/microorganisms10010108] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease and mortality worldwide. Alterations in the gut microbiota composition, known as gut dysbiosis, have been shown to contribute to atherosclerotic cardiovascular disease (ACVD) development through several pathways. Disruptions in gut homeostasis are associated with activation of immune processes and systemic inflammation. The gut microbiota produces several metabolic products, such as trimethylamine (TMA), which is used to produce the proatherogenic metabolite trimethylamine-N-oxide (TMAO). Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, and certain bile acids (BAs) produced by the gut microbiota lead to inflammation resolution and decrease atherogenesis. Chronic low-grade inflammation is associated with common risk factors for atherosclerosis, including metabolic syndrome, type 2 diabetes mellitus (T2DM), and obesity. Novel strategies for reducing ACVD include the use of nutraceuticals such as resveratrol, modification of glucagon-like peptide 1 (GLP-1) levels, supplementation with probiotics, and administration of prebiotic SCFAs and BAs. Investigation into the relationship between the gut microbiota, and its metabolites, and the host immune system could reveal promising insights into ACVD development, prognostic factors, and treatments.
Collapse
Affiliation(s)
- Ji Youn Yoo
- College of Nursing, University of Tennessee, 1200 Volunteer Blvd, Knoxville, TN 37996, USA
| | - Sarah Sniffen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kyle Craig McGill Percy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Bojjibabu Chidipi
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Vega Magdaleno GD, Bespalov V, Zheng Y, Freitas AA, de Magalhaes JP. Machine learning-based predictions of dietary restriction associations across ageing-related genes. BMC Bioinformatics 2022; 23:10. [PMID: 34983372 PMCID: PMC8729156 DOI: 10.1186/s12859-021-04523-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dietary restriction (DR) is the most studied pro-longevity intervention; however, a complete understanding of its underlying mechanisms remains elusive, and new research directions may emerge from the identification of novel DR-related genes and DR-related genetic features. RESULTS This work used a Machine Learning (ML) approach to classify ageing-related genes as DR-related or NotDR-related using 9 different types of predictive features: PathDIP pathways, two types of features based on KEGG pathways, two types of Protein-Protein Interactions (PPI) features, Gene Ontology (GO) terms, Genotype Tissue Expression (GTEx) expression features, GeneFriends co-expression features and protein sequence descriptors. Our findings suggested that features biased towards curated knowledge (i.e. GO terms and biological pathways), had the greatest predictive power, while unbiased features (mainly gene expression and co-expression data) have the least predictive power. Moreover, a combination of all the feature types diminished the predictive power compared to predictions based on curated knowledge. Feature importance analysis on the two most predictive classifiers mostly corroborated existing knowledge and supported recent findings linking DR to the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) signalling pathway and G protein-coupled receptors (GPCR). We then used the two strongest combinations of feature type and ML algorithm to predict DR-relatedness among ageing-related genes currently lacking DR-related annotations in the data, resulting in a set of promising candidate DR-related genes (GOT2, GOT1, TSC1, CTH, GCLM, IRS2 and SESN2) whose predicted DR-relatedness remain to be validated in future wet-lab experiments. CONCLUSIONS This work demonstrated the strong potential of ML-based techniques to identify DR-associated features as our findings are consistent with literature and recent discoveries. Although the inference of new DR-related mechanistic findings based solely on GO terms and biological pathways was limited due to their knowledge-driven nature, the predictive power of these two features types remained useful as it allowed inferring new promising candidate DR-related genes.
Collapse
Affiliation(s)
- Gustavo Daniel Vega Magdaleno
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby St, Liverpool, L7 8TX, UK
| | - Vladislav Bespalov
- School of Computer Technologies and Controls, ITMO University, Kronverkskiy Prospekt 49, 197101, St Petersburg, Russia
| | - Yalin Zheng
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby St, Liverpool, L7 8TX, UK
| | - Alex A Freitas
- School of Computing, University of Kent, Canterbury, CT2 7NF, UK
| | - Joao Pedro de Magalhaes
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby St, Liverpool, L7 8TX, UK.
| |
Collapse
|
25
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
26
|
Jones BA, Wang XX, Myakala K, Levi M. Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Semin Nephrol 2021; 41:318-330. [PMID: 34715962 PMCID: PMC10187996 DOI: 10.1016/j.semnephrol.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both obesity and chronic kidney disease are increasingly common causes of morbidity and mortality worldwide. Although obesity often co-exists with diabetes and hypertension, it has become clear over the past several decades that obesity is an independent cause of chronic kidney disease, termed obesity-related glomerulopathy. This review defines the attributes of obesity-related glomerulopathy and describes potential pharmacologic interventions. Interventions discussed include peroxisome proliferator-activated receptors, the farnesoid X receptor, the Takeda G-protein-coupled receptor 5, and the vitamin D receptor.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC.
| |
Collapse
|
27
|
Imig JD, Merk D, Proschak E. Multi-Target Drugs for Kidney Diseases. KIDNEY360 2021; 2:1645-1653. [PMID: 35372984 PMCID: PMC8785794 DOI: 10.34067/kid.0003582021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Kidney diseases such as AKI, CKD, and GN can lead to dialysis and the need for kidney transplantation. The pathologies for kidney diseases are extremely complex, progress at different rates, and involve several cell types and cell signaling pathways. Complex kidney diseases require therapeutics that can act on multiple targets. In the past 10 years, in silico design of drugs has allowed for multi-target drugs to progress quickly from concept to reality. Several multi-target drugs have been made successfully to target AA pathways and transcription factors for the treatment of inflammatory, fibrotic, and metabolic diseases. Multi-target drugs have also demonstrated great potential to treat diabetic nephropathy and fibrotic kidney disease. These drugs act by decreasing renal TGF-β signaling, inflammation, mitochondrial dysfunction, and oxidative stress. There are several other recently developed multi-target drugs that have yet to be tested for their ability to combat kidney diseases. Overall, there is excellent potential for multi-target drugs that act on several cell types and signaling pathways to treat kidney diseases.
Collapse
Affiliation(s)
- John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Eugen Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
28
|
Orozco-Aguilar J, Simon F, Cabello-Verrugio C. Redox-Dependent Effects in the Physiopathological Role of Bile Acids. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4847941. [PMID: 34527174 PMCID: PMC8437588 DOI: 10.1155/2021/4847941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
Bile acids (BA) are recognized by their role in nutrient absorption. However, there is growing evidence that BA also have endocrine and metabolic functions. Besides, the steroidal-derived structure gives BA a toxic potential over the biological membrane. Thus, cholestatic disorders, characterized by elevated BA on the liver and serum, are a significant cause of liver transplant and extrahepatic complications, such as skeletal muscle, central nervous system (CNS), heart, and placenta. Further, the BA have an essential role in cellular damage, mediating processes such as membrane disruption, mitochondrial dysfunction, and the generation of reactive oxygen species (ROS) and oxidative stress. The purpose of this review is to describe the BA and their role on hepatic and extrahepatic complications in cholestatic diseases, focusing on the association between BA and the generation of oxidative stress that mediates tissue damage.
Collapse
Affiliation(s)
- Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility, and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8370146, Chile
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| |
Collapse
|
29
|
Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. J Pers Med 2021; 11:jpm11080820. [PMID: 34442464 PMCID: PMC8401447 DOI: 10.3390/jpm11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.
Collapse
|
30
|
Myakala K, Jones BA, Wang XX, Levi M. Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in db/db mice and KKAy mice compared with valsartan treatment. Am J Physiol Renal Physiol 2021; 320:F1133-F1151. [PMID: 33870733 DOI: 10.1152/ajprenal.00614.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although renin-angiotensin blockade has shown beneficial outcomes in patients with diabetes, renal injury progresses in most of these patients. Therefore, there remains a need for new therapeutic targets in diabetic kidney disease. Enhancement of vasoactive peptides, such as natriuretic peptides, via neprilysin inhibition, has been a new approach. A first-in-class drug, sacubitril/valsartan (Sac/Val), a combination of the angiotensin II receptor blocker Val and neprilysin inhibitor prodrug Sac, has been shown to be more effective than renin-angiotensin blockade alone in the treatment of heart failure with reduced ejection fraction. In this study, we tested the effects of Sac/Val in diabetic kidney disease. We administered Sac/Val or Val to two type 2 diabetes mouse models, db/db mice or KKAy mice. After 3 mo of treatment, Sac/Val attenuated the progression of proteinuria, glomerulosclerosis, and podocyte loss in both models of diabetic mice. Val shared a similar improvement but to a lesser degree in some parameters compared with Sac/Val. Sac/Val but not Val decreased the blood glucose level in KKAy mice. Sac/Val exerted renal protection through coordinated effects on antioxidative stress and anti-inflammation. In both diabetic models, we revealed a new mechanism to cause inflammation, self-DNA-activated cGMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling, which was activated in diabetic kidneys and prevented by Sac/Val or Val treatment. The present data suggest that Sac/Val has sufficient therapeutical potential to counter the pathophysiological effects of diabetic kidney disease, and its effectiveness could be better than Val alone.NEW & NOTEWORTHY The first-in-class drug sacubitril/valsartan, a combination of the angiotensin II receptor blocker valsartan and neprilysin inhibitor sacubitril, was tested for its effects in diabetic kidney disease using db/db mice and KKAy mice. We found that Sac/Val has sufficient therapeutical potential to counter the pathophysiological effects of diabetic kidney disease. We further revealed a new mechanism to cause inflammation, self-DNA-activated cGAS-STING signaling, which was activated in diabetic kidneys and prevented by sacubitril/valsartan or valsartan treatment.
Collapse
Affiliation(s)
- Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
31
|
Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M. Nuclear receptors in the kidney during health and disease. Mol Aspects Med 2020; 78:100935. [PMID: 33272705 DOI: 10.1016/j.mam.2020.100935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Over the last 30 years, nuclear receptors (NRs) have been increasingly recognized as key modulators of systemic homeostasis and as contributing factors in many diseases. In the kidney, NRs play numerous important roles in maintaining homeostasis-many of which continue to be unraveled. As "master regulators", these important transcription factors integrate and coordinate many renal processes such as circadian responses, lipid metabolism, fatty acid oxidation, glucose handling, and inflammatory responses. The use of recently-developed genetic tools and small molecule modulators have allowed for detailed studies of how renal NRs contribute to kidney homeostasis. Importantly, while NRs are intimately involved in proper kidney function, they are also implicated in a variety of renal diseases such as diabetes, acute kidney injury, and other conditions such as aging. In the last 10 years, our understanding of renal disease etiology and progression has been greatly shaped by knowledge regarding how NRs are dysregulated in these conditions. Importantly, NRs have also become attractive therapeutic targets for attenuation of renal diseases, and their modulation for this purpose has been the subject of intense investigation. Here, we review the role in health and disease of six key renal NRs including the peroxisome proliferator-activated receptors (PPAR), estrogen-related receptors (ERR), the farnesoid X receptors (FXR), estrogen receptors (ER), liver X receptors (LXR), and vitamin D receptors (VDR) with an emphasis on recent findings over the last decade. These NRs have generated a wealth of data over the last 10 years that demonstrate their crucial role in maintaining normal renal homeostasis as well as their capacity to modulate disease progression.
Collapse
Affiliation(s)
- Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Bryce Jones
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Isabel Lopez-Santiago
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Emma Rowland
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| |
Collapse
|
32
|
Role of Farnesoid X Receptor in the Pathogenesis of Respiratory Diseases. Can Respir J 2020; 2020:9137251. [PMID: 33294085 PMCID: PMC7714608 DOI: 10.1155/2020/9137251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid receptor encoded by the Nr1h4 gene. FXR plays an important role in maintaining the stability of the internal environment and the integrity of many organs, including the liver and intestines. The expression of FXR in nondigestible tissues other than in the liver and small intestine is known as the expression of “nonclassical” bile acid target organs, such as blood vessels and lungs. In recent years, several studies have shown that FXR is widely involved in the pathogenesis of various respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, and idiopathic pulmonary fibrosis. Moreover, a number of works have confirmed that FXR can regulate the bile acid metabolism in the body and exert its anti-inflammatory and antifibrotic effects in the airways and lungs. In addition, FXR may be used as a potential therapeutic target for some respiratory diseases. For example, FXR can regulate the tumor microenvironment by regulating the balance of inflammatory and immune responses in the body to promote the occurrence and development of non-small-cell lung cancer (NSCLC), thereby being considered a potential target for immunotherapy of NSCLC. In this article, we provide an overview of the internal relationship between FXR and respiratory diseases to track the progress that has been achieved thus far in this direction and suggest potential therapeutic prospects of FXR in respiratory diseases.
Collapse
|
33
|
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2020; 101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Laura Velazquez-Villegas
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne (EPFL), Switzerland
| |
Collapse
|
34
|
Ge M, Fontanesi F, Merscher S, Fornoni A. The Vicious Cycle of Renal Lipotoxicity and Mitochondrial Dysfunction. Front Physiol 2020; 11:732. [PMID: 32733268 PMCID: PMC7358947 DOI: 10.3389/fphys.2020.00732] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
The kidney is one of the most energy-demanding organs that require abundant and healthy mitochondria to maintain proper function. Increasing evidence suggests a strong association between mitochondrial dysfunction and chronic kidney diseases (CKDs). Lipids are not only important sources of energy but also essential components of mitochondrial membrane structures. Dysregulation of mitochondrial oxidative metabolism and increased reactive oxygen species (ROS) production lead to compromised mitochondrial lipid utilization, resulting in lipid accumulation and renal lipotoxicity. However, lipotoxicity can be either the cause or the consequence of mitochondrial dysfunction. Imbalanced lipid metabolism, in turn, can hamper mitochondrial dynamics, contributing to the alteration of mitochondrial lipids and reduction in mitochondrial function. In this review, we summarize the interplay between renal lipotoxicity and mitochondrial dysfunction, with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
35
|
Chen J, Zheng Q, Peiffer LB, Hicks JL, Haffner MC, Rosenberg AZ, Levi M, Wang XX, Ozbek B, Baena-Del Valle J, Yegnasubramanian S, De Marzo AM. An in Situ Atlas of Mitochondrial DNA in Mammalian Tissues Reveals High Content in Stem and Proliferative Compartments. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1565-1579. [PMID: 32304697 PMCID: PMC7338910 DOI: 10.1016/j.ajpath.2020.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria regulate ATP production, metabolism, and cell death. Alterations in mitochondrial DNA (mtDNA) sequence and copy number are implicated in aging and organ dysfunction in diverse inherited and sporadic diseases. Because most measurements of mtDNA use homogenates of complex tissues, little is known about cell-type-specific mtDNA copy number heterogeneity in normal physiology, aging, and disease. Thus, the precise cell types whose loss of mitochondrial activity and altered mtDNA copy number that result in organ dysfunction in aging and disease have often not been clarified. Here, an in situ hybridization approach to generate a single-cell-resolution atlas of mtDNA content in mammalian tissues was validated. In hierarchically organized self-renewing tissues, higher levels of mtDNA were observed in stem/proliferative compartments compared with differentiated compartments. Striking zonal patterns of mtDNA levels in the liver reflected the known oxygen tension gradient. In the kidney, proximal and distal tubules had markedly higher mtDNA levels compared with cells within glomeruli and collecting duct epithelial cells. In mice, decreased mtDNA levels were visualized in renal tubules as a function of aging, which was prevented by calorie restriction. This study provides a novel approach for quantifying species- and cell-type-specific mtDNA copy number and dynamics in any normal or diseased tissue that can be used for monitoring the effects of interventions in animal and human studies.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Busra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Javier Baena-Del Valle
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Lamers C, Merk D. Discovery, Structural Refinement and Therapeutic Potential of Farnesoid X Receptor Activators. ANTI-FIBROTIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781788015783-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Farnesoid X receptor acts as bile acid sensing transcription factor and has been identified as valuable molecular drug target to treat severe liver disorders, such as non-alcoholic steatohepatitis (NASH). Preclinical and clinical data indicate anti-fibrotic effects obtained with FXR activation that also appear promising for other fibrotic diseases beyond NASH. Strong efforts in FXR ligand discovery have yielded potent steroidal and non-steroidal FXR activators, some of which have been studied in clinical trials. While the structure–activity relationship of some FXR agonist frameworks have been studied extensively, the structural diversity of potent FXR activator chemotypes is still limited to a handful of well-studied compound classes. Together with safety concerns related to full therapeutic activation of FXR, this indicates the need for novel innovative FXR ligands with selective modulatory properties. This chapter evaluates FXR's value as drug target with emphasis on fibrotic diseases, analyses FXR ligand recognition and requirements and focuses on the discovery and structural refinement of leading FXR activator chemotypes.
Collapse
Affiliation(s)
- Christina Lamers
- University Basel, Molecular Pharmacy Klingelberstr. 50 CH-4056 Basel Switzerland
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry Max-von-Laue-Str. 9 D-60438 Frankfurt Germany
- Swiss Federal Institute of Technology (ETH) Zurich, Institute of Pharmaceutical Sciences Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| |
Collapse
|
37
|
Abstract
Emerging evidence has shown that bile acids play important roles in renal physiology and diseases by activating two major receptors, the nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled bile acid receptor-1 (Gpbar1; also known as TGR5). Both FXR and TGR5 have been identified in human and rodent kidneys, where they are deeply involved in renal water handling. In mice, FXR- or TGR5-related gene deficiency has been associated with reduced aquaporin-2 expression accompanied with impaired urinary concentration ability. In this mini-review, we briefly discuss the current understanding of FXR/TGR5 signaling in the kidneys, with a special focus on the regulation of aquaporin-2 expression by bile acids in the collecting ducts and its potential significance in disease conditions.
Collapse
Affiliation(s)
- Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
38
|
Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, Flurkey K, Garratt M, Gelfond JAL, Javors MA, Levi M, Lithgow GJ, Macchiarini F, Nelson JF, Sukoff Rizzo SJ, Slaga TJ, Stearns T, Wilkinson JE, Miller RA. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell 2019; 18:e12898. [PMID: 30688027 PMCID: PMC6413665 DOI: 10.1111/acel.12898] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
To follow-up on our previous report that acarbose (ACA), a drug that blocks postprandial glucose spikes, increases mouse lifespan, we studied ACA at three doses: 400, 1,000 (the original dose), and 2,500 ppm, using genetically heterogeneous mice at three sites. Each dose led to a significant change (by log-rank test) in both sexes, with larger effects in males, consistent with the original report. There were no significant differences among the three doses. The two higher doses produced 16% or 17% increases in median longevity of males, but only 4% or 5% increases in females. Age at the 90th percentile was increased significantly (8%-11%) in males at each dose, but was significantly increased (3%) in females only at 1,000 ppm. The sex effect on longevity is not explained simply by weight or fat mass, which were reduced by ACA more in females than in males. ACA at 1,000 ppm reduced lung tumors in males, diminished liver degeneration in both sexes and glomerulosclerosis in females, reduced blood glucose responses to refeeding in males, and improved rotarod performance in aging females, but not males. Three other interventions were also tested: ursolic acid, 2-(2-hydroxyphenyl) benzothiazole (HBX), and INT-767; none of these affected lifespan at the doses tested. The acarbose results confirm and extend our original report, prompt further attention to the effects of transient periods of high blood glucose on aging and the diseases of aging, including cancer, and should motivate studies of acarbose and other glucose-control drugs in humans.
Collapse
Affiliation(s)
| | - Randy Strong
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Research ServiceSouth Texas Veterans Health Care SystemSan AntonioTexas
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Silvestre Alavez
- Buck Institute for Research on AgingNovatoCalifornia
- Metropolitan Autonomous UniversityLermaMexico
| | | | | | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - Michael Garratt
- Department of PathologyUniversity of MichiganAnn ArborMichigan
- Geriatrics CenterUniversity of MichiganAnn ArborMichigan
| | - Jonathan A. L. Gelfond
- Department of Epidemiology & BiostatisticsThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Martin A. Javors
- Department of PsychiatryThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Moshe Levi
- Georgetown UniversityWashingtonDistrict of Columbia
| | | | | | - James F. Nelson
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Department of PhysiologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - Thomas J. Slaga
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine and Department of PathologyUniversity of MichiganAnn ArborMichigan
| | | |
Collapse
|
39
|
Dominguez Rieg JA, Rieg T. What does sodium-glucose co-transporter 1 inhibition add: Prospects for dual inhibition. Diabetes Obes Metab 2019; 21 Suppl 2:43-52. [PMID: 31081587 PMCID: PMC6516085 DOI: 10.1111/dom.13630] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
Epithelial glucose transport is accomplished by Na+ -glucose co-transporters, SGLT1 and SGLT2. In the intestine, uptake of dietary glucose is for its majority mediated by SGLT1, and humans with mutations in the SGLT1 gene show glucose/galactose malabsorption. In the kidney, both transporters, SGLT1 and SGLT2, are expressed and recent studies identified that SGLT2 mediates up to 97% of glucose reabsorption. Humans with mutations in the SGLT2 gene show familial renal glucosuria. In the last three decades, significant progress was made in understanding the physiology of these transporters and their potential as therapeutic targets. Based on the structure of phlorizin, a natural compound acting as a SGLT1/2 inhibitor, initially several SGLT2, and later SGLT1 and dual SGLT1/2 inhibitors have been developed. Interestingly, SGLT2 knockout or treatment with SGLT2 selective inhibitors only causes a fractional glucose excretion in the magnitude of ∼60%, an effect mediated by up-regulation of renal SGLT1. Based on these findings the hypothesis was brought forward that dual SGLT1/2 inhibition might further improve glycaemic control via targeting two distinct organs that express SGLT1: the intestine and the kidney. Of note, SGLT1/2 double knockout mice completely lack renal glucose reabsorption. This review will address the rationale for the development of SGLT1 and dual SGLT1/2 inhibitors and potential benefits compared to sole SGLT2 inhibition.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
40
|
van Zutphen T, Bertolini A, de Vries HD, Bloks VW, de Boer JF, Jonker JW, Kuipers F. Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp Pharmacol 2019; 256:207-234. [PMID: 31236687 DOI: 10.1007/164_2019_233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Farnesoid X receptor controls bile acid metabolism, both in the liver and intestine. This potent nuclear receptor not only maintains homeostasis of its own ligands, i.e., bile acids, but also regulates glucose and lipid metabolism as well as the immune system. These findings have led to substantial interest for FXR as a therapeutic target and to the recent approval of an FXR agonist for treating primary biliary cholangitis as well as ongoing clinical trials for other liver diseases. Given that FXR biology is complex, including moderate expression in tissues outside of the enterohepatic circulation, temporal expression of isoforms, posttranscriptional modifications, and the existence of several other bile acid-responsive receptors such as TGR5, clinical application of FXR modulators warrants thorough understanding of its actions. Recent findings have demonstrated remarkable physiological effects of targeting FXR specifically in the intestine (iFXR), thereby avoiding systemic release of modulators. These include local effects such as improvement of intestinal barrier function and intestinal cholesterol turnover, as well as systemic effects such as improvements in glucose homeostasis, insulin sensitivity, and nonalcoholic fatty liver disease (NAFLD). Intriguingly, metabolic improvements have been observed with both an iFXR agonist that leads to production of enteric Fgf15 and increased energy expenditure in adipose tissues and antagonists by reducing systemic ceramide levels and hepatic glucose production. Here we review the recent findings on the role of intestinal FXR and its targeting in metabolic disease.
Collapse
Affiliation(s)
- Tim van Zutphen
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Anna Bertolini
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Hilde D de Vries
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
42
|
Abstract
Sodium-glucose cotransporters SGLT1 (encoded by SGLT1, also known as SLC5A1) and SGLT2 (encoded by SGLT2, also known as SLC5A2) are important mediators of epithelial glucose transport. While SGLT1 accounts for most of the dietary glucose uptake in the intestine, SGLT2 is responsible for the majority of glucose reuptake in the tubular system of the kidney, with SGLT1 reabsorbing the remainder of the filtered glucose. As a consequence, mutations in the SLC5A1 gene cause glucose/galactose malabsorption, whereas mutations in SLC5A2 are associated with glucosuria. Since the cloning of SGLT1 more than 30 years ago, big strides have been made in our understanding of these transporters and their suitability as drug targets. Phlorizin, a naturally occurring competitive inhibitor of SGLT1 and SGLT2, provided the first insights into potential efficacy, but its use was hampered by intestinal side effects and a short half-life. Nevertheless, it was a starting point for the development of specific inhibitors of SGLT1 and SGLT2, as well as dual SGLT1/2 inhibitors. Since the approval of the first SGLT2 inhibitor in 2013 by the US Food and Drug Administration, SGLT2 inhibitors have become a new mainstay in the treatment of type 2 diabetes mellitus. They also have beneficial effects on the cardiovascular system (including heart failure) and the kidney. This review focuses on the rationale for the development of individual SGLT2 and SGLT1 inhibitors, as well as dual SGLT1/2 inhibition, including, but not limited to, aspects of genetics, genetically modified mouse models, mathematical modelling and general considerations of drug discovery in the field of metabolism.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33592, USA.
| | - Volker Vallon
- Department of Medicine, Division of Nephrology and Hypertension, University of California San Diego, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego California, San Diego, CA, USA.
| |
Collapse
|
43
|
Yao K, Zhao YF. Aging modulates microglia phenotypes in neuroinflammation of MPTP-PD mice. Exp Gerontol 2018; 111:86-93. [DOI: 10.1016/j.exger.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
|
44
|
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018; 9:1853. [PMID: 30150987 PMCID: PMC6099188 DOI: 10.3389/fimmu.2018.01853] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Once known exclusively for their role in nutrients absorption, primary bile acids, chenodeoxycholic and cholic acid, and secondary bile acids, deoxycholic and lithocholic acid, are signaling molecules, generated from cholesterol breakdown by the interaction of the host and intestinal microbiota, acting on several receptors including the G protein-coupled bile acid receptor 1 (GPBAR1 or Takeda G-protein receptor 5) and the Farnesoid-X-Receptor (FXR). Both receptors are placed at the interface of the host immune system with the intestinal microbiota and are highly represented in cells of innate immunity such as intestinal and liver macrophages, dendritic cells and natural killer T cells. Here, we review how GPBAR1 and FXR modulate the intestinal and liver innate immune system and contribute to the maintenance of a tolerogenic phenotype in entero-hepatic tissues, and how regulation of innate immunity might help to explain beneficial effects exerted by GPBAR1 and FXR ligands in immune and metabolic disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
45
|
Comeglio P, Cellai I, Mello T, Filippi S, Maneschi E, Corcetto F, Corno C, Sarchielli E, Morelli A, Rapizzi E, Bani D, Guasti D, Vannelli GB, Galli A, Adorini L, Maggi M, Vignozzi L. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J Endocrinol 2018; 238:107-127. [PMID: 29945982 DOI: 10.1530/joe-17-0557] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
The bile acid receptors, farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5), regulate multiple pathways, including glucose and lipid metabolism. In a rabbit model of high-fat diet (HFD)-induced metabolic syndrome, long-term treatment with the dual FXR/TGR5 agonist INT-767 reduces visceral adipose tissue accumulation, hypercholesterolemia and nonalcoholic steatohepatitis. INT-767 significantly improves the hallmarks of insulin resistance in visceral adipose tissue (VAT) and induces mitochondrial and brown fat-specific markers. VAT preadipocytes isolated from INT-767-treated rabbits, compared to preadipocytes from HFD, show increased mRNA expression of brown adipogenesis markers. In addition, INT-767 induces improved mitochondrial ultrastructure and dynamic, reduced superoxide production and improved insulin signaling and lipid handling in preadipocytes. Both in vivo and in vitro treatments with INT-767 counteract, in preadipocytes, the HFD-induced alterations by upregulating genes related to mitochondrial biogenesis and function. In preadipocytes, INT-767 behaves mainly as a TGR5 agonist, directly activating dose dependently the cAMP/PKA pathway. However, in vitro experiments also suggest that FXR activation by INT-767 contributes to the insulin signaling improvement. INT-767 treatment counteracts HFD-induced liver histological alterations and normalizes the increased pro-inflammatory genes. INT-767 also induces a significant reduction of fatty acid synthesis and fibrosis markers, while increasing lipid handling, insulin signaling and mitochondrial markers. In conclusion, INT-767 significantly counteracts HFD-induced liver and fat alterations, restoring insulin sensitivity and prompting preadipocytes differentiation toward a metabolically healthy phenotype.
Collapse
Affiliation(s)
- Paolo Comeglio
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Ilaria Cellai
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Tommaso Mello
- Gastroenterology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of ReproductionDepartment of NEUROFARBA, University of Florence, Florence, Italy
| | - Elena Maneschi
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Francesca Corcetto
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Chiara Corno
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio'University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | | | - Andrea Galli
- Gastroenterology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | | | - Mario Maggi
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
- I.N.B.B. - Istituto Nazionale Biostrutture e BiosistemiRome, Italy
| | - Linda Vignozzi
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
- I.N.B.B. - Istituto Nazionale Biostrutture e BiosistemiRome, Italy
- Gynecologic Endocrinology Research UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
46
|
Zhang Y, Zhang GX, Wang K, Tan Y, Zhan C. Obstructive jaundice induced kidney damage is mediated by down-regulation of bile acid receptors FXR and TGR5. Shijie Huaren Xiaohua Zazhi 2018; 26:1234-1240. [DOI: 10.11569/wcjd.v26.i20.1234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the changes in the expression of bile acid receptors FXR and TGR5 in obstructive jaundice (OJ) induced renal injury.
METHODS Twelve male Sprague-Dawley rats were randomly divided into two groups to undergo either sham operation (CON) or bile duct ligation (BDL). The animals were operated by surgical ligation of the common bile duct to establish an OJ model. Two weeks post operation, serum samples were collected to assess renal associated biochemical markers including alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA), total bilirubin (TBIL), direct bilirubin (DBIL), serum urea nitrogen (BUN), creatinine (Cr), and uric acid (UA). In addition, the urine of the rats was collected for urine chemistry analysis. Transcription and translation of FXR and TGR5 genes were detected by qRT-PCR and Western blot, respectively. Tissue sections of the kidneys were stained with hematoxylin and eosin (HE) and examined for microscopically pathological changes.
RESULTS Compared with the CON group, the protein and mRNA expression of FXR and TGR5 was significantly decreased in the kidneys of the BDL rats. HE staining revealed that the kidneys of the BDL rats had decreased glomerular density and the local epithelial cells of the tubules shed. Also, the small tube lacuna was expanded, accompanied with the presence of a large number of unstructured substances.
CONCLUSION This in vivo study demonstrated significant down-regulation of the bile acid receptors FXR and TGR5 in the kidneys of OJ rats, suggesting their role in kidney damage.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China,Department of Acute Abdominal Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Kai Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yong Tan
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chen Zhan
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
47
|
Hu YB, Liu XY, Zhan W. Farnesoid X receptor agonist INT-767 attenuates liver steatosis and inflammation in rat model of nonalcoholic steatohepatitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2213-2221. [PMID: 30038487 PMCID: PMC6052932 DOI: 10.2147/dddt.s170518] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction Nonalcoholic steatohepatitis (NASH) is largely driven by the dysregulation of liver metabolism and inflammation. Bile acids and their receptor Farnesoid X receptor (FXR) play a critical role in the disease development. Here, we investigated whether INT-767, the newly-identified dual FXR/TGR5 agonist, can protect rat from liver injury during NASH. Materials and methods NASH model was established by feeding the male SD rats with high-fat diet for 16 weeks. INT-767 was given by gavage to NASH rats from week 13 to week 16. At the end of 16 weeks, liver and serum were harvested, and bile acids, glucose and lipid metabolism, liver injury and histological features were evaluated. Results INT-767 treatment significantly alleviates high-fat caused liver damage characterized with lipid accumulation and hepatic infiltration of immune cells. INT-767 robustly restores the lipid, glucose metabolism to normal level, attenuates insulin resistance through upregulating FXR level and reverting the dysregulation of its target genes in liver metabolism. Molecularly INT-767 also attenuates the pro-inflammatory response by suppression of TNF-α and NF-κB signaling pathway. Conclusion INT-767 may be an attractive candidate for a potential novel strategy on the treatment of NASH.
Collapse
Affiliation(s)
- Ying-Bin Hu
- Department of Gastroenterology, Puai Hospital (Wuhan Fourth Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,
| | - Xin-Yu Liu
- Cancer Science Institute, National University of Singapore, Singapore
| | - Wei Zhan
- Department of Gastroenterology, Puai Hospital (Wuhan Fourth Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,
| |
Collapse
|
48
|
Update on FXR Biology: Promising Therapeutic Target? Int J Mol Sci 2018; 19:ijms19072069. [PMID: 30013008 PMCID: PMC6073382 DOI: 10.3390/ijms19072069] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Bile acids act as activating signals of endogenous renal receptors: the nuclear receptor farnesoid X receptor (FXR) and the membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). In recent years, bile acids have emerged as important for renal pathophysiology by activating FXR and TGR5 and transcription factors relevant for lipid, cholesterol and carbohydrate metabolism, as well as genes involved in inflammation and renal fibrosis. RECENT FINDINGS Activation of bile acid receptors has a promising therapeutic potential in prevention of diabetic nephropathy and obesity-induced renal damage, as well as in nephrosclerosis. During the past decade, progress has been made in understanding the biology and mechanisms of bile acid receptors in the kidney and in the development of specific bile acid receptor agonists. SUMMARY In this review, we discuss current knowledge on the roles of FXR and TGR5 in the physiology of the kidney and the latest advances made in development and characterization of bile acid analogues that activate bile acid receptors for treatment of renal disease.
Collapse
|