1
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
2
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
3
|
Bonomo R, Kramer S, Aubert VM. Obesity-Associated Neuropathy: Recent Preclinical Studies and Proposed Mechanisms. Antioxid Redox Signal 2022; 37:597-612. [PMID: 35152780 PMCID: PMC9527047 DOI: 10.1089/ars.2021.0278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: The prevalence of metabolic syndrome (MetS) and associated obesity has increased in recent years, affecting millions worldwide. One of the most common complications of obesity is damage to the peripheral nerve system, referred to as neuropathy. The lack of disease-modifying therapy for this complication is largely due to a poor understanding of the complex neurobiology underlying neuropathy. Recent preclinical studies suggest that in addition to glucotoxic events, other mechanisms, including lipid signaling, microbiome, or inflammation, may be viable targets to prevent nerve damage and neuropathic pain in obesity. Recent Advances: Clinical and preclinical studies using diet-induced obesity rodent models have identified novel interventions that improve neuropathy. Notably, mechanistic studies suggest that lipid, calcium signaling, and inflammation are converging pathways. Critical Issues: In this review, we focus on interventions and their mechanisms that are shown to ameliorate neuropathy in MetS obese models, including: (i) inhibition of a sensory neuron population, (ii), modification of dietary components, (iii) activation of nuclear and mitochondrial lipid pathways, (iv) exercise, and (v) modulation of gut microbiome composition and their metabolites. Future Directions: These past years, novel research increased our knowledge about neuropathy in obesity and discovered the involvement of nonglucose signaling. More studies are necessary to uncover the interplay between complex metabolic pathways in the peripheral nerve system of obese individuals. Further mechanistic studies in preclinical models and humans are crucial to create single- or multitarget interventions for this complex disease implying complex metabolic phenotyping. Antioxid. Redox Signal. 37, 597-612.
Collapse
Affiliation(s)
- Raiza Bonomo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Kramer
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie M. Aubert
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
4
|
Matsuo M. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis. J Pharmacol Sci 2022; 148:197-203. [DOI: 10.1016/j.jphs.2021.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
|
5
|
Chuang JZ, Yang N, Nakajima N, Otsu W, Fu C, Yang HH, Lee MP, Akbar AF, Badea TC, Guo Z, Nuruzzaman A, Hsu KS, Dunaief JL, Sung CH. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat Commun 2022; 13:374. [PMID: 35042858 PMCID: PMC8766482 DOI: 10.1038/s41467-021-27935-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University, Kanagawa, Japan
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Tudor Constantin Badea
- National Eye Institute, National institute of Health, Bethesda, MD, USA
- Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Ziqi Guo
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Afnan Nuruzzaman
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kuo-Shun Hsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sloan Kettering Cancer Institute, New York, NY, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Dakroub H, Nowak M, Benoist JF, Noël B, Vedie B, Paul JL, Fournier N. Eicosapentaenoic acid membrane incorporation stimulates ABCA1-mediated cholesterol efflux from human THP-1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159016. [PMID: 34332075 DOI: 10.1016/j.bbalip.2021.159016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
A high intake in polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) (C20:5 n-3), is cardioprotective. Dietary PUFAs incorporate into membrane phospholipids, which may modify the function of membrane proteins. We investigated the consequences of the membrane incorporation of several PUFAs on the key antiatherogenic ABCA1-mediated cholesterol efflux pathway. Human THP-1 macrophages were incubated with EPA, arachidonic acid (AA) (C20:4 n-6) or docosahexaenoic acid (DHA) (C22:6 n-3) for a long time to mimic a chronic exposure. EPA 70 μM, but not AA 50 μM or DHA 15 μM, increased ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 28% without altering aqueous diffusion. No variation in ABCA1 expression or localization was observed after EPA treatment. EPA incorporation did not affect the phenotype of THP-1 macrophages. The membrane phospholipids composition of EPA cells displayed higher levels of both EPA and its elongation product docosapentaenoic acid, which was associated with drastic lower levels of AA. Treatment by EPA increased the ATPase activity of the transporter, likely through a PKA-dependent mechanism. Eicosanoids were not involved in the stimulated ABCA1-mediated cholesterol efflux from EPA-enriched macrophages. In addition, EPA supplementation increased the apo AI binding capacity from macrophages by 38%. Moreover, the increased apo AI binding in EPA-enriched macrophages can be competed. In conclusion, EPA membrane incorporation increased ABCA1 functionality in cholesterol-normal human THP-1 macrophages, likely through a combination of different mechanisms. This beneficial in vitro effect may partly contribute to the cardioprotective effect of a diet enriched with EPA highlighted by several recent clinical trials.
Collapse
Affiliation(s)
- Hani Dakroub
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie métabolique, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Necker, 75015 Paris, France
| | - Benoît Noël
- Allergie, Immunotoxicologie et Immunopathologie, INSERM UMR 996, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Natalie Fournier
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
7
|
Huang W, Ren F, Luo L, Zhou J, Huang D, Tang L. Clinical Characteristics of Lipid Metabolism in Untreated Patients with Anti-MDA5 Antibody-Positive. Int J Gen Med 2021; 14:2507-2512. [PMID: 34163218 PMCID: PMC8214207 DOI: 10.2147/ijgm.s315885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Objective Clinical characterization of lipid metabolism in untreated patients with anti-melanoma differentiation-associated gene 5 antibodies-positive (anti-MDA5+). Methods Body-mass index (BMI), autoantibodies, lipid levels, and serum ferritin levels in 57 anti-MDA5+ patients were determined in the Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University. Results Plasma high-density lipoprotein (HDL) and apolipoprotein A1 (ApoA1) levels were significantly lower in deceased group than in the survival group (P < 0.05). Plasma levels of HDL and ApoA1 were significantly lower in patients who were simultaneously anti-MDA5+ and anti-Ro-52+ than in patients who were anti-MDA5+ alone (P < 0.05). Plasma levels of total cholesterol, low-density lipoprotein, HDL, and ApoA1 were significantly decreased in patients with high levels of serum ferritin compared with patients with low levels (P < 0.05). There were no significant differences in blood lipid levels between patients grouped according to BMI. Conclusion 1) HDL and ApoA1 levels are important indicators of poor prognosis in anti-MDA5+ patients; 2) Dysregulated lipid metabolism in anti-MDA5+ patients is closely associated with anti-Ro-52 antibody and ferritin levels but independent of BMI; 3) HDL involvement in inflammation and immune regulation merits close attention by rheumatologists.
Collapse
Affiliation(s)
- Wenhan Huang
- Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Feifeng Ren
- Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lei Luo
- Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhou
- Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dongmei Huang
- Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lin Tang
- Department of Rheumatology and Immunology of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Stasi A, Franzin R, Fiorentino M, Squiccimarro E, Castellano G, Gesualdo L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int J Mol Sci 2021; 22:5980. [PMID: 34205975 PMCID: PMC8197836 DOI: 10.3390/ijms22115980] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Enrico Squiccimarro
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70124 Bari, Italy;
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| |
Collapse
|
9
|
Wu F, Wu D, Ren Y, Huang Y, Feng B, Zhao N, Zhang T, Chen X, Chen S, Xu A. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol 2019; 70:1145-1158. [PMID: 30630011 DOI: 10.1016/j.jhep.2018.12.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Human induced pluripotent stem cell (hiPSC)-derived liver modeling systems have the potential to overcome the shortage of donors for clinical application and become a model for drug development. Although several strategies are available to generate hepatic micro-tissues, few have succeeded in generating a liver organoid with hepatobiliary structure from hiPSCs. METHODS At differentiation stages I and II (day 1-15), 25% of mTeSR™ culture medium was added to hepatic differentiation medium to induce endodermal and mesodermal commitment and thereafter hepatic and biliary co-differentiation. At stage III (day 15-45), 10% cholesterol+ MIX was added to the maturation medium to promote the formation and maturation of the hepatobiliary organoids. Phenotypes and functions of organoids were determined by specific markers and multiple functional assays both in vitro and in vivo. RESULTS In this system, hiPSCs were induced to form 3D hepatobiliary organoids and to some extent recapitulated key aspects of early hepatogenesis in a parallel fashion. The organoids displayed a series of functional attributes. Specifically, the induced hepatocyte-like cells could take up indocyanine green, accumulate lipid and glycogen, and displayed appropriate secretion ability (albumin and urea) and drug metabolic ability (CYP3A4 activity and inducibility); the biliary structures in the system showed gamma glutamyltransferase activity and the ability to efflux rhodamine and store bile acids. Furthermore, after transplantation into the immune-deficient mice, the organoids survived for more than 8 weeks. CONCLUSION This is the first time that functional hepatobiliary organoids have been generated from hiPSCs. The organoid model will be useful for in vitro studies of the molecular mechanisms of liver development and has important potential in the therapy of liver diseases. LAY SUMMARY Herein, we established a system to generate human induced pluripotent stem cell-derived functional hepatobiliary organoids in vitro, without any exogenous cells or genetic manipulation. To some extent this model was able to recapitulate several key aspects of hepatobiliary organogenesis in a parallel fashion, holding great promise for drug development and liver transplantation.
Collapse
Affiliation(s)
- Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Di Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yong Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nan Zhao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Taotao Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaoni Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
10
|
Phillips MC. Is ABCA1 a lipid transfer protein? J Lipid Res 2018; 59:749-763. [PMID: 29305383 DOI: 10.1194/jlr.r082313] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
ABCA1 functions as a lipid transporter because it mediates the transfer of cellular phospholipid (PL) and free (unesterified) cholesterol (FC) to apoA-I and related proteins present in the extracellular medium. ABCA1 is a membrane PL translocase and its enzymatic activity leads to transfer of PL molecules from the cytoplasmic leaflet to the exofacial leaflet of a cell plasma membrane (PM). The presence of active ABCA1 in the PM promotes binding of apoA-I to the cell surface. About 10% of this bound apoA-I interacts directly with ABCA1 and stabilizes the transporter. Most of the pool of cell surface-associated apoA-I is bound to lipid domains in the PM that are created by the activity of ABCA1. The amphipathic α-helices in apoA-I confer detergent-like properties on the protein enabling it to solubilize PL and FC in these membrane domains to create a heterogeneous population of discoidal nascent HDL particles. This review focuses on current understanding of the structure-function relationships of human ABCA1 and the molecular mechanisms underlying HDL particle production.
Collapse
Affiliation(s)
- Michael C Phillips
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158
| |
Collapse
|
11
|
Jin X, Sviridov D, Liu Y, Vaisman B, Addadi L, Remaley AT, Kruth HS. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages. Arterioscler Thromb Vasc Biol 2016; 36:2283-2291. [PMID: 27758769 DOI: 10.1161/atvbaha.116.308334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. APPROACH AND RESULTS Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1+/+ macrophages but not by ABCA1-/- macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1-/- macrophages. CONCLUSIONS Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1.
Collapse
Affiliation(s)
- Xueting Jin
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Denis Sviridov
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Ying Liu
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Boris Vaisman
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Lia Addadi
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Alan T Remaley
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Howard S Kruth
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.).
| |
Collapse
|
12
|
Mystek P, Dutka P, Tworzydło M, Dziedzicka-Wasylewska M, Polit A. The role of cholesterol and sphingolipids in the dopamine D 1 receptor and G protein distribution in the plasma membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1775-1786. [PMID: 27570114 DOI: 10.1016/j.bbalip.2016.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
G proteins are peripheral membrane proteins which interact with the inner side of the plasma membrane and form part of the signalling cascade activated by G protein-coupled receptors (GPCRs). Since many signalling proteins do not appear to be homogeneously distributed on the cell surface, they associate in particular membrane regions containing specific lipids. Therefore, protein-lipid interactions play a pivotal role in cell signalling. Our previous results showed that although Gαs and Gαi3 prefer different types of membrane domains they are both co-localized with the D1 receptor. In the present report we characterize the role of cholesterol and sphingolipids in the membrane localization of Gαs, Gαi3 and their heterotrimers, as well as the D1 receptor. We measured the lateral diffusion and membrane localization of investigated proteins using fluorescence recovery after photobleaching (FRAP) microscopy and fluorescence resonance energy transfer (FRET) detected by lifetime imaging microscopy (FLIM). The treatment with either methyl-β-cyclodextrin or Fumonisin B1 led to the disruption of cholesterol-sphingolipids containing domains and changed the diffusion of Gαi3 and the D1 receptor but not of Gαs. Our results imply a sequestration of Gαs into cholesterol-independent solid-like membrane domains. Gαi3 prefers cholesterol-dependent lipid rafts so it does not bind to those domains and its diffusion is reduced. In turn, the D1 receptor exists in several different membrane localizations, depending on the receptor's conformation. We conclude that the inactive G protein heterotrimers are localized in the low-density membrane phase, from where they displace upon dissociation into the membrane-anchor- and subclass-specific lipid domain.
Collapse
Affiliation(s)
- Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Przemysław Dutka
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
13
|
Caveolin-1 facilitates internalization and degradation of ABCA1 and probucol oxidative products interfere with this reaction to increase HDL biogenesis. Atherosclerosis 2016; 253:54-60. [PMID: 27579791 DOI: 10.1016/j.atherosclerosis.2016.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Expression of ATP binding cassette transporter (ABC) A1, a key membrane protein for biogenesis of high-density lipoprotein (HDL), is regulated not only by its gene transcription but also by its intracellular degradation to modulate plasma HDL concentration. We previously showed that inhibition of ABCA1 degradation by probucol oxidative products, spiroquinone (SQ) and diphenoquinone (DQ), increased HDL biogenesis and reverse cholesterol transport, and achieved reduction of atherosclerosis in animal models. The background mechanism has thus been investigated. METHODS Involvement of caveolin-1, a protein of multiple functions in cell biology, particularly in cholesterol trafficking, has been examined for its roles in ABCA1 degradation as well as the effects of SQ and DQ on the reaction. RESULTS ABCA1 protein was increased in caveolin-1-deficient mouse embryonic fibroblasts, not by increase of transcription but by decrease in its internalization and degradation. Transfection and expression of caveolin-1 normalized the protein level and the rate of degradation of ABCA1. Immunoprecipitation experiments demonstrated association between ABCA1 and caveolin-1 and SQ and DQ disrupted this interaction. The effects of SQ and DQ to increase ABCA1 and cell cholesterol release induced by apolipoprotein A-I were dependent on expression of caveolin-1. Fluorescence imaging of ABCA1 and caveolin-1 in cultured cells demonstrated their co-localization as well as its disruption by SQ and DQ, being consistent with the biochemical findings. CONCLUSIONS Caveolin-1 enhances internalization and degradation of ABCA1 by its association with ABCA1. Interference of this interaction by probucol oxidative products suppresses ABCA1 degradation and increase HDL biogenesis.
Collapse
|
14
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
15
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
16
|
Niesor EJ, Benghozi R, Amouyel P, Ferdinand KC, Schwartz GG. Adenylyl Cyclase 9 Polymorphisms Reveal Potential Link to HDL Function and Cardiovascular Events in Multiple Pathologies: Potential Implications in Sickle Cell Disease. Cardiovasc Drugs Ther 2015; 29:563-572. [PMID: 26619842 DOI: 10.1007/s10557-015-6626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenylyl cyclase 9 (ADCY9) mediates β2-adrenoceptor (β2-AR) signalling. Both proteins are associated with caveolae, specialized cholesterol-rich membrane substructures. Apolipoprotein A1 (ApoA1), the major protein component of high-density lipoprotein (HDL), removes cholesterol from cell membrane and caveolae and may thereby influence β2-AR signalling, shown in vitro to be modulated by cholesterol. Patients with Sickle Cell Disease (SCD) typically have low HDL and ApoA1 levels. In patients, mainly of African origin, with SCD, β2-AR activation may trigger adhesion of red blood cells to endothelial cells, leading to vascular occlusive events. Moreover, ADCY9 polymorphism is associated with risk of stroke in SCD. In recent clinical trials, ADCY9 polymorphism was found to be a discriminant factor associated with the risk of cardiovascular (CV) events in Caucasian patients treated with the HDL-raising compound dalcetrapib. We hypothesize that these seemingly disparate observations share a common mechanism related to interaction of HDL/ApoA1 and ADCY9 on β2-AR signalling. This review also raises the importance of characterizing polymorphisms that determine the response to HDL-raising and -mimicking agents in the non-Caucasian population at high risk of CV diseases and suffering from SCD. This may facilitate personalized CV treatments.
Collapse
Affiliation(s)
- Eric J Niesor
- F.Hoffmann-La Roche Ltd, Basel, Switzerland. .,Pre-β1 Consulting, 13c Chemin de Bonmont, 1260, Nyon, Switzerland.
| | - Renée Benghozi
- F.Hoffmann-La Roche Ltd, Basel, Switzerland.,Cerenis Therapeutics Holding, Labège, France
| | | | | | | |
Collapse
|
17
|
Yamauchi Y, Yokoyama S, Chang TY. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J Lipid Res 2015; 57:77-88. [PMID: 26497474 DOI: 10.1194/jlr.m063784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Shinji Yokoyama
- Nutritional Health Science Research Center and Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
18
|
Morin EE, Guo L, Schwendeman A, Li XA. HDL in sepsis - risk factor and therapeutic approach. Front Pharmacol 2015; 6:244. [PMID: 26557091 PMCID: PMC4616240 DOI: 10.3389/fphar.2015.00244] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) is a key component of circulating blood and plays essential roles in regulation of vascular endothelial function and immunity. Clinical data demonstrate that HDL levels drop by 40-70% in septic patients, which is associated with a poor prognosis. Experimental studies using Apolipoprotein A-I (ApoAI) null mice showed that HDL deficient mice are susceptible to septic death, and overexpressing ApoAI in mice to increase HDL levels protects against septic death. These clinical and animal studies support our hypothesis that a decrease in HDL level is a risk factor for sepsis, and raising circulating HDL levels may provide an efficient therapy for sepsis. In this review, we discuss the roles of HDL in sepsis and summarize the efforts of using synthetic HDL as a potential therapy for sepsis.
Collapse
Affiliation(s)
- Emily E. Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann ArborMI, USA
- Biointerfaces Institute, University of Michigan, Ann ArborMI, USA
| | - Ling Guo
- Department of Pediatrics, Saha Cardiovascular Research Center, University of Kentucky College of Medicine, LexingtonKY, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann ArborMI, USA
- Biointerfaces Institute, University of Michigan, Ann ArborMI, USA
| | - Xiang-An Li
- Department of Pediatrics, Saha Cardiovascular Research Center, University of Kentucky College of Medicine, LexingtonKY, USA
| |
Collapse
|
19
|
ZHOU LINGYAN, LI CONGCONG, GAO LING, WANG AIHONG. High-density lipoprotein synthesis and metabolism (Review). Mol Med Rep 2015; 12:4015-4021. [DOI: 10.3892/mmr.2015.3930] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/26/2015] [Indexed: 11/06/2022] Open
|
20
|
Potential Signal Transduction Regulation by HDL of the β2-Adrenergic Receptor Pathway. Implications in Selected Pathological Situations. Arch Med Res 2015; 46:361-71. [PMID: 26009249 DOI: 10.1016/j.arcmed.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
The main atheroprotective mechanism of high-density lipoprotein (HDL) has been regarded as reverse cholesterol transport, whereby cholesterol from peripheral tissues is removed and transported to the liver for elimination. Although numerous additional atheroprotective mechanisms have been suggested, the role of HDL in modulating signal transduction of cell membrane-bound receptors has received little attention to date. This potential was recently highlighted following the identification of a polymorphism in the adenylyl cyclase 9 gene (ADCY9) that was shown to be a determining factor in the risk of cardiovascular (CV) events in patients treated with the HDL-raising compound dalcetrapib. Indeed, ADCY9 is part of the signaling pathway of the β2-adrenergic receptor (β2-AR) and both are membrane-bound proteins affected by changes in membrane-rich cholesterol plasma membrane domains (caveolae). Numerous G-protein-coupled receptors (GPCRs) and ion channels are affected by caveolae, with caveolae composition acting as a 'signalosome'. Polymorphisms in the genes encoding ADCY9 and β2-AR are associated with response to β2-agonist drugs in patients with asthma, malaria and with sickle cell disease. Crystallization of the β2-AR has found cholesterol tightly bound to transmembrane structures of the receptor. Cholesterol has also been shown to modulate the activity of this receptor. Apolipoprotein A1 (ApoA1), the major protein component of HDL, destabilizes and removes cholesterol from caveolae with high affinity through interaction with ATP-binding cassette transporter. Furthermore, β2-AR activity may be affected by ApoA1/HDL-targeted therapies. Taken together, these observations suggest a common pathway that potentially links a primary HDL function to the regulation of signal transduction.
Collapse
|
21
|
Plante G, Manjunath P. Murine binder of sperm protein homolog 1: a new player in HDL-induced capacitation. Reproduction 2015; 149:367-76. [DOI: 10.1530/rep-14-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Binder of sperm (BSP) proteins are ubiquitous among mammals and are exclusively expressed in male genital tract. The main function associated with BSP proteins is their ability to promote sperm capacitation. In mice, two proteins (BSP protein homolog 1 (BSPH1) and BSPH2) have been studied. Using recombinant strategies, BSPH1 was found to bind to epididymal sperm membranes and promote sperm capacitation in vitro. The goal of this study was to evaluate the role of native murine BSPH1 protein in sperm capacitation induced by BSA and HDLs. The effect of antibodies, antigen-binding fragments (Fabs), and F(ab′)2 specific for murine BSPH1 on BSA- and HDL-induced capacitation was tested. Results indicate that BSPH1 has no direct role in BSA-induced capacitation. However, antibodies, Fabs, and F(ab′)2 could block capacitation induced by HDLs and could inhibit the HDL-induced increase in tyrosine phosphorylation, suggesting a specific interaction between HDLs and BSPH1. Results indicate that murine BSPH1 proteins in mice could be a new important piece of the puzzle in sperm capacitation induced by HDLs. As murine BSPH1 is orthologous to human BSPH1, this study could also lead to new insights into the functions and the importance of the human protein in male fertility.Free French abstractA French translation of this abstract is freely available at http://www.reproduction-online.org/content/149/4/367/suppl/DC1.
Collapse
|
22
|
Zhao Y, Ishigami M, Nagao K, Hanada K, Kono N, Arai H, Matsuo M, Kioka N, Ueda K. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J Lipid Res 2015; 56:644-652. [PMID: 25601960 DOI: 10.1194/jlr.m056622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Masato Ishigami
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Matsuo
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan; Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan.
| |
Collapse
|
23
|
Sano O, Ito S, Kato R, Shimizu Y, Kobayashi A, Kimura Y, Kioka N, Hanada K, Ueda K, Matsuo M. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane. PLoS One 2014; 9:e109886. [PMID: 25302608 PMCID: PMC4193829 DOI: 10.1371/journal.pone.0109886] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.
Collapse
Affiliation(s)
- Osamu Sano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Shiho Ito
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Reiko Kato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yuji Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Aya Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto, Japan
| | - Michinori Matsuo
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
24
|
Neuvonen M, Manna M, Mokkila S, Javanainen M, Rog T, Liu Z, Bittman R, Vattulainen I, Ikonen E. Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLoS One 2014; 9:e103743. [PMID: 25157633 PMCID: PMC4144813 DOI: 10.1371/journal.pone.0103743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.
Collapse
Affiliation(s)
- Maarit Neuvonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Moutusi Manna
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Sini Mokkila
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY, United States of America
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY, United States of America
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
- MEMPHYS – Center of Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Elina Ikonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- * E-mail:
| |
Collapse
|
25
|
Ito JI, Nagayasu Y, Miura Y, Yokoyama S, Michikawa M. Astrocyte׳s endogenous apoE generates HDL-like lipoproteins using previously synthesized cholesterol through interaction with ABCA1. Brain Res 2014; 1570:1-12. [DOI: 10.1016/j.brainres.2014.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|
26
|
Gulshan K, Smith J. Sphingomyelin regulation of plasma membrane asymmetry, efflux and reverse cholesterol transport. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Jaureguiberry MS, Tricerri MA, Sanchez SA, Finarelli GS, Montanaro MA, Prieto ED, Rimoldi OJ. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases. Acta Biochim Biophys Sin (Shanghai) 2014; 46:273-82. [PMID: 24473084 DOI: 10.1093/abbs/gmt155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis.
Collapse
Affiliation(s)
- María S Jaureguiberry
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), La Plata 1900, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Fang L, Liu C, Miller YI. Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis. Transl Res 2014; 163:99-108. [PMID: 24095954 PMCID: PMC3946603 DOI: 10.1016/j.trsl.2013.09.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 01/07/2023]
Abstract
Lipid and lipoprotein metabolism in zebrafish and in humans are remarkably similar. Zebrafish express all major nuclear receptors, lipid transporters, apolipoproteins and enzymes involved in lipoprotein metabolism. Unlike mice, zebrafish express cetp and the Cetp activity is detected in zebrafish plasma. Feeding zebrafish a high cholesterol diet, without any genetic intervention, results in significant hypercholesterolemia and robust lipoprotein oxidation, making zebrafish an attractive animal model to study mechanisms relevant to early development of human atherosclerosis. These studies are facilitated by the optical transparency of zebrafish larvae and the availability of transgenic zebrafish expressing fluorescent proteins in endothelial cells and macrophages. Thus, vascular processes can be monitored in live animals. In this review article, we discuss recent advances in using dyslipidemic zebrafish in atherosclerosis-related studies. We also summarize recent work connecting lipid metabolism with regulation of angiogenesis, the work that considerably benefited from using the zebrafish model. These studies uncovered the role of aibp, abca1, abcg1, mtp, apoB, and apoC2 in regulation of angiogenesis in zebrafish and paved the way for future studies in mammals, which may suggest new therapeutic approaches to modulation of excessive or diminished angiogenesis contributing to the pathogenesis of human disease.
Collapse
Affiliation(s)
- Longhou Fang
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Chao Liu
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
29
|
Gulshan K, Brubaker G, Wang S, Hazen SL, Smith JD. Sphingomyelin depletion impairs anionic phospholipid inward translocation and induces cholesterol efflux. J Biol Chem 2013; 288:37166-79. [PMID: 24220029 DOI: 10.1074/jbc.m113.512244] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylserine (PS) floppase activity (outward translocation) of ABCA1 leads to plasma membrane remodeling that plays a role in lipid efflux to apolipoprotein A-I (apoAI) generating nascent high density lipoprotein. The Tangier disease W590S ABCA1 mutation has defective PS floppase activity and diminished cholesterol efflux activity. Here, we report that depletion of sphingomyelin by inhibitors or sphingomyelinase caused plasma membrane remodeling, leading to defective flip (inward translocation) of PS, higher PS exposure, and higher cholesterol efflux from cells by both ABCA1-dependent and ABCA1-independent mechanisms. Mechanistically, sphingomyelin was connected to PS translocation in cell-free liposome studies that showed that sphingomyelin increased the rate of spontaneous PS flipping. Depletion of sphingomyelin in stably transfected HEK293 cells expressing the Tangier disease W590S mutant ABCA1 isoform rescued the defect in PS exposure and restored cholesterol efflux to apoAI. Liposome studies showed that PS directly increased cholesterol accessibility to extraction by cyclodextrin, providing the mechanistic link between cell surface PS and cholesterol efflux. We conclude that altered plasma membrane environment conferred by depleting sphingomyelin impairs PS flip and promotes cholesterol efflux in ABCA1-dependent and -independent manners.
Collapse
|
30
|
Freeman SR, Jin X, Anzinger JJ, Xu Q, Purushothaman S, Fessler MB, Addadi L, Kruth HS. ABCG1-mediated generation of extracellular cholesterol microdomains. J Lipid Res 2013; 55:115-27. [PMID: 24212237 DOI: 10.1194/jlr.m044552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space.
Collapse
Affiliation(s)
- Sebastian R Freeman
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ontsouka EC, Huang X, Stieger B, Albrecht C. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells. PLoS One 2013; 8:e70407. [PMID: 23936200 PMCID: PMC3729845 DOI: 10.1371/journal.pone.0070407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.
Collapse
Affiliation(s)
- Edgar Corneille Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Bruno Stieger
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Lund-Katz S, Lyssenko NN, Nickel M, Nguyen D, Chetty PS, Weibel G, Phillips MC. Mechanisms responsible for the compositional heterogeneity of nascent high density lipoprotein. J Biol Chem 2013; 288:23150-60. [PMID: 23836906 PMCID: PMC3743487 DOI: 10.1074/jbc.m113.495523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Apolipoprotein (apo) A-I-containing nascent HDL particles produced by the ATP binding cassette transporter A1 have different sizes and compositions. To understand the molecular basis for this heterogeneity, the HDL particles produced by apoA-I-mediated solubilization of phospholipid (PL)/free (unesterified) cholesterol (FC) bilayer membranes in cell and cell-free systems are compared. Incubation of apoA-I with ATP binding cassette transporter A1-expressing baby hamster kidney cells leads to formation of two populations of FC-containing discoidal nascent HDL particles. The larger 11-nm diameter particles are highly FC-enriched (FC/PL = 1.2/1 mol/mol) relative to the smaller 8 nm particles and the cell plasma membrane (FC/PL = 0.4/1). ApoA-I-mediated spontaneous solubilization of either multilamellar or unilamellar vesicles made of a membrane-PL mixture and FC yields discoidal HDL particles with diameters in the range 9–17 nm and, as found with the cell system, the larger particles are relatively enriched in FC despite the fact that all particles are created by solubilization of a common FC/PL membrane domain. The size-dependent distribution of FC among HDL particles is due to varying amounts of PL being sequestered in a boundary layer by interaction with apoA-I at the disc edge. The presence of a relatively large boundary layer in smaller discoidal HDL promotes preferential distribution of phosphatidylserine to such particles. However, phosphatidylcholine and sphingomyelin which are the primary PL constituents of nascent HDL do not exhibit selective incorporation into HDL discs of different sizes. This understanding of the mechanisms responsible for the heterogeneity in lipid composition of nascent HDL particles may provide a basis for selecting subspecies with preferred cardio-protective properties.
Collapse
Affiliation(s)
- Sissel Lund-Katz
- Lipid Research Group, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Fang L, Choi SH, Baek JS, Liu C, Almazan F, Ulrich F, Wiesner P, Taleb A, Deer E, Pattison J, Torres-Vázquez J, Li AC, Miller YI. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 2013; 498:118-22. [PMID: 23719382 PMCID: PMC3760669 DOI: 10.1038/nature12166] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/08/2013] [Indexed: 12/26/2022]
Abstract
Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis.
Collapse
Affiliation(s)
- Longhou Fang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Uehara Y, Ando S, Yahiro E, Oniki K, Ayaori M, Abe S, Kawachi E, Zhang B, Shioi S, Tanigawa H, Imaizumi S, Miura S, Saku K. FAMP, a novel apoA-I mimetic peptide, suppresses aortic plaque formation through promotion of biological HDL function in ApoE-deficient mice. J Am Heart Assoc 2013; 2:e000048. [PMID: 23709562 PMCID: PMC3698760 DOI: 10.1161/jaha.113.000048] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/29/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Apolipoprotein (apo) A-I is a major high-density lipoprotein (HDL) protein that causes cholesterol efflux from peripheral cells through the ATP-binding cassette transporter A1 (ABCA1), thus generating HDL and reversing the macrophage foam cell phenotype. Pre-β1 HDL is the smallest subfraction of HDL, which is believed to represent newly formed HDL, and it is the most active acceptor of free cholesterol. Furthermore it has a possible protective function against cardiovascular disease (CVD). We developed a novel apoA-I mimetic peptide without phospholipids (Fukuoka University ApoA-I Mimetic Peptide, FAMP). METHODS AND RESULTS FAMP type 5 (FAMP5) had a high capacity for cholesterol efflux from A172 cells and mouse and human macrophages in vitro, and the efflux was mainly dependent on ABCA1 transporter. Incubation of FAMP5 with human HDL or whole plasma generated small HDL particles, and charged apoA-I-rich particles migrated as pre-β HDL on agarose gel electrophoresis. Sixteen weeks of treatment with FAMP5 significantly suppressed aortic plaque formation (scrambled FAMP, 31.3 ± 8.9% versus high-dose FAMP5, 16.2 ± 5.0%; P<0.01) and plasma C-reactive protein and monocyte chemoattractant protein-1 in apoE-deficient mice fed a high-fat diet. In addition, it significantly enhanced HDL-mediated cholesterol efflux capacity from the mice. CONCLUSIONS A newly developed apoA-I mimetic peptide, FAMP, has an antiatherosclerotic effect through the enhancement of the biological function of HDL. FAMP may have significant atheroprotective potential and prove to be a new therapeutic tool for CVD.
Collapse
Affiliation(s)
- Yoshinari Uehara
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University, Japan (Y.U., S.I., S.M., K.S.)
| | - Setsuko Ando
- Department of Chemistry, Faculty of Science, Fukuoka University, Japan (S.A.)
| | - Eiji Yahiro
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
| | - Kosuke Oniki
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
| | - Makoto Ayaori
- Division of Anti‐aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Japan (M.A.)
| | - Satomi Abe
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
- Department of Advenced Therapeutics for Cardiovascular Disease, Fukuoka University, Japan (S.A., H.T., K.S.)
| | - Emi Kawachi
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine, Japan (B.Z.)
| | - Seijiro Shioi
- Radioisotope Center, Fukuoka University, Japan (S.S.)
| | - Hiroyuki Tanigawa
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
- Department of Advenced Therapeutics for Cardiovascular Disease, Fukuoka University, Japan (S.A., H.T., K.S.)
| | - Satoshi Imaizumi
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University, Japan (Y.U., S.I., S.M., K.S.)
| | - Shin‐ichiro Miura
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University, Japan (Y.U., S.I., S.M., K.S.)
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University, Japan (Y.U., E.Y., K.O., S.A., E.K., H.T., S.I., S.M., K.S.)
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University, Japan (Y.U., S.I., S.M., K.S.)
- Department of Advenced Therapeutics for Cardiovascular Disease, Fukuoka University, Japan (S.A., H.T., K.S.)
| |
Collapse
|
35
|
Morita SY, Tsuda T, Horikami M, Teraoka R, Kitagawa S, Terada T. Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes. J Lipid Res 2013; 54:1221-30. [PMID: 23468132 DOI: 10.1194/jlr.m032425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABCB4 is necessary for the secretion of phospholipids from hepatocytes into bile and for the protection of cell membranes against bile salts. Lipid rafts are plasma membrane microdomains containing high contents of cholesterol and sphingolipids, which are separated by Triton X-100 extraction or OptiPrep gradient centrifugation. In this study, we investigated the relationship between the function of ABCB4 and lipid rafts using mouse canalicular membranes and HEK293 cells stably expressing ABCB4. ABCB4 and ABCB1 were mainly distributed in nonraft membranes. The expression of ABCB4, but not ABCB1, led to significant increases in the phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SM) contents in nonraft membranes and further enrichment of SM and cholesterol in raft membranes. The ABCB4-mediated efflux of PC, PE, and SM was significantly stimulated by taurocholate, while the efflux of PE and SM was much less than that of PC. This ABCB4-mediated efflux was completely abolished by BODIPY-verapamil, which hardly partitioned into raft membranes. In addition, ABCB1 and ABCB4 mediated the efflux of rhodamine 123 and rhodamine 6G from nonraft membranes, which was not affected by taurocholate. We conclude that ABCB4 located in nonrafts, but not in rafts, is predominantly involved in the efflux of phospholipids and other substrates.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Chakraborty M, Jiang XC. Sphingomyelin and its role in cellular signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:1-14. [PMID: 23775687 DOI: 10.1007/978-94-007-6331-9_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sphingolipid de novo biosynthesis is related with metabolic diseases. However, the mechanism is still not quite clear. Sphingolipids are ubiquitous and critical components of biological membranes. Their biosynthesis starts with soluble precursors in the endoplasmic reticulum and culminates in the Golgi complex and plasma membrane. The interaction of sphingomyelin, cholesterol, and glycosphingolipid drives the formation of plasma membrane rafts. Lipid rafts have been shown to be involved in cell -signaling, lipid and protein sorting, and membrane trafficking. It is well known that toll-like receptors, class A and B scavenger receptors, and insulin receptor are located in lipid rafts. Sphingomyelin is also a reservoir for other sphingolipids. So, sphingomyelin has important impact in cell -signaling through its structural role in lipid rafts or its catabolic inter-mediators, such as ceramide and glycoceramide. In this chapter, we will discuss both aspects.
Collapse
Affiliation(s)
- Mahua Chakraborty
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | |
Collapse
|
37
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
38
|
Abstract
Atherosclerosis is the major cause of mortality in the developed countries. Although presently known risk factors have some predictive value for the disease, a major part of the variability in this process remains unexplained. It is extremely important to find new approaches for better understanding of the disease and for treating it. Exploration of the sphingolipid metabolism is one of these approaches. Sphingolipids are a large class of lipids with structural and signaling functions. Recent researches indicated that these lipids play important roles in the development of atherosclerosis. In this chapter, we summarized the major findings in the field.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
39
|
Sorci-Thomas MG, Thomas MJ. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler Thromb Vasc Biol 2012; 32:2561-5. [PMID: 23077142 DOI: 10.1161/atvbaha.112.300135] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review provides a summary of recent research on the role of high-density lipoprotein (HDL)/apolipoprotein A-I cholesterol efflux and immune cell function. Plasma concentrations of HDL have been known to inversely correlate with risk for coronary vascular disease. Bulk transport of HDL cholesterol from the peripheral tissues to the liver is a major pathway, termed reverse cholesterol transport, responsible for maintaining whole body cholesterol homeostasis. In addition to participating in this pathway, HDL and apolipoprotein A-I exert anti-inflammatory effects through different pathways. One pathway that seems to be important in atherosclerosis and autoimmunity is its role in modulation of T cell activation. HDL/apolipoprotein A-I helps regulate cell signaling by accepting membrane cholesterol from ATP binding cassette transporter A1 on immune cells and, thereby, fine tuning the amount of cholesterol present in plasma membrane lipid rafts.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1016, USA.
| | | |
Collapse
|
40
|
Fox TE, Young MM, Pedersen MM, Han X, Gardner TW, Kester M. Diabetes diminishes phosphatidic acid in the retina: a putative mediator for reduced mTOR signaling and increased neuronal cell death. Invest Ophthalmol Vis Sci 2012; 53:7257-67. [PMID: 22952117 DOI: 10.1167/iovs.11-7626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE We demonstrated previously that pro-survival insulin receptor, PI3K-Akt, and p70 S6K signaling is diminished in models of diabetic retinopathy. As mammalian target of rapamycin (mTOR), an upstream activator of p70 S6Kinase is, in part, regulated by lipid-derived second messengers, such as phosphatidic acid (PA), we sought to determine if diminished mTOR/p70 S6Kinase signaling in diabetic retinas may reflect diminished PA levels. METHODS Alterations in PA mass from retinas of control and streptozotocin-induced diabetic rats were determined by mass spectrometry. The biochemical and biophysical mechanisms underlying the actions of PA on insulin-activated mTOR/p70 S6Kinase signaling were determined using R28 retinal neuronal cells. RESULTS We demonstrate a significant decrease in PA in R28 retinal neuronal cells exposed to hyperglycemia as well as in streptozotocin-induced diabetic rat retinas. Exogenous PA augmented insulin-induced protection from interleukin-1β-induced apoptosis. Moreover, exogenous PA and insulin cooperatively activated mTOR survival pathways in R28 neuronal cultures. Exogenous PA colocalized with activated mTOR/p70 S6kinase signaling elements within lipid microdomains. The biochemical consequences of this biophysical mechanism is reflected by differential phosphorylation of tuberin at threonine 1462 and serine 1798, respectively, by PA and insulin, which reduce this suppressor of mTOR/S6Kinase signaling within lipid microdomains. CONCLUSIONS These results identify PA-enriched microdomains as a putative lipid-based signaling element responsible for mTOR-dependent retinal neuronal survival. Moreover, diabetic retinal neuronal apoptosis may reflect diminished PA mass. Elevating PA concentrations and restoring mTOR signaling may be an effective therapeutic modality to reduce neuronal cell death in diabetic retinopathy.
Collapse
Affiliation(s)
- Todd E Fox
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X, Parks JS, Shah D, Jerome WG, Gerelus M, Zabalawi M, Thomas MJ. Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J Lipid Res 2012; 53:1890-909. [PMID: 22750655 PMCID: PMC3413229 DOI: 10.1194/jlr.m026674] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/29/2012] [Indexed: 12/29/2022] Open
Abstract
This report details the lipid composition of nascent HDL (nHDL) particles formed by the action of the ATP binding cassette transporter A1 (ABCA1) on apolipoprotein A-I (apoA-I). nHDL particles of different size (average diameters of ∼ 12, 10, 7.5, and <6 nm) and composition were purified by size-exclusion chromatography. Electron microscopy suggested that the nHDL were mostly spheroidal. The proportions of the principal nHDL lipids, free cholesterol, glycerophosphocholine, and sphingomyelin were similar to that of lipid rafts, suggesting that the lipid originated from a raft-like region of the cell. Smaller amounts of glucosylceramides, cholesteryl esters, and other glycerophospholipid classes were also present. The largest particles, ∼ 12 nm and 10 nm diameter, contained ∼ 43% free cholesterol, 2-3% cholesteryl ester, and three apoA-I molecules. Using chemical cross-linking chemistry combined with mass spectrometry, we found that three molecules of apoA-I in the ∼ 9-14 nm nHDL adopted a belt-like conformation. The smaller (7.5 nm diameter) spheroidal nHDL particles carried 30% free cholesterol and two molecules of apoA-I in a twisted, antiparallel, double-belt conformation. Overall, these new data offer fresh insights into the biogenesis and structural constraints involved in forming nascent HDL from ABCA1.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schmitz M, Signore SC, Zerr I, Althaus HH. Oligodendroglial process formation is differentially affected by modulating the intra- and extracellular cholesterol content. J Mol Neurosci 2012; 49:457-69. [PMID: 22740150 PMCID: PMC3566395 DOI: 10.1007/s12031-012-9833-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 12/12/2022]
Abstract
Cholesterol is an essential component of eukaryotic plasma membranes and plays an important role in membrane organization and signaling processes. It is the major lipid component of detergent resistant caveolin-1 containing rafts which previously had been reported as a platform for nerve growth factor (NGF) signaling in oligodendrocytes (OL). Surprisingly, a knockdown of caveolin-1 attenuated the process formation of OL (Schmitz et al. J Neurosci Res 88:572–588, 2010), for which a loss of cholesterol could be responsible. In the present report, we could show that a caveolin-1 knockdown resulted in an elevation of cellular cholesterol level; it may indicate an important role of caveolin-1 in cholesterol trafficking to the plasma membrane. Treatment with exogenous PEG cholesterol, which was incorporated to the plasma membrane, supported oligodendroglial process formation, in particular when OL were stimulated by NGF. In this context we have found that OL express NPC1L1 (Niemann–Pick disease type C1-Like 1) which could modulate cholesterol uptake. In contrast, depletion of membrane-bound cholesterol diminished NGF-induced process formation concomitant with a reduced activity of p42/44 mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Matthias Schmitz
- Max-Planck Institute of Experimental Medicine, RU Neural Regeneration, Hermann-Rein-Straße 3, 37075, Goettingen, Germany.
| | | | | | | |
Collapse
|
43
|
Abstract
High-density lipoprotein (HDL) levels are inversely associated with coronary heart disease due to HDL's ability to transport excess cholesterol in arterial macrophages to the liver for excretion [i.e., reverse cholesterol transport (RCT)]. However, recent advances highlight additional atheroprotective roles for HDL beyond bulk cholesterol removal from cells through RCT. By promoting cellular free cholesterol (FC) efflux, HDL and its apolipoproteins (apoA-I and apoE) decrease plasma membrane FC and lipid raft content in immune and hematopoietic stem cells, decreasing inflammatory and cell proliferation signaling pathways. HDL and apoA-I also dampen inflammatory signaling pathways independent of cellular FC efflux. In addition, HDL lipid and protein cargo provide protection against parasitic and bacterial infection, endothelial damage, and oxidant toxicity. Here, current knowledge is reviewed regarding the role of HDL and its apolipoproteins in regulating cellular cholesterol homeostasis, highlighting recent advances on novel functions and mechanisms by which HDLs regulate inflammation and hematopoiesis.
Collapse
Affiliation(s)
- Xuewei Zhu
- Department of Pathology-Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
44
|
Berrougui H, Loued S, Khalil A. Purified human paraoxonase-1 interacts with plasma membrane lipid rafts and mediates cholesterol efflux from macrophages. Free Radic Biol Med 2012; 52:1372-81. [PMID: 22336243 DOI: 10.1016/j.freeradbiomed.2012.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 11/24/2022]
Abstract
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated serum enzyme thought to make a major contribution to the antioxidant and anti-inflammatory capacities of HDLs. However, the role of PON1 in the modulation of cholesterol efflux is poorly understood. The aim of our study was to investigate the involvement of PON1 in the regulation of cholesterol efflux, especially the mechanism by which it modulates HDL-mediated cholesterol transport. The enrichment of HDL(3) with human PON1 enhanced, in a dose-dependent manner, cholesterol efflux from THP-1 macrophage-like cells and ABCA1-enriched J774 macrophages. Moreover, an additive effect was observed when ABCA1-enriched J774 macrophages were incubated with both PON1 and apo-AI. Interestingly, PON1 alone was able to mediate cholesterol efflux from J774 macrophages and to upregulate ABCA1 expression on J774 macrophages. Immunofluorescence measurement showed an increase in PON1 levels in the cytoplasm of J774 macrophages overexpressing ABCA1. PON1 used an apo-AI-like mechanism to modulate cholesterol efflux from rapid and slow efflux pools derived from the lipid raft and nonraft domains of the plasma membrane, respectively. This was supported by the fact that ABCA1 protein was incrementally expressed by J774 macrophages within the first few hours of incubation with cholesterol-loaded J774 macrophages and that cyclodextrin significantly inhibited the capacity of PON1 to modulate cholesterol efflux from macrophages. This finding suggested that PON1 plays an important role in the antiatherogenic properties of HDLs and may exert its protective function outside the lipoprotein environment.
Collapse
Affiliation(s)
- Hicham Berrougui
- Research Center on Aging, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada QC J1H 4C4
| | | | | |
Collapse
|
45
|
Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: Transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 2012; 413:384-90. [DOI: 10.1016/j.cca.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
46
|
Cui HL, Grant A, Mukhamedova N, Pushkarsky T, Jennelle L, Dubrovsky L, Gaus K, Fitzgerald ML, Sviridov D, Bukrinsky M. HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res 2012; 53:696-708. [PMID: 22262807 DOI: 10.1194/jlr.m023119] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV infection, through the actions of viral accessory protein Nef, impairs activity of cholesterol transporter ABCA1, inhibiting cholesterol efflux from macrophages and elevating the risk of atherosclerosis. Nef also induces lipid raft formation. In this study, we demonstrate that these activities are tightly linked and affect macrophage function and HIV replication. Nef stimulated lipid raft formation in macrophage cell line RAW 264.7, and lipid rafts were also mobilized in HIV-1-infected human monocyte-derived macrophages. Nef-mediated transfer of cholesterol to lipid rafts competed with the ABCA1-dependent pathway of cholesterol efflux, and pharmacological inhibition of ABCA1 functionality or suppression of ABCA1 expression by RNAi increased Nef-dependent delivery of cholesterol to lipid rafts. Nef reduced cell-surface accessibility of ABCA1 and induced ABCA1 catabolism via the lysosomal pathway. Despite increasing the abundance of lipid rafts, expression of Nef impaired phagocytic functions of macrophages. The infectivity of the virus produced in natural target cells of HIV-1 negatively correlated with the level of ABCA1. These findings demonstrate that Nef-dependent inhibition of ABCA1 is an essential component of the viral replication strategy and underscore the role of ABCA1 as an innate anti-HIV factor.
Collapse
Affiliation(s)
- Huanhuan L Cui
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fournier N, Attia N, Rousseau-Ralliard D, Vedie B, Destaillats F, Grynberg A, Paul JL. Deleterious impact of elaidic fatty acid on ABCA1-mediated cholesterol efflux from mouse and human macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:303-12. [PMID: 22074701 DOI: 10.1016/j.bbalip.2011.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/07/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Consumption of trans fatty acids (TFA) increase cardiovascular risk more than do saturated FA, but the mechanisms explaining their atherogenicity are still unclear. We investigated the impact of membrane incorporation of TFA on cholesterol efflux by exposing J774 mouse macrophages or human monocyte-derived macrophages (HMDM) to media enriched or not (standard medium) with industrially produced elaidic (trans-9 18:1) acid, naturally produced vaccenic (trans-11 18:1) acid (34 h, 70 μM) or palmitic acid. In J774 macrophages, elaidic and palmitic acid, but not vaccenic acid, reduced ABCA1-mediated efflux by ~23% without affecting aqueous diffusion, SR-BI or ABCG1-mediated pathways, and this effect was maintained in cholesterol-loaded cells. The impact of elaidic acid on the ABCA1 pathway was weaker in cholesterol-normal HMDM, but elaidic acid induced a strong reduction of ABCA1-mediated efflux in cholesterol-loaded cells (-36%). In J774 cells, the FA supplies had no impact on cellular free cholesterol or cholesteryl ester masses, the abundance of ABCA1 mRNA or the total and plasma membrane ABCA1 protein content. Conversely, TFA or palmitic acid incorporation induced strong modifications of the membrane FA composition with a decrease in the ratio of (cis-monounsaturated FA+polyunsaturated FA):(saturated FA+TFA), with elaidic and vaccenic acids representing each 20% and 13% of the total FA composition, respectively. Moreover, we demonstrated that cellular ATP was required for the effect of elaidic acid, suggesting that it contributes to atherogenesis by impairing ABCA1-mediated cholesterol efflux in macrophages, likely by decreasing the membrane fluidity, which could thereby reduce ATPase activity and the function of the transporter.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris-Sud, EA 4529, UFR de Pharmacie, 92296 Châtenay-Malabry, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M, Hendriks JJA. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res 2011; 90:60-71. [PMID: 21972082 DOI: 10.1002/jnr.22743] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 11/08/2022]
Abstract
Cholesterol synthesis and transport in oligodendrocytes are essential for optimal myelination and remyelination in pathological conditions such as multiple sclerosis. However, little is known about cholesterol homeostasis in the myelin-forming oligodendrocytes. Liver X receptors (LXRs) are nuclear oxysterol receptors that regulate genes involved in cholesterol homeostasis and may therefore play an important role in de- and remyelination. We investigated whether LXRs regulate cholesterol homeostasis in oligodendrocytes. mRNA expression of genes encoding LXR-α and LXR-β and their target genes (ABCA1, ABCG1, ABCG4, apoE, and LDLR) was detected in oligodendrocytes derived from both neonatal and adult rats using quantitative real-time PCR. The expression of LXR-β and several target genes was increased during oligodendrocyte differentiation. We further demonstrated that treatment of primary neonatal rat oligodendrocytes with the synthetic LXR agonist T0901317 induced the expression of several established LXR target genes, including ABCA1, ABCG1, apoE, and LDLR. Treatment of oligodendrocytes with T0901317 resulted in an enhanced cholesterol efflux in the presence of apolipoprotein A-I or high-density lipoprotein particles. These data show that LXRs are involved in regulating cholesterol homeostasis in oligodendrocytes.
Collapse
Affiliation(s)
- Katherine Nelissen
- Biomedical Research Institute, Hasselt University, and transnational University Limburg, Diepenbeek, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Ito JI, Nagayasu Y, Kheirollah A, Abe-Dohmae S, Yokoyama S. ApoA-I enhances generation of HDL-like lipoproteins through interaction between ABCA1 and phospholipase Cγ in rat astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1062-9. [PMID: 21907307 DOI: 10.1016/j.bbalip.2011.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/04/2011] [Accepted: 08/25/2011] [Indexed: 11/15/2022]
Abstract
In the previous paper, we reported that apolipoprotein (apo) A-I enhances generation of HDL-like lipoproteins in rat astrocytes to be accompanied with both increase in tyrosine phosphorylation of phospholipase Cγ (PL-Cγ) and PL-Cγ translocation to cytosolic lipid-protein particles (CLPP) fraction. In this paper, we studied the interaction between apoA-I and ATP-binding cassette transporter A1 (ABCA1) to relate with PL-Cγ function for generation of HDL-like lipoproteins in the apoA-I-stimulated astrocytes. ABCA1 co-migrated with exogenous apoA-I with apparent molecular weight over 260kDa on SDS-PAGE when rat astrocytes were treated with apoA-I and then with a cross-linker, BS3. The solubilized ABCA1 of rat astrocytes was associated with the apoA-I-immobilized Affi-Gel 15. An LXR agonist, To901317, increased the cellular level of ABCA1, association of apoA-I with ABCA1 and apoA-I-mediated lipid release in rat astrocytoma GA-1/Mock cells where ABCA1 expression at baseline is very low. PL-Cγ was co-isolated by apoA-I-immobilized Affi-Gel 15 and co-immunoprecipitated by anti-ABCA1 antibody along with ABCA1 from the solubilized membrane fraction of rat astrocytes. The SiRNA of ABCA1 suppressed not only the PL-Cγ binding to ABCA1 but also the tyrosine phosphorylation of PL-Cγ. A PL-C inhibitor, U73122, prevented generation of apoA-I-mediated HDL-like lipoproteins in rat astrocytes. To901317 increased the association of PL-Cγ with ABCA1 in GA-1/Mock cells dependently on the increase of cellular level of ABCA1 without changing that of PL-Cγ. These findings suggest that the exogenous apoA-I augments the interaction between PL-Cγ and ABCA1 to stimulate tyrosine phosphorylation and activation of PL-Cγ for generation of HDL-like lipoproteins in astrocytes.
Collapse
Affiliation(s)
- Jin-ichi Ito
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. jitoh@@med.nagoya-cu.ac.jp
| | | | | | | | | |
Collapse
|
50
|
Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, Krimbou L, Genest J. Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. J Lipid Res 2011; 52:2043-55. [PMID: 21846716 DOI: 10.1194/jlr.m016196] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have identified an ABCA1-dependent, phosphatidylcholine-rich microdomain, called the "high-capacity binding site" (HCBS), that binds apoA-I and plays a pivotal role in apoA-I lipidation. Here, using sucrose gradient fractionation, we obtained evidence that both ABCA1 and [¹²⁵I]apoA-I associated with the HCBS were found localized to nonraft microdomains. Interestingly, phosphatidylcholine (PtdCho) was selectively removed from nonraft domains by apoA-I, whereas sphingomyelin and cholesterol were desorbed from both detergent-resistant membranes and nonraft domains. The modulatory role of cholesterol on apoA-I binding to ABCA1/HCBS was also examined. Loading cells with cholesterol resulted in a drastic reduction in apoA-I binding. Conversely, depletion of membrane cholesterol by methyl-β-cyclodextrin treatment resulted in a significant increase in apoA-I binding. Finally, we obtained evidence that apoA-I interaction with ABCA1 promoted the activation and gene expression of key enzymes in the PtdCho biosynthesis pathway. Taken together, these results provide strong evidence that the partitioning of ABCA1/HCBS to nonraft domains plays a pivotal role in the selective desorption of PtdCho molecules by apoA-I, allowing an optimal environment for cholesterol release and regeneration of the PtdCho-containing HCBS. This process may have important implications in preventing and treating atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Iulia Iatan
- Department of Biochemistry, Faculty of Medicine, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec, H3A 1A1, Canada.
| | | | | | | | | | | | | |
Collapse
|