1
|
Li A, Gao H, Wu H, Xie Y, Jia Z, Yang Z, Zhang Z, Zhang X. Genetic association and functional implications of TLR4 rs1927914 polymorphism on colon cancer risk. BMC Cancer 2024; 24:858. [PMID: 39026223 PMCID: PMC11256370 DOI: 10.1186/s12885-024-12604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Colon cancer remains a major health concern worldwide, with genetic factors playing a crucial role in its development. Toll-like receptors (TLRs) has been implicated in various cancers, but their role in colon cancer is not well understood. This study aims to identify functional polymorphisms in the promoter and 3'UTR regions of TLRs and evaluate their association with colon cancer susceptibility. METHODS We conducted a case-control study involving 410 colon cancer patients and 410 healthy controls from the Chinese population. Genotyping of polymorphisms in TLR3, TLR4, TLR5 and TLR7 was performed using PCR-RFLP and TaqMan MGB probes. Using logistic regression analysis, we evaluated the association of TLRs polymorphisms and the susceptibility to colon cancer. To understand the biological implications of the TLR4 rs1927914 polymorphism, we conducted functional assays, including luciferase reporter assay and electrophoretic mobility shift assay (EMSA). RESULTS Our results demonstrated that the G-allele of the TLR4 rs1927914 polymorphism is significantly associated with a decreased risk of colon cancer (OR = 0.68, 95%CI = 0.50-0.91). Stratified analysis showed that TLR4 rs1927914 AG or GG genotype contributed to a decreased risk of colon cancer among younger individuals (OR = 0.52, 95%CI = 0.34-0.81), males (OR = 0.58, 95%CI = 0.38-0.87), non-smokers (OR = 0.58, 95%CI = 0.41-0.83) and non-drinker with OR (95%CI) of 0.66 (0.46-0.93). Functional assays demonstrated that in HCT116 and LOVO colon cancer cells, the luciferase activity driven by the TLR4 promoter with the rs1927914A allele was 5.43 and 2.07 times higher, respectively, compared to that driven by the promoter containing the rs1927914G allele. Electrophoretic mobility shift assay (EMSA) results indicated that the rs1927914G allele enhanced transcription factor binding. Using the transcription factor prediction tool, we found that the G allele facilitates binding of the repressive transcription factor Oct1, while the A allele does not. CONCLUSION The TLR4 rs1927914 polymorphism influence the susceptibility to colon cancer, with the G allele offering a protective effect through modulation of gene expression. These insights enhance our understanding of the genetic determinants of colon cancer risk and highlight TLR4 as a promising target for cancer prevention strategies.
Collapse
Affiliation(s)
- Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, 063210, China
| | - Hui Gao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhenxian Jia
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhenbang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhi Zhang
- Affliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, 063210, China.
| |
Collapse
|
2
|
Fontela MG, Notario L, Alari-Pahissa E, Lorente E, Lauzurica P. The Conserved Non-Coding Sequence 2 (CNS2) Enhances CD69 Transcription through Cooperation between the Transcription Factors Oct1 and RUNX1. Genes (Basel) 2019; 10:genes10090651. [PMID: 31466317 PMCID: PMC6770821 DOI: 10.3390/genes10090651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 08/23/2019] [Indexed: 02/02/2023] Open
Abstract
The immune regulatory receptor CD69 is expressed upon activation in all types of leukocytes and is strongly regulated at the transcriptional level. We previously described that, in addition to the CD69 promoter, there are four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter. Furthermore, we proposed that CNS2 is the main enhancer of CD69 transcription. In the present study, we mapped the transcription factor (TF) binding sites (TFBS) from ChIP-seq databases within CNS2. Through luciferase reporter assays, we defined a ~60 bp sequence that acts as the minimum enhancer core of mouse CNS2, which includes the Oct1 TFBS. This enhancer core establishes cooperative interactions with the 3′ and 5′ flanking regions, which contain RUNX1 BS. In agreement with the luciferase reporter data, the inhibition of RUNX1 and Oct1 TF expression by siRNA suggests that they synergistically enhance endogenous CD69 gene transcription. In summary, we describe an enhancer core containing RUNX1 and Oct1 BS that is important for the activity of the most potent CD69 gene transcription enhancer.
Collapse
Affiliation(s)
- Miguel G. Fontela
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Laura Notario
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Elisenda Alari-Pahissa
- Department of Experimental and Health Science, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Elena Lorente
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Lauzurica
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: ; Tel.: +34-918222720
| |
Collapse
|
3
|
Sekido T, Nishio SI, Ohkubo Y, Sekido K, Kitahara J, Miyamoto T, Komatsu M. Repression of insulin gene transcription by indirect genomic signaling via the estrogen receptor in pancreatic beta cells. In Vitro Cell Dev Biol Anim 2019; 55:226-236. [PMID: 30790128 PMCID: PMC6443913 DOI: 10.1007/s11626-019-00328-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/27/2019] [Indexed: 12/19/2022]
Abstract
The mechanism whereby 17β-estradiol (E2) mediates insulin gene transcription has not been fully elucidated. In this study, exposure of hamster insulinoma (HIT-T15) cells to 5 × 10-9 to 1 × 10-7 M E2 led to a concentration-dependent decrease of insulin mRNA levels. Transient expression of the estrogen receptor (ER) in HIT-T15 cells revealed that estrogen receptor α (ERα) repressed transcription of the rat insulin II promoter in both ligand-dependent and ligand-independent manners. The N-terminal A/B domain of ERα was not required for either activity. However, the repression was absent with mutated ER lacking the DNA-binding domain. Moreover, introducing mutations in the D-box and P-box of the zinc finger of ER (C227S, C202L) also abolished the repression. Deletion of the insulin promoter region revealed that nucleotide positions - 238 to - 144 (relative to the transcriptional start site) were needed for ER repression of the rat insulin II gene. PDX1- and BETA2-binding sites were required for the repression, but an estrogen response element-like sequence or an AP1 site in the promoter was not involved. In conclusion, we found that estrogen repressed insulin mRNA expression in a beta cell line. In addition, the ER suppressed insulin gene transcription in a ligand-independent matter. These observations suggest ER may regulate insulin transcription by indirect genomic signaling.
Collapse
Affiliation(s)
- Takashi Sekido
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Nishio
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Yohsuke Ohkubo
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Keiko Sekido
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Junichiro Kitahara
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | | | - Mitsuhisa Komatsu
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
4
|
Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci 2019; 26:24. [PMID: 30849993 PMCID: PMC6407245 DOI: 10.1186/s12929-019-0517-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is controlled by several metabolic hormones, including thyroid hormone, and characteristically displays high lysosomal activity as well as metabolic stress-triggered autophagy, which is stringently regulated by the levels of hormones and metabolites. Hepatic autophagy provides energy through catabolism of glucose, amino acids and free fatty acids for starved cells, facilitating the generation of new macromolecules and maintenance of the quantity and quality of cellular organelles, such as mitochondria. Dysregulation of autophagy and defective mitochondrial homeostasis contribute to hepatocyte injury and liver-related diseases, such as non-alcoholic fatty liver disease (NAFLD) and liver cancer. Thyroid hormones (TH) mediate several critical physiological processes including organ development, cell differentiation, metabolism and cell growth and maintenance. Accumulating evidence has revealed dysregulation of cellular TH activity as the underlying cause of several liver-related diseases, including alcoholic or non-alcoholic fatty liver disease and liver cancer. Data from epidemiologic, animal and clinical studies collectively support preventive functions of THs in liver-related diseases, highlighting the therapeutic potential of TH analogs. Elucidation of the molecular mechanisms and downstream targets of TH should thus facilitate the development of therapeutic strategies for a number of major public health issues. Here, we have reviewed recent studies focusing on the involvement of THs in hepatic homeostasis through induction of autophagy and their implications in liver-related diseases. Additionally, the potential underlying molecular pathways and therapeutic applications of THs in NAFLD and HCC are discussed.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan, Taiwan, 333.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, 613.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333. .,Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan, Republic of China. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan.
| |
Collapse
|
5
|
Zhong Y, Huang H, Chen M, Huang J, Wu Q, Yan GR, Chen D. POU2F1 over-expression correlates with poor prognoses and promotes cell growth and epithelial-to-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2018; 8:44082-44095. [PMID: 28489585 PMCID: PMC5546464 DOI: 10.18632/oncotarget.17296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Despite recent efforts to understand activities of POU domain class 2 transcription factor 1 (POU2F1), little is known about the roles of POU2F1 in hepatocellular carcinoma (HCC) tumorigenesis and its correlation with any clinicopathological feature of HCC. In this study, we found that POU2F1 was significantly up-regulated in HCC specimens compared with adjacent non-cancerous liver specimens. The high POU2F1 protein expression level positively correlated with large tumor size, high histological grade, tumor metastasis and advanced clinical stage, and HCC patients with high POU2F1 levels exhibited poor prognoses. We further demonstrated that POU2F1 over-expression promoted HCC cell proliferation, colony formation, epithelial-to-mesenchymal transition (EMT), migration and invasion, while silencing of POU2F1 inhibited these malignant phenotypes. POU2F1 induced the expression of Twist1, Snai1, Snai2 and ZEB1 genes which are involved in the regulation of EMT. Furthermore, POU2F1 was up-regulated by AKT pathway in HCC, and POU2F1 over-expression reversed the inhibition of malignant phenotypes induced by AKT knock-down, indicating POU2F1 is a key down-stream effector of AKT pathway. Collectively, our results indicate that POU2F1 over-expression is positively associated with aggressive phenotypes and poor survival in patients with HCC, and POU2F1 regulated by AKT pathway promotes HCC aggressive phenotypes by regulating the transcription of EMT genes. POU2F1 may be employed as a new prognostic factor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yonghao Zhong
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyang Huang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinzhou Huang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingxia Wu
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang-Rong Yan
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - De Chen
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Kim LK, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH, Galjart NJ, Flavell RA. Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. Mol Cell 2014; 54:56-66. [PMID: 24613343 PMCID: PMC4058095 DOI: 10.1016/j.molcel.2014.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022]
Abstract
Interchromosomal associations can regulate gene expression, but little is known about the molecular basis of such associations. In response to antigen stimulation, naive T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4, and IL-17, respectively. We previously reported that in naive T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively, and CTCF deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.
Collapse
Affiliation(s)
- Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Enric Esplugues
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cornelia E Zorca
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Niels J Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Perri A, Catalano S, Bonofiglio D, Vizza D, Rovito D, Qi H, Aquila S, Panza S, Rizza P, Lanzino M, Andò S. T3 enhances thyroid cancer cell proliferation through TRβ1/Oct-1-mediated cyclin D1 activation. Mol Cell Endocrinol 2014; 382:205-217. [PMID: 24121026 DOI: 10.1016/j.mce.2013.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Several studies have demonstrated that thyroid hormone T3 promotes cancer cell growth, even though the molecular mechanism involved in such processes still needs to be elucidated. In this study we demonstrated that T3 induced proliferation in papillary thyroid carcinoma cell lines concomitantly with an up-regulation of cyclin D1 expression, that is a critical mitogen-regulated cell-cycle control element. Our data revealed that T3 enhanced the recruitment of the TRβ1/Oct-1 complex on Octamer-transcription factor-1 site within cyclin D1 promoter, leading to its transactivation. In addition, silencing of TRβ1 or Oct-1 expression by RNA interference reversed both increased cell proliferation and up-regulation of cyclin D1, underlying the important role of both transcriptional factors in mediating these effects. Finally, T3-induced increase in cell growth was abrogated after knocking down cyclin D1 expression. All these findings highlight a new molecular mechanism by which T3 promotes thyroid cancer cell growth.
Collapse
Affiliation(s)
- Anna Perri
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Stefania Catalano
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Daniela Rovito
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hongyan Qi
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Saveria Aquila
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Salvatore Panza
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pietro Rizza
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marilena Lanzino
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy; Centro Sanitario, University of Calabria, Rende, Italy.
| |
Collapse
|
8
|
Shi X, Gu J, Chen X, Shajahan A, Hilakivi-Clarke L, Clarke R, Xuan J. mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networks. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S4. [PMID: 24564939 PMCID: PMC4028818 DOI: 10.1186/1752-0509-7-s5-s4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Identification of cooperative gene regulatory network is an important topic for biological study especially in cancer research. Traditional approaches suffer from large noise in gene expression data and false positive connections in motif binding data; they also fail to identify the modularized structure of gene regulatory network. Methods that are capable of revealing underlying modularized structure and robust to noise and false positives are needed to be developed. Results We proposed and developed an integrated approach to identify gene regulatory networks, which consists of a novel clustering method (namely motif-guided affinity propagation clustering (mAPC)) and a sampling based method (called Gibbs sampler based on outlier sum statistic (GibbsOS)). mAPC is used in the first step to obtain co-regulated gene modules by clustering genes with a similarity measurement taking into account both gene expression data and binding motif information. This clustering method can reduce the noise effect from microarray data to obtain modularized gene clusters. However, due to many false positives in motif binding data, some genes not regulated by certain transcription factors (TFs) will be falsely clustered with true target genes. To overcome this problem, GibbsOS is applied in the second step to refine each cluster for the identification of true target genes. In order to evaluate the performance of the proposed method, we generated simulation data under different signal-to-noise ratios and false positive ratios to test the method. The experimental results show an improved accuracy in terms of clustering and transcription factor identification. Moreover, an improved performance is demonstrated in target gene identification as compared with GibbsOS. Finally, we applied the proposed method to two breast cancer patient datasets to identify cooperative transcriptional regulatory networks associated with recurrence of breast cancer, as supported by their functional annotations. Conclusions We have developed a two-step approach for gene regulatory network identification, featuring an integrated method to identify modularized regulatory structures and refine their target genes subsequently. Simulation studies have shown the robustness of the method against noise in gene expression data and false positives in motif binding data. The proposed method has been applied to two breast cancer gene expression datasets to infer the hidden regulation mechanisms. The experimental results demonstrate the efficacy of the method in identifying key regulatory networks related to the progression and recurrence of breast cancer.
Collapse
|
9
|
Roy AL, Sen R, Roeder RG. Enhancer-promoter communication and transcriptional regulation of Igh. Trends Immunol 2011; 32:532-9. [PMID: 21855411 DOI: 10.1016/j.it.2011.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/18/2022]
Abstract
Transcriptional regulation of eukaryotic protein-coding genes requires the participation of site-specific transcription factors that bind distal regulatory elements, as well as factors that, together with RNA polymerase II, form the basal transcription machinery at the core promoter. Gene regulation requires proper communication between promoters and enhancers, often over great distances. Therefore, it is important to understand the potentially inter-related transcription factor interactions at both of these elements. How this is achieved on tissue-specific genes, such as the immunoglobulin heavy chain (IgH) in B cells remains unclear. Here, we review known interactions at the Igh variable region (V(H)) promoters and present our perspective on promoter-enhancer interactions that are likely important for Ig gene regulation in B cells.
Collapse
Affiliation(s)
- Ananda L Roy
- Program in Immunology, Department of Pathology, Tufts University School of Medicine, Boston, MA, USA.
| | | | | |
Collapse
|
10
|
The PI3K-Akt pathway regulates calpain 6 expression, proliferation, and apoptosis. Cell Signal 2011; 23:827-36. [PMID: 21255642 DOI: 10.1016/j.cellsig.2011.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/08/2010] [Accepted: 01/10/2011] [Indexed: 02/08/2023]
Abstract
The calpains are a family of cysteine proteases involved in some biological processes whose activities are highly dependent on Ca(2+). Calpain 6 (CAPN6), one member of the family, is unique in that it lacks the active-site cysteine residues for protease activity. According to the data that CAPN6 was up-regulated in the Akt transformed mouse embryonic fibroblast cells by cDNA chip, the mechanisms underlying elevated CAPN6 expression by PI3K-Akt signaling pathway and its biological functions were studied. The results showed that CAPN6 was down-regulated on transcriptional and post-transcriptional levels by the PI3K inhibitor or Akt deletion. CAPN6 protein was stabilized by PI3K-GSK-3β pathway. Deleted CAPN6 promoters activity were assessed by dual-luciferase reporter system, and the founding indicated that -93/+200 DNA fragment was the core promoter of it. Transcription factor binding sites in the CAPN6 promoter were mutated and the results showed that AP1, Oct-1, and FoxD3 were the critical transcription factors in regulation of CAPN6 expression. In addition, CAPN6 promoted cancer cell proliferation and inhibited its apoptosis. The finding demonstrates that CAPN6 is regulated by the PI3K-Akt signaling pathway and provides evidence that it may be a therapeutic target of cancer.
Collapse
|
11
|
Ng MCY, Lam VKL, Tam CHT, Chan AWH, So WY, Ma RCW, Zee BCY, Waye MMY, Mak WW, Hu C, Wang CR, Tong PCY, Jia WP, Chan JCN. Association of the POU class 2 homeobox 1 gene (POU2F1) with susceptibility to Type 2 diabetes in Chinese populations. Diabet Med 2010; 27:1443-9. [PMID: 21059098 DOI: 10.1111/j.1464-5491.2010.03124.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS POU class 2 homeobox 1 (POU2F1), also known as octamer-binding transcription factor-1 (OCT-1), is a ubiquitous transcription factor that plays a key role in the regulation of genes related to inflammation and cell cycles. POU2F1 is located on chromosome 1q24, a region with linkage for Type 2 diabetes in Chinese and other populations. We examined the association of POU2F1 genetic variants with Type 2 diabetes in Hong Kong Chinese using two independent cohorts. METHODS We genotyped five haplotype-tagging single nucleotide polymorphisms at POU2F1 in 1378 clinic-based patients with Type 2 diabetes and 601 control subjects, as well as 707 members from 179 families with diabetes. RESULTS We found significant associations of rs4657652, rs7532692, rs10918682 and rs3767434 (OR = 1.26-1.59, 0.0003 < P(unadjusted) < 0.035) with Type 2 diabetes in the clinic-based case-control cohorts. Rs3767434 was also associated with Type 2 diabetes (OR = 1.55, P(unadjusted) = 0.013) in the family-based cohort. Meta-analysis revealed similar associations. In addition, the risk G allele of rs10918682 showed increased usage of insulin treatment during a mean follow-up period of 7 years [hazard ratio = 1.50 (1.05-2.14), P = 0.025]. CONCLUSIONS Using separate cohorts, we observed consistent results showing the contribution of multiple variants at POU2F1 to the risk of Type 2 diabetes.
Collapse
Affiliation(s)
- M C Y Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen L, Xuan J, Riggins RB, Wang Y, Hoffman EP, Clarke R. Multilevel support vector regression analysis to identify condition-specific regulatory networks. Bioinformatics 2010; 26:1416-22. [PMID: 20375112 PMCID: PMC2872001 DOI: 10.1093/bioinformatics/btq144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/11/2010] [Accepted: 04/02/2010] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION The identification of gene regulatory modules is an important yet challenging problem in computational biology. While many computational methods have been proposed to identify regulatory modules, their initial success is largely compromised by a high rate of false positives, especially when applied to human cancer studies. New strategies are needed for reliable regulatory module identification. RESULTS We present a new approach, namely multilevel support vector regression (ml-SVR), to systematically identify condition-specific regulatory modules. The approach is built upon a multilevel analysis strategy designed for suppressing false positive predictions. With this strategy, a regulatory module becomes ever more significant as more relevant gene sets are formed at finer levels. At each level, a two-stage support vector regression (SVR) method is utilized to help reduce false positive predictions by integrating binding motif information and gene expression data; a significant analysis procedure is followed to assess the significance of each regulatory module. To evaluate the effectiveness of the proposed strategy, we first compared the ml-SVR approach with other existing methods on simulation data and yeast cell cycle data. The resulting performance shows that the ml-SVR approach outperforms other methods in the identification of both regulators and their target genes. We then applied our method to breast cancer cell line data to identify condition-specific regulatory modules associated with estrogen treatment. Experimental results show that our method can identify biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. AVAILABILITY AND IMPLEMENTATION The ml-SVR MATLAB package can be downloaded at http://www.cbil.ece.vt.edu/software.htm.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chen L, Xuan J, Wang Y, Hoffman EP, Riggins RB, Clarke R. Identification of condition-specific regulatory modules through multi-level motif and mRNA expression analysis. INTERNATIONAL JOURNAL OF COMPUTATIONAL BIOLOGY AND DRUG DESIGN 2010; 2:1-20. [PMID: 20054984 DOI: 10.1504/ijcbdd.2009.027582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many computational methods for identification of transcription regulatory modules often result in many false positives in practice due to noise sources of binding information and gene expression profiling data. In this paper, we propose a multi-level strategy for condition-specific gene regulatory module identification by integrating motif binding information and gene expression data through support vector regression and significant analysis. We have demonstrated the feasibility of the proposed method on a yeast cell cycle data set. The study on a breast cancer microarray data set shows that it can successfully identify the significant and reliable regulatory modules associated with breast cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Campanero MR, Herrero A, Calvo V. The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites. Oncogene 2007; 27:1263-72. [PMID: 17724474 DOI: 10.1038/sj.onc.1210735] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GADD45gamma protein is a potential tumor suppressor whose expression is reduced in several tumors. However, very little is known about the regulation of its expression. We have determined that the most relevant region of its promoter lies between nucleotides -112 and -54, relative to the transcription start site. Putative Oct and NF-Y elements were found in this region and factors belonging to these families interacted with these elements in vitro and with the promoter in vivo. Mutation of these elements reduced the basal activity of the promoter, suggesting that both sites are essential for basal expression. These factors interact with chromatin modifying proteins and we found that histone deacetylase 1 or silencing mediator for retinoid and thyroid hormone receptor overexpression reduced the basal activity of the promoter. In contrast, forced expression of the histone acetylase protein PCAF or cell treatment with the HDAC inhibitor trichostatin A increased GADD45gamma mRNA levels and induced GADD45gamma promoter activity through its Oct and NF-Y elements. Moreover, ectopic expression of a dominant-negative version of NF-YA strongly inhibited trichostatin A-induced activation of the promoter. Our data strongly suggest that inhibition of deacetylase activity could potentially be used for treatment of tumors where GADD45gamma expression is reduced.
Collapse
Affiliation(s)
- M R Campanero
- Instituto de Investigaciones Biomédicas, CSIC-UAM, Arturo Duperier, Madrid, Spain
| | | | | |
Collapse
|
15
|
dela Paz NG, Simeonidis S, Leo C, Rose DW, Collins T. Regulation of NF-kappaB-dependent gene expression by the POU domain transcription factor Oct-1. J Biol Chem 2007; 282:8424-34. [PMID: 17192276 DOI: 10.1074/jbc.m606923200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of the cells of the vessel wall in a quiescent state is an important aspect of normal vascular physiology. Transcriptional repressors are widely believed to regulate this process, yet the exact factors involved and the mechanism of repression are not known. Here, we report that the POU domain transcription factor Oct-1 represses the expression of E-selectin and vascular cell adhesion molecule (VCAM-1), two cytokine-inducible, NF-kappaB-dependent endothelial-leukocyte adhesion molecules that participate in the leukocyte recruitment phase of the inflammatory response. Co-transfection and microinjection studies demonstrate that Oct-1 blocks tumor necrosis factor alpha-stimulated E-selectin and VCAM-1 expression. Gene expression arrays indicate that control of tumor necrosis factor alpha-induced, NF-kappaB-dependent gene expression by Oct-1 is promoter-specific. A DNA-binding mutant of Oct-1 represses NF-kappaB-dependent reporter gene expression. Biochemically, Oct-1 interacts with p65, suggesting that Oct-1 is involved in the regulation of NF-kappaB transactivation function. NF-kappaB-dependent gene expression is more pronounced in Oct-1-deficient than in wild-type murine embryonic fibroblasts, and reintroduction of human Oct-1 abolishes these differences. Finally, the cytokine interleukin-6 induces Oct-1 gene expression, providing a biologically relevant means by which NF-kappaB-dependent gene expression can be selectively reverted by Oct-1 to quiescent levels.
Collapse
Affiliation(s)
- Nathaniel G dela Paz
- Molecular Pathology Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093-0673, and Department of Pathology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Hitomi T, Matsuzaki Y, Yasuda S, Kawanaka M, Yogosawa S, Koyama M, Tantin D, Sakai T. Oct-1 is involved in the transcriptional repression of the p15(INK4b) gene. FEBS Lett 2007; 581:1087-92. [PMID: 17316622 DOI: 10.1016/j.febslet.2007.01.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/22/2007] [Accepted: 01/31/2007] [Indexed: 01/02/2023]
Abstract
p15(INK4b) functions as a tumor suppressor and implicated in cellular senescence. Here, we show that the Oct-1 binding site in the human p15(INK4b) gene promoter functions as a silencer. Oct-1 specifically interacts with this binding site in vitro and in vivo and SMRT and HDAC1 are present in the p15(INK4b) proximal promoter region. Moreover, mouse embryo fibroblasts (MEFs) lacking Oct-1 have shown significantly increased levels of p15(INK4b) protein compared to their normal counterparts. Treatment with a histone deacetylase (HDAC) inhibitor has activated the expression of p15(INK4b) in wild-type MEFs but has no effect in MEFs lacking Oct-1, suggesting that Oct-1 represses p15(INK4b) gene expression in an HDAC-dependent manner. Finally, we show that the expression of Oct-1 protein significantly decreases, whereas p15(INK4b) protein significantly increases with the cellular aging process. Taken together, these results suggest that Oct-1 is an important transcriptional repressor for p15(INK4b) gene and the transcriptional repression of the p15(INK4b) gene by Oct-1 may be one of the regulatory mechanisms of cellular senescence.
Collapse
Affiliation(s)
- Toshiaki Hitomi
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Characterization of an Oct1 orthologue in the channel catfish, Ictalurus punctatus: a negative regulator of immunoglobulin gene transcription? BMC Mol Biol 2007; 8:8. [PMID: 17266766 PMCID: PMC1800861 DOI: 10.1186/1471-2199-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enhancer (Emu3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding muE5 site. An orthologue to the Oct2 transcription factor has previously been cloned in catfish and is a functionally active transcription factor. This study was undertaken to clone and characterize the Oct1 transcription factor, which has also been shown to be important in driving immunoglobulin gene transcription in mammals. RESULTS An orthologue of Oct1, a POU family transcription factor, was cloned from a catfish macrophage cDNA library. The inferred amino acid sequence of the catfish Oct1, when aligned with other vertebrate Oct1 sequences, revealed clear conservation of structure, with the POU specific subdomain of catfish Oct1 showing 96% identity to that of mouse Oct1. Expression of Oct1 was observed in clonal T and B cell lines and in all tissues examined. Catfish Oct1, when transfected into both mammalian (mouse) and catfish B cell lines, unexpectedly failed to drive transcription from three different octamer-containing reporter constructs. These contained a trimer of octamer motifs, a fish VH promoter, and the core region of the catfish Emu3' IGH enhancer, respectively. This failure of catfish Oct1 to drive transcription was not rescued by human BOB.1, a co-activator of Oct transcription factors that stimulates transcription driven by catfish Oct2. When co-transfected with catfish Oct2, Oct1 reduced Oct2 driven transcriptional activation. Electrophoretic mobility shift assays showed that catfish Oct1 (native or expressed in vitro) bound both consensus and variant octamer motifs. Putative N- and C-terminal activation domains of Oct1, when fused to a Gal4 DNA binding domain and co-transfected with Gal4-dependent reporter constructs were transcriptionally inactive, which may be due in part to a lack of residues associated with activation domain function. CONCLUSION An orthologue to mammalian Oct1 has been found in the catfish. It is similar to mammalian Oct1 in structure and expression. However, these results indicate that the physiological functions of catfish Oct1 differ from those of mammalian Oct1 and include negative regulation of transcription.
Collapse
|
18
|
Jiang W, Miyamoto T, Kakizawa T, Nishio SI, Oiwa A, Takeda T, Suzuki S, Hashizume K. Inhibition of LXRalpha signaling by vitamin D receptor: possible role of VDR in bile acid synthesis. Biochem Biophys Res Commun 2006; 351:176-84. [PMID: 17054913 DOI: 10.1016/j.bbrc.2006.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 10/05/2006] [Indexed: 11/25/2022]
Abstract
The expression of cholesterol 7alpha-hydroxylase (CYP7alpha), the rate-limiting enzyme in the catabolism of cholesterol to bile acid, is stimulated by oxysterol receptor, liver X receptor alpha (LXRalpha) and negatively regulated by a bile acid receptor, farnesoid X receptor. In the current study, we demonstrated that 1,25-(OH)(2)D3 blunted the LXRalpha-mediated induction of CYP7alpha mRNA in H4IIE rat hepatoma cells. In co-transfection experiments in HepG2 cells, VDR repressed the activity of rat CYP7alpha promoter in a ligand-dependent manner through inhibition of LXRalpha signaling. We also confirmed the ability of VDR to repress LXRalpha transcriptional activation using a synthetic LXRalpha responsive reporter. Deletion analyses revealed that the ligand-binding domain of VDR was required for the suppression and the DNA-binding domain was dispensable. Given the fact that VDR can be activated by the secondary bile acid as well as 1,25-(OH)(2)D3, the crosstalk between LXRalpha and VDR signaling in regulation of bile acid metabolism provides a possible contribution of VDR to modulate bile acid and cholesterol homeostasis, and highlights a physiological function of VDR beyond calcium metabolism in the body.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Clinical College, Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lensch MW, Daheron L, Schlaeger TM. Pluripotent stem cells and their niches. ACTA ACUST UNITED AC 2006; 2:185-201. [PMID: 17625255 DOI: 10.1007/s12015-006-0047-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/04/2023]
Abstract
The ability of stem cells to self-renew and to replace mature cells is fundamental to ontogeny and tissue regeneration. Stem cells of the adult organism can be categorized as mono-, bi-, or multipotent, based on the number of mature cell types to which they can give rise. In contrast, pluripotent stem cells of the early embryo have the ability to form every cell type of the adult body. Permanent lines of pluripotent stem cells have been derived from preimplantation embryos (embryonic stem cells), fetal primordial germ cells (embryonic germ cells), and malignant teratocarcinomas (embryonal carcinoma cells). Cultured pluripotent stem cells can easily be manipulated genetically, and they can be matured into adult-type stem cells and terminally differentiated cell types in vitro, thereby, providing powerful model systems for the study of mammalian embryogenesis and disease processes. In addition, human embryonic stem cell lines hold great promise for the development of novel regenerative therapies. To fully utilize the potential of these cells, we must first understand the mechanisms that control pluripotent stem cell fate and function. In recent decades, the microenvironment or niche has emerged as particularly critical for stem cell regulation. In this article, we review how pluripotent stem cell signal transduction mechanisms and transcription factor circuitries integrate information provided by the microenvironment. In addition, we consider the potential existence and location of adult pluripotent stem cell niches, based on the notion that a revealing feature indicating the presence of stem cells in a given tissue is the occurrence of tumors whose characteristics reflect the normal developmental potential of the cognate stem cells.
Collapse
Affiliation(s)
- M William Lensch
- Division of Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Fukuyama K, Ichiki T, Imayama I, Ohtsubo H, Ono H, Hashiguchi Y, Takeshita A, Sunagawa K. Thyroid hormone inhibits vascular remodeling through suppression of cAMP response element binding protein activity. Arterioscler Thromb Vasc Biol 2006; 26:2049-55. [PMID: 16794221 DOI: 10.1161/01.atv.0000233358.87583.01] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although accumulating evidences suggest that impaired thyroid function is a risk for ischemic heart disease, the molecular mechanism of anti-atherosclerotic effects of thyroid hormone is poorly defined. We examined whether thyroid hormone affects signaling pathway of angiotensin II (Ang II), which is critically involved in a broad aspect of cardiovascular disease process. METHODS AND RESULTS 3,3',5-triiodo-L-thyronine (T3) did not show a significant effect on Ang II-induced activation of extracellular signal-regulated protein kinase or p38 mitogen-activated protein kinase in vascular smooth muscle cells (VSMCs), whereas T3 inhibited Ang II-induced activation of cAMP response element (CRE) binding protein (CREB), a nuclear transcription factor involved in the vascular remodeling process. Coimmunoprecipitaion assay revealed the protein-protein interaction between thyroid hormone receptor and CREB. T3 reduced an expression level of interleukin (IL)-6 mRNA, CRE-dependent promoter activity, and protein synthesis induced by Ang II. Administration of T3 (100 microg/100 g for 14 days) to rats attenuated neointimal formation after balloon injury of carotid artery with reduced CREB activation and BrdU incorporation. CONCLUSIONS These results suggested that T3 inhibits CREB/CRE signaling pathway and suppresses cytokine expression and VSMCs proliferation, which may account for, at least in part, an anti-atherosclerotic effect of thyroid hormone.
Collapse
Affiliation(s)
- Kae Fukuyama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Voss TC, Demarco IA, Booker CF, Day RN. Functional interactions with Pit-1 reorganize co-repressor complexes in the living cell nucleus. J Cell Sci 2005; 118:3277-88. [PMID: 16030140 PMCID: PMC2910337 DOI: 10.1242/jcs.02450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The co-repressor proteins SMRT and NCoR concentrate in specific subnuclear compartments and function with DNA-binding factors to inhibit transcription. To provide detailed mechanistic understanding of these activities, this study tested the hypothesis that functional interactions with transcription factors, such as the pituitary-gland-specific Pit-1 homeodomain protein, direct the subnuclear organization and activity of co-repressor complexes. Both SMRT and NCoR repressed Pit-1-dependent transcription, and NCoR was co-immunoprecipitated with Pit-1. Immunofluorescence experiments confirmed that endogenous NCoR is concentrated in small focal bodies and that incremental increases in fluorescent-protein-tagged NCoR expression lead to progressive increases in the size of these structures. In pituitary cells, the endogenous NCoR localized with endogenous Pit-1 and the co-expression of a fluorescent-protein-labeled Pit-1 redistributed both NCoR and SMRT into diffuse nucleoplasmic compartments that also contained histone deacetylase and chromatin. Automated image-analysis methods were applied to cell populations to characterize the reorganization of co-repressor proteins by Pit-1 and mutation analysis showed that Pit-1 DNA-binding activity was necessary for the reorganization of co-repressor proteins. These data support the hypothesis that spherical foci serve as co-repressor storage compartments, whereas Pit-1/co-repressor complexes interact with target genes in more widely dispersed subnuclear domains. The redistribution of co-repressor complexes by Pit-1 might represent an important mechanism by which transcription factors direct changes in cell-specific gene expression.
Collapse
|
22
|
Hirose T, Sowa Y, Takahashi S, Saito S, Yasuda C, Shindo N, Furuichi K, Sakai T. p53-independent induction of Gadd45 by histone deacetylase inhibitor: coordinate regulation by transcription factors Oct-1 and NF-Y. Oncogene 2003; 22:7762-73. [PMID: 14586402 DOI: 10.1038/sj.onc.1207091] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 08/06/2003] [Accepted: 08/07/2003] [Indexed: 11/09/2022]
Abstract
Histone deacetylase (HDAC) inhibitors cause growth arrest at the G1 and/or G2/M phases, and induce differentiation and/or apoptosis in a wide variety of tumour cells. The growth arrest at G1 phase by HDAC inhibitors is thought to be highly dependent on the upregulation of p21/WAF1, but the precise mechanism by which HDAC inhibitors cause G2/M arrest or apoptosis in tumour cells is unknown. Gadd45 causes cell cycle arrest at the G2/M phase transition and participates in genotoxic stress-induced apoptosis. We show here that it is also induced by a typical HDAC inhibitor, trichostatin A (TSA), through its promoter, in a p53-independent manner. To identify the mechanism of activation of the gadd45 promoter, we performed luciferase reporter analyses and electrophoretic mobility shift assays. These revealed that both the Oct-1 and CCAAT sites are needed for the full activation by TSA. We also found that the transcription factors Oct-1 and NF-Y specifically bind to each site. Thus, HDAC inhibitors can induce Gadd45 through its promoter without the need for functional p53, and both the Oct-1 and NF-Y concertedly participate in TSA-induced activation of the gadd45 promoter.
Collapse
Affiliation(s)
- Tohru Hirose
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 2003; 28:294-304. [PMID: 12826401 DOI: 10.1016/s0968-0004(03)00088-4] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When herpes simplex virus (HSV) infects human cells, it is able to enter two modes of infection: lytic and latent. A key activator of lytic infection is a virion protein called VP16, which, upon infection of a permissive cell, forms a transcriptional regulatory complex with two cellular proteins - the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1 - to activate transcription of the first set of expressed viral genes. This regulatory complex, called the VP16-induced complex, reveals mechanisms of combinatorial control of transcription. The activities of Oct-1 and HCF-1 - two important regulators of cellular gene expression and proliferation - illuminate strategies by which HSV might coexist with its host.
Collapse
|
24
|
Fukuyama K, Ichiki T, Takeda K, Tokunou T, Iino N, Masuda S, Ishibashi M, Egashira K, Shimokawa H, Hirano K, Kanaide H, Takeshita A. Downregulation of vascular angiotensin II type 1 receptor by thyroid hormone. Hypertension 2003; 41:598-603. [PMID: 12623965 DOI: 10.1161/01.hyp.0000056524.35294.80] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid hormone has a broad effect on cardiovascular system. 3,3',5-triiodo-l-thyronine (T3), a biologically active form of thyroid hormone, increases cardiac contractility. T3 causes arterial relaxation and reduction of systemic vascular resistance, resulting in an increase in cardiac output. However, the molecular mechanisms of vascular relaxation by T3 are incompletely characterized. We studied the effect of T3 on the angiotensin (Ang) II type 1 receptor (AT1R) expression in vascular smooth muscle cells. T3 dose-dependently decreased expression levels of AT1R mRNA, with a peak at 6 hours of stimulation. Binding assay using [125I]Sar1-Ile8-Ang II revealed that AT1R number was decreased by stimulation with T3 without changing the affinity to Ang II. T3 reduced calcium response of vascular smooth muscle cells to Ang II by 26%. AT1R promoter activity measured by luciferase assay was reduced by 50% after 9 hours of T3 administration. mRNA stability was also decreased by T3. Real-time quantitative reverse transcription-polymerase chain reaction and Western blot analysis revealed that AT1R mRNA and protein were downregulated in the aorta of T3-treated rats. These results suggest that T3 downregulates AT1R expression both at transcriptional and posttranscriptional levels, and attenuates biological function of Ang II. Our results suggest that downregulation of AT1R gene expression may play an important role for T3-induced vascular relaxation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Blood Vessels/metabolism
- Calcium/analysis
- Cells, Cultured
- Down-Regulation
- Gene Expression Regulation
- Male
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/physiology
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/analysis
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Repressor Proteins/physiology
- Transcription, Genetic
- Triiodothyronine, Reverse/pharmacology
Collapse
Affiliation(s)
- Kae Fukuyama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng CK, Yeung CM, Hoo RLC, Chow BKC, Leung PCK. Oct-1 is involved in the transcriptional repression of the gonadotropin-releasing hormone receptor gene. Endocrinology 2002; 143:4693-701. [PMID: 12446597 DOI: 10.1210/en.2002-220576] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous deletion analysis of the 5'-flanking region of human GnRH receptor (GnRHR) gene has revealed a powerful negative regulatory element (NRE) located between nucleotide -1017 and -771. In the present study, we demonstrated that this NRE could repress the homologous promoter, irrespective of its position and completely abolish the activity of a heterologous thymidine kinase promoter in an orientation-dependent manner. Progressive 3'-deletion analysis revealed that most of the silencing activity of the NRE resided in a putative octamer regulatory sequence (5'AAGCAAACT3'), which alone could repress the promoter activities by 69-90% in ovarian OVCAR-3, placental JEG-3, and gonadotrope-derived alphaT3-1 cells. Mutation of the AAAC residues of the octamer sequence completely removed its silencing activity. Interestingly, conversion of the octamer sequence into that of the rodent GnRHR promoter (5'AAGCAAAGT3') did not attenuate its silencing effect, indicating that the repressive role of the octamer sequence is evolutionarily conserved. EMSAs showed that common DNA-protein complexes of the same mobility were formed with nuclear extracts from the reproductive cells and gonadotropes, and a consensus octamer transcription factor-1 (Oct-1) binding sequence could dose dependently inhibit the complex formation. Antibody supershift and Southwestern blot assays confirmed that the protein binding to the octamer sequence was the ubiquitously expressed transcription factor Oct-1. Overexpression of Oct-1 augmented the silencing activity of the octamer sequence in alphaT3-1 cells. Taken together, our results clearly indicate a role of Oct-1 in the transcriptional repression of the human GnRHR gene.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada V6H 3V5
| | | | | | | | | |
Collapse
|
26
|
Abstract
Transcriptional repression, which plays a crucial role in diverse biological processes, is mediated in part by non-DNA-binding co-repressors. The closely related co-repressor proteins N-CoR and SMRT, although originally identified on the basis of their ability to associate with and confer transcriptional repression through nuclear receptors, have been shown to be recruited to many classes of transcription factor and are in fact components of multiple protein complexes containing histone deacetylase proteins. This association with histone deacetylase activity provides an important component of the mechanism that allows DNA-binding proteins interacting with N-CoR or SMRT to repress transcription of specific target genes. Both N-CoR and SMRT are important targets for cell signaling pathways, which influence their expression levels, subcellular localization and association with other proteins. Recently, the biological importance of these proteins has been revealed by studies of genetically engineered mice and human diseases such as acute promyelocytic leukemia (APL) and resistance to thyroid hormone(RTH).
Collapse
Affiliation(s)
- Kristen Jepsen
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 920393-0648, USA
| | | |
Collapse
|