1
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Self-Sufficient CYP102 Family Provides New Insights into Their Biochemistry. Int J Mol Sci 2025; 26:2161. [PMID: 40076785 PMCID: PMC11900375 DOI: 10.3390/ijms26052161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Cytochromes P450 are a superfamily of heme-containing monooxygenases involved in a variety of oxidative metabolic reactions, primarily catalyzing the insertion of an oxygen atom into a C-H bond. CYP102 represents the first example of a bacterial P450 that can be classified as a type II (eukaryotic-like) P450 and functions as a catalytically self-sufficient enzyme. These unique features have made CYP102 an attractive system for studying P450 structure and function. However, an overall picture of the specific amino acid residues that are crucial to the functioning of CYP102 and the effect of mutations on the P450 structure and catalysis is yet to be reported. Such an approach will aid protein engineering approaches used to improve this enzyme. To address this research knowledge gap, we have investigated 105 CYP102 crystal structures in this study. We demonstrate that the CYP102 active site is highly dynamic and flexible. Amino acid residues that play critical roles in substrate binding, orientation, and anchoring were identified. Mutational studies highlighted the roles of amino acids and provided possible bioengineering improvement strategies for CYP102. Decoy molecules are a promising agent for deceiving CYP102 and permitting non-native substrates into the active site. Ru(II)-diimine photosensitizers and zinc/cobalt (III) sepulchrate (Co(III)Sep) could be used as alternative electron sources. The present study serves as a reference for understanding the structure-functional analysis of CYP102 family members precisely and of P450 enzymes in general. Significantly, this work contributes to the effort to develop an improved CYP102 enzyme, thereby advancing the field of P450 research and potentially leading to new industrial applications.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
2
|
Uno Y, Tsukiyama-Kohara K, Ishizuka M, Mizukawa H, Murayama N, Yamazaki H. Investigation of Functional Cytochrome P450 4A Enzymes in Liver and Kidney of Pigs, Cats, Tree Shrews, and Dogs in Comparison with the Metabolic Capacity of Human P450 4A11. Drug Metab Dispos 2024; 52:1009-1019. [PMID: 38951034 DOI: 10.1124/dmd.124.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the ω-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Mayumi Ishizuka
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hazuki Mizukawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| |
Collapse
|
3
|
Spotlight on CYP4B1. Int J Mol Sci 2023; 24:ijms24032038. [PMID: 36768362 PMCID: PMC9916508 DOI: 10.3390/ijms24032038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy.
Collapse
|
4
|
Uno Y, Uehara S, Yamazaki H. Polymorphic cytochromes P450 in non-human primates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:329-364. [PMID: 35953160 DOI: 10.1016/bs.apha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cynomolgus macaques (Macaca fascicularis, an Old World monkey) are widely used in drug development because of their genetic and physiological similarities to humans, and this trend has continued with the use of common marmosets (Callithrix jacchus, a New World monkey). Information on the major drug-metabolizing cytochrome P450 (CYP, P450) enzymes of these primate species indicates that multiple forms of their P450 enzymes have generally similar substrate selectivities to those of human P450 enzymes; however, some differences in isoform, activity, and substrate specificity account for limited species differences in drug oxidative metabolism. This review provides information on the P450 enzymes of cynomolgus macaques and marmosets, including cDNA, tissue expression, substrate specificity, and genetic variants, along with age differences and induction. Typical examples of important P450s to be considered in drug metabolism studies include cynomolgus CYP2C19, which is expressed abundantly in liver and metabolizes numerous drugs. Moreover, genetic variants of cynomolgus CYP2C19 affect the individual pharmacokinetic data of drugs such as R-warfarin. These findings provide a foundation for understanding each P450 enzyme and the individual pharmacokinetic and toxicological results in cynomolgus macaques and marmosets as preclinical models. In addition, the effects of induction on some drug clearances mediated by P450 enzymes are also described. In summary, this review describes genetic and acquired individual differences in cynomolgus and marmoset P450 enzymes involved in drug oxidation that may be associated with pharmacological and/or toxicological effects.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | |
Collapse
|
5
|
Price CL, Warrilow AGS, Rolley NJ, Parker JE, Thoss V, Kelly DE, Corcionivoschi N, Kelly SL. Cytochrome P450 168A1 from Pseudomonas aeruginosa is involved in the hydroxylation of biologically relevant fatty acids. PLoS One 2022; 17:e0265227. [PMID: 35312722 PMCID: PMC8936499 DOI: 10.1371/journal.pone.0265227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The cytochrome P450 CYP168A1 from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli followed by purification and characterization of function. CYP168A1 is a fatty acid hydroxylase that hydroxylates saturated fatty acids, including myristic (0.30 min-1), palmitic (1.61 min-1) and stearic acids (1.24 min-1), at both the ω-1- and ω-2-positions. However, CYP168A1 only hydroxylates unsaturated fatty acids, including palmitoleic (0.38 min-1), oleic (1.28 min-1) and linoleic acids (0.35 min-1), at the ω-1-position. CYP168A1 exhibited a catalytic preference for palmitic, oleic and stearic acids as substrates in keeping with the phosphatidylcholine-rich environment deep in the lung that is colonized by P. aeruginosa.
Collapse
Affiliation(s)
- Claire L. Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Andrew G. S. Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Nicola J. Rolley
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Josie E. Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Vera Thoss
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
| | - Diane E. Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Nicolae Corcionivoschi
- Agri-Food and Biosciences Institute, Veterinary Science Division, Bacteriology Branch, Stoney Road, Stormont, Belfast, Northern Ireland, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Steven L. Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
6
|
Arora I, Sharma M, Li S, Crowley M, Crossman DK, Li Y, Tollefsbol TO. An integrated analysis of the effects of maternal broccoli sprouts exposure on transcriptome and methylome in prevention of offspring mammary cancer. PLoS One 2022; 17:e0264858. [PMID: 35263365 PMCID: PMC8906608 DOI: 10.1371/journal.pone.0264858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Broccoli sprouts (BSp), a cruciferous vegetable, has shown promising effects on prevention of many types of cancer including breast cancer (BC). BC has a developmental foundation, and maternal nutrition status may influence an offspring's risk to BC later in life. What is less understood, however, is the influence of maternal nutrition intervention on reversing epigenomic abnormalities that are essential in BC programming during early development. Our research focused on how maternal exposure to BSp diet prevents offspring BC and investigation of possible epigenetic mechanisms during these processes. Our results showed that maternal feeding of BSp can prevent mammary tumor development in the offspring of a transgenic mouse model. Through comprehensive integrated multi-omics studies on transcriptomic and methylomic analysis, we identified numerous target genes exhibiting significantly differential gene expression and DNA methylation patterns in the offspring mammary tumor. We discovered that maternal exposure to BSp diet can induce both gene and methylation changes in several key genes such as Avpr2, Cyp4a12b, Dpp6, Gria2, Pcdh9 and Tspan11 that are correlated with pivotal biological functions during carcinogenesis. In addition, we found an impact of maternal BSp treatment on DNA methyltransferase and histone deacetylases activity. Our study provides knowledgeable information regarding how maternal BSp diet influences key tumor-related gene expression and the epigenetic changes using a genome-wide perspective. Additionally, these findings provide mechanistic insights into the effectiveness of maternal BSp administration on the prevention of BC in the offspring later in life, which may lead to an early-life BC chemopreventive strategy that benefits the progenies' long-term health.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Michael Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Yuanyuan Li
- Department of Obstetrics, Gynecology & Women’s Heath, University of Missouri, Columbia, MO, United States of America
- Department of Surgery, University of Missouri, Columbia, MO, United States of America
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
7
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
Seguin RP, Herron JM, Lopez V, Dempsey JL, Xu L. Metabolism of Benzalkonium Chlorides by Human Hepatic Cytochromes P450. Chem Res Toxicol 2019; 32:2466-2478. [PMID: 31730751 PMCID: PMC7269367 DOI: 10.1021/acs.chemrestox.9b00293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Benzalkonium chlorides (BACs) are widely used as disinfectants in cleaning products, medical products, and the food processing industry. Despite a wide range of reported toxicities, limited studies have been conducted on the metabolism of these compounds in animal models and none in human-derived cells or tissues. In this work, we report on the metabolism of BACs in human liver microsomes (HLM) and by recombinant human hepatic cytochrome P450 (CYP) enzymes. BAC metabolism in HLM was NADPH-dependent and displayed apparent half-lives that increased with BAC alkyl chain length (C10 < C12 < C14 < C16), suggesting enhanced metabolic stability of the more lipophilic, longer chain BACs. Metabolites of d7-benzyl labeled BAC substrates retained all deuteriums and there was no evidence of N-dealkylation. Tandem mass spectrometry fragmentation of BAC metabolites confirmed that oxidation occurs on the alkyl chain region. Major metabolites of C10-BAC were identified as ω-hydroxy-, (ω-1)-hydroxy-, (ω, ω-1)-diol-, (ω-1)-ketone-, and ω-carboxylic acid-C10-BAC by liquid chromatography-mass spectrometry comparison with synthetic standards. In a screen of hepatic CYP isoforms, recombinant CYP2D6, CYP4F2, and CYP4F12 consumed substantial quantities of BAC substrates and produced the major microsomal metabolites. The use of potent pan-CYP4 inhibitor HET0016, the specific CYP2D6 inhibitor quinidine, or both confirmed major contributions of CYP4- and CYP2D6-mediated metabolism in the microsomal disappearance of BACs. Kinetic characterization of C10-BAC metabolite formation in HLM demonstrated robust Michaelis-Menten kinetic parameters for ω-hydroxylation (Vmax = 380 pmol/min/mg, Km = 0.69 μM) and (ω-1)-hydroxylation (Vmax = 126 pmol/min/mg, Km = 0.13 μM) reactions. This work illustrates important roles for CYP4-mediated ω-hydroxylation and CYP2D6/CYP4-mediated (ω-1)-hydroxylation during the hepatic elimination of BACs, an environmental contaminant of emerging concern. Furthermore, we demonstrate that CYP-mediated oxidation of C10-BAC mitigates the potent inhibition of cholesterol biosynthesis exhibited by this short-chain BAC.
Collapse
Affiliation(s)
- Ryan P. Seguin
- Department of Medicinal Chemistry, School of Pharmacy,
University of Washington, Seattle, Washington 98195
| | - Josi M. Herron
- Department of Environmental and Occupational Health
Sciences, School of Public Health, University of Washington, Seattle, Washington
98195
| | - Vanessa Lopez
- Department of Medicinal Chemistry, School of Pharmacy,
University of Washington, Seattle, Washington 98195
| | - Joseph L. Dempsey
- Department of Environmental and Occupational Health
Sciences, School of Public Health, University of Washington, Seattle, Washington
98195
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy,
University of Washington, Seattle, Washington 98195
- Department of Environmental and Occupational Health
Sciences, School of Public Health, University of Washington, Seattle, Washington
98195
| |
Collapse
|
9
|
Uehara S, Uno Y, Yamazaki H. The marmoset cytochrome P450 superfamily: Sequence/phylogenetic analyses, genomic structure, and catalytic function. Biochem Pharmacol 2019; 171:113721. [PMID: 31751534 DOI: 10.1016/j.bcp.2019.113721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Abstract
The common marmoset (Callithrix jacchus) is a New World monkey that has attracted much attention as a potentially useful primate model for preclinical testing. A total of 36 marmoset cytochrome P450 (P450) isoforms in the P450 1-51 subfamilies have been identified and characterized by the application of genome analysis and molecular functional characterization. In this mini-review, we provide an overview of the genomic structures, sequence identities, and substrate selectivities of marmoset P450s compared with those of human P450s. Based on the sequence identity, phylogeny, and genomic organization of marmoset P450s, orthologous relationships were established between human and marmoset P450s. Twenty-four members of the marmoset P450 1A, 2A, 2B, 2C, 2D, 2E, 3A, 4A, and 4F subfamilies shared high degrees of homology in terms of cDNA (>89%) and amino acid sequences (>85%) with the corresponding human P450s; P450 2C76 was among the exceptions. Phylogenetic analysis using amino acid sequences revealed that marmoset P450s in the P450 1-51 families were located in the same clades as their human and macaque P450 homologs. This finding underlines the evolutionary closeness of marmoset P450s to their human and macaque homologs. Most marmoset P450 1-4 enzymes catalyzed the typical drug-metabolizing reactions of the corresponding human P450 homologs, except for some differences of P450 2A6 and 2B6. Consequently, it appears that the substrate specificities of enzymes in the P450 1-4 families are generally similar in marmosets and humans. The information presented here supports a better understanding of the functional characteristics of marmoset P450s and their similarities and differences with human P450s. It is hoped that this mini-review will facilitate the successful use of marmosets as primate models in drug metabolism and pharmacokinetic studies.
Collapse
Affiliation(s)
- Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
10
|
Durairaj P, Fan L, Machalz D, Wolber G, Bureik M. Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett 2019; 593:2214-2225. [DOI: 10.1002/1873-3468.13489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry Computer‐Aided Drug Design Institute of Pharmacy Freie University Berlin Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry Computer‐Aided Drug Design Institute of Pharmacy Freie University Berlin Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| |
Collapse
|
11
|
Albertolle ME, Song HD, Wilkey CJ, Segrest JP, Guengerich FP. Glutamine-451 Confers Sensitivity to Oxidative Inhibition and Heme-Thiolate Sulfenylation of Cytochrome P450 4B1. Chem Res Toxicol 2019; 32:484-492. [PMID: 30701961 PMCID: PMC7279892 DOI: 10.1021/acs.chemrestox.8b00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (P450) family 4 enzymes are involved in the metabolism of fatty acids and the bioactivation of carcinogenic arylamines and toxic natural products, e.g., 4-ipomeanol. These and other drug-metabolizing P450s are redox sensitive, showing a loss of activity resulting from preincubation with H2O2 and recovery with mild reducing agents [Albertolle, M. W., et al. (2017) J. Biol. Chem. 292, 11230-11242]. The inhibition is due to sulfenylation of the heme-thiolate ligand, as determined by chemopreoteomics and spectroscopy. This phenomenon may have implications for chemical toxicity and observed disease-drug interactions, in which the decreased metabolism of P450 substrates occurs in patients with inflammatory diseases (e.g., influenza and autoimmunity). Human P450 1A2 was determined to be redox insensitive. To determine the mechanism underlying the differential redox sensitivity, molecular dynamics (MD) simulations were employed using the crystal structure of rabbit P450 4B1 (Protein Data Bank entry 5T6Q ). In simulating either the thiolate (Cys-S-) or the sulfenic acid (Cys-SOH) at the heme ligation site, MD revealed Gln-451 in either an "open" or "closed" conformation, respectively, between the cytosol and heme-thiolate cysteine. Mutation to either an isosteric leucine (Q451L) or glutamate (Q451E) abrogated the redox sensitivity, suggesting that this "open" conformation allows for reduction of the sulfenic acid and religation of the thiolate to the heme iron. In summary, MD simulations suggest that Gln-451 in P450 4B1 adopts conformations that may stabilize and protect the heme-thiolate sulfenic acid; mutating this residue destabilizes the interaction, producing a redox insensitive enzyme.
Collapse
Affiliation(s)
- Matthew E. Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Hyun D. Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, United States
| | - Clayton J. Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jere P. Segrest
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, United States
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
12
|
Abstract
Metformin elicits pleiotropic effects that are beneficial for treating diabetes, as well as particular cancers and aging. In spite of its importance, a convincing and unifying mechanism to explain how metformin operates is lacking. Here we describe investigations into the mechanism of metformin action through heme and hemoprotein(s). Metformin suppresses heme production by 50% in yeast, and this suppression requires mitochondria function, which is necessary for heme synthesis. At high concentrations comparable to those in the clinic, metformin also suppresses heme production in human erythrocytes, erythropoietic cells and hepatocytes by 30–50%; the heme-targeting drug artemisinin operates at a greater potency. Significantly, metformin prevents oxidation of heme in three protein scaffolds, cytochrome c, myoglobin and hemoglobin, with Kd values < 3 mM suggesting a dual oxidation and reduction role in the regulation of heme redox transition. Since heme- and porphyrin-like groups operate in diverse enzymes that control important metabolic processes, we suggest that metformin acts, at least in part, through stabilizing appropriate redox states in heme and other porphyrin-containing groups to control cellular metabolism.
Collapse
|
13
|
Li J, Zhang H, Liu G, Tang Y, Tu Y, Li W. Computational Insight Into Vitamin K 1 ω-Hydroxylation by Cytochrome P450 4F2. Front Pharmacol 2018; 9:1065. [PMID: 30319412 PMCID: PMC6167488 DOI: 10.3389/fphar.2018.01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022] Open
Abstract
Vitamin K1 (VK1) plays an important role in the modulation of bleeding disorders. It has been reported that ω-hydroxylation on the VK1 aliphatic chain is catalyzed by cytochrome P450 4F2 (CYP4F2), an enzyme responsible for the metabolism of eicosanoids. However, the mechanism of VK1 ω-hydroxylation by CYP4F2 has not been disclosed. In this study, we employed a combination of quantum mechanism (QM) calculations, homology modeling, molecular docking, molecular dynamics (MD) simulations, and combined quantum mechanism/molecular mechanism (QM/MM) calculations to investigate the metabolism profile of VK1 ω-hydroxylation. QM calculations based on the truncated VK1 model show that the energy barrier for ω-hydroxylation is about 6-25 kJ/mol higher than those at other potential sites of metabolism. However, results from the MD simulations indicate that hydroxylation at the ω-site is more favorable than at the other potential sites, which is in accordance with the experimental observation. The evaluation of MD simulations was further endorsed by the QM/MM calculation results. Our studies thus suggest that the active site residues of CYP4F2 play a determinant role in the ω-hydroxylation. Our results provide structural insights into the mechanism of VK1 ω-hydroxylation by CYP4F2 at the atomistic level and are helpful not only for characterizing the CYP4F2 functions but also for looking into the ω-hydroxylation mediated by other CYP4 enzymes.
Collapse
Affiliation(s)
- Junhao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hongxiao Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Stoyanova T, Lessigiarska I, Mikov M, Pajeva I, Yanev S. Xanthates As Useful Probes for Testing the Active Sites of Cytochromes P450 4A11 and 2E1. Front Pharmacol 2017; 8:672. [PMID: 29018344 PMCID: PMC5614966 DOI: 10.3389/fphar.2017.00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Xanthates (alkyl or aryl derivatives of dithiocarbonic acid) have been shown to be selective mechanism-based inactivators of cytochromes P450 2B1/2B6 and 2E1 due to covalent binding of a reactive intermediate to apoprotein after double hydrogen abstraction at α-carbon atom, suggesting interaction of the xanthate dithiocarbonic head with the enzyme heme. The structures of xanthates with a long alkyl chain are similar to the fatty acids. Saturated fatty acids (FA) such as lauric acid (LA), are metabolized by different cytochrome P450 isoforms to ω- and (ω-1)-hydroxy products, in humans done by CYP4A11 and CYP2E1, respectively. In the present study we aimed at elucidating the possible interactions of xanthates with two cytochrome P450 isoforms CYP4A11 and CYP2E1 involved in the metabolism of the FA. Our experiments showed that LA-ω-hydroxylation by CYP4A11 is inhibited in a competitive manner by xanthates with long alkyl chain (C12-xanthate being the most potent inhibitor). On the other hand LA-(ω-1)-hydroxylation reaction by purified CYP2E1 is inactivated by a mechanism-based type. The suggested differences in the interactions of C12-xanthate with the two cytochrome P450 isoforms were investigated by molecular modeling using docking approach. The results suggested that in CYP2E1 active site C12-xanthate coordinates to the heme with its most vulnerable dithiocarbonic head leading to a mechanism-based inactivation. In CYP4A11 xanthate alkyl chain is exposed to the heme, thus, a potenial ω-hydroxylated xanthate product could be formed, which could inhibit in a competitive manner the hydroxylation of LA. The observed differences of xanthates interactions with the active sites of the two similar cytochrome P450 isoforms (CYP4A11 and CYP2E1) involved in the metabolism of FA, which lead to different changes in the enzyme activity, suggest that xanthates can be used as probing tools for analyzing enzyme active sites when exploring useful and selective compounds influencing FA homeostasis.
Collapse
Affiliation(s)
- Tsveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Iglika Lessigiarska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi SadNovi Sad, Serbia
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Stanislav Yanev
- Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- *Correspondence: Stanislav Yanev,
| |
Collapse
|
15
|
Albertolle ME, Kim D, Nagy LD, Yun CH, Pozzi A, Savas Ü, Johnson EF, Guengerich FP. Heme-thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. J Biol Chem 2017; 292:11230-11242. [PMID: 28533430 DOI: 10.1074/jbc.m117.792200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450, CYP) 4A11 is a human fatty acid ω-hydroxylase that catalyzes the oxidation of arachidonic acid to the eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), which plays important roles in regulating blood pressure regulation. Variants of P450 4A11 have been associated with high blood pressure and resistance to anti-hypertensive drugs, and 20-HETE has both pro- and antihypertensive properties relating to increased vasoconstriction and natriuresis, respectively. These physiological activities are likely influenced by the redox environment, but the mechanisms are unclear. Here, we found that reducing agents (e.g. dithiothreitol and tris(2-carboxyethyl)phosphine) strongly enhanced the catalytic activity of P450 4A11, but not of 10 other human P450s tested. Conversely, added H2O2 attenuated P450 4A11 catalytic activity. Catalytic roles of five of the potentially eight implicated Cys residues of P450 4A11 were eliminated by site-directed mutagenesis. Using an isotope-coded dimedone/iododimedone-labeling strategy and mass spectrometry of peptides, we demonstrated that the heme-thiolate cysteine (Cys-457) is selectively sulfenylated in an H2O2 concentration-dependent manner. This sulfenylation could be reversed by reducing agents, including dithiothreitol and dithionite. Of note, we observed heme ligand cysteine sulfenylation of P450 4A11 ex vivo in kidneys and livers derived from CYP4A11 transgenic mice. We also detected sulfenylation of murine P450 4a12 and 4b1 heme peptides in kidneys. To our knowledge, reversible oxidation of the heme thiolate has not previously been observed in P450s and may have relevance for 20-HETE-mediated functions.
Collapse
Affiliation(s)
- Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Donghak Kim
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.,the Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Leslie D Nagy
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Chul-Ho Yun
- the School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Ambra Pozzi
- the Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602.,the Veterans Affairs Medical Center, Nashville, Tennessee 37232, and
| | - Üzen Savas
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Eric F Johnson
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146,
| |
Collapse
|
16
|
Biochemical analysis of recombinant CYP4A11 allelic variant enzymes: W126R, K276T and S353G. Drug Metab Pharmacokinet 2016; 31:445-450. [DOI: 10.1016/j.dmpk.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
17
|
Uehara S, Uno Y, Ishii S, Inoue T, Sasaki E, Yamazaki H. Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ω-hydroxylase expressed in liver and kidney tissues. Xenobiotica 2016; 47:553-561. [PMID: 27435360 DOI: 10.1080/00498254.2016.1206673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. A cDNA encoding novel cytochrome P450 (P450) 4A enzyme was cloned from marmoset livers by reverse transcription (RT)-polymerase chain reaction (PCR) based on the marmoset genome sequences. The amino acid sequence deduced from P450 4A11 cDNA contained consensus sequences of six substrate recognition sites and one heme-binding domain. 2. Marmoset P450 4A11, highly identical (85-88%) to cynomolgus monkey and human P450 4A enzymes, was grouped into the same cluster as cynomolgus monkey and human P450 4A enzymes by phylogenetic analysis. 3. The tissue distribution analyses by real-time RT PCR and immunoblotting demonstrated that marmoset P450 4A11 mRNA and proteins were expressed in kidneys and livers. Marmoset P450 4A11 enzyme heterologously expressed in Escherichia coli preferentially catalyzed the ω-hydroxylation of arachidonic acid and lauric acid, similar to cynomolgus monkey and human P450 4A11 enzymes. However, lauric acid ω-hydroxylation activity of marmoset P450 4A11 was low compared with those of marmoset liver microsomes. 4. These results indicated that novel marmoset P450 4A11 was also a fatty acid ω-hydroxylase expressed in kidneys and livers, with the same regioselectivity (at ω-position of fatty acid) as cynomolgus monkey and human P450 4A enzymes.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Sakura Ishii
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Takashi Inoue
- c Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Erika Sasaki
- c Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
18
|
Lin YW. The broad diversity of heme-protein cross-links: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:844-59. [DOI: 10.1016/j.bbapap.2015.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
|
19
|
Affiliation(s)
- Paul R Ortiz de Montellano
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 91158-2517
| |
Collapse
|
20
|
Kim D, Cha GS, Nagy LD, Yun CH, Guengerich FP. Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11. Biochemistry 2014; 53:6161-72. [PMID: 25203493 PMCID: PMC4188250 DOI: 10.1021/bi500710e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cytochrome P450 (P450) 4A11 is the
only functionally active subfamily
4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation
of fatty acids in liver and kidney; this process is not a major degradative
pathway, but at least one product, 20-hydroxyeicosatetraenoic acid,
has important signaling properties. We studied catalysis by P450 4A11
and the issue of rate-limiting steps using lauric acid ω-hydroxylation,
a prototypic substrate for this enzyme. Some individual reaction steps
were studied using pre-steady-state kinetic approaches. Substrate
and product binding and release were much faster than overall rates
of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid
and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments
yielded low but reproducible values (1.2–2) for 12-hydroxylation
with 12-2H-substituted lauric acid. However, considerable
“metabolic switching” to 11-hydroxylation was observed
with [12-2H3]lauric acid. Analysis of switching
results [Jones, J. P., et al. (1986) J. Am. Chem. Soc.108, 7074–7078] and the use of tritium KIE
analysis with [12-3H]lauric acid [Northrop, D. B. (1987) Methods Enzymol.87, 607–625] both
indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state
lauric acid ω-hydroxylation ∼2-fold; the apoprotein was
ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous
P450 mixed with O2. Collectively, the results indicate
that both the transfer of an electron to the ferrous·O2 complex and C–H bond-breaking limit the rate of P450 4A11
ω-oxidation.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | |
Collapse
|
21
|
Yoshigae Y, Kent UM, Hollenberg PF. Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H2O2-induced inactivation during electron transfer. Biochemistry 2013; 52:4636-47. [PMID: 23750736 DOI: 10.1021/bi4004843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly conserved threonine in the I-helix of cytochrome P450s has been suggested to play an important role in dioxygen activation, a critical step for catalytic turnover. However, subsequent studies with some P450s in which this highly conserved threonine was replaced by another residue such as alanine showed that significant catalytic activities were still retained when the variants were compared with the wild type enzymes. These results make the role of this residue unclear. We provide data here that suggest a novel role for this highly conserved threonine (Thr303) in the function of P450 2E1. We found that the P450 2E1 T303A mutant undergoes rapid autoinactivation in the reconstituted system during catalytic turnover when the electrons are provided by NADPH. This inactivation was much faster than that of the wild type P450 2E1 and was prevented by catalase. Both the P450 2E1 wild type and T303A mutants produce hydrogen peroxide during the incubations. The inactivation was accompanied by heme destruction with part of the heme becoming covalently attached to protein. The heme destruction was prevented by catalase or by the presence of substrate. Interestingly, this inactivation occurred much more rapidly in the presence of both an electron transfer system and hydrogen peroxide externally added to the enzyme. This accelerated inactivation during catalytic turnover was also found with a 2B4 T302A mutant, which corresponds to 2E1 T303A. Our results suggest that the conserved threonine in these P450s prevents rapid autoinactivation during the catalytic cycle and that this residue may be highly conserved in P450s since it allows them to remain catalytically active for longer periods of time.
Collapse
Affiliation(s)
- Yasushi Yoshigae
- Department of Pharmacology, The University of Michigan Medical School , 2301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | | | | |
Collapse
|
22
|
Edson KZ, Rettie AE. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr Top Med Chem 2013; 13:1429-40. [PMID: 23688133 PMCID: PMC4245146 DOI: 10.2174/15680266113139990110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 01/06/2023]
Abstract
The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20- hydroxyeicosatetraenoic acid, or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases.
Collapse
Affiliation(s)
- Katheryne Z. Edson
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195
| | - Allan E. Rettie
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, Phone: 206-685-0615, Fax: 206-685-3252
| |
Collapse
|
23
|
Waltham TN, Girvan HM, Butler CF, Rigby SR, Dunford AJ, Holt RA, Munro AW. Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3. Metallomics 2011; 3:369-78. [PMID: 21431175 DOI: 10.1039/c1mt00004g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ∼90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.
Collapse
Affiliation(s)
- Timothy N Waltham
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. http://www.manchester.ac.uk/research/Andrew.Munro/
| | | | | | | | | | | | | |
Collapse
|
24
|
Johnston JB, Ouellet H, Podust LM, Ortiz de Montellano PR. Structural control of cytochrome P450-catalyzed ω-hydroxylation. Arch Biochem Biophys 2011; 507:86-94. [PMID: 20727847 PMCID: PMC2997901 DOI: 10.1016/j.abb.2010.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/25/2022]
Abstract
The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C-H bond hydroxylation depends on the bond strength, and the primary C-H bond of a terminal methyl group is stronger than the secondary or tertiary C-H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C-H bond unless the protein structure specifically enforces primary C-H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω-1)-site.
Collapse
Affiliation(s)
- Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
| | - Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
| |
Collapse
|
25
|
Girvan HM, Levy CW, Williams P, Fisher K, Cheesman MR, Rigby SEJ, Leys D, Munro AW. Glutamate-haem ester bond formation is disfavoured in flavocytochrome P450 BM3: characterization of glutamate substitution mutants at the haem site of P450 BM3. Biochem J 2010; 427:455-66. [PMID: 20180779 DOI: 10.1042/bj20091603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Bacillus megaterium flavocytochrome P450 BM3 (CYP102A1) is a biotechnologically important cytochrome P450/P450 reductase fusion enzyme. Mutants I401E, F261E and L86E were engineered near the haem 5-methyl group, to explore the ability of the glutamate carboxylates to form ester linkages with the methyl group, as observed for eukaryotic CYP4 relatives. Although no covalent linkage was detected, mutants displayed marked alterations in substrate/inhibitor affinity, with L86E and I401E mutants having lower Kd values for arachidonic acid and dodecanoic (lauric) acid than WT (wild-type) BM3. All mutations induced positive shifts in haem Fe(III)/Fe(II) potential, with substrate-free I401E (-219 mV) being >170 mV more positive than WT BM3. The elevated potential stimulated FMN-to-haem electron transfer ~2-fold (to 473 s-1) in I401E, and resulted in stabilization of Fe(II)O2 complexes in the I401E and L86E P450s. EPR demonstrated some iron co-ordination by glutamate carboxylate in L86E and F261E mutants, indicating structural plasticity in the haem domains. The Fe(II)O2 complex is EPR-silent, probably resulting from antiferromagnetic coupling between Fe(III) and bound superoxide in a ferric superoxo species. Structural analysis of mutant haem domains revealed modest rearrangements, including altered haem propionate interactions that may underlie the thermodynamic perturbations observed. The mutant flavocytochromes demonstrated WT-like hydroxylation of dodecanoic acid, but regioselectivity was skewed towards omega-3 hydroxydodecanoate formation in F261E and towards omega-1 hydroxydodecanoate production in I401E. Our data point strongly to a likelihood that glutamate-haem linkages are disfavoured in this most catalytically efficient P450, possibly due to the absence of a methylene radical species during catalysis.
Collapse
Affiliation(s)
- Hazel M Girvan
- Manchester Interdisciplinary Biocentre, University of Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Malka O, Karunker I, Yeheskel A, Morin S, Hefetz A. The gene road to royalty - differential expression of hydroxylating genes in the mandibular glands of the honeybee. FEBS J 2009; 276:5481-90. [DOI: 10.1111/j.1742-4658.2009.07232.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Alvergnas M, Richert L, Blanchard N, Abadie C, Heyd B, Mantion G, Gallemann D, Martin H. Regulation of CYP4A expression by bezafibrate in primary culture of rat and human hepatocytes: interspecies difference and influence of N-acetylcysteine. Toxicol In Vitro 2009; 23:1259-67. [PMID: 19647067 DOI: 10.1016/j.tiv.2009.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
The effects of fibrates on cytochrome P450 4A (CYP4A) expression have not been clearly evaluated in human hepatocytes, human being reported as a non-responsive species. We have evaluated the effects of clofibrate, bezafibrate (BEZA), WY-14643, nafenopin and ciprofibrate at the concentration of 250 microM on CYP4A expression in primary cultures of rat and human hepatocytes. BEZA greatly induced mRNA expression in both species. Eight out of 10 human cultures responded to BEZA 250 microM. CYP4A-dependent activity was increased in rat, but not in human hepatocytes. The antioxidant N-acetylcysteine (Nac) enhanced the inducing effect of BEZA on mRNA expression, this potentialization being higher in human compared to rat hepatocytes. By contrast, Nac decreased the inducing effect of BEZA on CYP4A-dependent activity in rat and had either no effect or decreased the activity in BEZA-treated human hepatocytes. In conclusion, the cellular environment appears as an important parameter to take into account when studying CYP4A induction and could partly explain interspecies differences in the complex regulation of CYP4A expression.
Collapse
Affiliation(s)
- M Alvergnas
- Laboratoire de Toxicologie Cellulaire, EA 4267, UFR des Sciences Médicales et Pharmaceutiques, 25030 Besançon cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Han SH, Eun CY, Han JS, Chun YJ, Kim DH, Yun CH, Kim DH. Self-Sufficient Catalytic System of Human Cytochrome P450 4A11 and NADPH-P450 Reductase. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.2.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Jiang Y, Trnka MJ, Medzihradszky KF, Ouellet H, Wang Y, Ortiz de Montellano PR. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand. J Inorg Biochem 2009; 103:316-25. [PMID: 19135260 PMCID: PMC2762215 DOI: 10.1016/j.jinorgbio.2008.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 11/01/2008] [Accepted: 11/06/2008] [Indexed: 11/18/2022]
Abstract
To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.
Collapse
Affiliation(s)
- Yongying Jiang
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Katalin F. Medzihradszky
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Yongqiang Wang
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
30
|
Ortiz de Montellano PR. Mechanism and Role of Covalent Heme Binding in the CYP4 Family of P450 Enzymes and the Mammalian Peroxidases. Drug Metab Rev 2008; 40:405-26. [DOI: 10.1080/03602530802186439] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Baer BR, Kunze KL, Rettie AE. Mechanism of formation of the ester linkage between heme and Glu310 of CYP4B1: 18O protein labeling studies. Biochemistry 2007; 46:11598-605. [PMID: 17880109 PMCID: PMC3423087 DOI: 10.1021/bi701064b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytochrome P450s in the CYP4 family covalently bind their heme prosthetic group to a conserved acidic I-helix residue via an autocatalytic oxidation. This study was designed to evaluate the source of oxygen atoms in the covalent ester link in CYP4B1 enzymes labeled with [18O]glutamate and [18O]aspartate. The fate of the heavy isotope was then traced into wild-type CYP4B1 or the E310D mutant-derived 5-hydroxyhemes. Glutamate-containing tryptic peptides of wild-type CYP4B1 were found labeled to a level of 11-13% 18O. Base hydrolysis of labeled protein released 5-hydroxyheme which contained 12.8 +/- 1.9% 18O. Aspartate-containing peptides of the E310D mutant were labeled with 6.0-6.5% 18O, but as expected, no label was transmitted to recovered 5-hydroxyheme. These data demonstrate that the oxygen atom in 5-hydroxyheme derived from wild-type CYP4B1 originates in Glu310. Stoichiometric incorporation of the heavy isotope from the wild-type enzyme supports a perferryl-initiated carbocation mechanism for covalent heme formation in CYP4B1.
Collapse
Affiliation(s)
| | | | - Allan E. Rettie
- To whom correspondence should be addressed. Telephone: (206) 685-0615. Fax (206) 685-3252.
| |
Collapse
|
32
|
Kim D, Cryle MJ, De Voss JJ, Ortiz de Montellano PR. Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch Biochem Biophys 2007; 464:213-20. [PMID: 17400174 PMCID: PMC1993549 DOI: 10.1016/j.abb.2007.02.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Candida albicans contains 10 putative cytochrome P450 (CYP) genes coding for enzymes that appear to play important roles in fungal survival and virulence. Here, we report the characterization of CYP52A21, a putative alkane/fatty acid hydroxylase. The recombinant CYP52A21 protein containing a 6x(His)-tag was expressed in Escherichia coli and was purified. The purified protein, reconstituted with rat NADPH-cytochrome P450 reductase, omega-hydroxylated dodecanoic acid to give 12-hydroxydodecanoic acid, but to a lesser extent also catalyzed (omega-1)-hydroxylation to give 11-hydroxydodecanoic acid. When 12,12,12-d(3)-dodecanoic acid was used as the substrate, there was a major shift in the oxidation from the omega- to the (omega-1)-hydroxylated product. The regioselectivity of fatty acid hydroxylation was examined with the 12-iodo-, 12-bromo-, and 12-chlorododecanoic acids. Although all three 12-halododecanoic acids bound to CYP52A21 with similar affinities, the production of 12-oxododecanoic acid decreased as the size of the terminal halide increased. The regioselectivity of CYP52A21 fatty acid oxidation is thus consistent with presentation of the terminal end of the fatty acid chain for oxidation via a narrow channel that limits access to other atoms of the fatty acid chain. This constricted access, in contrast to that proposed for the CYP4A family of enzymes, does not involve covalent binding of the heme to the protein.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517
| | - Max J. Cryle
- Chemistry, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - James J. De Voss
- Chemistry, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Australia 4072
| | | |
Collapse
|
33
|
Niimi S, Kim EY, Iwata H, Watanabe MX, Yasunaga G, Fujise Y, Tanabe S. Identification and hepatic expression profiles of cytochrome P450 1–4 isozymes in common minke whales (Balaenoptera acutorostrata). Comp Biochem Physiol B Biochem Mol Biol 2007; 147:667-81. [PMID: 17526421 DOI: 10.1016/j.cbpb.2007.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/27/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Full-length cDNA sequences of cytochrome P450 (CYP) 2C78, 2E1, 3A72, 4A35 and 4V6 isozymes were isolated from a hepatic cDNA library of common minke whale (Balaenoptera acutorostrata). The deduced amino acid sequences of minke whale CYP2C78, 2E1, 3A72, 4A35 and 4V6 showed high identities with cattle CYP2C86 (83%), pig CYP2E1 (85%), sheep CYP3A24 (82%), pig CYP4A21 (80%), and human CYP4V2 (76%), respectively. To investigate whether or not these CYP expression levels are altered by contamination of organochlorine contaminants (OCs), mRNA levels of these CYPs in the liver of common minke whale were measured using a quantitative real-time RT-PCR method, and the quantified mRNA levels were employed for the statistical analysis with the residue levels of OCs including PCBs, DDTs (p,p'-DDT, p,p'-DDD and p,p'-DDE), chlordanes (cis-chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor and oxychlordane), HCHs (alpha-, beta- and gamma-isomers) and hexachlorobenzene that have already been reported elsewhere. Spearman's rank correlation analyses showed no significant correlation between CYP expression levels and each OC level in the common minke whale liver, implying that these environmental chemicals have no potential to alter the expression levels of these CYPs or the residue levels encountered in the whale livers may not reach their transcriptional regulation levels. This suggests that the expression of individual CYPs in the whale liver may be at basal level. Relationships among hepatic mRNA expression levels of these CYP2-4 isozymes together with CYP1A1 and CYP1A2 were also examined. Significant positive correlations were detected among mRNA expression levels of individual CYP isozymes in most cases. These associations indicate that the transcriptional regulation of these CYPs examined in this study may be reciprocally related. CYP1A1 levels showed a positive correlation with CYP1A2 levels (r=0.64, p<0.01) indicating that both CYP isozymes were regulated by aryl hydrocarbon receptor activated by endogenous ligands. A strong positive correlation between CYP2C78 and 3A72 (r=0.90, p<0.001) suggests that expression of these CYP isozymes may be under a regulation mechanism of cross-talk in which specific nuclear receptors such as constitutive androstane receptor and pregnane X receptor are involved. The present study indicates that minke whale from the North Pacific may be a model species to investigate the mechanism of basal regulation of these CYPs.
Collapse
Affiliation(s)
- Satoko Niimi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Baer BR, Rettie AE. CYP4B1: an enigmatic P450 at the interface between xenobiotic and endobiotic metabolism. Drug Metab Rev 2006; 38:451-76. [PMID: 16877261 DOI: 10.1080/03602530600688503] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CYP4B1 belongs to the mammalian CYP4 enzyme family that also includes CYP4A, 4F, 4V, 4X, and 4Z subfamilies. CYP4B1 shares with other CYP4 proteins a capacity to omega-hydroxylate medium-chain fatty acids, which may be related to an endogenous role for the enzyme. CYP4B1 also participates in the metabolism of certain xenobiotics that are protoxic, including valproic acid, 3-methylindole, 4-ipomeanol, 3-methoxy-4-aminoazobenzene, and numerous aromatic amines. Although these compounds have little in common structurally or chemically, their metabolism by CYP4B1 leads to tissue-specific toxicities in several experimental animals. The bioactivation capabilities of rabbit CYP4B1 have also attracted attention in the cancer community and form the basis of a potential therapeutic strategy involving prodrug activation by the CYP4B1 transgene. The metabolic capabilities of human CYP4B1 are less clear due to difficulties in heterologous expression and existence of alternatively spliced products. Also, many CYP4B1 enzymes covalently bind their heme, a posttranslational modification unique to the CYP4 family of P450s, but common to the mammalian peroxidases. These varied characteristics render CYP4B1 an interesting and enigmatic investigational target.
Collapse
Affiliation(s)
- Brian R Baer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
35
|
Ngo SNT, McKinnon RA, Stupans I. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15. Gene 2006; 376:123-32. [PMID: 16677781 DOI: 10.1016/j.gene.2006.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/14/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta-actin mRNA species, much stronger CYP4A mRNA signal was detected for koala liver relative to rat and human. In Southern blot analysis of EcoR 1-digested genomic DNAs, using the same koala CYP4A15 cDNA probe, the size of CYP4A gene fragments observed for the koala and other species were different, suggested a different CYP4A gene organization across species. Collectively, this study provides primary molecular data regarding koala CYP4A15 gene. The possibility that there may be higher CYP4A15 expression in the koala liver could not be excluded.
Collapse
Affiliation(s)
- Suong Ngoc Thi Ngo
- Sansom Institute, School of Pharmacy and Medical Sciences, City East Campus, University of South Australia, North Terrace, Adelaide, SA 5000, Australia.
| | | | | |
Collapse
|
36
|
Graham RA, Goodwin B, Merrihew RV, Krol WL, Lecluyse EL. Cloning, Tissue Expression, and Regulation of Beagle Dog CYP4A Genes. Toxicol Sci 2006; 92:356-67. [PMID: 16675513 DOI: 10.1093/toxsci/kfl009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to its function as a fatty acid hydroxylase, the peroxisome proliferator-activated receptor alpha (PPARalpha) target gene, CYP4A, has been shown to be important in the conversion of arachidonic acid to the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid, suggesting a role for this enzyme in mediating vascular tone. In the present study, the cDNA sequence of beagle dog CYP4A37, CYP4A38, and CYP4A39 from the liver was determined. Open reading frame analysis predicted that CYP4A37, CYP4A38, and CYP4A39 each comprised 510 amino acids with approximately 90% sequence identity to one another, and approximately 71 and 78% sequence identity to rat CYP4A1 and human CYP4A11, respectively. PCR analysis revealed that the three dog CYP4A isoforms are expressed in kidney > liver >> lung >> intestine > skeletal muscle > heart. Treatment of primary dog hepatocytes with the PPARalpha agonists GW7647X and clofibric acid resulted in an increase in CYP4A37, CYP4A38, and CYP4A39 mRNA expression (up to fourfold), whereas HMG-CoA synthase mRNA expression was increased to a greater extent (up to 10-fold). These results suggest that dog CYP4A37, CYP4A38, and CYP4A39 are expressed in a tissue-dependent manner and that beagle dog CYP4A is not highly inducible by PPARalpha agonists, similar to the human CYP4A11 gene.
Collapse
Affiliation(s)
- Richard A Graham
- Division of Molecular Pharmaceutics, School of Pharmacy, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | |
Collapse
|
37
|
Baer BR, Schuman JT, Campbell AP, Cheesman MJ, Nakano M, Moguilevsky N, Kunze KL, Rettie AE. Sites of covalent attachment of CYP4 enzymes to heme: evidence for microheterogeneity of P450 heme orientation. Biochemistry 2006; 44:13914-20. [PMID: 16229480 DOI: 10.1021/bi051267j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Typical cytochrome P450s secure the heme prosthetic group with a cysteine thiolate ligand bound to the iron, electrostatic interactions with the heme propionate carboxylates, and hydrophobic interactions with the heme periphery. In addition to these interactions, CYP4B1 covalently binds heme through a monoester link furnished, in part, by a conserved I-helix acid, Glu310. Chromatography, mass spectrometry, and NMR have now been utilized to identify the site of attachment on the heme. Native CYP4B1 covalently binds heme solely at the C-5 methyl position. Unexpectedly, recombinant CYP4B1 from insect cells and Escherichia coli also bound their heme covalently at the C-8 methyl position. Structural heterogeneity may be common among recombinant CYP4 proteins because CYP4A3 exhibited this duality. Attempts to evaluate functional heterogeneity were complicated by the complexity of the system. The phenomenon of covalent heme binding to P450 provides a novel method for assessing microheterogeneity in heme orientation and raises questions about the fidelity of heme incorporation in recombinant systems.
Collapse
Affiliation(s)
- Brian R Baer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang L, Ortiz de Montellano PR. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation. Arch Biochem Biophys 2006; 446:77-83. [PMID: 16375846 DOI: 10.1016/j.abb.2005.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
Plant peroxidases, as typified by horseradish peroxidase (HRP), primarily catalyze the one-electron oxidation of phenols and other low oxidation potential substrates. In contrast, the mammalian homologues such as lactoperoxidase (LPO) and myeloperoxidase primarily oxidize halides and pseudohalides to the corresponding hypohalides (e.g., Br(-) to HOBr, Cl(-) to HOCl). A further feature that distinguishes the mammalian from the plant and fungal enzymes is the presence of two or more covalent bonds between the heme and the protein only in the mammalian enzymes. The functional roles of these covalent links in mammalian peroxidases remain uncertain. We have previously reported that HRP can oxidize chloride and bromide ions, but during oxidation of these ions undergoes autocatalytic modification of its heme vinyl groups that virtually inactivates the enzyme. We report here that autocatalytic heme modification during halide oxidation is not unique to HRP but is a general feature of the oxidation of halide ions by fungal and plant peroxidases, as illustrated by studies with Arthromyces ramosus and soybean peroxidases. In contrast, LPO, a prototypical mammalian peroxidase, is protected from heme modification and its heme remains intact during the oxidation of halide ions. These results support the hypothesis that the covalent heme-protein links in the mammalian peroxidases protect the heme from modification during the oxidation of halide ions.
Collapse
Affiliation(s)
- Liusheng Huang
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
39
|
Abstract
Cytochromes P450 are a ubiquitous group of hemoproteins that perform vital cellular reactions in all lifeforms. Until recently, it was thought that P450s contained non-covalently bound heme. However, it was established that covalent linkage of the heme macrocycle occurs naturally in one major group of the P450 superfamily. The reaction involves heme linkage to a conserved amino acid and is autocatalytic, occurring as a consequence of P450 turnover. This finding presents opportunities to engineer biotechnologically important P450s to covalently link the heme, in order to stabilize cofactor binding and to enhance operational stability of these P450s. This opportunity has been taken in studies on two important bacterial P450s and has produced variants with intriguingly different properties. In this article we survey the developments in the field, the relationships with heme macrocycle ligations in other proteins and the important impact that recent studies of heme ligation have had on our general appreciation of P450 structure and mechanism.
Collapse
Affiliation(s)
- Harriet E Seward
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, UK LE1 9HN.
| | | | | |
Collapse
|
40
|
Stark K, Wongsud B, Burman R, Oliw EH. Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8. Arch Biochem Biophys 2005; 441:174-81. [PMID: 16112640 DOI: 10.1016/j.abb.2005.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Recombinant CYP4F8 and CYP4F12 metabolize prostaglandin H2 (PGH2) analogs by omega2- and omega3-hydroxylation and arachidonic acid (20:4n-6) by omega3-hydroxylation. CYP4F8 was found to catalyze epoxidation of docosahexaenoic acid (22:6n-3) and docosapentaenoic acid (22:5n-3) and omega3-hydroxylation of 22:5n-6. CYP4F12 oxidized 22:6n-3 and 22:5n-3 in the same way, but 22:5n-6 was a poor substrate. The products were identified by liquid chromatography-mass spectrometry. The missense mutation 374A>T of CYP4F8 (Tyr125Phe in substrate recognition site-1 (SRS-1)) occurs in low frequency. This variant oxidized two PGH2 analogs, U-51605 and U-44069, in analogy with CYP4F8, but 20:4n-6 and 22:5n-6 were not oxidized. CYP4F enzymes with omega-hydroxylase activity contain a heme-binding Glu residue, whereas CYP4F8 (and CYP4F12) with omega2- and omega 3-hydroxylase activities has a Gly residue in this position of SRS-4. The mutant CYP4F8 Gly328Glu oxidized U-51605 and U-44069 as recombinant CYP4F8, but the hydroxylation of arachidonic acid was shifted from C-18 to C-19. Single amino acid substitutions in SRS-1 and SRS-4 of CYP4F8 may thus influence oxygenation of certain substrates. We conclude that CYP4F8 and CYP4F12 catalyze epoxidation of 22:6n-3 and 22:5n-3, and CYP4F8 omega3-hydroxylation of 22:5n-6.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
41
|
Huang L, Colas C, Ortiz de Montellano PR. Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation. J Am Chem Soc 2005; 126:12865-73. [PMID: 15469283 DOI: 10.1021/ja046455w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hemoproteins are powerful oxidative catalysts. However, despite the diversity of functions known to be susceptible to oxidation by these catalysts, it is not known whether they can oxidize carboxylic acids to carboxylic radicals. We report here that incubation of horseradish peroxidase (HRP) at acidic pH with H(2)O(2) in acetate buffer results in rapid modification of the heme group and loss of catalytic activity. Mass spectrometry and NMR indicate that an acetoxy group is covalently bound to the delta-meso-carbon in the modified heme. A heme with a hydroxyl group on the 8-methyl is also formed as a minor product. These reactions do not occur if protein-free heme and H(2)O(2) are co-incubated in acetate buffer, if the HRP reaction is carried out at pH 7, in the absence of H(2)O(2), or if citrate rather than acetate buffer is used. A similar heme modification is observed in incubations with n-caproic and phenylacetic acids. A mechanism involving oxidation of the carboxyl group to a carboxylic radical followed by addition to the delta-meso-position is proposed. This demonstration of the oxidation of a carboxylic acid solidifies the proposal that a carboxylic radical mediates the normal covalent attachment of the heme to the protein in the mammalian peroxidases and CYP4 family of P450 enzymes. The hemoprotein-mediated oxidation of carboxylic acids, ubiquitous natural constituents, may play other roles in biology.
Collapse
Affiliation(s)
- Liusheng Huang
- Contribution from the Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94143-2280, USA
| | | | | |
Collapse
|
42
|
Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol 2005; 45:413-38. [PMID: 15822183 DOI: 10.1146/annurev.pharmtox.45.120403.100045] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-catalyzed metabolism of arachidonic acid is an important pathway for the formation of paracrine and autocrine mediators of numerous biological effects. The omega-hydroxylation of arachidonic acid generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in numerous tissues, particularly the vasculature and kidney tubules. Members of the cytochrome P450 4A and 4F families are the major omega-hydroxylases, and the substrate selectivity and regulation of these enzymes has been the subject of numerous studies. Altered expression and function of arachidonic acid omega-hydroxylases in models of hypertension, diabetes, inflammation, and pregnancy suggest that 20-HETE may be involved in the pathogenesis of these diseases. Our understanding of the biological significance of 20-HETE has been greatly aided by the development and characterization of selective and potent inhibitors of the arachidonic acid omega-hydroxylases. This review discusses the substrate selectivity and expression of arachidonic acid omega-hydroxylases, regulation of these enzymes during disease, and the application of enzyme inhibitors to study 20-HETE function.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-2911, USA.
| | | |
Collapse
|
43
|
Vatsis KP, Peng HM, Coon MJ. Abolition of oxygenase function, retention of NADPH oxidase activity, and emergence of peroxidase activity upon replacement of the axial cysteine-436 ligand by histidine in cytochrome P450 2B4. Arch Biochem Biophys 2005; 434:128-38. [PMID: 15629116 DOI: 10.1016/j.abb.2004.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/14/2004] [Indexed: 11/22/2022]
Abstract
A fundamental aspect of cytochrome P450 function is the role of the strictly conserved axial cysteine ligand, replacement of which by histidine has invariably resulted in mammalian and bacterial preparations devoid of heme. Isolation of the His-436 variant of NH2-truncated P450 2B4 partly as the holoenzyme was achieved in the present study by mutagenesis of the I-helix Ala-298 residue to Glu and subsequent conversion of the axial Cys-436 to His. The expressed A298E/C436H double mutant, cloned with a hexahistidine tag, had a molecular mass equivalent to that of the primary structure of His-tagged truncated 2B4 and the sum of the two mutated residues, and contained a heme group which, when released on HPLC, showed a retention time and spectrum identical to those of iron protoporphyrin IX. The absolute spectra of A298E/C436H indicate a change in heme coordination structure from low- to high-spin, and, as expected for a His-ligated hemeprotein, the Soret maximum of the ferrous CO complex is at 422 nm. The double mutant has no oxygenase activity with representative substrates known to undergo transformation by the oxene [(FeO)3+] or peroxo activated oxygen species, but catalyzes significant H2O2 formation that is NADPH- and time-dependent, and directly proportional to the concentration of A298E/C436H in the presence of saturating reductase. Moreover, the catalytic efficiency of A298E/C436H in the H2O2-supported peroxidation of pyrogallol is more than two orders of magnitude greater than that of wild-type 2B4 or the A298E variant. The results unambiguously demonstrate that the proximal thiolate ligand is essential for substrate oxygenation by P450.
Collapse
Affiliation(s)
- Kostas P Vatsis
- Department of Biological Chemistry, Medical School, The University of Michigan, Ann Arbor, MI 48109-0606, USA.
| | | | | |
Collapse
|
44
|
Lundell K. The porcine taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21) gene: evolution by gene duplication and gene conversion. Biochem J 2004; 378:1053-8. [PMID: 14641109 PMCID: PMC1224006 DOI: 10.1042/bj20031657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 11/25/2003] [Indexed: 11/17/2022]
Abstract
Porcine taurochenodeoxycholic acid 6alpha-hydroxylase, cytochrome P450 4A21 (CYP4A21), differs from other members of the CYP4A subfamily in terms of structural features and catalytic activity. CYP4A21 participates in the formation of hyocholic acid, a species-specific primary bile acid in the pig. The CYP4A21 gene was investigated and found to be approx. 13 kb in size and split into 12 exons. The intron-exon organization of the CYP4A21 gene corresponds to that of CYP4A fatty acid hydroxylase genes in other species. Comparison with a genomic segment of a pig CYP4A fatty acid hydroxylase gene ( CYP4A24 ) revealed a sequence identity with CYP4A21 that extends beyond the exons, indicating a common origin by gene duplication. A pronounced sequence identity was found also within the proximal 5'-flanking regions, whereas the patterns of mRNA expression of CYP4A21 and CYP4A fatty acid hydroxylases in pig liver differ. Sequence comparison aiming to elucidate the origin of the unique features of CYP4A21 revealed a region of decreased sequence identity from exon 6 to exon 8, strongly suggesting that gene conversion could have contributed to the evolution of CYP4A21.
Collapse
Affiliation(s)
- Kerstin Lundell
- Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden.
| |
Collapse
|
45
|
Colas C, De Montellano PRO. Horseradish Peroxidase Mutants That Autocatalytically Modify Their Prosthetic Heme Group. J Biol Chem 2004; 279:24131-40. [PMID: 15039425 DOI: 10.1074/jbc.m401687200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammalian peroxidases, including myeloperoxidase and lactoperoxidase, bind their prosthetic heme covalently through ester bonds to two of the heme methyl groups. These bonds are autocatalytically formed. No other peroxidase is known to form such bonds. To determine whether features other than an appropriately placed carboxylic acid residue are important for covalent heme binding, we have introduced aspartate and/or glutamic acid residues into horseradish peroxidase, a plant enzyme that exhibits essentially no sequence identity with the mammalian peroxidases. Based on superposition of the horseradish peroxidase and myeloperoxidase structures, the mutated residues were Leu(37), Phe(41), Gly(69), and Ser(73). The F41E mutant was isolated with no covalently bound heme, but the heme was completely covalently bound upon incubation with H(2)O(2). As predicted, the modified heme released from the protein was 3-hydroxymethylheme. The S73E mutant did not covalently bind its heme but oxidized it to the 8-hydroxymethyl derivative. The hydroxyl group in this modified heme derived from the medium. The other mutations gave unstable proteins. The rate of compound I formation for the F41E mutant was 100 times faster after covalent bond formation, but the reduction of compound I to compound II was similar with and without the covalent bond. The results clearly establish that an appropriately situated carboxylic acid group is sufficient for covalent heme attachment, strengthen the proposed mechanism, and suggest that covalent heme attachment in the mammalian peroxidases relates to peroxidase biology or stability rather than to intrinsic catalytic properties.
Collapse
Affiliation(s)
- Christophe Colas
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | |
Collapse
|
46
|
Kim D, Guengerich FP. Selection of human cytochrome P450 1A2 mutants with enhanced catalytic activity for heterocyclic amine N-hydroxylation. Biochemistry 2004; 43:981-8. [PMID: 14744142 DOI: 10.1021/bi035593f] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 (P450) 1A2 is the major enzyme involved in the metabolism of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline (MeIQ) and other heterocyclic arylamines and their bioactivation to mutagens. Random mutant libraries of human P450 1A2, in which mutations were made throughout the entire open reading frame, were screened with Escherichia coli DJ3109pNM12, a strain designed to bioactivate MeIQ and detect mutagenicity of the products. Mutant clones with enhanced activity were confirmed using quantitative measurement of MeIQ N-hydroxylation. Three consecutive rounds of random mutagenesis and screening were performed and yielded a highly improved P450 1A2 mutant, SF513 (E225N/Q258H/G437D), with >10-fold increased MeIQ activation based on the E. coli genotoxicity assay and 12-fold enhanced catalytic efficiency (k(cat)/K(m)) in steady-state N-hydroxylation assays done with isolated membrane fractions. SF513 displayed selectively enhanced activity for MeIQ compared to other heterocyclic arylamines. The enhanced catalytic activity was not attributed to changes in any of several individual steps examined, including substrate binding, total NADPH oxidation, or H(2)O(2) formation. Homology modeling based on an X-ray structure of rabbit P450 2C5 suggested that the E225N and Q258H mutations are located in the F-helix and G-helix, respectively, and that the G437D mutation is in the "meander" region, apparently rather distant from the substrate. In summary, the approach generated a mutant enzyme with selectively elevated activity for a single substrate, even to the extent of a difference of a single methyl group, and several mutations had interacting roles in the development of the selected mutant protein.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
47
|
Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, Smith WE, Cheesman MR, Munro AW. Flavocytochrome P450 BM3 Mutant A264E Undergoes Substrate-dependent Formation of a Novel Heme Iron Ligand Set. J Biol Chem 2004; 279:23274-86. [PMID: 15020591 DOI: 10.1074/jbc.m401716200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).
Collapse
Affiliation(s)
- Hazel M Girvan
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Linda Thöny-Meyer
- Institut für Mikrobiologie, Departement Biologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
49
|
Cheesman MJ, Baer BR, Zheng YM, Gillam EMJ, Rettie AE. Rabbit CYP4B1 engineered for high-level expression in Escherichia coli: ligand stabilization and processing of the N-terminus and heme prosthetic group. Arch Biochem Biophys 2003; 416:17-24. [PMID: 12859977 DOI: 10.1016/s0003-9861(03)00278-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hemoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme.
Collapse
Affiliation(s)
- Matthew J Cheesman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
50
|
Colas C, Ortiz de Montellano PR. Autocatalytic radical reactions in physiological prosthetic heme modification. Chem Rev 2003; 103:2305-32. [PMID: 12797831 DOI: 10.1021/cr0204303] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christophe Colas
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|