1
|
Xing A, Wang F, Liu J, Zhang Y, He J, Zhao B, Sun B. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med 2025; 23:269-285. [PMID: 40122658 DOI: 10.1016/s1875-5364(25)60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 03/25/2025]
Abstract
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Collapse
Affiliation(s)
- Aili Xing
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Feng Wang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jinzhong Liu
- Preventive Dentistry, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jingya He
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Bin Zhao
- Periodontics, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| | - Bin Sun
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Vrzalova A, Vrzal R. Orchestra of ligand-activated transcription factors in the molecular symphony of SERPINE 1 / PAI-1 gene regulation. Biochimie 2025; 228:138-157. [PMID: 39321911 DOI: 10.1016/j.biochi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a crucial serine protease inhibitor that prevents plasminogen activation by inhibiting tissue- and urokinase-type plasminogen activators (tPA, uPA). PAI-1 is well-known for its role in modulating hemocoagulation or extracellular matrix formation by inhibiting plasmin or matrix metalloproteinases, respectively. PAI-1 is induced by pro-inflammatory cytokines across various tissues, yet its regulation by ligand-activated transcription factors is partly disregarded. Therefore, we have attempted to summarize the current knowledge on the transcriptional regulation of PAI-1 expression by the most relevant xenobiotic and endocrine receptors implicated in modulating PAI-1 levels. This review aims to contribute to the understanding of the specific, often tissue-dependent regulation of PAI-1 and provide insights into the modulation of PAI-1 levels beyond its direct inhibition.
Collapse
Affiliation(s)
- Aneta Vrzalova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Chermiti R, Burtey S, Dou L. Role of Uremic Toxins in Vascular Inflammation Associated with Chronic Kidney Disease. J Clin Med 2024; 13:7149. [PMID: 39685608 DOI: 10.3390/jcm13237149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling. The uremic toxins that accumulate as kidney function declines are key contributors to vascular inflammatory processes. Our review will examine how CKD leads to vascular inflammation, paving the way to CVD. We will provide an overview of the mechanisms of vascular inflammation induced by uremic toxins, with a particular focus on those derived from tryptophan metabolism. These toxins, along with their receptor, the aryl hydrocarbon receptor (AHR), have emerged as key players linking inflammation and thrombosis. A deeper understanding of the mechanisms underlying inflammation in CKD, particularly those driven by uremic toxins, could reveal valuable therapeutic targets to alleviate the burden of CVD in CKD patients.
Collapse
Affiliation(s)
- Rania Chermiti
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| | - Stéphane Burtey
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
- Centre de Néphrologie et Transplantation Rénale, APHM, Hôpital Conception, 13005 Marseille, France
| | - Laetitia Dou
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| |
Collapse
|
4
|
Graelmann FJ, Gondorf F, Majlesain Y, Niemann B, Klepac K, Gosejacob D, Gottschalk M, Mayer M, Iriady I, Hatzfeld P, Lindenberg SK, Wunderling K, Thiele C, Abdullah Z, He W, Hiller K, Händler K, Beyer MD, Ulas T, Pfeifer A, Esser C, Weighardt H, Förster I, Reverte-Salisa L. Differential cell type-specific function of the aryl hydrocarbon receptor and its repressor in diet-induced obesity and fibrosis. Mol Metab 2024; 85:101963. [PMID: 38821174 PMCID: PMC11214421 DOI: 10.1016/j.molmet.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.
Collapse
Affiliation(s)
- Frederike J Graelmann
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Katarina Klepac
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Dominic Gosejacob
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Michelle Mayer
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Irina Iriady
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Philip Hatzfeld
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Sophie K Lindenberg
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Klaus Wunderling
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Christoph Thiele
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Germany
| | - Wei He
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Händler
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562 Lübeck, Germany
| | - Marc D Beyer
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Thomas Ulas
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| | - Laia Reverte-Salisa
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| |
Collapse
|
5
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
6
|
Karbowska M, Pawlak K, Sieklucka B, Domaniewski T, Lebkowska U, Zawadzki R, Pawlak D. Dose-dependent exposure to indoxyl sulfate alters AHR signaling, sirtuins gene expression, oxidative DNA damage, and bone mineral status in rats. Sci Rep 2024; 14:2583. [PMID: 38297036 PMCID: PMC10831046 DOI: 10.1038/s41598-024-53164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Indoxyl sulfate (IS), an agonist of aryl hydrocarbon receptors (AhR), can accumulate in patients with chronic kidney disease, but its direct effect on bone is not clear. The present study investigated the effect of chronic exposure to low (100 mg/kg b.w.; 100 IS) and high (200 mg/kg b.w.; 200 IS) dose of IS on bone AhR pathway, sirtuins (SIRTs) expression, oxidative DNA damage and bone mineral status in Wistar rats. The accumulation of IS was observed only in trabecular bone tissue in both doses. The differences were observed in the bone parameters, depending on the applied IS dose. The exposure to 100 IS increased AhR repressor (AhRR)-CYP1A2 gene expression, which was associated with SIRT-1, SIRT-3 and SIRT-7 expression. At the low dose group, the oxidative DNA damage marker was unchanged in the bone samples, and it was inversely related to the abovementioned SIRTs expression. In contrast, the exposure to 200 IS reduced the expression of AhRR, CYP1A, SIRT-3 and SIRT-7 genes compared to 100 IS. The level of oxidative DNA damage was higher in trabecular bone in 200 IS group. Femoral bone mineral density was decreased, and inverse relations were noticed between the level of trabecular oxidative DNA damage and parameters of bone mineral status. In conclusion, IS modulates AhR-depending signaling affecting SIRTs expression, oxidative DNA damage and bone mineral status in a dose dependent manner.
Collapse
Affiliation(s)
- Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland.
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Urszula Lebkowska
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Radoslaw Zawadzki
- Department of Radiology, Medical University of Bialystok, Białystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
7
|
Lunjani N, Ambikan AT, Hlela C, Levin M, Mankahla A, Heldstab‐Kast JI, Boonpiyathad T, Tan G, Altunbulakli C, Gray C, Nadeau KC, Neogi U, Akdis CA, O'Mahony L. Rural and urban exposures shape early life immune development in South African children with atopic dermatitis and nonallergic children. Allergy 2024; 79:65-79. [PMID: 37534631 PMCID: PMC10952395 DOI: 10.1111/all.15832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Immunological traits and functions have been consistently associated with environmental exposures and are thought to shape allergic disease susceptibility and protection. In particular, specific exposures in early life may have more significant effects on the developing immune system, with potentially long-term impacts. METHODS We performed RNA-Seq on peripheral blood mononuclear cells (PBMCs) from 150 children with atopic dermatitis and healthy nonallergic children in rural and urban settings from the same ethnolinguistic AmaXhosa background in South Africa. We measured environmental exposures using questionnaires. RESULTS A distinct PBMC gene expression pattern was observed in those children with atopic dermatitis (132 differentially expressed genes [DEGs]). However, the predominant influences on the immune cell transcriptome were related to early life exposures including animals, time outdoors, and types of cooking and heating fuels. Sample clustering revealed two rural groups (Rural_1 and Rural_2) that separated from the urban group (3413 and 2647 DEGs, respectively). The most significantly regulated pathways in Rural_1 children were related to innate activation of the immune system (e.g., TLR and cytokine signaling), changes in lymphocyte polarization (e.g., TH17 cells), and immune cell metabolism (i.e., oxidative phosphorylation). The Rural_2 group displayed evidence for ongoing lymphocyte activation (e.g., T cell receptor signaling), with changes in immune cell survival and proliferation (e.g., mTOR signaling, insulin signaling). CONCLUSIONS This study highlights the importance of the exposome on immune development in early life and identifies potentially protective (e.g., animal) exposures and potentially detrimental (e.g., pollutant) exposures that impact key immunological pathways.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Division of DermatologyUniversity of Cape TownCape TownSouth Africa
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Anoop T. Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska Institute, ANA FuturaStockholmSweden
| | - Carol Hlela
- Division of DermatologyUniversity of Cape TownCape TownSouth Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child HealthUniversity of Cape TownCape TownSouth Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and PharmacologyWalter Sisulu UniversityMthathaEastern CapeSouth Africa
| | | | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Clive Gray
- Division of ImmunologyUniversity of Cape TownCape TownSouth Africa
| | - Kari C. Nadeau
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska Institute, ANA FuturaStockholmSweden
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| |
Collapse
|
8
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
9
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
10
|
Riddick DS. Fifty Years of Aryl Hydrocarbon Receptor Research as Reflected in the Pages of Drug Metabolism and Disposition. Drug Metab Dispos 2023; 51:657-671. [PMID: 36653119 DOI: 10.1124/dmd.122.001009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The induction of multiple drug-metabolizing enzymes by halogenated and polycyclic aromatic hydrocarbon toxicants is mediated by the aryl hydrocarbon receptor (AHR). This fascinating receptor also has natural dietary and endogenous ligands, and much is now appreciated about the AHR's developmental and physiologic roles, as well as its importance in cancer and other diseases. The past several years has witnessed increasing emphasis on understanding the multifaceted roles of the AHR in the immune system. Most would agree that the "discovery" of the AHR occurred in 1976, with the report of specific binding of a high affinity radioligand in mouse liver, just three years after the launch of the journal Drug Metabolism and Disposition (DMD) in 1973. Over the ensuing 50 years, the AHR and DMD have led parallel and often intersecting lives. The overall goal of this mini-review is to provide a decade-by-decade overview of major historical landmark discoveries in the AHR field and to highlight the numerous contributions made by publications appearing in the pages of DMD. It is hoped that this historical tour might inspire current and future research in the AHR field. SIGNIFICANCE STATEMENT: With the launch of Drug Metabolism and Disposition (DMD) in 1973 and the discovery of the aryl hydrocarbon receptor (AHR) in 1976, the journal and the receptor have led parallel and often intersecting lives over the past 50 years. Tracing the history of the AHR can reveal how knowledge in the field has evolved to the present and highlight the important contributions made by discoveries reported in DMD. This may inspire additional DMD papers reporting future AHR landmark discoveries.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Sadeghi Shermeh A, Royzman D, Kuhnt C, Draßner C, Stich L, Steinkasserer A, Knippertz I, Wild AB. Differential Modulation of Dendritic Cell Biology by Endogenous and Exogenous Aryl Hydrocarbon Receptor Ligands. Int J Mol Sci 2023; 24:ijms24097801. [PMID: 37175508 PMCID: PMC10177790 DOI: 10.3390/ijms24097801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.
Collapse
Affiliation(s)
- Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
12
|
Panda SK, Peng V, Sudan R, Ulezko Antonova A, Di Luccia B, Ohara TE, Fachi JL, Grajales-Reyes GE, Jaeger N, Trsan T, Gilfillan S, Cella M, Colonna M. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity 2023; 56:797-812.e4. [PMID: 36801011 PMCID: PMC10101911 DOI: 10.1016/j.immuni.2023.01.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/05/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023]
Abstract
The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.
Collapse
Affiliation(s)
- Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takahiro E Ohara
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jose Luis Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natalia Jaeger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Hu J, Ding Y, Liu W, Liu S. When AHR signaling pathways meet viral infections. Cell Commun Signal 2023; 21:42. [PMID: 36829212 PMCID: PMC9951170 DOI: 10.1186/s12964-023-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.,Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.
| |
Collapse
|
14
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
15
|
AhR promotes phosphorylation of ARNT isoform 1 in human T cell malignancies as a switch for optimal AhR activity. Proc Natl Acad Sci U S A 2022; 119:e2114336119. [PMID: 35290121 PMCID: PMC8944900 DOI: 10.1073/pnas.2114336119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor present in immune cells as a long and short isoform, referred to as isoforms 1 and 3, respectively. However, investigation into potential ARNT isoform–specific immune functions is lacking despite the well-established heterodimerization requirement of ARNT with, and for the activity of, the aryl hydrocarbon receptor (AhR), a critical mediator of immune homeostasis. Here, using global and targeted transcriptomics analyses, we show that the relative ARNT isoform 1:3 ratio in human T cell lymphoma cells dictates the amplitude and direction of AhR target gene regulation. Specifically, shifting the ARNT isoform 1:3 ratio lower by suppressing isoform 1 enhances, or higher by suppressing isoform 3 abrogates, AhR responsiveness to ligand activation through preprograming a cellular genetic background that directs explicit gene expression patterns. Moreover, the fluctuations in gene expression patterns that accompany a decrease or increase in the ARNT isoform 1:3 ratio are associated with inflammation or immunosuppression, respectively. Molecular studies identified the unique casein kinase 2 (CK2) phosphorylation site within isoform 1 as an essential parameter to the mechanism of ARNT isoform–specific regulation of AhR signaling. Notably, CK2-mediated phosphorylation of ARNT isoform 1 is dependent on ligand-induced AhR nuclear translocation and is required for optimal AhR target gene regulation. These observations reveal ARNT as a central modulator of AhR activity predicated on the status of the ARNT isoform ratio and suggest that ARNT-based therapies are a viable option for tuning the immune system to target immune disorders.
Collapse
|
16
|
Zanardi MV, Gastiazoro MP, Kretzschmar G, Wober J, Vollmer G, Varayoud J, Durando M, Zierau O. AHR agonistic effects of 6-PN contribute to potential beneficial effects of Hops extract. Mol Cell Endocrinol 2022; 543:111540. [PMID: 34965452 DOI: 10.1016/j.mce.2021.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Hops (Humulus lupulus) is used as an alternative to hormone replacement therapy due to the phytoestrogen, 8-prenylnaringenin (8-PN). To examine the potential risks/benefits of hops extract and its compounds (8-PN and 6-prenylnaringenin, 6-PN), we aimed to evaluate the estrogen receptor α (ERα) and aryl hydrocarbon receptor (AHR) signaling pathways in human endometrial cancer cells. Hops extract, 8-PN and 6-PN showed estrogenic activity. Hops extract and 6-PN activated both ERα and AHR pathways. 6-PN increased the expression of the tumor suppressor gene (AHRR), and that of genes involved in the estrogen metabolism (CYP1A1, CYP1B1). Although 6-PN might activate the detoxification and genotoxic pathways of estrogen metabolism, hops extract as a whole only modulated the genotoxic pathway by an up-regulation of CYP1B1 mRNA expression. These data demonstrate the relevant role of 6-PN contained in the hops extract as potential modulator of estrogen metabolism due to its ERα and AHR agonist activity.
Collapse
Affiliation(s)
- María Victoria Zanardi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany.
| | - María Paula Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georg Kretzschmar
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Jannette Wober
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Günter Vollmer
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
17
|
Eti NA, Flor S, Iqbal K, Scott RL, Klenov VE, Gibson-Corley KN, Soares MJ, Ludewig G, Robertson LW. PCB126 induced toxic actions on liver energy metabolism is mediated by AhR in rats. Toxicology 2022; 466:153054. [PMID: 34848246 PMCID: PMC8748418 DOI: 10.1016/j.tox.2021.153054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in the regulation of biological responses to more planar aromatic hydrocarbons, like TCDD. We previously described the sequence of events following exposure of male rats to a dioxin-like polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), that binds avidly to the AhR and causes various types of toxicity including metabolic syndrome, fatty liver, and disruption of energy homeostasis. The purpose of this study was, to investigate the role of AhR to mediate those toxic manifestations following sub-acute exposure to PCB126 and to examine possible sex differences in effects. For this goal, we created an AhR knockout (AhR-KO) model using CRISPR/Cas9. Comparison was made to the wild type (WT) male and female Holtzman Sprague Dawley rats. Rats were injected with a single IP dose of corn oil vehicle or 5 μmol/kg PCB126 in corn oil and necropsied after 28 days. PCB126 caused significant weight loss, reduced relative thymus weights, and increased relative liver weights in WT male and female rats, but not in AhR-KO rats. Similarly, significant pathologic changes were visible which included necrosis and regeneration in female rats, micro- and macro-vesicular hepatocellular vacuolation in males, and a paucity of glycogen in livers of both sexes in WT rats only. Hypoglycemia and lower IGF1, and reduced serum non-esterified fatty acids (NEFAs) were found in serum of both sexes of WT rats, low serum cholesterol levels only in the females, and no changes in AhR-KO rats. The expression of genes encoding enzymes related to xenobiotic metabolism (e.g. CYP1A1), gluconeogenesis, glycogenolysis, and fatty acid oxidation were unaffected in the AhR-KO rats following PCB126 exposure as opposed to WT rats where expression was significantly upregulated (PPARα, females only) or downregulated suggesting a disrupted energy homeostasis. Interestingly, Acox2, Hmgcs, G6Pase and Pc were affected in both sexes, the gluconeogenesis and glucose transporter genes Pck1, Glut2, Sds, and Crem only in male WT-PCB rats. These results show the essential role of the AhR in glycogenolysis, gluconeogenesis, and fatty acid oxidation, i.e. in the regulation of energy production and homeostasis, but also demonstrate a significant difference in the effects of PCB126 in males verses females, suggesting higher vulnerability of glucose homeostasis in males and more changes in fatty acid/lipid homeostasis in females. These differences in effects, which may apply to more/all AhR agonists, should be further analyzed to identify health risks to specific groups of highly exposed human populations.
Collapse
Affiliation(s)
- Nazmin Akter Eti
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Susanne Flor
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Regan L Scott
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Violet E Klenov
- Department of Ob/Gyn, University of Iowa, Iowa City, IA, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
18
|
Coelho NR, Pimpão AB, Correia MJ, Rodrigues TC, Monteiro EC, Morello J, Pereira SA. Pharmacological blockage of the AHR-CYP1A1 axis: a call for in vivo evidence. J Mol Med (Berl) 2021; 100:215-243. [PMID: 34800164 PMCID: PMC8605459 DOI: 10.1007/s00109-021-02163-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that can be activated by structurally diverse compounds arising from the environment and the microbiota and host metabolism. Expanding evidence has been shown that the modulation of the canonical pathway of AHR occurs during several chronic diseases and that its abrogation might be of clinical interest for metabolic and inflammatory pathological processes. However, most of the evidence on the pharmacological abrogation of the AHR-CYP1A1 axis has been reported in vitro, and therefore, guidance for in vivo studies is needed. In this review, we cover the state-of-the-art of the pharmacodynamic and pharmacokinetic properties of AHR antagonists and CYP1A1 inhibitors in different in vivo rodent (mouse or rat) models of disease. This review will serve as a road map for those researchers embracing this emerging therapeutic area targeting the AHR. Moreover, it is a timely opportunity as the first AHR antagonists have recently entered the clinical stage of drug development.
Collapse
Affiliation(s)
- N R Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - A B Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - M J Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - T C Rodrigues
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - E C Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - J Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - S A Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
19
|
Stading R, Gastelum G, Chu C, Jiang W, Moorthy B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin Cancer Biol 2021; 76:3-16. [PMID: 34242741 DOI: 10.1016/j.semcancer.2021.07.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer has the second highest incidence and highest mortality compared to all other cancers. Polycyclic aromatic hydrocarbon (PAH) molecules belong to a class of compounds that are present in tobacco smoke, diesel exhausts, smoked foods, as well as particulate matter (PM). PAH-derived reactive metabolites are significant contributors to lung cancer development. The formation of these reactive metabolites entails metabolism of the parent PAHs by cytochrome P4501A1/1B1 (CYP1A1/1B1) and epoxide hydrolase enzymes. These reactive metabolites then react with DNA to form DNA adducts, which contribute to key gene mutations, such as the tumor suppressor gene, p53 and are linked to pulmonary carcinogenesis. PAH exposure also leads to upregulation of CYP1A1 transcription by binding to the aryl hydrocarbon receptor (AHR) and eliciting transcription of the CYP1A1 promoter, which comprises specific xenobiotic-responsive element (XREs). While hepatic and pulmonary CYP1A1/1B1 metabolize PAHs to DNA-reactive metabolites, the hepatic CYP1A2, however, may protect against lung tumor development by suppressing both liver and lung CYP1A1 enzymes. Further analysis of these enzymes has shown that PAH-exposure also induces sustained transcription of CYP1A1, which is independent of the persistence of the parent PAH. CYP1A2 enzyme plays an important role in the sustained induction of hepatic CYP1A1. PAH exposure may further contribute to pulmonary carcinogenesis by producing epigenetic alterations. DNA methylation, histone modification, long interspersed nuclear element (LINE-1) activation, and non-coding RNA, specifically microRNA (miRNA) alterations may all be induced by PAH exposure. The relationship between PAH-induced enzymatic reactive metabolite formation and epigenetic alterations is a key area of research that warrants further exploration. Investigation into the potential interplay between these two mechanisms may lead to further understanding of the mechanisms of PAH carcinogenesis. These mechanisms will be crucial for the development of effective targeted therapies and early diagnostic tools.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Grady Gastelum
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
20
|
L-Tryptophan activates the aryl hydrocarbon receptor and induces cell cycle arrest in porcine trophectoderm cells. Theriogenology 2021; 171:137-146. [PMID: 34058506 DOI: 10.1016/j.theriogenology.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
During implantation, the proliferation of trophectoderm cells (the outer epithelium of blastocysts) is related to conceptus elongation and placenta formation. Tryptophan (Trp) is a key regulator of embryogenesis and embryonic implantation during pregnancy. We sought to determine whether different concentrations of Trp alters porcine trophectoderm (pTr) cell proliferation. pTr cells were cultured in medium containing 40, 500, or 1000 μM Trp. The cell proliferation rate and the progression of the cells through the cell cycle were determined. To identify differentially expressed genes (DEGs) in the pTr cells, we compared mRNA transcriptomes by RNA-Seq after cell treatment with different concentrations of Trp. Some candidate DEGs were identified by quantitative reverse transcription PCR (qPCR). High L-Trp levels (500 and 1000 μM) inhibited cell proliferation and induced cell cycle arrest. We identified 19 DEGs between the 500 μM L-Trp and 40 μM L-Trp groups and 168 DEGs between the 1000 μM L-Trp and 40 μM L-Trp groups and subsequently used qPCR to validate some genes that were upregulated or downregulated. The functional gene networks in which the DEGs were most enriched included those associated with regulating DNA replication and the cell cycle, and the majority of the DEGs in both of these functional pathways was downregulated. The results showed that the addition of 500 and 1000 μM Trp significantly increased the abundance of proteins in the Aryl Hydrocarbon Receptor (AHR) signaling pathway. Collectively, these results indicate a novel and important role for Trp in mediating the proliferation of porcine placental cells largely via the AHR signaling pathway. Additionally, these findings help to explain the side effects of excessive Trp supplementation on placenta development and embryo growth in mammals.
Collapse
|
21
|
Trajectory Shifts in Interdisciplinary Research of the Aryl Hydrocarbon Receptor-A Personal Perspective on Thymus and Skin. Int J Mol Sci 2021; 22:ijms22041844. [PMID: 33673338 PMCID: PMC7918350 DOI: 10.3390/ijms22041844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying historical trajectories is a useful exercise in research, as it helps clarify important, perhaps even “paradigmatic”, shifts in thinking and moving forward in science. In this review, the development of research regarding the role of the transcription factor “aryl hydrocarbon receptor” (AHR) as a mediator of the toxicity of environmental pollution towards a link between the environment and a healthy adaptive response of the immune system and the skin is discussed. From this fascinating development, the opportunities for targeting the AHR in the therapy of many diseases become clear.
Collapse
|
22
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
23
|
Meta-Analysis of Transcriptome Data Detected New Potential Players in Response to Dioxin Exposure in Humans. Int J Mol Sci 2020; 21:ijms21217858. [PMID: 33113971 PMCID: PMC7672605 DOI: 10.3390/ijms21217858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Dioxins are one of the most potent anthropogenic poisons, causing systemic disorders in embryonic development and pathologies in adults. The mechanism of dioxin action requires an aryl hydrocarbon receptor (AhR), but the downstream mechanisms are not yet precisely clear. Here, we performed a meta-analysis of all available transcriptome datasets taken from human cell cultures exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Differentially expressed genes from different experiments overlapped partially, but there were a number of those genes that were systematically affected by TCDD. Some of them have been linked to toxic dioxin effects, but we also identified other attractive targets. Among the genes that were affected by TCDD, there are functionally related gene groups that suggest an interplay between retinoic acid, AhR, and Wnt signaling pathways. Next, we analyzed the upstream regions of differentially expressed genes and identified potential transcription factor (TF) binding sites overrepresented in the genes responding to TCDD. Intriguingly, the dioxin-responsive element (DRE), the binding site of AhR, was not overrepresented as much as other cis-elements were. Bioinformatics analysis of the AhR binding profile unveils potential cooperation of AhR with E2F2, CTCFL, and ZBT14 TFs in the dioxin response. We discuss the potential implication of these predictions for further dioxin studies.
Collapse
|
24
|
Kibble M, Khan SA, Ammad-ud-din M, Bollepalli S, Palviainen T, Kaprio J, Pietiläinen KH, Ollikainen M. An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200872. [PMID: 33204460 PMCID: PMC7657920 DOI: 10.1098/rsos.200872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 05/19/2023]
Abstract
We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22-36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m-2). These measurements were originally taken as part of the TwinFat study, a substudy of The Finnish Twin Cohort study. These five large multivariate datasets (comprising 42, 71, 1587, 1605 and 63 variables, respectively) were jointly analysed using an integrative machine learning method called group factor analysis (GFA) to offer new hypotheses into the multi-molecular-level interactions associated with the development of obesity. New potential links between cytokines and weight gain are identified, as well as associations between dietary, inflammatory and epigenetic factors. This encouraging case study aims to enthuse the research community to boldly attempt new machine learning approaches which have the potential to yield novel and unintuitive hypotheses. The source code of the GFA method is publically available as the R package GFA.
Collapse
Affiliation(s)
- Milla Kibble
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
- Author for correspondence: Milla Kibble e-mail:
| | - Suleiman A. Khan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Muhammad Ammad-ud-din
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
26
|
Linnenkamp BDW, Raskin S, Esposito SE, Herai RH. A comprehensive analysis of AHRR gene as a candidate for cleft lip with or without cleft palate. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 785:108319. [PMID: 32800270 DOI: 10.1016/j.mrrev.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Cleft lip and palate (CL/P) is among the most common congenital malformations and affects 1 in 700 newborns. CL/P is caused by genetic and environmental factors (maternal smoking, alcohol or drug use and others). Many genes and loci were associated with cleft lip/palate but the amount of heterogeneity justifies identifying new causal genes and variants. AHRR (Aryl-Hydrocarbon Receptor Repressor) gene has recently been related to CL/P however, few functional studies analyze the genotypephenotype interaction of AHRR with CL/P. Several studies associate the molecular pathway of AHRR to CL/P which indicates this gene as a functional candidate in CL/P etiology. METHODS Systematic Literature Review was performed using PUBMED database with the keywords cleft lip, cleft palate, orofacial cleft, AHRR and synonyms. SLR resulted in 37 included articles. RESULTS AHRR is a positional and functional candidate gene for CL/P. In silico analysis detected interactions with other genes previously associated to CL/P like ARNT and CYP1A1. AHRR protein regulates cellular toxicity through TCDD mediated AHR pathway. Exposure to TCDD in animal embryos is AHR mediated and lead to cleft palate due to palate fusion failure and post fusion rupture. AHRR regulates cellular growth and differentiation, fundamental to lip and palatogenesis. AHRR decreases carcinogenesis and recently a higher tumor risk has been described in CL/P patients and families. AHRR is also a smoking biomarker due to changed methylation sites found in smokers DNA although folate intake may partially revert these methylation alterations. This corroborates the role of maternal smoking and lack of folate supplementation as risk factors for CL/P. CONCLUSION This research identified the importance of AHRR in dioxin response and demonstrated an example of genetic and environmental interaction, indispensable in the development of many complex diseases.
Collapse
Affiliation(s)
- Bianca Domit Werner Linnenkamp
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Salmo Raskin
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Selene Elifio Esposito
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil; School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil; Research Department, Lico Kaesemodel Institute (ILK), Curitiba, Paraná, Brazil.
| |
Collapse
|
27
|
Schanz O, Chijiiwa R, Cengiz SC, Majlesain Y, Weighardt H, Takeyama H, Förster I. Dietary AhR Ligands Regulate AhRR Expression in Intestinal Immune Cells and Intestinal Microbiota Composition. Int J Mol Sci 2020; 21:ijms21093189. [PMID: 32366032 PMCID: PMC7246938 DOI: 10.3390/ijms21093189] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
A diet rich in vegetables and fruit is generally considered healthy because of a high content of phytochemicals, vitamins, and fiber. The phytochemical indole-3-carbinol (I3C), a derivative of glucobrassicin, is sold as a dietary supplement promising diverse health benefits. I3C metabolites act as ligands of the aryl hydrocarbon receptor (AhR), an important sensor for environmental polyaromatic chemicals. Here, we investigated how dietary AhR ligand supplementation influences AhR target gene expression and intestinal microbiota composition. For this, we used AhR repressor (AhRR)-reporter mice as a tool to study AhR activation in the intestine following dietary I3C-supplementation in comparison with AhR ligand-deprived diets, including a high fat diet. AhRR expression in intestinal immune cells was mainly driven by dietary AhR ligands and was independent of microbial metabolites. A lack of dietary AhR ligands caused enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis and correlated with the expansion of Enterobacteriaceae, whereas Clostridiales, Muribaculaceae, and Rikenellaceae were strongly reduced. I3C supplementation largely reverted this effect. Comparison of I3C-induced changes in microbiota composition using wild-type (WT), AhRR-deficient, and AhR-deficient mice revealed both AhR-dependent and -independent alterations in the microbiome. Overall, our study demonstrates that dietary AhR ligand supplementation has a profound influence on Ahrr expression in intestinal immune cells as well as microbiota composition.
Collapse
Affiliation(s)
- Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
| | - Rieka Chijiiwa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan;
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Sevgi Can Cengiz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
| | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
- Correspondence: (H.W.); (H.T.); (I.F.); Tel.: +49-228-73-62706 (H.W.); +81-3-5369-7326 (H.T.); +49-228-73-62780 (I.F.)
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan;
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence: (H.W.); (H.T.); (I.F.); Tel.: +49-228-73-62706 (H.W.); +81-3-5369-7326 (H.T.); +49-228-73-62780 (I.F.)
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
- Correspondence: (H.W.); (H.T.); (I.F.); Tel.: +49-228-73-62706 (H.W.); +81-3-5369-7326 (H.T.); +49-228-73-62780 (I.F.)
| |
Collapse
|
28
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
29
|
Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 2019; 1873:188335. [PMID: 31816350 DOI: 10.1016/j.bbcan.2019.188335] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor (TF) that is a member of the Per-Arnt-Sim family of proteins. AhR regulates diverse processes, including malignant transformation, hematopoietic cell development, and fate determination of immune cell lineages. Moreover, AhR forms a crucial link between innate and adaptive arms of the immune system. Malignant cells frequently evolve multiple mechanisms for suppressing tumor-specific responses, including the induction of suppressive pathways involving AhR and its metabolic byproducts in the tumor microenvironment that promote immune evasion and tumor progression. Thus, interest is high in further defining the role of AhR in carcinogenesis and immune development and regulation, particularly regarding the therapeutic interventions that unleash immune responses to cancer cells. Here, we provide an overview of the role of AhR in the regulation of innate and adaptive immune response and discuss the implications of targeting this pathway to augment the immune response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America.
| | - Dean A Lee
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America
| |
Collapse
|
30
|
Matvere A, Teino I, Varik I, Kuuse S, Tiido T, Kristjuhan A, Maimets T. FSH/LH-Dependent Upregulation of Ahr in Murine Granulosa Cells Is Controlled by PKA Signaling and Involves Epigenetic Regulation. Int J Mol Sci 2019; 20:ijms20123068. [PMID: 31234584 PMCID: PMC6627912 DOI: 10.3390/ijms20123068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor primarily known for its toxicological functions. Recent studies have established its importance in many physiological processes including female reproduction, although there is limited data about the precise mechanisms how Ahr itself is regulated during ovarian follicle maturation. This study describes the expression of Ahr in ovarian granulosa cells (GCs) of immature mice in a gonadotropin-dependent manner. We show that Ahr upregulation in vivo requires both follicle stimulating hormone (FSH) and luteinizing hormone (LH) activities. FSH alone increased Ahr mRNA, but had no effect on Ahr protein level, implicating a possible LH-dependent post-transcriptional regulation. Also, the increase in Ahr protein is specific to large antral follicles in induced follicle maturation. We show that Ahr expression in GCs of mid-phase follicular maturation is downregulated by protein kinase A (PKA) signaling and activation of Ahr promoter is regulated by chromatin remodeling.
Collapse
Affiliation(s)
- Antti Matvere
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Inge Varik
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Sulev Kuuse
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tarmo Tiido
- Clinical Research Centre, National Centre of Translational and Clinical Research, University of Tartu, Ravila 19, 50411 Tartu, Estonia.
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
31
|
Zajda K, Rak A, Ptak A, Gregoraszczuk EL. Compounds of PAH mixtures dependent interaction between multiple signaling pathways in granulosa tumour cells. Toxicol Lett 2019; 310:14-22. [PMID: 30980910 DOI: 10.1016/j.toxlet.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Mechanism of PAH mixtures, using granulosa tumour cells, was investigated. Cells were exposed to a mixture of all 16 priority PAHs (M1) or a mixture of five PAHs not classified as human carcinogens (M2). The effect of siAHR, siAHRR and siNFKB2 on the expression of CYP1A1, CYP1B1, GSTM1, ERα, AR and cell proliferation was described. M1 decreased AhR and CYP1A1, while increased AhRR and ARNT expression. M2 also decreased AhR and CYP1A1 but had no effect on AhRR expression. siAHRR reversed the inhibitory effect of M1 on AhR and CYP1A1,while inhibitory effect of M2 was still observed. siNFKB2 reversed inhibitory effect of both mixtures on AhR and CYP1A1 expression and stimulatory effect of M1 on AhRR expression. siAHR reversed stimulatory effect of both mixtures on ERα expression. Stimulatory effect of M1 on cell proliferation was not observed in siAHR, was still observed in siESR1 cells. M2 had no effect on cell proliferation, however stimulatory effect was appeared in siAHR and siESR1cells. In conclusion: M1 by activation of AhRR and NFkB p52, but M2 only by activation of NFκB attenuated AhR signalling and ligand-induced CYP1A1 expression. Interaction between AhR and ER following M1 and M2 exposure is primarily initiated through AhR.
Collapse
Affiliation(s)
- K Zajda
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - A Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - A Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - E L Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland.
| |
Collapse
|
32
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
33
|
Hwang WB, Kim DJ, Oh GS, Park JH. Aryl Hydrocarbon Receptor Ligands Indoxyl 3-sulfate and Indole-3-carbinol Inhibit FMS-like Tyrosine Kinase 3 Ligand-induced Bone Marrow-derived plasmacytoid Dendritic Cell Differentiation. Immune Netw 2018; 18:e35. [PMID: 30402330 PMCID: PMC6215903 DOI: 10.4110/in.2018.18.e35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) regulates both innate and adaptive immune responses by sensing a variety of small synthetic and natural chemicals, which act as its ligands. AhR, which is expressed in dendritic cells (DCs), regulates the differentiation of DCs. However, effects of AhR on the differentiation of DCs are variable due to the heterogeneity of DCs in cell surface marker expression, anatomical location, and functional responses. The plasmacytoid DCs (pDCs), one of DC subsets, not only induce innate as well as adaptive immune responses by secreting type I interferons and pro-inflammatory cytokines, but also induce IL-10 producing regulatory T cell or anergy or deletion of antigen-specific T cells. We showed here that AhR ligands indoxyl 3-sulfate (I3S) and indole-3-carbinol (I3C) inhibited the development of pDCs derived from bone marrow (BM) precursors induced by FMS-like tyrosine kinase 3 ligand (Flt3L). I3S and I3C downregulated the expression of signal transducer and activator of transcription 3 (STAT3) and E2-2 (Tcf4). In mice orally treated with I3S and I3C, oral tolerance to dinitrofluorobenzene was impaired and the proportion of CD11c+B220+ cells in mesenteric lymph nodes was reduced. These data demonstrate that AhR negatively regulates the development of pDCs from BM precursors induced by Flt3L, probably via repressing the expression of STAT3.
Collapse
Affiliation(s)
- Won-Bhin Hwang
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Da-Jeong Kim
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Gap-Soo Oh
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Joo-Hung Park
- Department of Biology, Changwon National University, Changwon 51140, Korea
| |
Collapse
|
34
|
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. BIOCHIMIE OPEN 2018; 7:1-9. [PMID: 30003042 PMCID: PMC6039966 DOI: 10.1016/j.biopen.2018.05.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Ludmila Juricek
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Julien Dairou
- CNRS 8601, 45 rue des Saints-Pères, 75006 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
35
|
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 2017; 185:50-63. [PMID: 29258844 DOI: 10.1016/j.pharmthera.2017.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.
Collapse
Affiliation(s)
- Ángel C Roman
- Champalimaud Neuroscience Programme, Champalimoud Center for the Unknown, Lisbon, Portugal
| | - José M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
36
|
Ligand-mediated cytoplasmic retention of the Ah receptor inhibits macrophage-mediated acute inflammatory responses. J Transl Med 2017; 97:1471-1487. [PMID: 28892097 PMCID: PMC5711556 DOI: 10.1038/labinvest.2017.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022] Open
Abstract
The Ah receptor (AHR) has been shown to exhibit both inflammatory and anti-inflammatory activity in a context-specific manner. In vivo macrophage-driven acute inflammation models were utilized here to test whether the selective Ah receptor modulator 1-allyl-7-trifluoromethyl-1H-indazol-3-yl]-4-methoxyphenol (SGA360) would reduce inflammation. Exposure to SGA360 was capable of significantly inhibiting lipopolysaccharide (LPS)-mediated endotoxic shock in a mouse model, both in terms of lethality and attenuating inflammatory signaling in tissues. Topical exposure to SGA360 was also able to mitigate joint edema in a monosodium urate (MSU) crystal gout mouse model. Inhibition was dependent on the expression of the high-affinity allelic AHR variant in both acute inflammation models. Upon peritoneal MSU crystal exposure SGA360 pretreatment inhibited neutrophil and macrophage migration into the peritoneum. RNA-seq analysis revealed that SGA360 attenuated the expression of numerous inflammatory genes and genes known to be directly regulated by AHR in thioglycolate-elicited primary peritoneal macrophages treated with LPS. In addition, expression of the high-affinity allelic AHR variant in cultured macrophages was necessary for SGA360-mediated repression of inflammatory gene expression. Mechanistic studies revealed that SGA360 failed to induce nuclear translocation of the AHR and actually enhanced cytoplasmic localization. LPS treatment of macrophages enhanced the occupancy of the AHR and p65 to the Ptgs2 promoter, whereas SGA360 attenuated occupancy. AHR ligand activity was detected in peritoneal exudates isolated from MSU-treated mice, thus suggesting that the anti-inflammatory activity of SGA360 is mediated at least in part through AHR antagonism of endogenous agonist activity. These results underscore an important role of the AHR in participating in acute inflammatory signaling and warrants further investigations into possible clinical applications.
Collapse
|
37
|
Stueve TR, Li WQ, Shi J, Marconett CN, Zhang T, Yang C, Mullen D, Yan C, Wheeler W, Hua X, Zhou B, Borok Z, Caporaso NE, Pesatori AC, Duan J, Laird-Offringa IA, Landi MT. Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum Mol Genet 2017; 26:3014-3027. [PMID: 28854564 PMCID: PMC5886283 DOI: 10.1093/hmg/ddx188] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/30/2017] [Accepted: 05/07/2017] [Indexed: 11/14/2022] Open
Abstract
Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis.
Collapse
Affiliation(s)
- Theresa Ryan Stueve
- Department of Preventive Medicine
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wen-Qing Li
- Division of Cancer Epidemiology and Genetics, NCI, National Institute of Health, Bethesda, MD 20852, USA
- Department of Dermatology, Warren Alpert Medical School
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, NCI, National Institute of Health, Bethesda, MD 20852, USA
| | - Crystal N. Marconett
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, NCI, National Institute of Health, Bethesda, MD 20852, USA
| | - Chenchen Yang
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel Mullen
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Chunli Yan
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William Wheeler
- Information Management Services, Inc., Rockville, MD 20852, USA
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, NCI, National Institute of Health, Bethesda, MD 20852, USA
| | - Beiyun Zhou
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Zea Borok
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, NCI, National Institute of Health, Bethesda, MD 20852, USA
| | - Angela C. Pesatori
- Unit of Epidemiology, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jubao Duan
- Center for Psychiatric Genetics, Department of Psychiatry and Behavioral Sciences, North Shore University Health System Research Institute, University of Chicago Pritzker School of Medicine, Evanston, IL 60201, USA
| | - Ite A. Laird-Offringa
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, NCI, National Institute of Health, Bethesda, MD 20852, USA
| |
Collapse
|
38
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
39
|
Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, Korkowski M, Haarmann-Stemmann T, von Smolinski D, Schultze JL, Abel J, Esser C, Takeyama H, Weighardt H, Förster I. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep 2016; 6:26091. [PMID: 27184933 PMCID: PMC4869119 DOI: 10.1038/srep26091] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli.
Collapse
Affiliation(s)
- Olga Brandstätter
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Julia Vorac
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Jessica König
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Tetsushi Mori
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Toru Maruyama
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Markus Korkowski
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Thomas Haarmann-Stemmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Dorthe von Smolinski
- Institut für Tierpathologie der FU Berlin, Robert von Ostertag Strasse 15, 14163 Berlin
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Josef Abel
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Haruko Takeyama
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Baricza E, Tamási V, Marton N, Buzás EI, Nagy G. The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells. Cell Mol Life Sci 2016; 73:95-117. [PMID: 26511867 PMCID: PMC11108366 DOI: 10.1007/s00018-015-2056-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor, which plays an essential role in the xenobiotic metabolism in a wide variety of cells. The AHR gene is evolutionarily conserved and it has a central role not only in the differentiation and maturation of many tissues, but also in the toxicological metabolism of the cell by the activation of metabolizing enzymes. Several lines of evidence support that both AHR agonists and antagonists have profound immunological effects; and recently, the AHR has been implicated in antibacterial host defense. According to recent studies, the AHR is essential for the differentiation and activation of T helper 17 (Th17) cells. It is well known that Th17 cells have a central role in the development of inflammation, which is crucial in the defense against pathogens. In addition, Th17 cells play a major role in the pathogenesis of several autoimmune diseases such as rheumatoid arthritis. Therefore, the AHR may provide connection between the environmental chemicals, the immune regulation, and autoimmunity. In the present review, we summarize the role of the AHR in the Th17 cell functions.
Collapse
Affiliation(s)
- Eszter Baricza
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Viola Tamási
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nikolett Marton
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - György Nagy
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
- Department of Rheumatology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
41
|
Gordon MW, Yan F, Zhong X, Mazumder PB, Xu-Monette ZY, Young KH, Ramos KS, Li Y. Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the etiology of multiple myeloma. Mol Carcinog 2015; 54:1060-1069. [PMID: 24798859 PMCID: PMC4223015 DOI: 10.1002/mc.22175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/07/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
Multiple myeloma (MM) is a common and deadly cancer of blood plasma cells. A unique feature of MM is the extremely low somatic mutation rate of the p53 tumor suppressor gene, in sharp contrast with about half of all human cancers where this gene is frequently mutated. Eleven miRNAs have been reported to repress p53 through direct interaction with the 3' untranslated region. The expression of nine of them is higher in MM plasma cells than in healthy donor counterparts, suggesting that miRNA overexpression is responsible for p53 inactivation in MM. Here, we report that the environmental carcinogen benzo[a]pyrene (BaP) upregulated the expression of seven p53-targeting miRNAs (miR-25, miR-15a, miR-16, miR-92, miR-125b, miR-141, and miR-200a), while 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD) upregulated two of them (miR-25 and miR-92) in MM cells. The miR-25 promoter was activated by both BaP and TCDD, and this response was mediated by the aryl hydrocarbon receptor (AhR). We screened 727 compounds that inhibit MM cell survival and down-regulate the expression of p53-targeting miRNAs. We found that (-)-epigallocatechin-3-gallate (EGCG), a constituent of green tea and a major component of the botanical drug Polyphenon® E, reduced the expression of four p53-targeting miRNAs, including miR-25, miR-92, miR-141, and miR-200a. Collectively, these data implicate polycyclic aromatic hydrocarbons and AhR in the regulation of p53-targeting miRNAs in MM and identify a potential therapeutic and preventive agent to combat this deadly disease.
Collapse
Affiliation(s)
- Michael W. Gordon
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202
| | - Fang Yan
- Department of Histology and Embryology; Southern Medical University, Guangzhou, Guangdong Province, China 510515
| | - Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, 475000, China
| | | | - Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030 USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030 USA
| | - Kenneth S. Ramos
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY, 40202
| |
Collapse
|
42
|
Cheng Y, Jin UH, Allred CD, Jayaraman A, Chapkin RS, Safe S. Aryl Hydrocarbon Receptor Activity of Tryptophan Metabolites in Young Adult Mouse Colonocytes. Drug Metab Dispos 2015; 43:1536-1543. [PMID: 25873348 PMCID: PMC4576676 DOI: 10.1124/dmd.115.063677] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/01/2015] [Indexed: 01/07/2023] Open
Abstract
The tryptophan microbiota metabolites indole-3-acetate, indole-3-aldehyde, indole, and tryptamine are aryl hydrocarbon receptor (AhR) ligands, and in this study we investigated their AhR agonist and antagonist activities in nontransformed young adult mouse colonocyte (YAMC) cells. Using Cyp1a1 mRNA as an Ah-responsive end point, we observed that the tryptophan metabolites were weak AhR agonists and partial antagonists in YAMC cells, and the pattern of activity was different from that previously observed in CaCo2 colon cancer cells. However, expansion of the end points to other Ah-responsive genes including the Cyp1b1, the AhR repressor (Ahrr), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiParp) revealed a highly complex pattern of AhR agonist/antagonist activities that were both ligand- and gene-dependent. For example, the magnitude of induction of Cyp1b1 mRNA was similar for TCDD, tryptamine, and indole-3-acetate, whereas lower induction was observed for indole and indole-3-aldehyde was inactive. These results suggest that the tryptophan metabolites identified in microbiota are selective AhR modulators.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Veterinary Physiology and Pharmacology (Y.C., U.-H.J., S.S.), Department of Nutrition and Food Science (C.D.A., R.S.C.), Department of Chemical Engineering (A.J.), Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology (Y.C., U.-H.J., S.S.), Department of Nutrition and Food Science (C.D.A., R.S.C.), Department of Chemical Engineering (A.J.), Texas A&M University, College Station, Texas
| | - Clint D Allred
- Department of Veterinary Physiology and Pharmacology (Y.C., U.-H.J., S.S.), Department of Nutrition and Food Science (C.D.A., R.S.C.), Department of Chemical Engineering (A.J.), Texas A&M University, College Station, Texas
| | - Arul Jayaraman
- Department of Veterinary Physiology and Pharmacology (Y.C., U.-H.J., S.S.), Department of Nutrition and Food Science (C.D.A., R.S.C.), Department of Chemical Engineering (A.J.), Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Department of Veterinary Physiology and Pharmacology (Y.C., U.-H.J., S.S.), Department of Nutrition and Food Science (C.D.A., R.S.C.), Department of Chemical Engineering (A.J.), Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology (Y.C., U.-H.J., S.S.), Department of Nutrition and Food Science (C.D.A., R.S.C.), Department of Chemical Engineering (A.J.), Texas A&M University, College Station, Texas
| |
Collapse
|
43
|
Harrill JA, Layko D, Nyska A, Hukkanen RR, Manno RA, Grassetti A, Lawson M, Martin G, Budinsky RA, Rowlands JC, Thomas RS. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2015; 36:802-14. [PMID: 26278112 DOI: 10.1002/jat.3211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/24/2015] [Accepted: 06/14/2015] [Indexed: 12/31/2022]
Abstract
Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1) day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joshua A Harrill
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Debra Layko
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, 36576, Israel
| | | | | | | | - Marie Lawson
- The Dow Chemical Company, Midland, MI, 48640, USA
| | - Greg Martin
- The Dow Chemical Company, Midland, MI, 48640, USA
| | | | | | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
44
|
Burris HH, Baccarelli AA, Byun HM, Cantoral A, Just AC, Pantic I, Solano-Gonzalez M, Svensson K, Tamayo y Ortiz M, Zhao Y, Wright RO, Téllez-Rojo MM. Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight. Epigenetics 2015; 10:913-21. [PMID: 26252179 DOI: 10.1080/15592294.2015.1078963] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal smoke exposure, maternal obesity, aberrant fetal growth, and preterm birth are all risk factors for offspring metabolic syndrome. Cord blood aryl-hydrocarbon receptor repressor (AHRR) DNA methylation is responsive to maternal smoking during pregnancy. AHRR serves not only to inhibit aryl-hydrocarbon receptor (AHR) transcription, which is involved in mediating xenobiotic metabolism, but it is also involved in cell growth and differentiation. Other than maternal smoking, other predictors of offspring AHRR DNA methylation status remain unknown; we sought to identify them among newborns. We enrolled pregnant women in the PROGRESS birth cohort in Mexico City. Using pyrosequencing, we analyzed DNA methylation of 3 CpG sites within the AHRR gene promoter from the umbilical cord blood of 531 infants. We used generalized estimating equations to account for the correlation of DNA methylation between CpG sites. Multivariable models were used to adjust for maternal age, BMI, education, parity, smoke-exposure, infant sex, gestational age, and birth weight-for-gestational age. AHRR DNA methylation was positively associated with maternal BMI (P = 0.0009) and negatively associated with the length of gestation (P < 0.0001) and birth weight-for-gestational age (P < 0.0001). AHRR DNA methylation was 2.1% higher in offspring of obese vs. normal weight mothers and 3.1% higher in preterm vs. term infants, representing a third and a half standard deviation differences in methylation, respectively. In conclusion, offspring AHRR DNA methylation was associated with maternal obesity during pregnancy as well as infant gestational age and birth weight-for-gestational age. Further work to discover the health impacts of altered AHRR DNA methylation is warranted.
Collapse
Affiliation(s)
- Heather H Burris
- a Department of Neonatology ; Beth Israel Deaconess Medical Center and Division of Newborn Medicine; Boston Children's Hospital and Harvard Medical School ; Boston , MA USA.,b Department of Environmental Health ; Harvard School of Public Health ; Boston , MA USA
| | - Andrea A Baccarelli
- b Department of Environmental Health ; Harvard School of Public Health ; Boston , MA USA.,c Laboratory of Environmental Epigenetics; Exposure Epidemiology and Risk Program; Harvard School of Public Health ; Boston , MA USA
| | - Hyang-Min Byun
- c Laboratory of Environmental Epigenetics; Exposure Epidemiology and Risk Program; Harvard School of Public Health ; Boston , MA USA.,d Human Nutrition Research Center; Institute of Cellular Medicine, Newcastle University ; Newcastle upon Tyne , UK
| | - Alejandra Cantoral
- e Center for Nutrition and Health Research; National Institute of Public Health ; Cuernavaca , Morelos , Mexico
| | - Allan C Just
- b Department of Environmental Health ; Harvard School of Public Health ; Boston , MA USA
| | - Ivan Pantic
- e Center for Nutrition and Health Research; National Institute of Public Health ; Cuernavaca , Morelos , Mexico
| | - Maritsa Solano-Gonzalez
- e Center for Nutrition and Health Research; National Institute of Public Health ; Cuernavaca , Morelos , Mexico
| | - Katherine Svensson
- f Department of Pediatrics and Preventative Medicine ; Icahn School of Medicine at Mount Sinai ; New York , NY USA
| | - Marcela Tamayo y Ortiz
- e Center for Nutrition and Health Research; National Institute of Public Health ; Cuernavaca , Morelos , Mexico
| | - Yan Zhao
- c Laboratory of Environmental Epigenetics; Exposure Epidemiology and Risk Program; Harvard School of Public Health ; Boston , MA USA
| | - Robert O Wright
- f Department of Pediatrics and Preventative Medicine ; Icahn School of Medicine at Mount Sinai ; New York , NY USA
| | - Martha M Téllez-Rojo
- e Center for Nutrition and Health Research; National Institute of Public Health ; Cuernavaca , Morelos , Mexico
| |
Collapse
|
45
|
Awji EG, Chand H, Bruse S, Smith KR, Colby JK, Mebratu Y, Levy BD, Tesfaigzi Y. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52:377-86. [PMID: 25137396 DOI: 10.1165/rcmb.2014-0142oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation.
Collapse
Affiliation(s)
- Elias G Awji
- 1 COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Calò M, Licata P, Bitto A, Lo Cascio P, Interdonato M, Altavilla D. Role of AHR, AHRR and ARNT in response to dioxin-like PCBs in Spaurus aurata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:14226-14231. [PMID: 25060310 DOI: 10.1007/s11356-014-3321-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates a variety of biological responses to ubiquitous dioxin and PCB dioxin-like. AHR together with ARNT, AHRR, represent a novel basic helix-loop-helix/PAS family of transcriptional regulators. Their interplay may affect the xenobiotic response. The aim of this study was to investigate, by histological, immunohistochemical investigations and western-blot analysis, the expression of AHR, ARNT and AHRR in liver of seabrem (Spaurus aurata) after exposure at different time to dioxin-like PCB126 in order to deep the knowledge about their specific role. The findings showed a significant increase of AHR and ARNT expression in juvenile fishes after 12 h than control group. The induction of AHR and ARNT is also significant at 24 and 72 hours compared to the control group. Furthemore, induction of AHRR expression has proved to increase both 12 h but this induction does not seem significant to 24 and 72 hours. The most important data of this work is that the induction of AHRR, when the action of the toxic persistence substances, as dioxin and PCB-126, it is not enough to reduce AHR signaling and thus its hyperactivation leads to toxic effects in seabrem (Spaurus aurata). All this confirms the importance of AHR ligands as new class of drugs that can be directed against severe disease such as cancer.
Collapse
Affiliation(s)
- Margherita Calò
- Department of Veterinary Science, University of Messina, Italy, Polo SS Annunziata, 98168, Messina, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 680] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
48
|
MacPherson L, Ahmed S, Tamblyn L, Krutmann J, Förster I, Weighardt H, Matthews J. Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int J Mol Sci 2014; 15:7939-57. [PMID: 24806346 PMCID: PMC4057711 DOI: 10.3390/ijms15057939] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.
Collapse
Affiliation(s)
- Laura MacPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany.
| | - Heike Weighardt
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
49
|
Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell JB. The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PLoS One 2014; 9:e95058. [PMID: 24755659 PMCID: PMC3995675 DOI: 10.1371/journal.pone.0095058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/23/2014] [Indexed: 11/30/2022] Open
Abstract
Background Distant prostate cancers are commonly hormone refractory and exhibit increased growth no longer inhibited by androgen deprivation therapy. Understanding all molecular mechanisms contributing to uncontrolled growth is important to obtain effective treatment strategies for hormone refractory prostate cancers (HRPC). The aryl hydrocarbon receptor (AhR) affects a number of biological processes including cell growth and differentiation. Several studies have revealed that exogenous AhR ligands inhibit cellular proliferation but recent evidence suggests AhR may possess intrinsic functions that promote cellular proliferation in the absence of exogenous ligands. Methods/Results qRT-PCR and western blot analysis was used to determine AhR mRNA and protein expression in hormone sensitive LNCaP cells as well as hormone refractory DU145, PC3 and PC3M prostate cancer cell lines. LNCaP cells express AhR mRNA and protein at a much lower level than the hormone refractory cell models. Cellular fractionation and immunocytochemistry revealed nuclear localization of AhR in the established hormone refractory cell lines while LNCaP cells are devoid of nuclear AhR protein. qRT-PCR analysis used to assess basal CYP1B1 levels and a xenobiotic responsive element binding assay confirmed ligand independent transcriptional activity of AhR in DU145, PC3 and PC3M cells. Basal CYP1B1 levels were decreased by treatment with specific AhR inhibitor, CH223191. An in vitro growth assay revealed that CH223191 inhibited growth of DU145, PC3 and PC3M cells in an androgen depleted environment. Immunohistochemical staining of prostate cancer tissues revealed increased nuclear localization of AhR in grade 2 and grade 3 cancers compared to the well differentiated grade 1 cancers. Conclusions Together, these results show that AhR is constitutively active in advanced prostate cancer cell lines that model hormone refractory prostate cancer. Chemical ablation of AhR signaling can reduce the growth of advanced prostate cancer cells, an effect not achieved with androgen receptor inhibitors or growth in androgen depleted media.
Collapse
Affiliation(s)
- Oliver Richmond
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Maryam Ghotbaddini
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Cidney Allen
- Clark Atlanta University Department of Biological Sciences, Atlanta, Georgia, United States of America
| | - Alice Walker
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Shokouh Zahir
- Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Joann B. Powell
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
- Clark Atlanta University Department of Biological Sciences, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
50
|
Stejskalova L, Rulcova A, Vrzal R, Dvorak Z, Pavek P. Dexamethasone accelerates degradation of aryl hydrocarbon receptor (AHR) and suppresses CYP1A1 induction in placental JEG-3 cell line. Toxicol Lett 2013; 223:183-91. [PMID: 24091107 DOI: 10.1016/j.toxlet.2013.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 01/16/2023]
Abstract
The JEG-3 choriocarcinoma cell line has been proposed as a model cell line of human placental trophoblast for induction studies via aryl hydrocarbon receptor (AHR). We examined whether glucocorticoid dexamethasone influences AHR-mediated induction of CYP1A1 enzyme in the JEG-3 cell line. We found that dexamethasone dose- and time-dependently suppresses CYP1A1 transactivation in gene reporter assays, CYP1A1 mRNA induction, and upregulation of 7-ethoxyresorufin-O-deethylase (EROD) activity by 3-methylcholanthrene (MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in JEG-3 cells. Co-transfection of JEG-3 cells with glucocorticoid receptor (GR) expression construct and treatment with dexamethasone abolished the effect of MC on CYP1A1 promoter construct in transient transfection gene reporter assays. RU486, a GR antagonist, suppressed the effect of dexamethasone on MC-induced transactivation of AHR responsive reporter constructs. We also found that dexamethasone stimulates both ligand-dependent and ligand-independent degradation of AHR but not of aryl hydrocarbon receptor nuclear translocator (ARNT) protein in JEG-3 cells. In experiments with proteasome inhibitors MG132 and bortezomib, we found that the degradation is not sensitive to proteasome inhibition in JEG-3. We can conclude that dexamethasone suppresses AHR-mediated CYP1A1 induction in JEG-3 cells through the unique mechanism of AHR-GR crosstalk, which involves accelerated degradation of AHR.
Collapse
Affiliation(s)
- Lucie Stejskalova
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotiska 5, 779 00 Olomouc, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | | | | | | | | |
Collapse
|