1
|
Shen Y, Liu Y, Guo M, Mao S, Chen R, Wang M, Li Z, Li Y, Chen W, Chen F, Wu B, Wang C, Chen W, Cui H, Yuan K, Huang H. DEK-nucleosome structure shows DEK modulates H3K27me3 and stem cell fate. Nat Struct Mol Biol 2025:10.1038/s41594-025-01559-9. [PMID: 40379883 DOI: 10.1038/s41594-025-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2025] [Indexed: 05/19/2025]
Abstract
DEK is a highly conserved chromatin-associated oncoprotein that has important roles in regulating chromatin dynamics and stem cell fate. Dysregulation of DEK is associated with stem cell dysfunction and cancers, including acute myeloid leukemia. Despite its importance in chromatin regulation, the structural mechanisms underlying DEK's interaction with chromatin and its influence on gene regulation remain poorly understood. Here we combined cryogenic electron microscopy (cryo-EM), biochemical and cellular approaches to investigate the molecular mechanisms and functional importance of DEK's interaction with chromatin. Our cryo-EM structures reveal the structural basis of the DEK-nucleosome interaction. Biochemical and cellular results demonstrate that this interaction is crucial for DEK deposition onto chromatin. Furthermore, our results reveal that DEK safeguards mouse embryonic stem cells from acquiring primitive endoderm fates by modulating the repressive histone mark H3K27me3. Together, our study provides crucial molecular insights into the structure and function of DEK, establishing a framework for understanding its roles in chromatin biology and cell fate determination.
Collapse
Affiliation(s)
- Yunfan Shen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Liu
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Maochao Guo
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Song Mao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengran Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhengbo Li
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yue Li
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chongyuan Wang
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Huanhuan Cui
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongda Huang
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Hashimoto T, Saito S, Ohata M, Okuwaki M. The oncoprotein DEK controls growth-regulated gene expression by enhancing the DNA-binding activity of basic leucine zipper transcription factors. FEBS J 2025. [PMID: 40318137 DOI: 10.1111/febs.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/07/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Overexpression of the oncogenic protein DEK is associated with a poor prognosis in various cancers. However, the molecular mechanisms by which DEK promotes cancer development and malignant transformation remain unclear. Previous studies have shown that DEK interacts with transcription factors, such as AP-2a and C/EBPα, and enhances their transcriptional activity. We hypothesized that DEK promotes cancer cell phenotypes by regulating transcription factors. We analyzed the interaction between DEK and the transcription factors to evaluate this hypothesis. We found that DEK binds to the basic regions within the basic leucine zipper (bZIP)- and basic helix-loop-helix leucine zipper (bHLH-ZIP)- transcription factors. Interestingly, DEK enhanced the DNA-binding capacity of two bZIP transcription factors, C/EBPα and ATF3, in vitro without being a component of the transcription factor-DNA complex. We performed DEK knockdown in lung adenocarcinoma A549 cells and examined the global transcriptome changes to determine the biological significance of the interaction between DEK and transcription factors. We found that diverse genes regulating cell growth and amino acid metabolism, which may potentially be regulated by c-Jun, a subunit of the bZIP transcription factor AP1, and c-Myc, a bHLH-ZIP transcription factor, were decreased by DEK knockdown. Consistent with these transcriptome changes, the cell growth, colony formation, and cell migration abilities of A549 cells were decreased by DEK knockdown. These results suggest that DEK promotes cancer cell malignancy by regulating the functions of the bZIP and bHLH-ZIP transcription factors.
Collapse
Affiliation(s)
- Takuma Hashimoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
| | - Shoko Saito
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| | - Mike Ohata
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| | - Mitsuru Okuwaki
- Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Japan
- School of Pharmacy, Kitasato University, Minato-ku, Japan
| |
Collapse
|
3
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. An evolutionary dynamics analysis of the plant DEK gene family reveals the role of BnaA02g08940D in drought tolerance. Int J Biol Macromol 2025; 298:140053. [PMID: 39828179 DOI: 10.1016/j.ijbiomac.2025.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis. The distribution of motifs and gene structure is similar within each group, indicating a high degree of conservation. The results of the collinearity analysis indicated that the DEK protein has undergone a certain degree of evolutionary conservation. The expansion of the DEK family is primarily attributable to whole-genome duplication (WGD) or segmental duplication events. The DEK protein has undergone purification during its evolutionary history, and several positively selected sites have been identified. Moreover, the examination of cis-acting elements and expression patterns revealed that the BnDEKs play a significant role in plant growth and stress response. The protein-protein interaction network identified several noteworthy proteins that interact with DEK. These analyses enhance our comprehension of the DEK gene family and establish the foundation for additional validation of its function. Further research demonstrated that the overexpression of one DEK family member, BnaA02g08940D, enhanced the transgenic Arabidopsis tolerance to drought and osmosis. This indicates that the DEK family may respond when plants are subjected to drought stress, thereby strengthening the plant's resilience.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Pierzynska-Mach A, Diaspro A, Cella Zanacchi F. Super-resolution microscopy reveals the nanoscale cluster architecture of the DEK protein cancer biomarker. iScience 2023; 26:108277. [PMID: 38026229 PMCID: PMC10660485 DOI: 10.1016/j.isci.2023.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
DEK protein, a key chromatin regulator, is strongly overexpressed in various forms of cancer. While conventional microscopy revealed DEK as uniformly distributed within the cell nucleus, advanced super-resolution techniques uncovered cluster-like structures. However, a comprehensive understanding of DEK's cellular distribution and its implications in cancer and cell growth remained elusive. To bridge this gap, we employed single-molecule localization microscopy (SMLM) to dissect DEK's nanoscale organization in both normal-like and aggressive breast cancer cell lines. Our investigation included characteristics such as localizations per cluster, cluster areas, and intra-cluster localization densities (ICLDs). We elucidated how cluster features align with different breast cell types and how chromatin decompaction influences DEK clusters in these contexts. Our results indicate that DEK's intra-cluster localization density and nano-organization remain preserved and not significantly influenced by protein overexpression or chromatin compaction changes. This study advances the understanding of DEK's role in cancer and underscores its stable nanoscale behavior.
Collapse
Affiliation(s)
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
- Department of Physics (DIFILAB), Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
- Physics Department E. Fermi, University of Pisa, 56127 Pisa, Italy
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
6
|
Pierzynska-Mach A, Cainero I, Oneto M, Ferrando-May E, Lanzanò L, Diaspro A. Imaging-based study demonstrates how the DEK nanoscale distribution differentially correlates with epigenetic marks in a breast cancer model. Sci Rep 2023; 13:12749. [PMID: 37550322 PMCID: PMC10406876 DOI: 10.1038/s41598-023-38685-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
Epigenetic dysregulation of chromatin is one of the hallmarks of cancer development and progression, and it is continuously investigated as a potential general bio-marker of this complex disease. One of the nuclear factors involved in gene regulation is the unique DEK protein-a histone chaperon modulating chromatin topology. DEK expression levels increase significantly from normal to cancer cells, hence raising the possibility of using DEK as a tumor marker. Although DEK is known to be implicated in epigenetic and transcriptional regulation, the details of these interactions and their relevance in cancer development remain largely elusive. In this work, we investigated the spatial correlation between the nuclear distribution of DEK and chromatin patterns-alongside breast cancer progression-leveraging image cross-correlation spectroscopy (ICCS) coupled with Proximity Ligation Assay (PLA) analysis. We performed our study on the model based on three well-established human breast cell lines to consider this tumor's heterogeneity (MCF10A, MCF7, and MDA-MB-231 cells). Our results show that overexpression of DEK correlates with the overall higher level of spatial proximity between DEK and histone marks corresponding to gene promoters regions (H3K9ac, H3K4me3), although it does not correlate with spatial proximity between DEK and gene enhancers (H3K27ac). Additionally, we observed that colocalizing fractions of DEK and histone marks are lower for the non-invasive cell subtype than for the highly invasive cell line (MDA-MB-231). Thus, this study suggests that the role of DEK on transcriptionally active chromatin regions varies depending on the subtype of the breast cancer cell line.
Collapse
Affiliation(s)
| | - Isotta Cainero
- Nanoscopy and NIC @ IIT, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Michele Oneto
- Nanoscopy and NIC @ IIT, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152, Genoa, Italy
| | - Elisa Ferrando-May
- Department of Biology, University of Konstanz, Konstanz, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Luca Lanzanò
- Nanoscopy and NIC @ IIT, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152, Genoa, Italy
- Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC @ IIT, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152, Genoa, Italy.
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy.
| |
Collapse
|
7
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Özçelik E, Kalaycı A, Çelik B, Avcı A, Akyol H, Kılıç İB, Güzel T, Çetin M, Öztürk MT, Çalışkaner ZO, Tombaz M, Yoleri D, Konu Ö, Kandilci A. Doxorubicin induces prolonged DNA damage signal in cells overexpressing DEK isoform-2. PLoS One 2022; 17:e0275476. [PMID: 36190960 PMCID: PMC9529144 DOI: 10.1371/journal.pone.0275476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
DEK has a short isoform (DEK isoform-2; DEK2) that lacks amino acid residues between 49–82. The full-length DEK (DEK isoform-1; DEK1) is ubiquitously expressed and plays a role in different cellular processes but whether DEK2 is involved in these processes remains elusive. We stably overexpressed DEK2 in human bone marrow stromal cell line HS-27A, in which endogenous DEKs were intact or suppressed via short hairpin RNA (sh-RNA). We have found that contrary to ectopic DEK1, DEK2 locates in the nucleus and nucleolus, causes persistent γH2AX signal upon doxorubicin treatment, and couldn’t functionally compensate for the loss of DEK1. In addition, DEK2 overexpressing cells were more sensitive to doxorubicin than DEK1-cells. Expressions of DEK1 and DEK2 in cell lines and primary tumors exhibit tissue specificity. DEK1 is upregulated in cancers of the colon, liver, and lung compared to normal tissues while both DEK1 and DEK2 are downregulated in subsets of kidney, prostate, and thyroid carcinomas. Interestingly, only DEK2 was downregulated in a subset of breast tumors suggesting that DEK2 can be modulated differently than DEK1 in specific cancers. In summary, our findings show distinct expression patterns and subcellular location and suggest non-overlapping functions between the two DEK isoforms.
Collapse
Affiliation(s)
- Emrah Özçelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ahmet Kalaycı
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Büşra Çelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Açelya Avcı
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hasan Akyol
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - İrfan Baki Kılıç
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Türkan Güzel
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Metin Çetin
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Zihni Onur Çalışkaner
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Dilan Yoleri
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Özlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ayten Kandilci
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- * E-mail:
| |
Collapse
|
9
|
Chiriches C, Nicolaisen N, Wieske M, Elhaddad H, Mehmetbeyoglu E, Alvares C, Becher D, Hole P, Ottmann OG, Ruthardt M. Understanding a high-risk acute myeloid leukemia by analyzing the interactome of its major driver mutation. PLoS Genet 2022; 18:e1010463. [PMID: 36288392 PMCID: PMC9639852 DOI: 10.1371/journal.pgen.1010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/07/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The WHO classifies t(6;9)-positive acute myeloid leukemia (AML) as a subgroup of high-risk AML because of its clinical and biological peculiarities, such as young age and therapy resistance. t(6;9) encodes the DEK/NUP214 fusion oncoprotein that targets only a small subpopulation of bone marrow progenitors for leukemic transformation. This distinguishes DEK/NUP214 from other fusion oncoproteins, such as PML/RARα, RUNX1/ETO, or MLL/AF9, which have a broad target population they block differentiation and increase stem cell capacity. A common theme among most leukemogenic fusion proteins is their aberrant localization compared to their wild-type counterparts. Although the actual consequences are widely unknown, it seems to contribute to leukemogenesis most likely by a sequester of interaction partners. Thus, we applied a global approach to studying the consequences of the aberrant localization of t(6;9)-DEK/NUP214 for its interactome. This study aimed to disclose the role of localization of DEK/NUP214 and the related sequester of proteins interacting with DEK/NUP214 for the determination of the biology of t(6;9)-AML. Here we show the complexity of the biological consequences of the expression of DEK/NUP214 by an in-depth bioinformatic analysis of the interactome of DEK/NUP214 and its biologically dead mutants. DEK/NUP214's interactome points to an essential role for aberrant RNA-regulation and aberrant regulation of apoptosis and leukocyte activation as a significant determinant of the phenotype of t(6;9)-AML. Taken together, we provide evidence that the interactome contributes to the aberrant biology of an oncoprotein, providing opportunities for developing novel targeted therapy approaches.
Collapse
Affiliation(s)
- Claudia Chiriches
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail: (CC); (MR)
| | - Nathalie Nicolaisen
- Department of Hematology, Medical Clinic II Goethe University Frankfurt, Germany
| | - Maria Wieske
- Department of Hematology, Medical Clinic II Goethe University Frankfurt, Germany
| | - Heba Elhaddad
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Faculty of Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Ecmel Mehmetbeyoglu
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Caroline Alvares
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dörte Becher
- Institute of Microbiology, Microbial Proteomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Paul Hole
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Oliver Gerhard Ottmann
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Martin Ruthardt
- Division of Cancer and Genetics, Section of Hematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Experimental Clinical Medical Center (ECMC) Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail: (CC); (MR)
| |
Collapse
|
10
|
Maeda R, Tachibana M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep 2022; 23:e53581. [PMID: 35166421 PMCID: PMC8982598 DOI: 10.15252/embr.202153581] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Di- or tri-methylated H3K9 (H3K9me2/3) is an epigenetic mark of heterochromatin. Heterochromatin protein 1 (HP1) specifically recognizes H3K9me2/3, contributing to transcriptional suppression and spread of H3K9me2/3. Here, we demonstrate another role of HP1 in heterochromatin organization: regulation of protein stability of H3K9 methyltransferases (H3K9 MTs) and demethylases (H3K9 DMs). We show that HP1 interaction-defective mutants of H3K9 MTs, Suv39h1 and Setdb1, undergo protein degradation. We further establish mouse embryonic stem cell lines lacking all three HP1 paralogs. In the HP1-deficient cells, Suv39h1, Suv39h2, Setdb1, and G9a/GLP complex decrease at the protein level, and the enzymes are released from chromatin. HP1 mutants that cannot recognize H3K9me2/3 or form dimers cannot stabilize these enzymes, indicating that the tethering of H3K9 MTs to chromatin is critical for their protein stability. We show that HP1 also stabilizes H3K9 DMs, Jmjd1a and Jmjd1b. Our study indicates that mammalian HP1 forms a heterochromatin hub that governs protein stability of H3K9 MTs and H3K9 DMs.
Collapse
Affiliation(s)
- Ryo Maeda
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan,Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Makoto Tachibana
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan,Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
11
|
Yang MQ, Bai LL, Wang Z, Lei L, Zheng YW, Li ZH, Huang WJ, Liu CC, Xu HT. DEK is highly expressed in breast cancer and is associated with malignant phenotype and progression. Oncol Lett 2021; 21:440. [PMID: 33868478 PMCID: PMC8045159 DOI: 10.3892/ol.2021.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
DEK proto-oncogene (DEK) has been demonstrated as an oncogene and is associated with the development of many types of tumor; however, the expression and role of DEK in breast cancer remain unknown. The present study aimed to determine the role of DEK in the progression of breast cancer. The expression of DEK in 110 breast cancer tissues and 50 adjacent normal breast tissues was examined using immunohistochemistry. Furthermore, DEK expression was upregulated by DEK transfection or downregulated by DEK shRNA interference in MCF7 cells. Proliferative and invasive abilities were examined in MCF7 cells using MTT assay, colony-formation assay and transwell invasion assays. The results demonstrated that DEK expression level was significantly increased in breast cancer tissues compared with normal breast tissues. Furthermore, high DEK expression was associated with high histological grade, lymph node metastasis, advanced Tumor-Node-Metastasis stage and high Ki-67 index; however, DEK expression was not associated with the expression level of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. High DEK expression indicated poor prognosis in patients with breast cancer. DEK overexpression upregulated the protein expression of β-catenin and Wnt and increased the proliferative and invasive abilities of breast cancer cells. DEK downregulation had the opposite effect. Taken together, the results from the present study demonstrated that high expression of DEK was common in patients with breast cancer and was associated with progression of the disease and poor prognosis, and that DEK overexpression promoted the proliferative and invasive abilities of breast cancer cells.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, Changyi People's Hospital, Changyi, Shandong 261300, P.R. China
| | - Lin-Lin Bai
- Department of Pathology, Shenyang 242 Hospital, Shenyang, Liaoning 110034, P.R. China
| | - Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin, Heilongjiang 150088, P.R. China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Guo H, Prell M, Königs H, Xu N, Waldmann T, Hermans-Sachweh B, Ferrando-May E, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS) identifies a loss-of-function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Lett 2021; 595:1438-1453. [PMID: 33686684 DOI: 10.1002/1873-3468.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Germany
| | | | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Germany
| | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| |
Collapse
|
13
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
14
|
Fan D, Wang C, Wang D, Zhang N, Yi T. Circular RNA circ_0000039 enhances gastric cancer progression through miR-1292-5p/DEK axis. Cancer Biomark 2020; 30:167-177. [PMID: 33104023 DOI: 10.3233/cbm-201754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is a class of non-coding RNA that is vital for regulating gene expression and biological functions. Mounting studies demonstrate that circRNA is crucial for human cancer development. However, the role of circ_0000039 in gastric cancer (GC) remains uncertain. METHODS Normal human gastric tissues and GC tissue samples were collected, and quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression levels of circ_0000039, miR-1292-5p, and DEK. GC cell lines with overexpression and low expression of circ_0000039 were constructed. Cell counting kit-8 (CCK-8), scratch healing and Transwell experiments were used to assess the function of circ_0000039 on the proliferation, migration and invasion of GC cells. Bioinformatics analysis and dual-luciferase reporter assays were employed to detect the targeting relationship between circ_0000039 and miR-1292-5p. RESULTS Circ_0000039 expression was up-regulated in GC tissues and cell lines, and it was significantly related with poor differentiation of tumor tissues. In addition, circ_0000039 overexpression enhanced the proliferation, migration and invasion of GC cells, while circ_0000039 depletion inhibited these malignant biological behaviors. In terms of mechanism, it was found that circ_0000039 promoted the proliferation and progression of GC cells by adsorbing miR-1292-5p and up-regulating the expression of DEK. CONCLUSION Circ_0000039 is a new oncogenic circRNA in GC, which regulates the miR-1292-5p/DEK axis to modulate the malignant biological behaviors of GC.
Collapse
Affiliation(s)
- Dengguo Fan
- Department of General Surgery, Caoxian People's Hospital, Heze, Shandong 274400, China.,Department of General Surgery, Caoxian People's Hospital, Heze, Shandong 274400, China
| | - Changjiang Wang
- Department of Gastroenterology, Caoxian People's Hospital, Heze, Shandong 274400, China.,Department of General Surgery, Caoxian People's Hospital, Heze, Shandong 274400, China
| | - Deyuan Wang
- Department of Oncology, Caoxian People's Hospital, Heze, Shandong 274400, China.,Department of General Surgery, Caoxian People's Hospital, Heze, Shandong 274400, China
| | - Ning Zhang
- Caoxian County Hospital of Shandong Province, Heze, Shandong 274400, China
| | - Tao Yi
- Department of Gastroenterology, Caoxian People's Hospital, Heze, Shandong 274400, China
| |
Collapse
|
15
|
Bondy-Chorney E, Abramchuk I, Nasser R, Holinier C, Denoncourt A, Baijal K, McCarthy L, Khacho M, Lavallée-Adam M, Downey M. A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. Cell Rep 2020; 33:108318. [PMID: 33113373 DOI: 10.1016/j.celrep.2020.108318] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored. We use RNA sequencing (RNA-seq) and mass spectrometry to define a broad impact of polyP produced inside of mammalian cells via ectopic expression of the E. coli polyP synthetase PPK. We find that multiple cellular compartments can support accumulation of polyP to high levels. Overproduction of polyP is associated with reprogramming of both the transcriptome and proteome, including activation of the ERK1/2-EGR1 signaling axis. Finally, fractionation analysis shows that polyP accumulation results in relocalization of nuclear/cytoskeleton proteins, including targets of non-enzymatic lysine polyphosphorylation. Our work demonstrates that internally produced polyP can activate diverse signaling pathways in human cells.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Iryna Abramchuk
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rawan Nasser
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Charlotte Holinier
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
16
|
Zhang W, Liao K, Liu D. MiR-138-5p Inhibits the Proliferation of Gastric Cancer Cells by Targeting DEK. Cancer Manag Res 2020; 12:8137-8147. [PMID: 32982411 PMCID: PMC7489953 DOI: 10.2147/cmar.s253777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background Increasing evidence suggests that microRNAs (miRNAs) play critical roles in cancer progression. Therefore, investigating the function of miRNAs that are aberrantly expressed in gastric cancer (GC) and characterizing the involved underlying mechanism are essential for the treatment of gastric cancer. MiR-138-5p was found to be down-regulated in multiple cancers, which acted as a tumor suppressor in cancer progression; however, whether and how miR-138-5p regulates the malignant behaviors of GC has not been fully understood. Methods The level of miR-138-5p in GC tissues and cell lines was detected by RT-qPCR. The effects of miR-138-5p on the growth of GC cells were evaluated by the in vitro Cell Counting Kit-8 (CCK-8) assay, cell apoptosis, cell cycle analysis, wound-healing assay, and in vivo xenograft mice model. The targets of miR-138-5p were predicted using the miRDB online tool, confirmed by luciferase report assay and Western blot. Results MiR-138-5p was frequently decreased in GC tissues and cell lines. Decreased expression of miR-138-5p was significantly associated with the lymph node metastasis of GC patients. Overexpression of miR-138-5p suppressed GC cell proliferation, migration, increased cell apoptosis as well as inhibited the tumor growth in vivo. DEK oncogene was predicted as a potential target of miR-138-5p. MiR-138-5p bound the 3'-UTR of DEK and inhibited the level of DEK in GC cells. Restoration of DEK abrogated miR-138-5p overexpression-mediated suppression of GC cell proliferation and cell cycle arrest. Conclusion Our results demonstrated the anti-cancer role of miR-138-5p in GC by targeting DEK, which suggested miR-138-5p as a potential therapeutic target for the treatment of patient with GC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of General Surgery, People's Hospital of Yichun City, Yichun, Jiangxi 336000, People's Republic of China
| | - Kai Liao
- Department of General Surgery, People's Hospital of Yichun City, Yichun, Jiangxi 336000, People's Republic of China
| | - Dongning Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 336000, People's Republic of China
| |
Collapse
|
17
|
Yue L, Wan R, Luan S, Zeng W, Cheung TH. Dek Modulates Global Intron Retention during Muscle Stem Cells Quiescence Exit. Dev Cell 2020; 53:661-676.e6. [DOI: 10.1016/j.devcel.2020.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
|
18
|
Zhang H, Yan M, Deng R, Song F, Jiang M. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Gene 2020; 727:144245. [PMID: 31715302 DOI: 10.1016/j.gene.2019.144245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
DEK involves in the modulation of cell proliferation, differentiation, apoptosis, migration and cell senescence. However, direct genetic evidence proving the functions of DEK in disease resistance against pathogens is still deficient. In the present study, four DEKs were identified in tomato genome and their roles in disease resistance in tomato were analyzed. The expression levels of DEKs were differently induced by Botrytis cinerea, Pseudomonas syringae pv. tomato (Pst) DC3000 and defense-related signaling molecules (such as jasmonic acid, aethylene precursor and salicylic acid). The DEKs' silencing by virus induced gene silencing led to decreased resistance against B. cinerea or Pst DC3000. The underlying mechanisms may be through the upregulation of the accumulation of reactive oxygen species (ROS) and the changed expression levels of defense-related genes by pathogen inoculation. These results indicate that DEKs involve in disease resistance against different pathogens and thus broaden the knowledge of DEK genes' function in tomato.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Mengjiao Yan
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Rong Deng
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Collegue of Life Science, Taizhou University, Taizhou, China.
| |
Collapse
|
19
|
Mendes A, Fahrenkrog B. NUP214 in Leukemia: It's More than Transport. Cells 2019; 8:cells8010076. [PMID: 30669574 PMCID: PMC6356203 DOI: 10.3390/cells8010076] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
NUP214 is a component of the nuclear pore complex (NPC) with a key role in protein and mRNA nuclear export. Chromosomal translocations involving the NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription regulation. SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of CRM1 protein cargoes in the nucleus. SET-NUP214 is primarily associated with acute lymphoblastic leukemia (ALL), whereas DEK-NUP214 exclusively results in acute myeloid leukemia (AML), indicating different leukemogenic driver mechanisms. Secondary mutations in leukemic blasts may contribute to the different leukemia outcomes. Additional layers of complexity arise from the respective functions of SET and DEK in transcription regulation and chromatin remodeling, which may drive malignant hematopoietic transformation more towards ALL or AML. Another, less frequent fusion protein involving the C terminus of NUP214 results in the sequestosome-1 (SQSTM1)-NUP214 chimera, which was detected in ALL. SQSTM1 is a ubiquitin-binding protein required for proper autophagy induction, linking the NUP214 fusion protein to yet another cellular mechanism. The scope of this review is to summarize the general features of NUP214-related leukemia and discuss how distinct chromosomal translocation partners can influence the cellular effects of NUP214 fusion proteins in leukemia.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
20
|
de Albuquerque Oliveira AC, Kappes F, Martins DBG, de Lima Filho JL. The unique DEK oncoprotein in women's health: A potential novel biomarker. Biomed Pharmacother 2018; 106:142-148. [PMID: 29957464 DOI: 10.1016/j.biopha.2018.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Breast and cervical cancer are the first and fourth cancer types with the highest prevalence in women, respectively. The developmental profiles of cancer in women can vary by genetic markers and cellular events. In turn, age and lifestyle influence in the cellular response and also on the cancer progression and relapse. The human DEK protein, a histone chaperone, belongs to a specific subclass of chromatin topology modulators, being involved in the regulation of DNA-dependent processes. These epigenetic mechanisms have dynamic and reversible nature, have been proposed as targets for different treatment approaches, especially in tumor therapy. The expression patterns of DEK vary between healthy and cancer cells. High expression of DEK is associated with poor prognosis in many cancer types, suggesting that DEK takes part in oncogenic activities via different molecular pathways, including inhibition of senescence and apoptosis. The focus of this review was to highlight the role of the DEK protein in these two female cancers.
Collapse
Affiliation(s)
- Ana Cecília de Albuquerque Oliveira
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| | - Ferdinand Kappes
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, PR China
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil.
| | - José Luiz de Lima Filho
- Molecular Prospecting and Bioinformatics Group - Laboratory of Immunopathology Keizo Asami (LIKA) - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil; Department of Biochemistry - Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, Postal Code 50670-901, Brazil
| |
Collapse
|
21
|
Matrka MC, Watanabe M, Muraleedharan R, Lambert PF, Lane AN, Romick-Rosendale LE, Wells SI. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis. PLoS One 2017; 12:e0177952. [PMID: 28558019 PMCID: PMC5448751 DOI: 10.1371/journal.pone.0177952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.
Collapse
Affiliation(s)
- Marie C. Matrka
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Miki Watanabe
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ranjithmenon Muraleedharan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Andrew N. Lane
- Center for Environmental Systems Biochemistry, Dept. Toxicology and Cancer Biology and Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Lindsey E. Romick-Rosendale
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
22
|
Çalışkaner ZO, Çakar T, Özçelik E, Özdilek A, Kim AS, Doğan Ö, Bosompem A, Grosveld G, Saka B, Kandilci A. DEK protein level is a biomarker of CD138positive normal and malignant plasma cells. PLoS One 2017; 12:e0178025. [PMID: 28558048 PMCID: PMC5448761 DOI: 10.1371/journal.pone.0178025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Overexpression of DEK oncogene is associated with increased proliferation of carcinoma cells and it is observed in several solid tumors due to the amplification of the 6p22.3 chromosomal region where DEK locates. Although the same chromosomal amplification occurs in multiple myeloma (MM), a plasma cell neoplasm, whether the expression and the copy number of the DEK gene are affected in MM remains elusive. We show that despite the increased copy number in CD138positive MM cells (4 out of 41 MM samples), DEK mRNA expression was down-regulated compared with that in CD138negative bone marrow (BM) cells of the same patients (P<0.0001). DEK protein was not detectable by immunohistochemistry (IHC) in CD138positive normal plasma cells or in malignant plasma cells of MM patients (n = 56) whereas it was widely expressed in normal and neoplastic B-cells. Stable knockdown or overexpression of DEK in CD138positive MM cell lines did not affect the proliferation and viability of the cells profoundly in the presence or absence of chemotherapeutic agent melphalan whereas knockdown of DEK moderately but significantly increased the expression level of CD138 (p<0.01). Decreased DEK expression in plasma cells suggests a potential role of this gene in plasma cell development and lack of detectable DEK protein by IHC could be used as a biomarker for normal and malignant plasma cells.
Collapse
Affiliation(s)
- Zihni Onur Çalışkaner
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Türkan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Emrah Özçelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ahmet Özdilek
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Annette S. Kim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Öner Doğan
- Department of Pathology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Amma Bosompem
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gerard Grosveld
- Department of Genetics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bülent Saka
- Department of Internal Medicine, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ayten Kandilci
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
23
|
Delaunay S, Rapino F, Tharun L, Zhou Z, Heukamp L, Termathe M, Shostak K, Klevernic I, Florin A, Desmecht H, Desmet CJ, Nguyen L, Leidel SA, Willis AE, Büttner R, Chariot A, Close P. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J Exp Med 2016; 213:2503-2523. [PMID: 27811057 PMCID: PMC5068235 DOI: 10.1084/jem.20160397] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Posttranscriptional modifications of transfer RNAs (tRNAs) at the wobble uridine 34 (U34) base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are up-regulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the proinvasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1-dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate that the key role of U34 tRNA modification is to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Lars Tharun
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Zhaoli Zhou
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Lukas Heukamp
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Martin Termathe
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster
- Faculty of Medicine, University of Muenster, 48129 Muenster, Germany
| | - Kateryna Shostak
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Iva Klevernic
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Alexandra Florin
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Hadrien Desmecht
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Christophe J Desmet
- GIGA-Infection, Immunity and Inflammation, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosiences, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster
- Faculty of Medicine, University of Muenster, 48129 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48129 Muenster, Germany
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, England, UK
| | - Reinhard Büttner
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Alain Chariot
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
24
|
Ou Y, Xia R, Kong F, Zhang X, Yu S, Jiang L, Zheng L, Lin L. Overexpression of DEK is an indicator of poor prognosis in patients with gastric adenocarcinoma. Oncol Lett 2016; 11:1823-1828. [PMID: 26998084 DOI: 10.3892/ol.2016.4147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
Increased expression of the human DEK proto-oncogene (DEK) gene has been associated with numerous human malignancies. The DEK protein is associated with chromatin reconstruction and gene transcription, and is important in cell apoptosis. The present study aimed to elucidate the role of DEK with regard to gastric adenocarcinoma tumor progression and patient prognosis. DEK protein expression was analyzed using immunohistochemistry in 192 tumors paired with adjacent non-cancerous gastric mucosa that had been surgically resected from patients with primary gastric adenocarcinoma. The association between DEK expression and the clinicopathological characteristics of the patients was evaluated using the χ2 test and Fisher's exact test. The survival rates of the patients were calculated using the Kaplan-Meier method. Cox analysis evaluated the association between the expression of DEK and the survival rate of the patients. The DEK protein was expressed in 84 patients with gastric adenocarcinoma (43.8%) and in 20 of the paired normal gastric mucosa tissues (11.5%). The DEK expression rate was found to be associated with tumor size (P=0.006), tumor grade (P=0.023), lymph node metastasis (P=0.018), serous invasion (P=0.026), tumor stage (P=0.001) and Ki-67 expression (P=0.003). Furthermore, patients with gastric adenocarcinoma that expressed DEK had decreased disease-free (log-rank, 16.785; P<0.0001) and overall (log-rank, 15.759; P<0.0001) survival rates compared with patients without DEK expression. Patients with late-stage gastric adenocarcinoma that expressed DEK exhibited a lower overall survival rate compared with patients without DEK expression (P=0.002). Additional analysis revealed that DEK expression was an independent prognostic factor for the prognosis of gastric adenocarcinoma (hazard ratio, 0.556; 95% confidence interval, 0.337-0.918; P=0.022). From the results of the present study, it can be concluded that the detection of DEK protein expression in gastric adenocarcinoma tissues may be important for the diagnosis and prognosis of patients, and may be a targeted therapy for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Yingfu Ou
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Rongjun Xia
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Fanyong Kong
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Xiaokang Zhang
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China; Department of Pathology, Dandong Central Hospital, Dandong, Liaoning 118000, P.R. China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Lili Jiang
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Linlin Zheng
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| |
Collapse
|
25
|
Liu X, Qi D, Qi J, Mao Z, Li X, Zhang J, Li J, Gao W. Significance of DEK overexpression for the prognostic evaluation of non-small cell lung carcinoma. Oncol Rep 2016; 35:155-62. [PMID: 26530274 DOI: 10.3892/or.2015.4365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, we explored the role of DEK expression for the prognostic evaluation of non-small cell lung carcinoma (NSCLC). DEK protein and mRNA expression levels were detected in NSCLC cells and fresh tissue samples of NSCLC paired with adjacent non-tumor tissues, respectively. NSCLC cases (n=196) meeting strict follow-up criteria were selected for immunohistochemical staining of DEK protein. Correlations between DEK expression and clinicopathological features of the NSCLC cases were evaluated using Chi-square tests. Survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient overall survival was analyzed using Cox proportional hazard analysis. Based on the results, the levels of DEK protein and mRNA were significantly upregulated in 6 fresh tissue samples of NSCLC. Immunohistochemical analysis showed that the DEK expression rate was significantly higher in the NSCLC samples compared with either the adjacent non-tumor tissues or normal lung tissues. DEK expression was correlated with poor differentiation and late pathological stage of NSCLC. DEK expression was also correlated with low disease-free survival and overall survival rates. In the early-stage group, disease-free and overall survival rates of patients with DEK expression were significantly lower than those of patients without DEK expression. Further analysis using a Cox proportional hazard regression model revealed that DEK expression emerged as a significant independent hazard factor for the overall survival rate of patients with NSCLC. Consequently, DEK plays an important role in the progression of NSCLC. DEK may potentially be used as an independent biomarker for the prognostic evaluation of NSCLC.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Dongdong Qi
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jujie Qi
- Traditional Chinese Medical Hospital of Anqiu City, Anqiu, Shandong 262100, P.R. China
| | - Zeshu Mao
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Xiangdan Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin 133002, P.R. China
| | - Jinhui Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Jinzi Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, Jilin 133002, P.R. China
| | - Wenbin Gao
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
26
|
Dissecting the Potential Interplay of DEK Functions in Inflammation and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:106517. [PMID: 26425120 PMCID: PMC4575739 DOI: 10.1155/2015/106517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
There is a long-standing correlation between inflammation, inflammatory cell signaling pathways, and tumor formation. Understanding the mechanisms behind inflammation-driven tumorigenesis is of great research and clinical importance. Although not entirely understood, these mechanisms include a complex interaction between the immune system and the damaged epithelium that is mediated by an array of molecular signals of inflammation—including reactive oxygen species (ROS), cytokines, and NFκB signaling—that are also oncogenic. Here, we discuss the association of the unique DEK protein with these processes. Specifically, we address the role of DEK in chronic inflammation via viral infections and autoimmune diseases, the overexpression and oncogenic activity of DEK in cancers, and DEK-mediated regulation of NFκB signaling. Combined, evidence suggests that DEK may play a complex, multidimensional role in chronic inflammation and subsequent tumorigenesis.
Collapse
|
27
|
Matrka MC, Hennigan RF, Kappes F, DeLay ML, Lambert PF, Aronow BJ, Wells SI. DEK over-expression promotes mitotic defects and micronucleus formation. Cell Cycle 2015; 14:3939-53. [PMID: 25945971 PMCID: PMC4825741 DOI: 10.1080/15384101.2015.1044177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022] Open
Abstract
The DEK gene encodes a nuclear protein that binds chromatin and is involved in various fundamental nuclear processes including transcription, RNA splicing, DNA replication and DNA repair. Several cancer types characteristically over-express DEK at the earliest stages of transformation. In order to explore relevant mechanisms whereby DEK supports oncogenicity, we utilized cancer databases to identify gene transcripts whose expression patterns are tightly correlated with that of DEK. We identified an enrichment of genes involved in mitosis and thus investigated the regulation and possible function of DEK in cell division. Immunofluorescence analyses revealed that DEK dissociates from DNA in early prophase and re-associates with DNA during telophase in human keratinocytes. Mitotic cell populations displayed a sharp reduction in DEK protein levels compared to the corresponding interphase population, suggesting DEK may be degraded or otherwise removed from the cell prior to mitosis. Interestingly, DEK overexpression stimulated its own aberrant association with chromatin throughout mitosis. Furthermore, DEK co-localized with anaphase bridges, chromosome fragments, and micronuclei, suggesting a specific association with mitotically defective chromosomes. We found that DEK over-expression in both non-transformed and transformed cells is sufficient to stimulate micronucleus formation. These data support a model wherein normal chromosomal clearance of DEK is required for maintenance of high fidelity cell division and chromosomal integrity. Therefore, the overexpression of DEK and its incomplete removal from mitotic chromosomes promotes genomic instability through the generation of genetically abnormal daughter cells. Consequently, DEK over-expression may be involved in the initial steps of developing oncogenic mutations in cells leading to cancer initiation.
Collapse
Affiliation(s)
- Marie C Matrka
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| | - Robert F Hennigan
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| | - Ferdinand Kappes
- Department of Biological Sciences; Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
- Institute of Biochemistry and Molecular Biology; Medical School; RWTH Aachen University; Aachen, Germany
| | - Monica L DeLay
- Division of Rheumatology; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI USA
| | - Bruce J Aronow
- Biomedical Informatics; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Susanne I Wells
- Cancer and Blood Diseases Institute; Cincinnati Children's Hospital Medical Center and University of Cincinnati; Cincinnati, OH USA
| |
Collapse
|
28
|
Logan GE, Mor-Vaknin N, Braunschweig T, Jost E, Schmidt PV, Markovitz DM, Mills KI, Kappes F, Percy MJ. DEK oncogene expression during normal hematopoiesis and in Acute Myeloid Leukemia (AML). Blood Cells Mol Dis 2015; 54:123-31. [PMID: 25128083 DOI: 10.1016/j.bcmd.2014.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/24/2022]
Abstract
DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation.
Collapse
MESH Headings
- Animals
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 9/genetics
- Cohort Studies
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Databases, Genetic
- Disease-Free Survival
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Multicenter Studies as Topic
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Poly-ADP-Ribose Binding Proteins
- Survival Rate
- Translocation, Genetic
Collapse
Affiliation(s)
- Gemma E Logan
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, United Kingdom.
| | - Nirit Mor-Vaknin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - Till Braunschweig
- Institute of Pathology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Edgar Jost
- Clinic for Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Pia Verena Schmidt
- Clinic for Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany.
| | - David M Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, United Kingdom.
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Melanie J Percy
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, United Kingdom; Haematology Department, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| |
Collapse
|
29
|
Ivanauskiene K, Delbarre E, McGhie JD, Küntziger T, Wong LH, Collas P. The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res 2014; 24:1584-94. [PMID: 25049225 PMCID: PMC4199371 DOI: 10.1101/gr.173831.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022]
Abstract
Histone variant H3.3 is deposited in chromatin at active sites, telomeres, and pericentric heterochromatin by distinct chaperones, but the mechanisms of regulation and coordination of chaperone-mediated H3.3 loading remain largely unknown. We show here that the chromatin-associated oncoprotein DEK regulates differential HIRA- and DAAX/ATRX-dependent distribution of H3.3 on chromosomes in somatic cells and embryonic stem cells. Live cell imaging studies show that nonnucleosomal H3.3 normally destined to PML nuclear bodies is re-routed to chromatin after depletion of DEK. This results in HIRA-dependent widespread chromatin deposition of H3.3 and H3.3 incorporation in the foci of heterochromatin in a process requiring the DAXX/ATRX complex. In embryonic stem cells, loss of DEK leads to displacement of PML bodies and ATRX from telomeres, redistribution of H3.3 from telomeres to chromosome arms and pericentric heterochromatin, induction of a fragile telomere phenotype, and telomere dysfunction. Our results indicate that DEK is required for proper loading of ATRX and H3.3 on telomeres and for telomeric chromatin architecture. We propose that DEK acts as a "gatekeeper" of chromatin, controlling chromatin integrity by restricting broad access to H3.3 by dedicated chaperones. Our results also suggest that telomere stability relies on mechanisms ensuring proper histone supply and routing.
Collapse
Affiliation(s)
- Kristina Ivanauskiene
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Erwan Delbarre
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - James D McGhie
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Küntziger
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Lee H Wong
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway;
| |
Collapse
|
30
|
Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol 2013; 35:1727-38. [PMID: 24163107 DOI: 10.1007/s13277-013-1321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022] Open
Abstract
The wide range of invasive and noninvasive lesion phenotypes associated with high-risk human papillomavirus (HR-HPV) infection in cervical cancer (CC) indicates that not only the virus but also specific cervical epithelial cells in the transformation zone (TZ), such as stem cells (SCs), play an important part in the development of cervical neoplasia. In this review, we focused in an expression signature that is specific to embryonic SCs and to poorly differentiated cervical malignant tumors and we hypothesize that this expression signature may play an important role to promote cell growth, survival, colony formation, lack of adhesion, as well as cell invasion and migration in CC.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, México,
| | | | | |
Collapse
|
31
|
Broxmeyer HE, Mor-Vaknin N, Kappes F, Legendre M, Saha AK, Ou X, O'Leary H, Capitano M, Cooper S, Markovitz DM. Concise review: role of DEK in stem/progenitor cell biology. Stem Cells 2013; 31:1447-53. [PMID: 23733396 PMCID: PMC3814160 DOI: 10.1002/stem.1443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022]
Abstract
Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non-histone nuclear phosphoprotein initially identified as a putative proto-oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long-term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long-term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saha AK, Kappes F, Mundade A, Deutzmann A, Rosmarin DM, Legendre M, Chatain N, Al-Obaidi Z, Adams BS, Ploegh HL, Ferrando-May E, Mor-Vaknin N, Markovitz DM. Intercellular trafficking of the nuclear oncoprotein DEK. Proc Natl Acad Sci U S A 2013; 110:6847-52. [PMID: 23569252 PMCID: PMC3637753 DOI: 10.1073/pnas.1220751110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DEK is a biochemically distinct, conserved nonhistone protein that is vital to global heterochromatin integrity. In addition, DEK can be secreted and function as a chemotactic, proinflammatory factor. Here we show that exogenous DEK can penetrate cells, translocate to the nucleus, and there carry out its endogenous nuclear functions. Strikingly, adjacent cells can take up DEK secreted from synovial macrophages. DEK internalization is a heparan sulfate-dependent process, and cellular uptake of DEK into DEK knockdown cells corrects global heterochromatin depletion and DNA repair deficits, the phenotypic aberrations characteristic of these cells. These findings thus unify the extracellular and intracellular activities of DEK, and suggest that this paracrine loop involving DEK plays a role in chromatin biology.
Collapse
Affiliation(s)
- Anjan K. Saha
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen 52074, Germany
| | - Amruta Mundade
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Anja Deutzmann
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - David M. Rosmarin
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Nicolas Chatain
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen 52074, Germany
| | - Zeina Al-Obaidi
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Barbara S. Adams
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - Hidde L. Ploegh
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | | | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
- Programs in Immunology, Cellular and Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
33
|
Privette Vinnedge LM, Kappes F, Nassar N, Wells SI. Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle 2013; 12:51-66. [PMID: 23255114 PMCID: PMC3570517 DOI: 10.4161/cc.23121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.
Collapse
Affiliation(s)
- Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
34
|
Wang DM, Liu L, Fan L, Zou ZJ, Zhang LN, Yang S, Li JY, Xu W. Expression level of DEK in chronic lymphocytic leukemia is regulated by fludarabine and Nutlin-3 depending on p53 status. Cancer Biol Ther 2012; 13:1522-8. [PMID: 23052131 PMCID: PMC3542244 DOI: 10.4161/cbt.22252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human oncogene DEK has been shown to be upregulated in a number of neoplasms. The purpose of this study was to investigate DEK expression level in chronic lymphocytic leukemia (CLL), analyze the correlation between DEK expression and CLL prognostic markers, and characterize the role of DEK in the response to either chemotherapeutic drugs or nongenotoxic activators of the p53 pathway. DEK mRNA was evaluated by real-time quantitative reverse transcriptase-polymerase chain reaction (qPCR), and primary CLL samples were treated in vitro with either fludarabine or Nutlin-3 to explore the interaction of p53 status and DEK mRNA expression. The median expression levels of DEK mRNA were 6.792 × 10 (-2) (1.438 × 10 (-2) -3.201 × 10 (-1) ) in 65 patients with CLL. A marked increase of DEK mRNA expression was observed in the CLL patients with unmutated immunoglobulin heavy chain variable (IGHV) gene (p = 0.025), CD38-positive (p = 0.047), del(17p13) (p = 0.006). Both fludarabine and Nutlin-3 significantly downregulated DEK in the primary CLL cells which were with normal function of p53, or without deletion or mutation of p53 (p = 0.042, p = 0.038; p = 0.021, p = 0.017; p = 0.037, p = 0.017). However, the downregulation of DEK was not observed in the primary CLL cells which were with dysfunction of p53, or with deletion or mutation of p53 (p = 0.834, p = 0.477; p = 0.111, p = 0.378; p = 0.263, p = 0.378). These data show that DEK might be applied for the assessment of prognosis in patients with CLL, and fludarabine and Nutlin-3 regulate DEK expression depended on p53 status.
Collapse
Affiliation(s)
| | | | - Lei Fan
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Zhi-Jian Zou
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Li-Na Zhang
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Shu Yang
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Jian-Yong Li
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Wei Xu
- Department of Hematology; The First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| |
Collapse
|
35
|
Patel RM, Walters LL, Kappes F, Mehra R, Fullen DR, Markovitz DM, Ma L. DEK expression in Merkel cell carcinoma and small cell carcinoma. J Cutan Pathol 2012; 39:753-7. [PMID: 22765016 DOI: 10.1111/j.1600-0560.2012.01941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND The chromatin architectural factor DEK maps to chromosome 6p and is frequently overexpressed in several neoplasms, including small cell lung carcinoma, where it is associated with poor prognosis, tumor initiation activity and chemoresistance. DEK expression has not been studied in cutaneous Merkel cell carcinoma. METHODS We applied a DEK monoclonal antibody to 15 cases of Merkel cell carcinoma and 12 cases of small cell carcinoma. DEK nuclear immunoreactivity was scored based on percentage (0, negative; 1+, <25%; 2+, 25-50%; 3+, >50%) and intensity (weak, moderate or strong). RESULTS All 15 Merkel cell carcinoma cases (100%) showed diffuse (3+) nuclear positivity (14 strong, 1 weak). Six of 12 small cell carcinoma cases (50%) showed diffuse (3+) and strong nuclear positivity, while one case exhibited focal (1+) weak nuclear positivity. The remaining five cases were negative for DEK expression. CONCLUSIONS Our results suggest that DEK may be involved in the pathogenesis of Merkel cell carcinoma and therefore may provide therapeutic implications for Merkel cell carcinomas. In addition, the difference in DEK expression between Merkel cell carcinoma and small cell carcinoma suggests possible separate tumorigenesis pathways for the two tumors.
Collapse
Affiliation(s)
- Rajiv M Patel
- Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kostianets O, Shyian M, Sergiy D, Antoniuk S, Gout I, Filonenko V, Kiyamova R. Serological Analysis of SEREX-Defined Medullary Breast Carcinoma-Associated Antigens. Cancer Invest 2012; 30:519-27. [DOI: 10.3109/07357907.2012.697231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Privette Vinnedge LM, McClaine R, Wagh PK, Wikenheiser-Brokamp KA, Waltz SE, Wells SI. The human DEK oncogene stimulates β-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene 2011; 30:2741-52. [PMID: 21317931 PMCID: PMC3117026 DOI: 10.1038/onc.2011.2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
Breast cancer is a major cause of cancer-related deaths in American women; therefore, the identification of novel breast cancer-related molecules for the discovery of new markers and drug targets remains essential. The human DEK gene, which encodes a chromatin-binding protein and DNA topology regulator, is upregulated in many types of cancer. DEK has been implicated as an oncogene in breast cancer based on mRNA expression studies, but its functional significance in breast cancer growth and progression has not yet been tested directly. We demonstrate that DEK is highly expressed in breast cancer cells compared with normal tissue, and functionally important for cellular growth, invasion and mammosphere formation. DEK overexpression in non-tumorigenic MCF10A cells resulted in increased growth and motility, with a concomitant downregulation of E-cadherin. Conversely, DEK knockdown in MCF7 and MDA-MB-468 breast cancer cells resulted in decreased growth and motility with upregulation of E-cadherin. The use of DEK-proficient and -deficient breast cancer cells in orthotopic xenografts provided further in vivo evidence that DEK contributes to tumor growth. Activation of the β-catenin signaling pathway is important for normal and cancer stem cell character, growth and metastasis. We show that DEK expression stimulated, and DEK knockdown repressed β-catenin nuclear translocation and activity. Importantly, the expression of constitutively active β-catenin rescued breast cancer invasion defects of DEK knockdown cells. Together, our data indicate that DEK expression stimulates the growth, stem cell character and motility of breast cancer cells, and that DEK-dependent cellular invasion occurs at least in part via β-catenin activation.
Collapse
Affiliation(s)
- L M Privette Vinnedge
- Department of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kappes F, Waldmann T, Mathew V, Yu J, Zhang L, Khodadoust MS, Chinnaiyan AM, Luger K, Erhardt S, Schneider R, Markovitz DM. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev 2011; 25:673-8. [PMID: 21460035 PMCID: PMC3070930 DOI: 10.1101/gad.2036411] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 02/09/2011] [Indexed: 12/18/2022]
Abstract
Heterochromatin integrity is crucial for genome stability and regulation of gene expression, but the factors involved in mammalian heterochromatin biology are only incompletely understood. Here we identify the oncoprotein DEK, an abundant nuclear protein with a previously enigmatic in vivo function, as a Suppressor of Variegation [Su(var)] that is crucial to global heterochromatin integrity. We show that DEK interacts directly with Heterochromatin Protein 1 α (HP1α) and markedly enhances its binding to trimethylated H3K9 (H3K9me3), which is key for maintaining heterochromatic regions. Loss of Dek in Drosophila leads to a Su(var) phenotype and global reduction in heterochromatin. Thus, these findings show that DEK is a key factor in maintaining the balance between heterochromatin and euchromatin in vivo.
Collapse
Affiliation(s)
- Ferdinand Kappes
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Tanja Waldmann
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Veena Mathew
- CellNetworks-Cluster of Excellence, ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Heidelberg 69120, Germany
| | - Jindan Yu
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Michael S. Khodadoust
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sylvia Erhardt
- CellNetworks-Cluster of Excellence, ZMBH-DKFZ-Alliance, ZMBH, Heidelberg University, Heidelberg 69120, Germany
| | | | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
40
|
Mor-Vaknin N, Kappes F, Dick AE, Legendre M, Damoc C, Teitz-Tennenbaum S, Kwok R, Ferrando-May E, Adams BS, Markovitz DM. DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. ARTHRITIS AND RHEUMATISM 2011; 63:556-67. [PMID: 21280010 PMCID: PMC3117121 DOI: 10.1002/art.30138] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE DEK is a nuclear phosphoprotein and autoantigen in a subset of children with juvenile idiopathic arthritis (JIA). Autoantibodies to DEK are also found in a broad spectrum of disorders associated with abnormal immune activation. We previously demonstrated that DEK is secreted by macrophages, is released by apoptotic T cells, and attracts leukocytes. Since DEK has been identified in the synovial fluid (SF) of patients with JIA, this study was undertaken to investigate how DEK protein and/or autoantibodies may contribute to the pathogenesis of JIA. METHODS DEK autoantibodies, immune complexes (ICs), and synovial macrophages were purified from the SF of patients with JIA. DEK autoantibodies and ICs were purified by affinity-column chromatography and analyzed by 2-dimensional gel electrophoresis, immunoblotting, and enzyme-linked immunosorbent assay. DEK in supernatants and exosomes was purified by serial centrifugation and immunoprecipitation with magnetic beads, and posttranslational modifications of DEK were identified by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). RESULTS DEK autoantibodies and protein were found in the SF of patients with JIA. Secretion of DEK by synovial macrophages was observed both in a free form and via exosomes. DEK autoantibodies (IgG2) may activate the complement cascade, primarily recognize the C-terminal portion of DEK protein, and exhibit higher affinity for acetylated DEK. Consistent with these observations, DEK underwent acetylation on an unprecedented number of lysine residues, as demonstrated by nano-LC-MS/MS. CONCLUSION These results indicate that DEK can contribute directly to joint inflammation in JIA by generating ICs through high-affinity interaction between DEK and DEK autoantibodies, a process enhanced by acetylation of DEK in the inflamed joint.
Collapse
|
41
|
Tsai BP, Wang X, Huang L, Waterman ML. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 2011; 10:M110.007385. [PMID: 21285413 DOI: 10.1074/mcp.m110.007385] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Identification of proteins in RNA-protein complexes is an important step toward understanding regulation of RNA-based processes. Because of the lack of appropriate methodologies, many studies have relied on the creation of in vitro assembled RNA-protein complexes using synthetic RNA and cell extracts. Such complexes may not represent authentic RNPs as they exist in living cells as synthetic RNA may not fold properly and nonspecific RNA-protein interactions can form during cell lysis and purification processes. To circumvent limitations in current approaches, we have developed a novel integrated strategy namely MS2 in vivo biotin tagged RNA affinity purification (MS2-BioTRAP) to capture bona fide in vivo-assembled RNA-protein complexes. In this method, HB-tagged bacteriophage protein MS2 and stem-loop tagged target or control RNAs are co-expressed in cells. The tight association between MS2 and the RNA stem-loop tags allows efficient HB-tag based affinity purification of authentic RNA-protein complexes. Proteins associated with target RNAs are subsequently identified and quantified using SILAC-based quantitative mass spectrometry. Here the 1.2 kb internal ribosome entry site (IRES) from lymphoid enhancer factor-1 mRNA has been used as a proof-of-principle target RNA. An IRES target was chosen because of its importance in protein translation and our limited knowledge of proteins associated with IRES function. With a conventionally translated target RNA as control, 36 IRES binding proteins have been quantitatively identified including known IRES binding factors, novel interacting proteins, translation initiation factors (eIF4A-1, eIF-2A, and eIF3g), and ribosomal subunits with known noncanonical actions (RPS19, RPS7, and RPL26). Validation studies with the small molecule eIF4A-1 inhibitor Hippuristanol shows that translation of endogenous lymphoid enhancer factor-1 mRNA is especially sensitive to eIF4A-1 activity. Our work demonstrates that MS2 in vivo biotin tagged RNA affinity purification is an effective and versatile approach that is generally applicable for other RNA-protein complexes.
Collapse
Affiliation(s)
- Becky Pinjou Tsai
- Department of Microbiology and Molecular Genetics School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
42
|
Vogler C, Huber C, Waldmann T, Ettig R, Braun L, Izzo A, Daujat S, Chassignet I, Lopez-Contreras AJ, Fernandez-Capetillo O, Dundr M, Rippe K, Längst G, Schneider R. Histone H2A C-terminus regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS Genet 2010; 6:e1001234. [PMID: 21170357 PMCID: PMC3000355 DOI: 10.1371/journal.pgen.1001234] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/03/2010] [Indexed: 01/30/2023] Open
Abstract
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation. Histones are the main protein components of chromatin. The N-terminal tails of histones stick out from the nucleosomes, the building blocks of chromatin, and are involved in the regulation of all DNA–dependent processes. Only Histone H2A has an additional C-terminal tail and currently very little is known about the function of this tail. The H2A C-terminus protrudes from the nucleosome and is located where the DNA enters and leaves the nucleosome. We show here that it can interact with the linker histone H1 that is important for higher order chromatin structure. We also find that this tail is involved in regulating nucleosome dynamics and mobility of H2A itself. The C-terminal H2A tail has also an important function in regulating the activity of chromatin remodelers, enzymes that can reposition nucleosomes. Furthermore we find that cells expressing C-terminally truncated H2A are more sensitive to stress, demonstrating that this tail is important for cellular homeostasis. Together our results reflect a key function of the H2A C-terminus in chromatin biology.
Collapse
Affiliation(s)
| | - Claudia Huber
- Biochemie III, University of Regensburg, Regensburg, Germany
| | - Tanja Waldmann
- Max-Planck Institute of Immunobiology, Freiburg, Germany
| | - Ramona Ettig
- German Cancer Research Center (DKFZ) and BioQuant, Research Group Genome Organization and Function, Heidelberg, Germany
| | - Lora Braun
- Max-Planck Institute of Immunobiology, Freiburg, Germany
| | - Annalisa Izzo
- Max-Planck Institute of Immunobiology, Freiburg, Germany
| | - Sylvain Daujat
- Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | - Miroslav Dundr
- Rosalind Franklin University, North Chicago, Illinois, United States of America
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) and BioQuant, Research Group Genome Organization and Function, Heidelberg, Germany
| | - Gernot Längst
- Biochemie III, University of Regensburg, Regensburg, Germany
- * E-mail: (GL); (RS)
| | - Robert Schneider
- Max-Planck Institute of Immunobiology, Freiburg, Germany
- * E-mail: (GL); (RS)
| |
Collapse
|
43
|
Fahrer J, Popp O, Malanga M, Beneke S, Markovitz DM, Ferrando-May E, Bürkle A, Kappes F. High-affinity interaction of poly(ADP-ribose) and the human DEK oncoprotein depends upon chain length. Biochemistry 2010; 49:7119-30. [PMID: 20669926 PMCID: PMC2929705 DOI: 10.1021/bi1004365] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a molecular DNA damage sensor that catalyzes the synthesis of the complex biopolymer poly(ADP-ribose) (PAR) under consumption of NAD(+). PAR engages in fundamental cellular processes such as DNA metabolism and transcription and interacts noncovalently with specific binding proteins involved in DNA repair and regulation of chromatin structure. A factor implicated in DNA repair and chromatin organization is the DEK oncoprotein, an abundant and conserved constituent of metazoan chromatin, and the only member of its protein class. We have recently demonstrated that DEK, under stress conditions, is covalently modified with PAR by PARP-1, leading to a partial release of DEK into the cytoplasm. Additionally, we have also observed a noncovalent interaction between DEK and PAR, which we detail here. Using sequence alignment, we identify three functional PAR-binding sites in the DEK primary sequence and confirm their functionality in PAR binding studies. Furthermore, we show that the noncovalent binding to DEK is dependent on PAR chain length as revealed by an overlay blot technique and a PAR electrophoretic mobility shift assay. Intriguingly, DEK promotes the formation of a defined complex with a 54mer PAR (K(D) = 6 x 10(-8) M), whereas no specific interaction is detected with a short PAR chain (18mer). In stark contrast to covalent poly(ADP-ribosyl)ation of DEK, the noncovalent interaction does not affect the overall ability of DEK to bind to DNA. Instead the noncovalent interaction interferes with subsequent DNA-dependent multimerization activities of DEK, as seen in South-Western, electrophoretic mobility shift, topology, and aggregation assays. In particular, noncovalent attachment of PAR to DEK promotes the formation of DEK-DEK complexes by competing with DNA binding. This was seen by the reduced affinity of PAR-bound DEK for DNA templates in solution. Taken together, our findings deepen the molecular understanding of the DEK-PAR interplay and support the existence of a cellular "PAR code" represented by PAR chain length.
Collapse
Affiliation(s)
- Jörg Fahrer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Oliver Popp
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Maria Malanga
- Department of Structural and Functional Biology, University Federico II of Naples, Naples, Italy
| | - Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Cellular & Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Program in Immunology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ferdinand Kappes
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Abstract
Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed.
Collapse
Affiliation(s)
- Erica Riveiro-Falkenbach
- Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | |
Collapse
|
45
|
Secchiero P, Voltan R, di Iasio MG, Melloni E, Tiribelli M, Zauli G. The oncogene DEK promotes leukemic cell survival and is downregulated by both Nutlin-3 and chlorambucil in B-chronic lymphocytic leukemic cells. Clin Cancer Res 2010; 16:1824-33. [PMID: 20215548 DOI: 10.1158/1078-0432.ccr-09-3031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the role of the oncogene DEK in modulating the response to either Nutlin-3, a small-molecule inhibitor of the MDM2/p53 interaction, or chlorambucil in primary B-chronic lymphocytic leukemia (B-CLL) cells. EXPERIMENTAL DESIGN DEK mRNA and protein levels were evaluated in primary B-CLL samples (n = 21), p53(wild-type) SKW6.4, p53(mutated) BJAB lymphoblastoid cell lines, and normal CD19(+) B lymphocytes-treated Nutlin-3 or chlorambucil (10 micromol/L, each). Knocking down experiments with either p53 or DEK small interfering RNA (siRNA) were done to investigate the potential role of p53 in controlling the expression of DEK and the role of DEK in leukemic cell survival/apoptosis. RESULTS Both Nutlin-3 and chlorambucil downregulated DEK in primary B-CLL samples (n = 21) and SKW6.4 but not in BJAB cells. Knocking down p53 attenuated the effect of Nutlin-3 on DEK expression, whereas knocking down DEK significantly increased both spontaneous and Nutlin-3-induced apoptosis. Conversely, counteracting DEK downmodulation by using p53 small interfering RNA reduced Nutlin-3-mediated apoptosis. On the other hand, Nutlin-3 potently induced p53 accumulation, but it did not affect DEK levels in normal CD19(+) B lymphocytes. CONCLUSIONS These data show that the downregulation of DEK in response to either Nutlin-3 or chlorambucil represents an important molecular determinant in the cytotoxic response of leukemic cells, and suggest that strategies aimed to downregulate DEK might improve the therapeutic potential of these drugs.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Alkylating/pharmacology
- Apoptosis
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Blotting, Western
- Cell Proliferation
- Cell Survival/drug effects
- Cells, Cultured
- Chlorambucil/pharmacology
- Chromosomal Proteins, Non-Histone/physiology
- Down-Regulation/drug effects
- Female
- Humans
- Imidazoles/pharmacology
- Immunoenzyme Techniques
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mutation
- Oncogene Proteins/physiology
- Piperazines/pharmacology
- Poly-ADP-Ribose Binding Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stereoisomerism
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Takata H, Nishijima H, Ogura SI, Sakaguchi T, Bubulya PA, Mochizuki T, Shibahara KI. Proteome analysis of human nuclear insoluble fractions. Genes Cells 2010; 14:975-90. [PMID: 19695025 DOI: 10.1111/j.1365-2443.2009.01324.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interphase nucleus is a highly ordered and compartmentalized organelle. Little is known regarding what elaborate mechanisms might exist to explain these properties of the nucleus. Also unresolved is whether some architectural components might facilitate the formation of functional intranuclear compartments or higher order chromatin structure. As the first step to address these questions, we performed an in-depth proteome analysis of nuclear insoluble fractions of human HeLa-S3 cells prepared by two different approaches: a high-salt/detergent/nuclease-resistant fraction and a lithium 3,5-diiodosalicylate/nuclease-resistant fraction. Proteins of the fractions were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry, identifying 333 and 330 proteins from each fraction respectively. Among the insoluble nuclear proteins, we identified 37 hitherto unknown or functionally uncharacterized proteins. The RNA recognition motif, WD40 repeats, HEAT repeats and the SAP domain were often found in these identified proteins. The subcellular distribution of selected proteins, including DEK protein and SON protein, demonstrated their novel associations with nuclear insoluble materials, corroborating our MS-based analysis. This study establishes a comprehensive catalog of the nuclear insoluble proteins in human cells. Further functional analysis of the proteins identified in our study will significantly improve our understanding of the dynamic organization of the interphase nucleus.
Collapse
Affiliation(s)
- Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Hua Y, Hu H, Peng X. Progress in studies on the DEK protein and its involvement in cellular apoptosis. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:637-42. [PMID: 19641868 DOI: 10.1007/s11427-009-0088-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/30/2009] [Indexed: 12/12/2022]
Abstract
DEK protein is an ubiquitous phosphorylated nuclear protein. Specific binding of DEK to DNA could change the topology of DNA and then affect the gene activity of the underlying DNA sequences. It is speculated that there might be some potential relationship between the stress reaction of cells and DEK proteins. The phosphorylation status of DEK protein is altered during death-receptor-mediated cell apoptosis. Both phosphorylation and poly(ADP-ribosyl)ation could promote the release of DEK from apoptotic nuclei to extracellular environment, and in this case DEK becomes a potential autoantigen of some autoimmune diseases. The available evidence powerfully suggests that DEK protein is closely relevant to apoptosis. The overexpression of DEK protein has dual function in cell apoptosis, in terms of inhibiting or triggering cell apoptosis.
Collapse
Affiliation(s)
- Ying Hua
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | | | | |
Collapse
|
48
|
Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA, Cripe TP, Grosveld GC, Wells SI. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 2009; 69:1792-9. [PMID: 19223548 PMCID: PMC2650744 DOI: 10.1158/0008-5472.can-08-2304] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High levels of expression of the human DEK gene have been correlated with numerous human malignancies. Intracellular DEK functions have been described in vitro and include DNA supercoiling, DNA replication, RNA splicing, and transcription. We have shown that DEK also suppresses cellular senescence, apoptosis, and differentiation, thus promoting cell growth and survival in monolayer and organotypic epithelial raft models. Such functions are likely to contribute to cancer, but direct evidence to implicate DEK as an oncogene has remained elusive. Here, we show that in line with an early role in tumorigenesis, murine papilloma formation in a classical chemical carcinogenesis model was reduced in DEK knockout mice. Additionally, human papillomavirus E6/E7, hRas, and DEK cooperated in the transformation of keratinocytes in soft agar and xenograft establishment, thus also implicating DEK in tumor promotion at later stages. Finally, adenoviral DEK depletion via short hairpin RNA expression resulted in cell death in human tumor cells in vitro and in vivo, but did not significantly affect differentiated epithelial cells. Taken together, our data uncover oncogenic DEK activities as postulated from its frequent up-regulation in human malignancies, and suggest that the targeted suppression of DEK may become a strategic approach to the treatment of cancer.
Collapse
Affiliation(s)
- Trisha M Wise-Draper
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wise-Draper TM, Morreale RJ, Morris TA, Mintz-Cole RA, Hoskins EE, Balsitis SJ, Husseinzadeh N, Witte DP, Wikenheiser-Brokamp KA, Lambert PF, Wells SI. DEK proto-oncogene expression interferes with the normal epithelial differentiation program. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:71-81. [PMID: 19036808 PMCID: PMC2631320 DOI: 10.2353/ajpath.2009.080330] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 09/18/2008] [Indexed: 01/14/2023]
Abstract
Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Differentiation/genetics
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Epithelium/metabolism
- Epithelium/pathology
- Fluorescent Antibody Technique
- Foreskin/cytology
- Gene Expression
- Humans
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/virology
- Keratinocytes/cytology
- Keratinocytes/pathology
- Keratinocytes/virology
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Papillomavirus E7 Proteins/genetics
- Poly-ADP-Ribose Binding Proteins
- Proto-Oncogene Mas
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Trisha M Wise-Draper
- Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rohrbeck A, Neukirchen J, Rosskopf M, Pardillos GG, Geddert H, Schwalen A, Gabbert HE, von Haeseler A, Pitschke G, Schott M, Kronenwett R, Haas R, Rohr UP. Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers. J Transl Med 2008; 6:69. [PMID: 18992152 PMCID: PMC2613386 DOI: 10.1186/1479-5876-6-69] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023] Open
Abstract
Methods We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10 adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5 samples of normal lung tissue (NT). The European and American methodological quality guidelines for microarray experiments were followed, including the stipulated use of laser capture microdissection for separation and purification of the lung cancer tumor cells from surrounding tissue. Results Based on differentially expressed genes, different lung cancer samples could be distinguished from each other and from normal lung tissue using hierarchical clustering. Comparing AC, SCC and SCLC with NT, we found 205, 335 and 404 genes, respectively, that were at least 2-fold differentially expressed (estimated false discovery rate: < 2.6%). Different lung cancer subtypes had distinct molecular phenotypes, which also reflected their biological characteristics. Differentially expressed genes in human lung tumors which may be of relevance in the respective lung cancer subtypes were corroborated by quantitative real-time PCR. Genetic programming (GP) was performed to construct a classifier for distinguishing between AC, SCC, SCLC, and NT. Forty genes, that could be used to correctly classify the tumor or NT samples, have been identified. In addition, all samples from an independent test set of 13 further tumors (AC or SCC) were also correctly classified. Conclusion The data from this research identified potential candidate genes which could be used as the basis for the development of diagnostic tools and lung tumor type-specific targeted therapies.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|