1
|
Zerebinski J, Margerie L, Han NS, Moll M, Ritvos M, Jahnmatz P, Ahlborg N, Ngasala B, Rooth I, Sjöberg R, Sundling C, Yman V, Färnert A, Plaza DF. Naturally acquired IgG responses to Plasmodium falciparum do not target the conserved termini of the malaria vaccine candidate Merozoite Surface Protein 2. Front Immunol 2024; 15:1501700. [PMID: 39717775 PMCID: PMC11663719 DOI: 10.3389/fimmu.2024.1501700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Malaria remains a significant burden, and a fully protective vaccine against Plasmodium falciparum is critical for reducing morbidity and mortality. Antibody responses against the blood-stage antigen Merozoite Surface Protein 2 (MSP2) are associated with protection from P. falciparum malaria, but its extensive polymorphism is a barrier to its development as a vaccine candidate. New tools, such as long-read sequencing and accurate protein structure modelling allow us to study the genetic diversity and immune responses towards antigens from clinical isolates with unprecedented detail. This study sought to better understand naturally acquired MSP2-specific antibody responses. Methods IgG responses against recombinantly expressed full-length, central polymorphic regions, and peptides derived from the conserved termini of MSP2 variants sequenced from patient isolates, were tested in plasma from travelers with recent, acute malaria and from individuals living in an endemic area of Tanzania. Results IgG responses towards full MSP2 and truncated MSP2 antigens were variant specific. IgG antibodies in the plasma of first-time infected or previously exposed travelers did not recognize the conserved termini of expressed MSP2 variants by ELISA, but they bound 13-amino acid long linear epitopes from the termini in a custom-made peptide array. Alphafold3 modelling suggests extensive structural heterogeneity in the conserved termini upon antigen oligomerization. IgG from individuals living in an endemic region, many who were asymptomatically infected, did not recognize the conserved termini by ELISA. Discussion Our results suggest that responses to the variable regions are critical for the development of naturally acquired immunity towards MSP2.
Collapse
Affiliation(s)
- Julia Zerebinski
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lucille Margerie
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Nan Sophia Han
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Moll
- University Hospital of Bonn, Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University of Bonn, Bonn, Germany
| | - Matias Ritvos
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ronald Sjöberg
- Autoimmunity and Serology Profiling Unit, SciLifeLab, Solna, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, Stockholm, Sweden
- Department of Global Health, Infectious Disease Epidemiology & Analytics Unit, Institut Pasteur Paris, Paris, France
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
3
|
Nadeem R, Maghraby AS, Abd-Elshafy DN, Barakat AB, Bahgat MM. Individual expression and processing of hepatitis C virus E1/E2 epitopes-based DNA vaccine candidate in healthy humans' peripheral blood mononuclear cells. Clin Exp Vaccine Res 2023; 12:47-59. [PMID: 36844691 PMCID: PMC9950224 DOI: 10.7774/cevr.2023.12.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Purpose The development and study of hepatitis C virus (HCV) vaccine candidates' individualized responses are of great importance. Here we report on an HCV DNA vaccine candidate based on selected envelope (E1/E2) epitopes. Besides, we assessed its expression and processing in human peripheral blood mononuclear cells (PBMCs) and in vivo cellular response in mice. Materials and Methods HCV E1/E2 DNA construct (EC) was designed. The antigen expression of EC was assayed in PBMCs of five HCV-uninfected donors via a real-time quantitative polymerase chain reaction. Serum samples from 20 HCV antibody-positive patients were used to detect each individual PBMCs expressed antigens via enzyme-linked immunosorbent assay. Two groups, five Swiss albino mice each, were immunized with the EC or a control construct. The absolute count of lymph nodes' CD4+ and CD8+ T-lymphocytes was assessed. Results Donors' PBMCs showed different levels of EC expression, ranging between 0.83-2.61-fold in four donors, while donor-3 showed 34.53-fold expression. The antigens expressed in PBMCs were significantly reactive to the 20 HCV antibody repertoire (all p=0.0001). All showed comparable reactivity except for donor-3 showing the lowest reactivity level. The absolute count % of the CD4+ T-cell significantly increased in four of the five EC-immunized mice compared to the control group (p=0.03). No significant difference in CD8+ T-cells % was observed (p=0.89). Conclusion The inter-individual variation in antigen expression and processing dominance was evident, showing independence in individuals' antigen expression and reactivity levels to antibodies. The described vaccine candidate might result in a promising natural immune response with a possibility of CD4+ T-cell early priming.
Collapse
Affiliation(s)
- Rola Nadeem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt.,Department of Water Pollution Research, Environmental Research Institute, National Research Center, Dokki, Cairo, Egypt
| | | | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| |
Collapse
|
4
|
Biavasco R, De Giovanni M. The Relative Positioning of B and T Cell Epitopes Drives Immunodominance. Vaccines (Basel) 2022; 10:vaccines10081227. [PMID: 36016115 PMCID: PMC9413633 DOI: 10.3390/vaccines10081227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Humoral immunity is crucial for protection against invading pathogens. Broadly neutralizing antibodies (bnAbs) provide sterilizing immunity by targeting conserved regions of viral variants and represent the goal of most vaccination approaches. While antibodies can be selected to bind virtually any region of a given antigen, the consistent induction of bnAbs in the context of influenza and HIV has represented a major roadblock. Many possible explanations have been considered; however, none of the arguments proposed to date seem to fully recapitulate the observed counter-selection for broadly protective antibodies. Antibodies can influence antigen presentation by enhancing the processing of CD4 epitopes adjacent to the binding region while suppressing the overlapping ones. We analyze the relative positioning of dominant B and T cell epitopes in published antigens that elicit strong and poor humoral responses. In strong immunogenic antigens, regions bound by immunodominant antibodies are frequently adjacent to CD4 epitopes, potentially boosting their presentation. Conversely, poorly immunogenic regions targeted by bnAbs in HIV and influenza overlap with clusters of dominant CD4 epitopes, potentially conferring an intrinsic disadvantage for bnAb-bearing B cells in germinal centers. Here, we propose the theory of immunodominance relativity, according to which the relative positioning of immunodominant B and CD4 epitopes within a given antigen drives immunodominance. Thus, we suggest that the relative positioning of B-T epitopes may be one additional mechanism that cooperates with other previously described processes to influence immunodominance. If demonstrated, this theory can improve the current understanding of immunodominance, provide a novel explanation for HIV and influenza escape from humoral responses, and pave the way for a new rational design of universal vaccines.
Collapse
Affiliation(s)
- Riccardo Biavasco
- Department of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Marco De Giovanni
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
5
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. J Virol 2020; 94:JVI.01883-19. [PMID: 31852794 PMCID: PMC7158715 DOI: 10.1128/jvi.01883-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 01/23/2023] Open
Abstract
We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, ∼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins.IMPORTANCE Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.
Collapse
|
7
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Moss DL, Park HW, Mettu RR, Landry SJ. Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes. J Biol Chem 2019; 294:4667-4681. [PMID: 30683694 DOI: 10.1074/jbc.ra118.006704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Indexed: 11/06/2022] Open
Abstract
Effective adaptive immune responses depend on activation of CD4+ T cells via the presentation of antigen peptides in the context of major histocompatibility complex (MHC) class II. The structure of an antigen strongly influences its processing within the endolysosome and potentially controls the identity of peptides that are presented to T cells. A recombinant immunotoxin, comprising exotoxin A domain III (PE-III) from Pseudomonas aeruginosa and a cancer-specific antibody fragment, has been developed to manage cancer, but its effectiveness is limited by the induction of neutralizing antibodies. Here, we observed that this immunogenicity is substantially reduced by substituting six residues within PE-III. Although these substitutions targeted T-cell epitopes, we demonstrate that reduced conformational stability and protease resistance were responsible for the reduced antibody titer. Analysis of mouse T-cell responses coupled with biophysical studies on single-substitution versions of PE-III suggested that modest but comprehensible changes in T-cell priming can dramatically perturb antibody production. The most strongly responsive PE-III epitope was well-predicted by a structure-based algorithm. In summary, single-residue substitutions can drastically alter the processing and immunogenicity of PE-III but have only modest effects on CD4+ T-cell priming in mice. Our findings highlight the importance of structure-based processing constraints for accurate epitope prediction.
Collapse
Affiliation(s)
- Daniel L Moss
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Hee-Won Park
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Ramgopal R Mettu
- the Department of Computer Science, Tulane University, New Orleans, Louisiana 70118
| | - Samuel J Landry
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
9
|
Sadegh-Nasseri S, Kim A. Selection of immunodominant epitopes during antigen processing is hierarchical. Mol Immunol 2018; 113:115-119. [PMID: 30146122 DOI: 10.1016/j.molimm.2018.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
MHC II proteins present processed antigens to CD4 + T cells through a complex set of events and players that include chaperons and accessory molecules. Antigen processing machinery is optimized for the selection of the best fitting peptides, called 'immunodominant epitopes', in the MHC II groove to which, specific CD4 + T cells respond and differentiate into memory T cells. However, due to the complexity of antigen processing, understanding the parameters that lead to immunodominance has proved difficult. Moreover, immunodominance of epitopes vary, depending on multiple factors that include; simultaneous processing of multiple proteins, involvement of multiple alleles of MHC II that can bind to the same antigen, or competition among several suitable epitopes on a single protein antigen. The current dogma assumes that once an antigenic determinant is selected under a specific condition, it would emerge immunodominant wherever it is placed. Here we will discuss some established parameters that contribute to immunodominance as well as some new findings, which demonstrate that slight changes to antigen structure can cause a complete shift in epitope selection during antigen processing and distort the natural immunodominant epitope.
Collapse
Affiliation(s)
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Koblischke M, Stiasny K, Aberle SW, Malafa S, Tsouchnikas G, Schwaiger J, Kundi M, Heinz FX, Aberle JH. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection. Front Immunol 2018; 9:1196. [PMID: 29899743 PMCID: PMC5989350 DOI: 10.3389/fimmu.2018.01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.
Collapse
Affiliation(s)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Koblischke M, Mackroth MS, Schwaiger J, Fae I, Fischer G, Stiasny K, Heinz FX, Aberle JH. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Sci Rep 2017; 7:8907. [PMID: 28827760 PMCID: PMC5566484 DOI: 10.1038/s41598-017-09331-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
The live attenuated yellow fever (YF) vaccine is a highly effective human vaccine and induces long-term protective neutralizing antibodies directed against the viral envelope protein E. The generation of such antibodies requires the help of CD4 T cells which recognize peptides derived from proteins in virus particles internalized and processed by E-specific B cells. The CD4 T helper cell response is restricted to few immunodominant epitopes, but the mechanisms of their selection are largely unknown. Here, we report that CD4 T cell responses elicited by the YF-17D vaccine are focused to hotspots of two helices of the viral capsid protein and to exposed strands and loops of E. We found that the locations of immunodominant epitopes within three-dimensional protein structures exhibit a high degree of overlap between YF virus and the structurally homologous flavivirus tick-borne encephalitis virus, although amino acid sequence identity of the epitope regions is only 15-45%. The restriction of epitopes to exposed E protein surfaces and their strikingly similar positioning within proteins of distantly related flaviviruses are consistent with a strong influence of protein structure that shapes CD4 T cell responses and provide leads for a rational design of immunogens for vaccination.
Collapse
Affiliation(s)
| | - Maria S Mackroth
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Kim A, Boronina TN, Cole RN, Darrah E, Sadegh-Nasseri S. Distorted Immunodominance by Linker Sequences or other Epitopes from a Second Protein Antigen During Antigen-Processing. Sci Rep 2017; 7:46418. [PMID: 28422163 PMCID: PMC5396073 DOI: 10.1038/srep46418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
The immune system focuses on and responds to very few representative immunodominant epitopes from pathogenic insults. However, due to the complexity of the antigen processing, understanding the parameters that lead to immunodominance has proved difficult. In an attempt to uncover the determinants of immunodominance among several dominant epitopes, we utilized a cell free antigen processing system and allowed the system to identify the hierarchies among potential determinants. We then tested the results in vivo; in mice and in human. We report here, that immunodominance of known sequences in a given protein can change if two or more proteins are being processed and presented simultaneously. Surprisingly, we find that new spacer/tag sequences commonly added to proteins for purification purposes can distort the capture of the physiological immunodominant epitopes. We warn against adding tags and spacers to candidate vaccines, or recommend cleaving it off before using for vaccination.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatiana N Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | |
Collapse
|
13
|
Sadegh-Nasseri S. A step-by-step overview of the dynamic process of epitope selection by major histocompatibility complex class II for presentation to helper T cells. F1000Res 2016; 5. [PMID: 27347387 PMCID: PMC4902097 DOI: 10.12688/f1000research.7664.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
T cell antigen receptors (TCRs) expressed on cytotoxic or helper T cells can only see their specific target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. In addition to the many steps, several participating proteins, and multiple cellular compartments involved in the processing of antigens, the MHC structure, with its dynamic and flexible groove, has perfectly evolved as the underlying instrument for epitope selection. In this review, I have taken a step-by-step, and rather historical, view to describe antigen processing and determinant selection, as we understand it today, all based on decades of intense research by hundreds of laboratories.
Collapse
|
14
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
15
|
Machado Y, Freier R, Scheiblhofer S, Thalhamer T, Mayr M, Briza P, Grutsch S, Ahammer L, Fuchs JE, Wallnoefer HG, Isakovic A, Kohlbauer V, Hinterholzer A, Steiner M, Danzer M, Horejs-Hoeck J, Ferreira F, Liedl KR, Tollinger M, Lackner P, Johnson CM, Brandstetter H, Thalhamer J, Weiss R. Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen. J Allergy Clin Immunol 2015; 137:1525-34. [PMID: 26559323 PMCID: PMC4877439 DOI: 10.1016/j.jaci.2015.09.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The search for intrinsic factors, which account for a protein's capability to act as an allergen, is ongoing. Fold stability has been identified as a molecular feature that affects processing and presentation, thereby influencing an antigen's immunologic properties. OBJECTIVE We assessed how changes in fold stability modulate the immunogenicity and sensitization capacity of the major birch pollen allergen Bet v 1. METHODS By exploiting an exhaustive virtual mutation screening, we generated mutants of the prototype allergen Bet v 1 with enhanced thermal and chemical stability and rigidity. Structural changes were analyzed by means of x-ray crystallography, nuclear magnetic resonance, and molecular dynamics simulations. Stability was monitored by using differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy. Endolysosomal degradation was simulated in vitro by using the microsomal fraction of JAWS II cells, followed by liquid chromatography coupled to mass spectrometry. Immunologic properties were characterized in vitro by using a human T-cell line specific for the immunodominant epitope of Bet v 1 and in vivo in an adjuvant-free BALB/c mouse model. RESULTS Fold stabilization of Bet v 1 was pH dependent and resulted in resistance to endosomal degradation at a pH of 5 or greater, affecting presentation of the immunodominant T-cell epitope in vitro. These properties translated in vivo into a strong allergy-promoting TH2-type immune response. Efficient TH2 cell activation required both an increased stability at the pH of the early endosome and efficient degradation at lower pH in the late endosomal/lysosomal compartment. CONCLUSIONS Our data indicate that differential pH-dependent fold stability along endosomal maturation is an essential protein-inherent determinant of allergenicity.
Collapse
Affiliation(s)
- Yoan Machado
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Regina Freier
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Theresa Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Melissa Mayr
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Sarina Grutsch
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Linda Ahammer
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Julian E Fuchs
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Hannes G Wallnoefer
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Almedina Isakovic
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Vera Kohlbauer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Markus Steiner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Danzer
- Austrian Red Cross, Blood Transfusion Service for Upper Austria, Linz, Austria
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Klaus R Liedl
- Center of Molecular Biosciences & Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Martin Tollinger
- Center of Molecular Biosciences & Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
16
|
Sadegh-Nasseri S, Kim A. Exogenous antigens bind MHC class II first, and are processed by cathepsins later. Mol Immunol 2015; 68:81-4. [PMID: 26254987 DOI: 10.1016/j.molimm.2015.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/18/2022]
Abstract
The field of antigen processing and presentation is likely one of the most well defined areas in immunology based on decades of intense molecular and structural studies. Many molecules contributing to antigen processing and presentation have been discovered and their mechanisms of action been largely defined, yet a major question, which lies at the very core of the field has remained hard to pin down. The question is what determines immunodominance? Immunodominance is defined as a few specific epitopes being selected to represent an antigen to the immune system and provide targets for T cells. Many studies have aimed at understanding how epitopes are selected. A range of hypotheses related to the structural features of antigens, sensitivity to proteases, epitope affinity for MHC II, T cell precursor frequency, and T cell receptor affinity for peptide/MHC II have been considered. However, because of the variety of proteins and factors involved in antigen processing and enormous complexity, finding an answer has been challenging. Here we make an effort to tease out the sequence of events in antigen processing that promote selection of immunodominant epitopes for exogenous antigens.
Collapse
Affiliation(s)
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
17
|
Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest 2015; 125:2532-46. [PMID: 25938786 DOI: 10.1172/jci79915] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/02/2015] [Indexed: 11/17/2022] Open
Abstract
Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.
Collapse
|
18
|
Nguyen HNP, Steede NK, Robinson JE, Landry SJ. Conformational instability governed by disulfide bonds partitions the dominant from subdominant helper T-cell responses specific for HIV-1 envelope glycoprotein gp120. Vaccine 2015; 33:2887-96. [PMID: 25944298 DOI: 10.1016/j.vaccine.2015.04.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) generate a CD4(+) T-cell response that is dominated by a few epitopes. Immunodominance may be counterproductive because a broad CD4(+) T-cell response is associated with reduced viral load. Previous studies indicated that antigen three-dimensional structure controls antigen processing and presentation and therefore CD4(+) T-cell epitope dominance. Dominant epitopes occur adjacent to the V1-V2, V3, and V4 loops because proteolytic antigen processing in the loops promotes presentation of adjacent sequences. In this study, three gp120 (strain JR-FL) variants were constructed, in which deletions of single outer-domain disulfide bonds were expected to introduce local conformational flexibility and promote presentation of additional CD4(+) T-cell epitopes. Following mucosal immunization of C57BL/6 mice with wild-type or variant gp120 lacking the V3-flanking disulfide bond, the typical pattern of dominant epitopes was observed, suggesting that the disulfide bond posed no barrier to antigen presentation. In mice that lacked gamma interferon-inducible lysosomal thioreductase (GILT), proliferative responses to the typically dominant epitopes of gp120 were selectively depressed, and the dominance pattern was rearranged. Deletion of the V3-flanking disulfide bond or one of the V4-flanking disulfide bonds partially restored highly proliferative responses to the typically dominant epitopes. These results reveal an acute dependence of dominant CD4(+) T-cell responses on the native gp120 conformation.
Collapse
Affiliation(s)
- Hong-Nam P Nguyen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - N Kalaya Steede
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
19
|
Kim A, Sadegh-Nasseri S. Determinants of immunodominance for CD4 T cells. Curr Opin Immunol 2015; 34:9-15. [PMID: 25576665 DOI: 10.1016/j.coi.2014.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
The term immunodominance was originally defined as a restricted T cell response to a short peptide sequence derived from a given protein. The question of what determines immunodominance has been a longstanding battle for the past two decades. Hundreds of papers have been written on different aspects of epitope selection during antigen processing documenting the complexity of the process. Antigen processing machinery involves several accessory molecules and chaperons coevolved with proteins of Major Histocompatibility Complex (MHC) molecules that each plays its part in epitope selection. These molecules are targeted to specialized vesicular compartments that also accommodate antigen processing enzymes called cathepsins. Within the antigen processing compartments, highly regulated pH gradient and reducing conditions and enzymes necessary for denaturation of the antigens are available and function to optimize processing of antigen and selection of the fittest for transport to the cell membrane and presentation to T cells. Despite the complexity, a cell free reductionist antigen processing system was recently reported that included only few purified proteins, but was shown to process and select physiologically relevant epitopes from full length protein antigens. Due to its minimalist nature the system has been quite helpful in dissecting the factors that contribute to epitope selection during antigen processing. In this review, we would summarize and highlight models that may explain how the dominant epitope may be selected for presentation to CD4(+) helper T cells.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
20
|
Hanson MC, Abraham W, Crespo MP, Chen SH, Liu H, Szeto GL, Kim M, Reinherz EL, Irvine DJ. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 2015; 33:861-8. [PMID: 25559188 DOI: 10.1016/j.vaccine.2014.12.045] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
An HIV vaccine capable of inducing high and durable levels of broadly neutralizing antibodies has thus far proven elusive. A promising antigen is the membrane-proximal external region (MPER) from gp41, a segment of the viral envelope recognized by a number of broadly neutralizing antibodies. Though an attractive vaccine target due to the linear nature of the epitope and its highly conserved sequence, MPER peptides are poorly immunogenic and may require display on membranes to achieve a physiological conformation matching the native virus. Here we systematically explored how the structure and composition of liposomes displaying MPER peptides impacts the strength and durability of humoral responses to this antigen as well as helper T-cell responses in mice. Administration of MPER peptides anchored to the surface of liposomes induced MPER-specific antibodies whereas MPER administered in oil-based emulsion adjuvants or alum did not, even when combined with Toll-like receptor agonists. High-titer IgG responses to liposomal MPER required the inclusion of molecular adjuvants such as monophosphoryl lipid A. Anti-MPER humoral responses were further enhanced by incorporating high-Tm lipids in the vesicle bilayer and optimizing the MPER density to a mean distance of ∼10-15 nm between peptides on the liposomes' surfaces. Encapsulation of helper epitopes within the vesicles allowed efficient "intrastructural" T-cell help, which promoted IgG responses to MPER while minimizing competing B-cell responses against the helper sequence. These results define several key properties of liposome formulations that promote durable, high-titer antibody responses against MPER peptides, which will be a prerequisite for a successful MPER-targeting vaccine.
Collapse
Affiliation(s)
- Melissa C Hanson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monica P Crespo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie H Chen
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Haipeng Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Greg Lee Szeto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mikyung Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
21
|
Kim A, Hartman IZ, Poore B, Boronina T, Cole RN, Song N, Ciudad MT, Caspi RR, Jaraquemada D, Sadegh-Nasseri S. Divergent paths for the selection of immunodominant epitopes from distinct antigenic sources. Nat Commun 2014; 5:5369. [PMID: 25413013 PMCID: PMC4241505 DOI: 10.1038/ncomms6369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Immunodominant epitopes are few selected epitopes from complex antigens that initiate T cell responses. Here, to provide further insights into this process, we use a reductionist cell-free antigen processing system composed of defined components. We use the system to characterize steps in antigen processing of pathogen-derived proteins or autoantigens and we find distinct paths for peptide processing and selection. Autoantigen-derived immunodominant epitopes are resistant to digestion by cathepsins, whereas pathogen-derived epitopes are sensitive. Sensitivity to cathepsins enforces capture of pathogen-derived epitopes by Major Histocompatibility Complex class II (MHC class II) prior to processing, and resistance to HLA-DM-mediated-dissociation preserves the longevity of those epitopes. We show that immunodominance is established by higher relative abundance of the selected epitopes, which survive cathepsin digestion either by binding to MHC class II and resisting DM-mediated-dissociation, or being chemically resistant to cathepsins degradation. Non-dominant epitopes are sensitive to both DM and cathepsins and are destroyed.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Isamu Z Hartman
- The Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Brad Poore
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatiana Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Robert N Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nianbin Song
- The Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - M Teresa Ciudad
- Department of Cell Biology, Physiology and Immunology, Laboratori d'Immunologia Cellular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland 20892, USA
| | - Dolores Jaraquemada
- Department of Cell Biology, Physiology and Immunology, Laboratori d'Immunologia Cellular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Scheherazade Sadegh-Nasseri
- 1] Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] The Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
22
|
Ferreira de Lima Neto D, Bonafe CFS, Arns CW. Influence of high hydrostatic pressure on epitope mapping of tobacco mosaic virus coat protein. Viral Immunol 2014; 27:60-74. [PMID: 24605789 DOI: 10.1089/vim.2013.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP.
Collapse
Affiliation(s)
- Daniel Ferreira de Lima Neto
- 1 Laboratório de Virologia Animal, Departamentos de 1Genética, Evolução e Bioagentes, e Universidade Estadual de Campinas (UNICAMP) , Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | | | | |
Collapse
|
23
|
Comprehensive analysis of contributions from protein conformational stability and major histocompatibility complex class II-peptide binding affinity to CD4+ epitope immunogenicity in HIV-1 envelope glycoprotein. J Virol 2014; 88:9605-15. [PMID: 24920818 DOI: 10.1128/jvi.00789-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure.
Collapse
|
24
|
Sant AJ, Chaves FA, Krafcik FR, Lazarski CA, Menges P, Richards K, Weaver JM. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev Vaccines 2014; 6:357-68. [PMID: 17542751 DOI: 10.1586/14760584.6.3.357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4 T cells play a primary role in regulating immune responses to pathogenic organisms and to vaccines. Antigen-specific CD4 T cells provide cognate help to B cells, a requisite event for immunoglobulin switch and affinity maturation of B cells that produce neutralizing antibodies and also provide help to cytotoxic CD8 T cells, critical for their expansion and persistence as memory cells. Finally, CD4 T cells may participate directly in pathogen clearance via cell-mediated cytotoxicity or through production of cytokines. Understanding the role of CD4 T-cell immunity to viruses and other pathogens, as well as evaluation of the efficacy of vaccines, requires insight into the specificity of CD4 T cells. This review focuses on the events within antigen-presenting cells that focus CD4 T cells toward a limited number of peptide antigens within the pathogen or vaccine. The molecular events are discussed in light of the special challenges that the influenza virus poses, owing to the high degree of genetic variability, unpredictable pathogenicity and the repeated encounters that human populations face with this highly infectious pathogenic organism.
Collapse
Affiliation(s)
- Andrea J Sant
- David H Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sant AJ, Chaves FA, Leddon SA, Tung J. The control of the specificity of CD4 T cell responses: thresholds, breakpoints, and ceilings. Front Immunol 2013; 4:340. [PMID: 24167504 PMCID: PMC3805957 DOI: 10.3389/fimmu.2013.00340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
It has been known for over 25 years that CD4 T cell responses are restricted to a finite number of peptide epitopes within pathogens or protein vaccines. These selected peptide epitopes are termed "immunodominant." Other peptides within the antigen that can bind to host MHC molecules and recruit CD4 T cells as single peptides are termed "cryptic" because they fail to induce responses when expressed in complex proteins or when in competition with other peptides during the immune response. In the last decade, our laboratory has evaluated the mechanisms that underlie the preferential specificity of CD4 T cells and have discovered that both intracellular events within antigen presenting cells, particular selective DM editing, and intercellular regulatory pathways, involving IFN-γ, indoleamine 2,3-dioxygenase, and regulatory T cells, play a role in selecting the final peptide specificity of CD4 T cells. In this review, we summarize our findings, discuss the implications of this work on responses to pathogens and vaccines and speculate on the logic of these regulatory events.
Collapse
Affiliation(s)
- Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A. Chaves
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline Tung
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
26
|
Steede NK, Rust BJ, Hossain MM, Freytag LC, Robinson JE, Landry SJ. Shaping T cell - B cell collaboration in the response to human immunodeficiency virus type 1 envelope glycoprotein gp120 by peptide priming. PLoS One 2013; 8:e65748. [PMID: 23776539 PMCID: PMC3679139 DOI: 10.1371/journal.pone.0065748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 11/24/2022] Open
Abstract
Prime-boost vaccination regimes have shown promise for obtaining protective immunity to HIV. Poorly understood mechanisms of cellular immunity could be responsible for improved humoral responses. Although CD4+ T-cell help promotes B-cell development, the relationship of CD4+ T-cell specificity to antibody specificity has not been systematically investigated. Here, protein and peptide-specific immune responses to HIV-1 gp120 were characterized in groups of ten mucosally immunized BALB/c mice. Protein and peptide reactivity of serum antibody was tested for correlation with cytokine secretion by splenocytes restimulated with individual gp120 peptides. Antibody titer for gp120 correlated poorly with the peptide-stimulated T-cell response. In contrast, titers for conformational epitopes, measured as crossreactivity or CD4-blocking, correlated with average interleukin-2 and interleukin-5 production in response to gp120 peptides. Antibodies specific for conformational epitopes and individual gp120 peptides typically correlated with T-cell responses to several peptides. In order to modify the specificity of immune responses, animals were primed with a gp120 peptide prior to immunization with protein. Priming induced distinct peptide-specific correlations of antibodies and T-cells. The majority of correlated antibodies were specific for the primed peptides or other peptides nearby in the gp120 sequence. These studies suggest that the dominant B-cell subsets recruit the dominant T-cell subsets and that T-B collaborations can be shaped by epitope-specific priming.
Collapse
Affiliation(s)
- N. Kalaya Steede
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Blake J. Rust
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Mohammad M. Hossain
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lucy C. Freytag
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Samuel J. Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Flatt JW, Fox TL, Makarova N, Blackwell JL, Dmitriev IP, Kashentseva EA, Curiel DT, Stewart PL. CryoEM visualization of an adenovirus capsid-incorporated HIV antigen. PLoS One 2012; 7:e49607. [PMID: 23166728 PMCID: PMC3498208 DOI: 10.1371/journal.pone.0049607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/11/2012] [Indexed: 01/12/2023] Open
Abstract
Adenoviral (Ad) vectors show promise as platforms for vaccine applications against infectious diseases including HIV. However, the requirements for eliciting protective neutralizing antibody and cellular immune responses against HIV remain a major challenge. In a novel approach to generate 2F5- and 4E10-like antibodies, we engineered an Ad vector with the HIV membrane proximal ectodomain region (MPER) epitope displayed on the hypervariable region 2 (HVR2) of the viral hexon capsid, instead of expressed as a transgene. The structure and flexibility of MPER epitopes, and the structural context of these epitopes within viral vectors, play important roles in the induced host immune responses. In this regard, understanding the critical factors for epitope presentation would facilitate optimization strategies for developing viral vaccine vectors. Therefore we undertook a cryoEM structural study of this Ad vector, which was previously shown to elicit MPER-specific humoral immune responses. A subnanometer resolution cryoEM structure was analyzed with guided molecular dynamics simulations. Due to the arrangement of hexons within the Ad capsid, there are twelve unique environments for the inserted peptide that lead to a variety of conformations for MPER, including individual α-helices, interacting α-helices, and partially extended forms. This finding is consistent with the known conformational flexibility of MPER. The presence of an extended form, or an induced extended form, is supported by interaction of this vector with the human HIV monoclonal antibody 2F5, which recognizes 14 extended amino acids within MPER. These results demonstrate that the Ad capsid influences epitope structure, flexibility and accessibility, all of which affect the host immune response. In summary, this cryoEM structural study provided a means to visualize an epitope presented on an engineered viral vector and suggested modifications for the next generation of Ad vectors with capsid-incorporated HIV epitopes.
Collapse
Affiliation(s)
- Justin W. Flatt
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tara L. Fox
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Natalia Makarova
- Department of Medicine, Division of Infectious Diseases, Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Jerry L. Blackwell
- Department of Medicine, Division of Infectious Diseases, Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Igor P. Dmitriev
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elena A. Kashentseva
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phoebe L. Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
The choice of resin-bound ligand affects the structure and immunogenicity of column-purified human papillomavirus type 16 virus-like particles. PLoS One 2012; 7:e35893. [PMID: 22563414 PMCID: PMC3338541 DOI: 10.1371/journal.pone.0035893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/26/2012] [Indexed: 01/17/2023] Open
Abstract
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.
Collapse
|
29
|
Influence of disulfide-stabilized structure on the specificity of helper T-cell and antibody responses to HIV envelope glycoprotein gp120. J Virol 2010; 84:3303-11. [PMID: 20089653 DOI: 10.1128/jvi.02242-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4(+) helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4(+) T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this work, three disulfide bonds in the outer domain of gp120 were individually deleted in order to destabilize the local three-dimensional structure and enhance the presentation of nearby weakly immunogenic epitopes. However, upon immunization of groups of BALB/c mice, the CD4(+) T-cell response was broadly reduced for all three variants, and distinct epitope profiles emerged. For one variant, antibody titers were sharply increased, and the antibody exhibited significant CD4-blocking activity.
Collapse
|
30
|
Dagenais TR, Demick KP, Bangs JD, Forest KT, Paulnock DM, Mansfield JM. T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect Immun 2009; 77:141-51. [PMID: 18936180 PMCID: PMC2612290 DOI: 10.1128/iai.00729-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/13/2008] [Accepted: 10/13/2008] [Indexed: 11/20/2022] Open
Abstract
Variable subregions within the variant surface glycoprotein (VSG) coat displayed by African trypanosomes are predicted sites for T- and B-cell recognition. Hypervariable subregion 1 (HV-1) is localized to an internal amphipathic alpha helix in VSG monomers and may have evolved due to selective pressure by host T-cell responses to epitopes within this subregion. The prediction of T-cell receptor-reactive sites and major histocompatibility complex class II binding motifs within the HV-1 subregion, coupled with the conservation of amino acid residues in other regions of the molecule sufficient to maintain secondary and tertiary VSG structure, prompted us to test the hypothesis that Th cells may preferentially recognize HV-1 subregion peptides. Thus, we examined the fine specificity of VSG-specific T-cell lines, T-cell hybridomas, and Th cells activated during infection. Our results demonstrate that T-cell epitopes are distributed throughout the N-terminal domain of VSG but are not clustered exclusively within HV-1 or other hypervariable subregions. In contrast, T-cell-reactive sites were not detected within the relatively conserved C-terminal domain of VSG. Overall, this study is the first to dissect the fine specificity of T-cell responses to the trypanosome VSG and suggests that evolution of a conserved HV-1 region may be unrelated to selective pressures exerted by host T-cell responses. This study also demonstrates that T cells do not recognize the relatively invariant C-terminal region of the VSG molecule during infection, suggesting that it could serve as a potential subunit vaccine to provide variant cross-specific immunity for African trypanosomiasis.
Collapse
Affiliation(s)
- Taylor R Dagenais
- Department of Bacteriology, Microbial Sciences Building, 1550 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lymphocytic choriomeningitis virus infection yields overlapping CD4+ and CD8+ T-cell responses. J Virol 2008; 82:11734-41. [PMID: 18829752 DOI: 10.1128/jvi.00435-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Activation of CD4(+) T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4(+) T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2(d). This is quite disparate to the H-2(b) setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2(d) or whether additional CD4(+) T-cell epitopes could be identified in the setting of the H-2(b) background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4(+) T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4(+) epitopes, four of them also stimulate CD8(+) T cells in a statistically significant manner. Furthermore, we assessed these CD4(+) T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4(+) and CD8(+) T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.
Collapse
|
32
|
Melton SJ, Landry SJ. Three dimensional structure directs T-cell epitope dominance associated with allergy. Clin Mol Allergy 2008; 6:9. [PMID: 18793409 PMCID: PMC2553403 DOI: 10.1186/1476-7961-6-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD4+ T-cell epitope immunodominance is not adequately explained by peptide selectivity in class II major histocompatibility proteins, but it has been correlated with adjacent segments of conformational flexibility in several antigens. METHODS The published T-cell responses to two venom allergens and two aeroallergens were used to construct profiles of epitope dominance, which were correlated with the distribution of conformational flexibility, as measured by crystallographic B factors, solvent-accessible surface, COREX residue stability, and sequence entropy. RESULTS Epitopes associated with allergy tended to be excluded from and lie adjacent to flexible segments of the allergen. CONCLUSION During the initiation of allergy, the N- and/or C-terminal ends of proteolytic processing intermediates were preferentially loaded into antigen presenting proteins for the priming of CD4+ T cells.
Collapse
Affiliation(s)
- Scott J Melton
- Biomedical Sciences Graduate Program, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | | |
Collapse
|
33
|
Mirano-Bascos D, Tary-Lehmann M, Landry SJ. Antigen structure influences helper T-cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120. Eur J Immunol 2008; 38:1231-7. [PMID: 18398933 DOI: 10.1002/eji.200738011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of an effective vaccine against HIV/AIDS has been hampered, in part, by a poor understanding of the rules governing helper T-cell epitope immunodominance. Studies in mice have shown that antigen structure modulates epitope immunodominance by affecting the processing and subsequent presentation of helper T-cell epitopes. Previous epitope mapping studies showed that the immunodominant helper T-cell epitopes in mice immunized with gp120 were found flanking flexible loops of the protein. In this report, we show that helper T-cell epitopes against gp120 in humans infected with HIV are also found flanking flexible loops. Immunodominant epitopes were found to be located primarily in the outer domain, an average of 12 residues C-terminal to flexible loops. In the less immunogenic inner domain, epitopes were found an average of five residues N-terminal to conserved regions of the protein, once again placing the epitopes C-terminal to flexible loops. These results show that antigen structure plays a significant role in the shaping of the helper T-cell response against HIV gp120 in humans. This relationship between antigen structure and helper T-cell epitope immunodominance may prove to be useful in the development of rationally designed vaccines against pathogens such as HIV.
Collapse
Affiliation(s)
- Denise Mirano-Bascos
- Interdisciplinary Program in the Biomedical Sciences, Tulane University, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
34
|
Three-dimensional structure determines the pattern of CD4+ T-cell epitope dominance in influenza virus hemagglutinin. J Virol 2007; 82:1238-48. [PMID: 18057238 DOI: 10.1128/jvi.02026-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The structural context of a CD4(+) T-cell epitope is known to influence immunodominance at the level of antigen processing, but general rules have not emerged. Dominant epitopes of influenza virus hemagglutinin are found to be localized to the C-terminal flanks of conformationally stable segments identified by low crystallographic B-factors or high COREX residue stabilities. The bias toward C-terminal flanks is distinctive for antigens from the influenza virus. Dominant epitopes in antigens/allergens from other sources also localize to the flanks of stable segments but are found on either N- or C-terminal flanks. Thus, dominance arises from preferential endoproteolytic nicking between stable segments followed by loading of fragment terminal regions into antigen-presenting proteins. This mechanism probably arose in order to direct CD4(+) responses onto sequences that are conserved for structure and function. Structure-guided presentation could enhance protection against genetically drifting influenza virus variants but most likely reduces protection against new viral subtypes.
Collapse
|
35
|
Bower JF, Ross TM. A minimum CR2 binding domain of C3d enhances immunity following vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:249-64. [PMID: 16893077 DOI: 10.1007/0-387-34134-x_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The degradation product of the third (C3) complement component, C3d, links innate and adaptive immunity, and the covalent attachment of C3d to an antigen enhances antigen-specific immune responses. C3d has been hypothesized to enhance immunity by direct interaction with complement receptor 2 (CR2/CD21) on immune cells. However, the domains on C3d important for CR2 binding have been controversial, with various studies reaching contradictory conclusions. In addition, the concept of B-cell activation via CR2 by C3d has been questioned, since mice lacking CR2 still elicit C3d-enhanced immunity following vaccination. Therefore, the goal of this study was to determine if a peptide representing one of the proposed CR2 binding domains of C3d could substitute for the entire protein and enhance antigen-specific immunity. Mice (BALB/c) were vaccinated with the HIV-1 gp120 envelope glycoprotein (Env(gp120)) alone or fused to multiple copies of the murine C3d or a twenty-eight amino-acid peptide (P28) containing a minimum CR2 binding domain. Each immunogen was expressed from DNA plasmid in vivo or injected as purified recombinant protein. The fusion of the P28 peptide to Env(gp120) enhanced both humoral and cell-mediated immune responses with similar efficiency as Env(gp120) conjugated to C3d. The fusion of C3d or P28 to Env(gp120) elicited higher-titer anti-Env specific antibody, enhanced avidity maturation of the elicited antibody, and elicited higher numbers of IFN-gamma and IL-4 secreting cells compared to Env(gp120) immunizations. This CR2-binding domain specific 28 amino acid peptide can substitute for the entire C3d molecule and enhance immunity. These results indicate that the adjuvant properties of C3d are associated with CR2 interaction.
Collapse
Affiliation(s)
- Joseph F Bower
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15261, USA
| | | |
Collapse
|
36
|
Weaver EA, Lu Z, Camacho ZT, Moukdar F, Liao HX, Ma BJ, Muldoon M, Theiler J, Nabel GJ, Letvin NL, Korber BT, Hahn BH, Haynes BF, Gao F. Cross-subtype T-cell immune responses induced by a human immunodeficiency virus type 1 group m consensus env immunogen. J Virol 2006; 80:6745-56. [PMID: 16809280 PMCID: PMC1489064 DOI: 10.1128/jvi.02484-05] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity among globally circulating human immunodeficiency virus type 1 (HIV-1) strains is a serious challenge for HIV-1 vaccine design. We have generated a synthetic group M consensus env gene (CON6) for induction of cross-subtype immune responses and report here a comparative study of T-cell responses to this and natural strain env immunogens in a murine model. Three different strains of mice were immunized with CON6 as well as subtype A, B, or C env immunogens, using a DNA prime-recombinant vaccinia virus boost strategy. T-cell epitopes were mapped by gamma interferon enzyme-linked immunospot analysis using five overlapping Env peptide sets from heterologous subtype A, B, and C viruses. The CON6-derived vaccine was immunogenic and induced a greater number of T-cell epitope responses than any single wild-type subtype A, B, and C env immunogen and similar T-cell responses to a polyvalent vaccine. The responses were comparable to within-clade responses but significantly more than between-clade responses. The magnitude of the T-cell responses induced by CON6 (measured by individual epitope peptides) was also greater than the magnitude of responses induced by individual wild-type env immunogens. Though the limited major histocompatibility complex repertoire in inbred mice does not necessarily predict responses in nonhuman primates and humans, these results suggest that synthetic centralized env immunogens represent a promising approach for HIV-1 vaccine design that merits further characterization.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- AIDS Vaccines/pharmacology
- Animals
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/pharmacology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/pharmacology
- Genetic Variation
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/pharmacology
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Histocompatibility Antigens/immunology
- Humans
- Interferon-gamma/immunology
- Mice
- Mice, Inbred BALB C
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- Species Specificity
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- Eric A Weaver
- Duke Human Vaccine Institute, Duke University Medical Center, 112 RPIII, Research Drive, Box 3347, DUMC, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Carmicle S, Steede NK, Landry SJ. Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Mol Immunol 2006; 44:1159-68. [PMID: 16893568 DOI: 10.1016/j.molimm.2006.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/18/2022]
Abstract
Antigen three-dimensional structure potentially controls presentation of CD4(+) T-cell epitopes by limiting the access of proteolytic enzymes and MHC class II antigen-presenting proteins. The protease-sensitive mobile loops of Hsp10s from mycobacteria, Escherichia coli, and bacteriophage T4 (T4Hsp10) are associated with adjacent immunodominant helper T-cell epitopes, and a mobile-loop deletion in T4Hsp10 eliminated the protease sensitivity and the associated epitope immunodominance. In the present work, protease-sensitivity and epitope presentation was analyzed in a group of T4Hsp10 variants. Two mobile-loop sequence variants of T4Hsp10 were constructed by replacing different segments of the mobile loop with an irrelevant sequence from hen egg lysozyme. The variant proteins retained native-like structure, and the mobile loops retained protease sensitivity. Mobile-loop deletion and reconstruction affected the presentation of two epitopes according to whether the epitope was protease-independent or protease-dependent. The protease-independent epitope lies within the mobile loop, and the protease-dependent epitope lies in a well-ordered segment on the carboxy-terminal flank of the mobile loop. The results are consistent with a model for processing of the protease-dependent epitope in which an endoproteolytic nick in the mobile-loop unlocks T4Hsp10 three-dimensional structure, and then the epitope becomes available for binding to the MHC protein.
Collapse
Affiliation(s)
- Stephanie Carmicle
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
38
|
Bower JF, Li Y, Wyatt R, Ross TM. HIV-1 Envgp140 trimers elicit neutralizing antibodies without efficient induction of conformational antibodies. Vaccine 2006; 24:5442-51. [PMID: 16621193 DOI: 10.1016/j.vaccine.2006.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, no vaccine for human immunodeficiency virus (HIV-1) provides protection from virus infection. One reason for these disappointing results has been the difficulty of current vaccine candidates to elicit high-titer, broadly reactive immunity to a large number of viral proteins. Recently, our laboratory demonstrated that the coupling of C3d to a soluble trimerized HIV-1 envelope (Env(gp140(FT))) elicited higher titers of neutralizing antibodies than monomers of Env(gp120) coupled to C3d [Bower JF, Yang X, Sodroski J, Ross TM. Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d. J Virol 2004;78(9):4710-9]. To determine if the induction of conformational antibodies correlated with neutralization, mice (BALB/c) were primed (2x) with DNA plasmids expressing monomeric Env(gp120) or trimeric Env(gp140) alone or fused to mC3d(3) at one of two doses (2.0microg or 0.2microg), followed by a boost of recombinant uncleaved, trimeric Env(gp140). Regardless of the priming dose of DNA, all mice had high-titer anti-Env IgG antibodies. Interestingly, Env(gp140) trimers did not elicit higher titers of antibodies that recognized conformational Env epitopes compared to monomers of Env(gp120). Therefore, additional parameters were examined for correlation with neutralization. For neutralization-resistant HIV-1 isolates, ADA and YU-2, neutralization correlated with high-titer, high avidity antibodies, with Env(gp140) eliciting slightly higher neutralization titers than Env(gp120). In contrast, none of the measured parameters correlated with neutralization for the more neutralization-sensitive isolates, MN or 89.6. Therefore, even though soluble, uncleaved Env(gp140) trimers may be marginally more effective at eliciting neutralizing antibodies than Env(gp120), neutralization does not appear to correlate with the elicitation of conformationally dependent antibodies.
Collapse
Affiliation(s)
- Joseph F Bower
- University of Pittsburgh, School of Medicine, Department of Medicine, Division of Infectious Diseases, Scaife Hall, Room S871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
39
|
Grundner C, Pancera M, Kang JM, Koch M, Sodroski J, Wyatt R. Factors limiting the immunogenicity of HIV-1 gp120 envelope glycoproteins. Virology 2005; 330:233-48. [PMID: 15527849 DOI: 10.1016/j.virol.2004.08.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/12/2004] [Accepted: 08/27/2004] [Indexed: 12/15/2022]
Abstract
Efficient immune responses to HIV-1 gene products are essential elements to the development and design of an effective vaccine. Ideally, both humoral and cellular responses will be optimally elicited. It is therefore important to elucidate any factors that might limit the immunogenicity of HIV-1 proteins that are likely to be included in an effective vaccine. Since the HIV-1 exterior envelope glycoprotein gp120 is a major target for neutralizing antibodies, it is a virtual certainty that this gene product will be a component of any vaccine that seeks to elicit neutralizing antibody responses from the host humoral immune system. We report here the testing of several HIV-1 gp120 variants derived from a primary isolate that appears deficient in eliciting immune responses at both the level of CD4+ help and consequently in the generation of high-affinity IgG antibody responses in small animals. Factors limiting an effective immune response include (a) envelope glycoprotein strain variation decreasing functional T-cell help, (b) alteration of the glycosylation patterns of gp120 by expression in different cell types, and (c) the native structure of gp120 itself, which may limit the elicitation of effective T-cell help during natural infection or during parenteral immunization in adjuvant. Such limiting factors and others should be considered in the design and testing of gp120-based immunogens in small animals and possibly in primates as well.
Collapse
Affiliation(s)
- Christoph Grundner
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Brown SA, Lockey TD, Slaughter C, Slobod KS, Surman S, Zirkel A, Mishra A, Pagala VR, Coleclough C, Doherty PC, Hurwitz JL. T cell epitope "hotspots" on the HIV Type 1 gp120 envelope protein overlap with tryptic fragments displayed by mass spectrometry. AIDS Res Hum Retroviruses 2005; 21:165-70. [PMID: 15725756 DOI: 10.1089/aid.2005.21.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous work has shown that immunodominant T-helper cell epitopes cluster within distinct fragments on a single face of the HIV envelope gp120 protein. We show in this report that the general positions of immunodominant epitopes are shared by T cells derived from BALB/c, C57BL/6, and CB6F1 mice, yet the precise peptides recognized by the responding T cell populations may differ. In addition, we find that gp120 peptides displayed by tryptic digestion and mass spectrometry of a purified HIV envelope protein share location with peptides defined as immunodominant T cell targets. Results are consistent with the suggestion that gp120 peptide location influences antigen processing, which, in turn, influences the specificity of immunodominant T cells.
Collapse
Affiliation(s)
- Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Williams KM, Bigley EC. Identification of an I-Ed-restricted T-cell epitope of Escherichia coli outer membrane protein F. Infect Immun 2004; 72:3907-13. [PMID: 15213134 PMCID: PMC427395 DOI: 10.1128/iai.72.7.3907-3913.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A predominant T-cell epitope of Escherichia coli outer membrane protein F (OmpF) that encompasses amino acids 295 to 314 was identified in H-2(d) mice. BALB/c-derived T-cell hybridomas generated against this region were CD3(+), CD4(+), CD8(-), and T-cell receptor alphabeta(+) and secreted TH-1-associated cytokines (interleukin-2 [IL-2] and gamma interferon), but not a TH-2-associated cytokine (IL-4), when restimulated with peptide 295-314. Class II(+) mouse lymphoma (A20) cells, but not class II(-) mouse mastocytoma (P815) cells, supported IL-2 secretion of hybridomas when substituted for syngeneic splenocytes as antigen-presenting cells (APCs). Antibodies specific for I-E(d) blocked IL-2 secretion by hybridomas, but I-A(d)-specific antiserum did not. When transfected L cells expressing I-A(d) (AalphaAbeta(d)), I-E(d) (EalphaEbeta(d)), or the hybrid molecule I-EalphaAbeta(d) were used as APCs, hybridomas recognized peptide only when presented by the I-E(d)-transfected cells. When peptide 295-314 truncated at either the C or the N terminus of the sequence was used, the minimal epitope was determined. Critical residues were determined by using alanine-substituted peptide analogues. T-cell hybridomas were only stimulated by peptides that encompassed amino acids 295 to 303 (9-mer), and the core sequence required a minimum of three additional amino acids at either the amino or the carboxy terminus to induce IL-2 secretion. Critical residues were determined to be phenylalanine at position 295, threonine at position 300, and tyrosines at positions 301 and 302. This study is the first to identify a minimal T-cell epitope and major histocompatibility complex restriction element of the OmpF protein and confirms previous observations that there is considerable degeneracy in the length of peptides that can bind I-E(d) and variability in the amino acid composition of the C and N termini of these peptides.
Collapse
Affiliation(s)
- Kristina M Williams
- Center for Food Safety and Applied Nutrition, Immunobiology Branch, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | |
Collapse
|
42
|
Brown SA, Stambas J, Zhan X, Slobod KS, Coleclough C, Zirkel A, Surman S, White SW, Doherty PC, Hurwitz JL. Clustering of Th cell epitopes on exposed regions of HIV envelope despite defects in antibody activity. THE JOURNAL OF IMMUNOLOGY 2004; 171:4140-8. [PMID: 14530336 DOI: 10.4049/jimmunol.171.8.4140] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A long-standing question in the field of immunology concerns the factors that contribute to Th cell epitope immunodominance. For a number of viral membrane proteins, Th cell epitopes are localized to exposed protein surfaces, often overlapping with Ab binding sites. It has therefore been proposed that Abs on B cell surfaces selectively bind and protect exposed protein fragments during Ag processing, and that this interaction helps to shape the Th cell repertoire. While attractive in concept, this hypothesis has not been thoroughly tested. To test this hypothesis, we have compared Th cell peptide immunodominance in normal C57BL/6 mice with that in C57BL/6( micro MT/ micro MT) mice (lacking normal B cell activity). Animals were first vaccinated with DNA constructs expressing one of three different HIV envelope proteins, after which the CD4(+) T cell response profiles were characterized toward overlapping peptides using an IFN-gamma ELISPOT assay. We found a striking similarity between the peptide response profiles in the two mouse strains. Profiles also matched those of previous experiments in which different envelope vaccination regimens were used. Our results clearly demonstrate that normal Ab activity is not required for the establishment or maintenance of Th peptide immunodominance in the HIV envelope response. To explain the clustering of Th cell epitopes, we propose that localization of peptide on exposed envelope surfaces facilitates proteolytic activity and preferential peptide shuttling through the Ag processing pathway.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Gene Products, env/administration & dosage
- Gene Products, env/immunology
- Gene Products, env/metabolism
- HIV Antibodies/biosynthesis
- HIV Antibodies/genetics
- HIV Antibodies/metabolism
- HIV-1/immunology
- Humans
- Hybridomas
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Molecular Sequence Data
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/virology
Collapse
Affiliation(s)
- Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhan X, Slobod KS, Surman S, Brown SA, Lockey TD, Coleclough C, Doherty PC, Hurwitz JL. Limited breadth of a T-helper cell response to a human immunodeficiency virus envelope protein. J Virol 2003; 77:4231-6. [PMID: 12634380 PMCID: PMC150625 DOI: 10.1128/jvi.77.7.4231-4236.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-envelope human immunodeficiency virus (HIV) vaccines have been studied for more than a decade, with some successes in homologous challenge experiments in nonhuman primates but with no clear successes in clinical trials. To gain insight into the breadth of the immunity elicited by such vaccines, we have dissected the T-helper cell response of C57BL/6 mice to an individual, molecularly cloned envelope protein. Here, we report that T-helper cells responsive to HIV type 1 1035 envelope are very highly restricted in C57BL/6 animals: seven different hybridomas recovered from five separate mice recognized the same peptide, PKVSFEPIPIHYCAP, located in the C2 region of gp120. Three of these hybridomas were tested on a natural variant of the peptide but failed to respond. A more extensive analysis of whole splenic populations from other C57BL/6 mice immunized with the 1035 envelope reproducibly confirmed that the gp120-specific T-helper response was almost exclusively focused on a single epitope. We conclude that single-envelope vaccines may frequently fail to provoke an immune response sufficiently diverse to recognize variant sequences among circulating HIV. The results encourage the inclusion of more than one envelope in future vaccines to enhance the potential diversity and respective surveillance capacities of responding T-helper cell populations.
Collapse
Affiliation(s)
- X Zhan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | |
Collapse
|