1
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
2
|
Dillon J, Holden-Dye L, O'Connor V. Yeast two-hybrid screening identifies MPZ-1 and PTP-1 as candidate scaffolding proteins of metabotropic glutamate receptors in Caenorhabditis elegans. INVERTEBRATE NEUROSCIENCE 2018; 18:16. [PMID: 30417267 DOI: 10.1007/s10158-018-0218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are a class of G-protein-coupled receptor that undergo extensive interactions with scaffolding proteins, and this is intrinsic to their function as an important group of neuromodulators at glutamatergic synapses. The Caenorhabditis elegans nervous system expresses three metabotropic glutamate receptors, MGL-1, MGL-2 and MGL-3. Relatively little is known about how the function and signalling of these receptors is organised in C. elegans. To identify proteins that scaffold the MGL-1 receptor, we have conducted a yeast two-hybrid screen. Three of the interacting proteins, MPZ-1, NRFL-1 and PTP-1, displayed motifs characteristic of mammalian mGluR scaffolding proteins. Using cellular co-expression criterion, we show mpz-1 and ptp-1 exhibited overlapping expression patterns with subsets of mgl-1 neurons. This included neurones in the pharyngeal nervous system that control the feeding organ of the worm. The mGluR agonist L-CCG-I inhibits the activity of this network in wild-type worms, in an MGL-1 and dose-dependent manner. We utilised L-CCG-I to identify if MGL-1 function was disrupted in mutants with deletions in the mpz-1 gene. The mpz-1 mutants displayed a largely wild-type response to L-CCG-I, suggesting MGL-1 signalling is not overtly disrupted consistent with a non-obligatory modulatory function in receptor scaffolding. The selectivity of the protein interactions and overlapping expression identified here warrant further investigation of the functional significance of scaffolding of metabotropic glutamate receptor function.
Collapse
Affiliation(s)
- James Dillon
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Lindy Holden-Dye
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Vincent O'Connor
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
3
|
Goolam MA, Ward JH, Avlani VA, Leach K, Christopoulos A, Conigrave AD. Roles of intraloops-2 and -3 and the proximal C-terminus in signalling pathway selection from the human calcium-sensing receptor. FEBS Lett 2014; 588:3340-6. [PMID: 25080008 DOI: 10.1016/j.febslet.2014.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/24/2022]
Abstract
The calcium-sensing receptor (CaSR) couples to signalling pathways via intracellular loops 2 and 3, and the C-terminus. However, the requirements for signalling are largely undefined. We investigated the impacts of selected point mutations in iL-2 (F706A) and iL-3 (L797A and E803A), and a truncation of the C-terminus (R866X) on extracellular Ca(2+) (Ca(2+)o)-stimulated phosphatidylinositol-specific phospholipase-C (PI-PLC) and various other signalling responses. CaSR-mediated activation of PI-PLC was markedly attenuated in all four mutants and similar suppressions were observed for Ca(2+)o-stimulated ERK1/2 phosphorylation. Ca(2+)o-stimulated intracellular Ca(2+) (Ca(2+)i) mobilization, however, was relatively preserved for the iL-2 and iL-3 mutants and suppression of adenylyl cyclase was unaffected by either E803A or R866X. The CaSR selects for specific signalling pathways via the proximal C-terminus and key residues in iL-2, iL-3.
Collapse
Affiliation(s)
- Mahvash A Goolam
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - James H Ward
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Vimesh A Avlani
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Katie Leach
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Abstract
AIMS The presence of genetic variants for autism spectrum disorders (ASDs) was investigated for the metabotropic glutamate receptor 7 (GRM7) gene in a case-control study. MAIN METHODS Employing Affymetrix SNP microarrays, 297 single nucleotide polymorphisms (SNPs) covering the GRM7 gene were selected and analyzed in ASD patients (n=22), non-ASD patients [n=14, including seven patients with development delay (DD)/mental retardation (MR), four patients with language delay (LD), and three patients with attention deficit hyperactivity disorder (ADHD)] and normal control subjects (n=18). KEY FINDINGS Twenty-one statistically significant SNPs with different inheritance models (recessive, dominant and allele) were demonstrated in three groups (ASDs vs. combined controls, ASDs vs. normal controls, ASDs vs. non-ASD patients). Associations of rs779867 and rs6782011 with ASDs were significant in all three groups and independent associations of rs779867 and rs6782011 with ASDs were found in the ASD vs. combined controls group, which are in modest linkage disequilibrium (D'>0.5). Further haplotype analysis showed that rs6782011/rs779867 (T-C) was statistically significantly related to ASDs in both the ASD vs. combined controls and ASD vs. normal controls groups (bootstrap P value=0.013, permutation P value=0.013 for the former group and bootstrap P value=0.002, permutation P value=0.020 for the latter). SIGNIFICANCE These findings support a role for genetic variants within the GRM7 gene in 3p26.1 in ASDs.
Collapse
|
5
|
Romero G, von Zastrow M, Friedman PA. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:279-314. [PMID: 21907913 DOI: 10.1016/b978-0-12-385952-5.00003-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200-300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein-protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates.
Collapse
Affiliation(s)
- Guillermo Romero
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
6
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2402] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
7
|
Enz R. The trick of the tail: protein-protein interactions of metabotropic glutamate receptors. Bioessays 2007; 29:60-73. [PMID: 17187376 DOI: 10.1002/bies.20518] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It was initially believed that G-protein-coupled receptors, such as metabotropic glutamate receptors, could simply be described as individual proteins that are associated with intracellular signal cascades via G-proteins. This view is no longer tenable. Today we know that metabotropic glutamate receptors (mGluRs) can dimerize and bind to a variety of proteins in addition to trimeric G-proteins. These newly identified protein interactions led to the discovery of new regulatory mechanisms that are independent of and sometimes synergistic with the classical G-protein-coupled second messenger pathways. Notably, several of these mechanisms connect mGluR-mediated signaling to other receptor classes, thereby creating a network of different receptor types and associated signal cascades. The intracellular C-termini of mGluRs play a key role in the regulation of these networks, and various new protein interactions of these domains were described recently. Because mGluRs are involved in a variety of physiological and pathophysiological processes, some of the proteins interacting with this receptor class have potential as valuable pharmaceutical targets. This review will give a comprehensive overview of proteins interacting with mGluR C-termini, highlight new evolving regulatory mechanisms for glutamatergic signal transduction and discuss possibilities for future drug development.
Collapse
Affiliation(s)
- Ralf Enz
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Doyle GA, Rebecca Sheng X, Lin SSJ, Press DM, Grice DE, Buono RJ, Ferraro TN, Berrettini WH. Identification of three mouse mu-opioid receptor (MOR) gene (Oprm1) splice variants containing a newly identified alternatively spliced exon. Gene 2006; 388:135-47. [PMID: 17156941 DOI: 10.1016/j.gene.2006.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/24/2006] [Accepted: 10/28/2006] [Indexed: 12/01/2022]
Abstract
The mouse mu-opioid receptor gene, Oprm1, is recognized currently to contain 17 alternatively spliced exons that generate 24 splice variants encoding at least 11 morphine-binding isoforms of the receptor. Here, we identify three new MOR splice variants that contain a previously undescribed exon, exon 18, and provide evidence that they are expressed in two mouse strains. The transcripts containing the newly identified exon 18 encode two new putative mu-opioid receptor isoforms, MOR-1V and MOR-1W. In mouse Oprm1, exon 18 is located between the described exons 10 and 6. Exon 18 appears to be conserved in the rat genome between exons 4 and 7. A BLAST search of the non-redundant GenBank database suggests that human OPRM1 may also contain exon 18. Analysis of mouse brain mRNA by RT-PCR suggests that MOR-1Vii transcripts are expressed in all areas of the brain analyzed, whereas expression of MOR-1Vi transcripts was restricted to thalamus and striatum. MOR-1W transcripts are expressed most highly in the hypothalamus, thalamus and striatum. In summary, we have identified three brain expressed, alternatively spliced mouse MOR splice variants containing a novel exon and encoding new putative MOR isoforms, MOR-1V and MOR-1W.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons/genetics
- Gene Expression
- Male
- Mice/genetics
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Models, Genetic
- Molecular Sequence Data
- Phosphorylation
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- Glenn A Doyle
- The Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res 2006; 326:483-504. [PMID: 16847639 DOI: 10.1007/s00441-006-0266-5] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 05/31/2006] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlus) are a family of G-protein-coupled receptors activated by the neurotransmitter glutamate. Molecular cloning has revealed eight different subtypes (mGlu1-8) with distinct molecular and pharmacological properties. Multiplicity in this receptor family is further generated through alternative splicing. mGlus activate a multitude of signalling pathways important for modulating neuronal excitability, synaptic plasticity and feedback regulation of neurotransmitter release. In this review, we summarize anatomical findings (from our work and that of other laboratories) describing their distribution in the central nervous system. Recent evidence regarding the localization of these receptors in peripheral tissues will also be examined. The distinct regional, cellular and subcellular distribution of mGlus in the brain will be discussed in view of their relationship to neurotransmitter release sites and of possible functional implications.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Strasse 1a, A-6020, Innsbruck, Austria
| | | |
Collapse
|
10
|
Yang Y, Chen M, Loux TJ, Georgeson KE, Harmon CM. Molecular mechanism of the intracellular segments of the melanocortin-4 receptor for NDP-MSH signaling. Biochemistry 2005; 44:6971-9. [PMID: 15865442 DOI: 10.1021/bi047521+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of the human melanocortin-4 receptor (hMC4R) have been previously identified to be the most common cause of monogenic human obesity. Specifically, mutations of the intracellular C terminus and the third intracellular loop of hMC4R have been reported to play an important role in human obesity. However, the molecular basis of these hMC4R intracellular segments in receptor function remains unclear. In this study, we utilized deletions and mutations of specific portions of the hMC4R to determine the molecular mechanism of both the C terminus and the third intracellular loop in receptor signaling. Our results indicate that deletions of the distal 25 (the entire C terminus), 22, 18, 17, 16, and 15 amino acids of the C terminus result in the complete loss of both [Nle(4)-d-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) binding and NDP-MSH-mediated cAMP production. Deletion of the distal 14 amino acids of the C terminus significantly decreases both NDP-MSH binding affinity and potency, but deletion of the distal 13 amino acids of the C terminus does not affect NDP-MSH activity. Further analysis revealed that the proximal 12 amino acids of the C terminus are not only important for receptor signaling but also important for ligand binding. Our results also indicate that the third intracellular loop of the hMC4R is important for receptor signaling but not ligand binding. In summary, our findings suggest that the proximal region of the melanocortin-4 receptor (MC4R) C terminus is crucial not only for receptor signaling but also for ligand binding, while the third intracellular loop is important mainly for receptor signaling.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA.
| | | | | | | | | |
Collapse
|
11
|
Kostenis E, Martini L, Ellis J, Waldhoer M, Heydorn A, Rosenkilde MM, Norregaard PK, Jorgensen R, Whistler JL, Milligan G. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity. J Pharmacol Exp Ther 2005; 313:78-87. [PMID: 15615862 DOI: 10.1124/jpet.104.080424] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one module. Galpha proteins modified in both modules are significantly more efficacious in channeling non-G(q) -selective receptors to G(q)-mediated signaling events compare with those containing each module alone. Additive effects of both modules were observed even if individual modules lacked an effect on GPCR-to-effector specificity. Dually modified Galpha proteins were also superior in conferring high-affinity agonist sites onto a coexpressed GPCR in the absence, but not in the presence, of guanine nucleotides. Together, our data suggest that receptor-G protein coupling selectivity involves cooperative interactions between the extreme C terminus and linker I of Galpha proteins and that distinct determinants of selectivity exist for individual receptors.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma, Fremtidsvej 3, 2970 Hoersholm, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fagni L, Ango F, Perroy J, Bockaert J. Identification and functional roles of metabotropic glutamate receptor-interacting proteins. Semin Cell Dev Biol 2004; 15:289-98. [PMID: 15125892 DOI: 10.1016/j.semcdb.2003.12.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the mammalian brain, a majority of excitatory synapses use glutamate as a neurotransmitter. Glutamate activates ligand-gated channels (ionotropic receptors) and G protein-coupled (metabotropic) receptors. During the past decade, a number of intracellular proteins have been described to interact with these receptors. These proteins not only scaffold the glutamate receptors at the pre- and post-synaptic membranes, but also regulate their subcellular targeting and intracellular signaling. Thus, identification of these proteins has been essential for further understanding the functions of glutamate receptors. Here we will focus on those proteins that interact with the subgroup of metabotropic glutamate (mGlu) receptors, and review the methods used for their identification, as well as their functional roles in neurons.
Collapse
Affiliation(s)
- Laurent Fagni
- Laboratory of Functional Genomics, CNRS UPR 2580, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France.
| | | | | | | |
Collapse
|
13
|
Heydorn A, Ward RJ, Jorgensen R, Rosenkilde MM, Frimurer TM, Milligan G, Kostenis E. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction. Mol Pharmacol 2004; 66:250-9. [PMID: 15266015 DOI: 10.1124/mol.66.2.250] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several domains of G protein alpha subunits are implicated in the control of receptor-G protein coupling specificity. Among these are the extreme N-and C-termini, the alpha4/beta6-loops, and the loop linking the N-terminal alpha-helix to the beta1-strand of the ras-like domain. In this study, we illustrate that single-point mutations of a highly conserved glycine residue within the linker I region of the Galpha(q) subunit confers upon the mutant Galpha(q) the ability to be activated by Galpha(i)- and Galpha(s) -coupled receptors, as evidenced by guanosine 5'-O-(3-[(35)S]thio)triphosphate binding and inositol phosphate turnover assays. The mutations did not affect expression of Galpha(q) proteins nor their ability to stimulate phospholipase Cbeta. It is noteworthy that both mutant and wild-type Galpha(q) proteins are indistinguishable in their ability to reconstitute a functional Gq-PLCbeta-calcium signaling pathway when cotransfected with the Galpha(q)-coupled neurokinin 1 or muscarinic M3 receptor into mouse embryonic fibroblasts derived from Galpha(q/11) knockout mice. On a three-dimensional model of the receptor-G protein complex, the highly conserved linker I region connecting the helical and the GTPase domain of the Galpha protein is inaccessible to the intracellular surface of the receptors. Our data indicate that receptor-G protein coupling specificity is not exclusively governed by direct receptor-G protein interaction and that it even bypasses the requirement of the extreme C terminus of Galpha, a well accepted receptor recognition domain, suggesting a novel allosteric mechanism for G protein-coupled receptor-G protein selectivity.
Collapse
Affiliation(s)
- Arne Heydorn
- Laboratory for Molecular Pharmacology, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Bolan EA, Pan YX, Pasternak GW. Functional analysis of MOR-1 splice variants of the mouse mu opioid receptor gene Oprm. Synapse 2004; 51:11-8. [PMID: 14579421 DOI: 10.1002/syn.10277] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A series of mu opioid receptor gene Oprm splice variants have been reported that differ only at their C-terminus. These variants all contain exons 1, 2, and 3 of the gene, the exons responsible for coding all seven transmembrane domains. Whereas MOR-1 also has exon 4 that encodes for an additional 12 amino acids at the tip of the C-terminus, the other MOR-1 variants have unique amino acid sequences distinct from those in MOR-1 due to alternative splicing. All these variants are mu-selective in binding assays. The current study explored the ability of these variants to stimulate [35S]GTPgammaS binding to assess them functionally. Only mu opioids stimulated [35S]GTPgammaS binding. Among the mu opioids we noted marked differences in their maximal stimulation among the clones. This was most prominent with beta-endorphin, which stimulated [35S]GTPgammaS binding in the MOR-1E expressing cells to a greater degree than [D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAMGO; 130%) and was far less effective than DAMGO in MOR-1C cells (44%). The rank order of maximal stimulation of the drugs varied among the clones as well. Dynorphin A, beta-endorphin and morphine were most effective in stimulating [35S]GTPgammaS binding in MOR-1E, while M6G and fentanyl were most effective in MOR-1 expressing cells. The potency (EC50) of some of the drugs also varied extensively among the clones, with a poor correlation between the potency of the drugs to stimulate [35S]GTPgammaS binding and their binding affinity. Together, these findings reveal marked functional differences among the variants that only can be explained by their structural differences at the tip of their C-terminus.
Collapse
Affiliation(s)
- Elizabeth A Bolan
- Laboratory of Molecular Neuropharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
15
|
Havlickova M, Blahos J, Brabet I, Liu J, Hruskova B, Prézeau L, Pin JP. The second intracellular loop of metabotropic glutamate receptors recognizes C termini of G-protein alpha-subunits. J Biol Chem 2003; 278:35063-70. [PMID: 12829705 DOI: 10.1074/jbc.m306555200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heptahelical receptor coupling selectivity to G-proteins is controlled by a large contact area that involves several portions of the receptor and each subunit of the G-protein. In the G-protein alpha subunit, the C-terminal 5 residues, the N terminus, and the alpha N-beta 1 and alpha 4-alpha 5 loops play important roles. On the receptor side, both the second and third (i2 and i3) intracellular loops as well as the C-terminal tail probably contact these different regions of the G-protein. It is now accepted that the C terminus of the alpha subunit binds in a cavity formed by the i2 and i3 loops. Among the various G-protein-coupled receptors (GPCRs), class III receptors that include metabotropic glutamate (mGlu) receptors greatly differ from the rhodopsin-like GPCRs, but the contact zone between these receptors and the G-protein is less understood. The C terminus of the alpha subunit has been shown to play a pivotal role in the selective recognition of class III GPCRs. Indeed, the mGlu2 and mGlu4 and -8 receptors can discriminate between alpha subunits that differ at the level of their C-terminal end only (such as Gqo and Gqz). Here, we examine the role of the i2 loop of mGluRs in the selective recognition of this region of the alpha subunit. To that aim, we analyzed the coupling properties of mGlu2 and mGlu4 or -8 receptors and chimeras containing the i2 loop of the converse receptor to G-protein alpha subunits that only differ by their C termini (Gqo,Gqz, and their point mutants). Our data demonstrate that the central portion of the i2 loop is responsible for the selective recognition of the C-terminal end of the alpha subunit, especially the residue on position -4. These data are consistent with the proposal that the C-terminal end of the G-protein alpha subunit interacts with residues in a cavity formed by the i2 and i3 loops in class III GPCRs, as reported for class I GPCRs.
Collapse
Affiliation(s)
- Michaela Havlickova
- Department of Molecular Pharmacology, Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
16
|
Pankevych H, Korkhov V, Freissmuth M, Nanoff C. Truncation of the A1 adenosine receptor reveals distinct roles of the membrane-proximal carboxyl terminus in receptor folding and G protein coupling. J Biol Chem 2003; 278:30283-93. [PMID: 12764156 DOI: 10.1074/jbc.m212918200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl terminus (C-tail) of G protein-coupled receptors is divergent in length and structure and may represent an individualized cytoplasmic domain. By progressively truncating the A1 adenosine receptor, a Gi/o-coupled receptor with short cytoplasmic stretches, we identify two inherent functions of the C-tail, namely a role in receptor export from the endoplasmic reticulum (ER) and a role in G protein coupling. Deletion of the last 22 and 26 amino acids (of 36) reduced and completely abolished surface expression of the receptor, respectively. The severely truncated receptors were retained in the ER and failed to bind ligands. If overexpressed, even a substantial portion of the full-length receptor was retained in the ER in a form that was not functional. These data indicate that folding is rate limiting in export from the ER and that the proximal segment of the carboxyl terminus provides a docking site for the machinery involved in folding and quality control. In addition, the proximal portion is also important in G protein coupling. This latter role was unmasked when the distal portion of the C-tail (the extreme 18 amino acids, including a palmitoylated cysteine) had been removed; the resulting receptor was functional and transferred the agonist-mediated signal more efficiently than the full-length receptor. Signaling was enhanced because the coupling affinity increased (by 3-fold), which translated into a higher agonist potency. Thus, the distal portion of the carboxyl terminus provides for an autoinhibitory restraint, presumably by folding back and preventing G protein access to the proximal part of the C-tail.
Collapse
Affiliation(s)
- Halyna Pankevych
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13A, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Bockaert J, Marin P, Dumuis A, Fagni L. The 'magic tail' of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett 2003; 546:65-72. [PMID: 12829238 DOI: 10.1016/s0014-5793(03)00453-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All cell types express a great variety of G protein-coupled receptors (GPCRs) that are coupled to only a limited set of G proteins. This disposition favors cross-talk between transduction pathways. However, GPCRs are organized into functional units. They promote specificity and thus avoid unsuitable cross-talk. New methodologies (mostly yeast two-hybrid screens and proteomics) have been used to discover more than 50 GPCR-associated proteins that are involved in building these units. In addition, these protein networks participate in the trafficking, targeting, signaling, fine-tuning and allosteric regulation of GPCRs. To date, proteins that interact with the GPCR C-terminus are the most abundant and are the focus of this review.
Collapse
Affiliation(s)
- Joël Bockaert
- Laboratoire de Génomique Fonctionnelle, UPR CNRS 2580, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
18
|
Millán C, Castro E, Torres M, Shigemoto R, Sánchez-Prieto J. Co-expression of metabotropic glutamate receptor 7 and N-type Ca(2+) channels in single cerebrocortical nerve terminals of adult rats. J Biol Chem 2003; 278:23955-62. [PMID: 12692128 DOI: 10.1074/jbc.m211471200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modulation of calcium channels by metabotropic glutamate receptors (mGluRs) is a key event in the fine-tuning of neurotransmitter release. Here we report that, in cerebrocortical nerve terminals of adult rats, the inhibition of glutamate release is mediated by mGluR7. In this preparation, the major component of glutamate release is supported by P/Q-type Ca2+ channels (72.7%). However, mGluR7 selectively reduced the release component that is associated with N-type Ca2+ channels (29.9%). Inhibition of P/Q channels by mGluR7 is not masked by the higher efficiency of these channels in driving glutamate release when compared with N-type channels. Thus, activation of mGluR7 failed to reduce the release associated with P/Q channels when the extracellular calcium concentration, ([Ca2+]o), was reduced from 1.3 to 0.5 mm. Through Ca2+ imaging, we show that Ca2+ channels are distributed in a heterogeneous manner in individual nerve terminals. Indeed, in this preparation, nerve terminals were observed that contain N-type (31.1%; conotoxin GVIA-sensitive) or P/Q-type (64.3%; agatoxin IVA-sensitive) channels or that were insensitive to these two toxins (4.6%). Interestingly, the great majority of the responses to l-AP4 (95.4%) were observed in nerve terminals containing N-type channels. This specific co-localization of mGluR7 and N-type Ca2+-channels could explain the failure of the receptor to inhibit the P/Q channel-associated release component and also reveal the existence of specific targeting mechanisms to localize the two proteins in the same nerve terminal subset.
Collapse
Affiliation(s)
- Carmelo Millán
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Pin JP, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003; 98:325-54. [PMID: 12782243 DOI: 10.1016/s0163-7258(03)00038-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the animal genome. These receptors can be classified into several groups based on the sequence similarity of their common heptahelical domain. The family 3 (or C) GPCRs are receptors for the main neurotransmitters glutamate and gamma-aminobutyric acid, for Ca(2+), for sweet and amino acid taste compounds, and for some pheromone molecules, as well as for odorants in fish. Although none of these family 3 receptors have been found in plants, members have been identified in ancient organisms, such as slime molds (Dictyostelium) and sponges. Like any other GPCRs, family 3 receptors possess a transmembrane heptahelical domain responsible for G-protein activation. However, most of these identified receptors also possess a large extracellular domain that is responsible for ligand recognition, is structurally similar to bacterial periplasmic proteins involved in the transport of small molecules, and is called a Venus Flytrap module. The recent resolution of the structure of this binding domain in one of these receptors, the metabotropic glutamate 1 receptor, together with the recent demonstration that these receptors are dimers, revealed a unique mechanism of activation for these GPCRs. Such data open new possibilities in the development of drugs aimed at modulating these receptors, and raise a number of interesting questions on the activation mechanism of the other GPCRs.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Department of Molecular Pharmacology, CCIPE, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
20
|
Drew JE, Barrett P, Conway S, Delagrange P, Morgan PJ. Differential coupling of the extreme C-terminus of G protein alpha subunits to the G protein-coupled melatonin receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:185-92. [PMID: 12379482 DOI: 10.1016/s0167-4889(02)00312-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin receptors interact with pertussis toxin-sensitive G proteins to inhibit adenylate cyclase. However, the G protein coupling profiles of melatonin receptor subtypes have not been fully characterised and alternative G protein coupling is evident. The five C-terminal residues of Galpha subunits confer coupling specificity to G protein-coupled receptors. This report outlines the use of Galphas chimaeras to alter the signal output of human melatonin receptors and investigate their interaction with the C-termini of Galpha subunits. The Galphas portion of the chimaeras confers the ability to activate adenylate cyclase leading to cyclic AMP production. Co-transfection of HEK293 cells expressing MT(1) or MT(2) melatonin receptors with Galphas chimaeras and a cyclic AMP activated luciferase construct provided a convenient and sensitive assay system for identification of receptor recognition of Galpha C-termini. Luciferase assay sensitivity was compared with measurement of cyclic AMP elevations by radioimmunoassay. Differential interactions of the melatonin receptor subtypes with Galpha chimaeras were observed. Temporal and kinetic parameters of cyclic AMP responses measured by cyclic AMP radioimmunoassay varied depending on the Galphas chimaeras coupled. Recognition of the C-terminal five amino acids of the Galpha subunit is a requisite for coupling to a receptor, but it is not the sole determinant.
Collapse
Affiliation(s)
- Janice E Drew
- Phytochemicals and Genomic Stability, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.
| | | | | | | | | |
Collapse
|
21
|
Simon J, Filippov AK, Göransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA. Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 2002; 277:31390-400. [PMID: 12080041 DOI: 10.1074/jbc.m110714200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat brain capillary endothelial (B10) cells express an unidentified nucleotide receptor linked to adenylyl cyclase inhibition. We show that this receptor in B10 cells is identical in sequence to the P2Y(12) ADP receptor ("P2Y(T)") of platelets. When expressed heterologously, 2-methylthio-ADP (2-MeSADP; EC(50), 2 nm), ADP, and adenosine 5'-O-(2-thio)diphosphate were agonists of cAMP decrease, and 2-propylthio-D-beta,gamma-difluoromethylene-ATP was a competitive antagonist (K(B), 28 nm), as in platelets. However, 2-methylthio-ATP (2-MeSATP) (EC(50), 0.4 nm), ATP (1.9 microm), and 2-chloro-ATP (190 nm), antagonists in the platelet, were also agonists. 2-MeSADP activated (EC(50), 0.1 nm) GIRK1/GIRK2 inward rectifier K(+) channels when co-expressed with P2Y(12) receptors in sympathetic neurons. Surprisingly, P2Y(1) receptors expressed likewise gave that response; however, a full inactivation followed, absent with P2Y(12) receptors. A new P2Y(12)-mediated transduction was found, the closing of native N-type Ca(2+) channels; again both 2-MeSATP and 2-MeSADP are agonists (EC(50), 0.04 and 0.1 nm, respectively). That action, like their cAMP response, was pertussis toxin-sensitive. The Ca(2+) channel inhibition and K(+) channel activation are mediated by beta gamma subunit release from a heterotrimeric G-protein. G alpha subunit types in B10 cells were also identified. The presence in the brain capillary endothelial cell of the P2Y(12) receptor is a significant extension of its functional range.
Collapse
MESH Headings
- Adenylate Cyclase Toxin
- Adenylyl Cyclases/metabolism
- Amino Acid Sequence
- Animals
- Astrocytoma
- Binding, Competitive
- Brain Neoplasms
- CHO Cells
- Capillaries/physiology
- Cerebrovascular Circulation/physiology
- Cloning, Molecular
- Cricetinae
- Endothelium, Vascular/physiology
- GTP-Binding Proteins/metabolism
- Humans
- Ion Channels/physiology
- Kinetics
- Membrane Proteins
- Molecular Sequence Data
- Pertussis Toxin
- Plasmids
- Rats
- Receptor Cross-Talk/physiology
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y12
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Tumor Cells, Cultured
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Joseph Simon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
El Far O, Betz H. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem J 2002; 365:329-36. [PMID: 12006104 PMCID: PMC1222699 DOI: 10.1042/bj20020481] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Accepted: 05/08/2002] [Indexed: 11/17/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity.
Collapse
Affiliation(s)
- Oussama El Far
- Max-Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/Main, Germany
| | | |
Collapse
|
23
|
Perroy J, El Far O, Bertaso F, Pin J, Betz H, Bockaert J, Fagni L. PICK1 is required for the control of synaptic transmission by the metabotropic glutamate receptor 7. EMBO J 2002; 21:2990-9. [PMID: 12065412 PMCID: PMC126066 DOI: 10.1093/emboj/cdf313] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Both postsynaptic density and presynaptic active zone are structural matrix containing scaffolding proteins that are involved in the organization of the synapse. Little is known about the functional role of these proteins in the signaling of presynaptic receptors. Here we show that the interaction of the presynaptic metabotropic glutamate (mGlu) receptor subtype, mGlu7a, with the postsynaptic density-95 disc-large zona occludens 1 (PDZ) domain-containing protein, PICK1, is required for specific inhibition of P/Q-type Ca(2+) channels, in cultured cerebellar granule neurons. Furthermore, we show that activation of the presynaptic mGlu7a receptor inhibits synaptic transmission and this effect also requires the presence of PICK1. These results indicate that the scaffolding protein, PICK1, plays an essential role in the control of synaptic transmission by the mGlu7a receptor complex.
Collapse
Affiliation(s)
| | - O. El Far
- UPR CNRS 9023, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier, Cedex 05, France and
Max-Planck Institute für Hirnforschung, Postfach 710662, D-60528 Frankfurt, Germany Corresponding author e-mail:
| | | | | | - H. Betz
- UPR CNRS 9023, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier, Cedex 05, France and
Max-Planck Institute für Hirnforschung, Postfach 710662, D-60528 Frankfurt, Germany Corresponding author e-mail:
| | | | - L. Fagni
- UPR CNRS 9023, CCIPE, 141 Rue de la Cardonille, 34094 Montpellier, Cedex 05, France and
Max-Planck Institute für Hirnforschung, Postfach 710662, D-60528 Frankfurt, Germany Corresponding author e-mail:
| |
Collapse
|